1
|
Gama G, Martin KC, Drew DM. Wood formation of drought-resistant Eucalyptus cladocalyx under cyclical drought treatment. QUANTITATIVE PLANT BIOLOGY 2025; 6:e12. [PMID: 40297242 PMCID: PMC12035783 DOI: 10.1017/qpb.2025.7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 02/11/2025] [Accepted: 02/14/2025] [Indexed: 04/30/2025]
Abstract
Eucalyptus cladocalyx, known for its drought tolerance, has complex wood anatomy influenced by environmental conditions. This study investigated the xylem response of E. cladocalyx seedlings to cyclic drought stress compared to continuous irrigation. Seedlings were subjected to alternating drought and watering cycles, and their growth, xylem traits and cambial activity were monitored. Continuously irrigated seedlings exhibited greater height and stem diameter growth than periodically irrigated ones. Xylem response between the periodic and continuous irrigations showed no significant differences. Vessel and fibre features showed significant temporal variation, with substantial interaction between treatment and time for vessel area, fibre area and fibre thickness and not for vessel frequency. The cambium remained active under drought conditions, indicating resilience. Overall, anatomical properties varied complexly and inconsistently across drought cycles, likely due to differences in drought intensity, strategies and genetic factors.
Collapse
Affiliation(s)
- Gugu Gama
- Department of Forest and Wood Science, Stellenbosch University, Stellenbosch, South Africa
| | - Kim C. Martin
- Department of Forest and Wood Science, Stellenbosch University, Stellenbosch, South Africa
| | - David M. Drew
- Department of Forest and Wood Science, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
2
|
Ferraz TM, de Oliveira Maia Júnior S, de Souza GAR, Baroni DF, Rodrigues WP, de Sousa EF, Penchel R, Loos R, de Assis Figueiredo FAMM, Rakocevic M, Campostrini E. Clonal differences in ecophysiological responses to imposed drought in selected Eucalyptus grandis × E. urophylla hybrids. TREE PHYSIOLOGY 2025; 45:tpae160. [PMID: 39660992 DOI: 10.1093/treephys/tpae160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 10/18/2024] [Accepted: 12/06/2024] [Indexed: 12/12/2024]
Abstract
Measuring ecophysiological responses of Eucalyptus clones grown under reduced water availability could assist in clonal selection for climate resilience. We hypothesized that clonal variation in chlorophyll a fluorescence was more readily detected than variations in leaf-level gas exchanges when 2-year-old Eucalyptus grandis W.Hill ex Maiden × Eucalyptus urophylla S.T. Blake hybrid clones (C1, C2, C3 and C4) grown under rainfed (RF) and water-restricted (WR) conditions were evaluated during dry and rainy seasons, in the morning and midday diurnal periods. The C2 clone was the most drought tolerant as it had a similar net CO2 assimilation rate (A) considering the RF and WR conditions at midday during the dry season, while C1, C3 and C4 CO2 assimilation rates (A) decreased by 29.1%, 28.3% and 13%, respectively. This response was associated with a reduction to a lesser extent in leaf water potential, stomatal conductance (gs) and transpiration rates (E) (ca 10%, 30% and 13% under WR, respectively), when compared with the other clones during the dry season at midday. The lower leaf to air vapor pressure deficit of C2 contributed to its greater water-use efficiency (WUE), resulting in greater total dry mass gain. C1, C3 and C4 were less drought tolerant, decreasing gs, E and especially A under WR, resulting in lower WUE and total dry mass gain. Chlorophyll a fluorescence indexes were better indicators of drought tolerance compared with gas exchange parameters in definition of drought tolerance of clonal Eucalyptus. Three drought-sensitive clones showed low photochemical efficiency under WR, with the electron transport rate being impaired between photosystems II and I, indicated by the greater changes in photosynthetic performance index (PIabs). Under WR conditions, Fv/Fm, Ψ0, ΦE0 and PIabs decreased in all clones while ΦD0 and DI0/CS0 increased, with C2 showing the most stable responses suggesting that the photochemical apparatus was the less damaged by drought. Thus, C2 was the best clone for regions with water scarcity. STATEMENTS
Collapse
Affiliation(s)
- Tiago Massi Ferraz
- Department of Zootechnics, State University of Maranhão, São Luís, MA, Brazil
| | | | - Guilherme Augusto Rodrigues de Souza
- Plant Physiology Department, LMGV, Agricultural Science and Technology Center, State University of North Fluminense, Av. Alberto Lamego, 2000, Campos dos Goytacazes, RJ 28013-602, Brazil
| | - Danilo Força Baroni
- Plant Physiology Department, LMGV, Agricultural Science and Technology Center, State University of North Fluminense, Av. Alberto Lamego, 2000, Campos dos Goytacazes, RJ 28013-602, Brazil
| | - Weverton Pereira Rodrigues
- Center of Agricultural, Natural and Literary Sciences, State University of the Tocantina Region of Maranhão (UEMASUL), Estreito, MA, Brazil
| | - Elias Fernandes de Sousa
- Irrigation Department, LEAG, Agricultural Science and Technology Center, State University of North Fluminense, Av. Alberto Lamego, 2000, Campos dos Goytacazes, RJ 28013-602, Brazil
| | | | | | | | - Miroslava Rakocevic
- Plant Physiology Department, LMGV, Agricultural Science and Technology Center, State University of North Fluminense, Av. Alberto Lamego, 2000, Campos dos Goytacazes, RJ 28013-602, Brazil
| | - Eliemar Campostrini
- Plant Physiology Department, LMGV, Agricultural Science and Technology Center, State University of North Fluminense, Av. Alberto Lamego, 2000, Campos dos Goytacazes, RJ 28013-602, Brazil
| |
Collapse
|
3
|
Blackman CJ, Halliwell B, Brodribb TJ. All together now: A mixed-planting experiment reveals adaptive drought tolerance in seedlings of 10 Eucalyptus species. PLANT PHYSIOLOGY 2024; 197:kiae632. [PMID: 39673329 DOI: 10.1093/plphys/kiae632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 11/04/2024] [Accepted: 11/10/2024] [Indexed: 12/16/2024]
Abstract
The negative impacts of drought on plant productivity and survival in natural and crop systems are increasing with global heating, yet our capacity to identify species capable of surviving drought remains limited. Here, we tested the use of a mixed-planting approach for assessing differences in seedling drought tolerance. To homogenize dehydration rates, we grew seedlings of 10 species of Eucalyptus together in trays where roots of all individuals were overlapping in a common loam soil. These seedling combinations were dried down under cool and warm temperature conditions, and seedling responses were quantified from measurements of chlorophyll fluorescence (Fv/Fm). The day of drought (T) associated with an 88% decline in Fv/Fm (TF88) varied significantly among species and was unrelated to seedling size. No significant differences in water potentials were detected among seedlings dehydrated under warm conditions prior to leaf wilt. The rank-order of species TF88 was consistent under both temperature treatments. Under cool conditions, seedling TF88 increased with decreasing cavitation vulnerability measured on adult foliage. Under both treatments, a quadratic function best fit the relationship between seedling TF88 and sampling site mean annual precipitation. These results provide evidence for adaptive selection of seedling drought tolerance. Our findings highlight the use of mixed-planting experiments for comparing seedling drought tolerance with applications for improving plant breeding and conservation outcomes.
Collapse
Affiliation(s)
- Chris J Blackman
- ARC Centre of Excellence for Plant Success in Nature and Agriculture, School of Natural Sciences, University of Tasmania, Hobart 7001, Tasmania, Australia
| | - Ben Halliwell
- ARC Centre of Excellence for Plant Success in Nature and Agriculture, School of Natural Sciences, University of Tasmania, Hobart 7001, Tasmania, Australia
| | - Tim J Brodribb
- ARC Centre of Excellence for Plant Success in Nature and Agriculture, School of Natural Sciences, University of Tasmania, Hobart 7001, Tasmania, Australia
| |
Collapse
|
4
|
Li BR, Sun N, Xu MS, Sun QX, Wang HM, Zhou J, Luo X, Lv GH, Yang XD. Difference in summer heatwave-induced damage between desert native and urban greening plants in an arid desert region. PLoS One 2024; 19:e0299976. [PMID: 39642188 PMCID: PMC11623472 DOI: 10.1371/journal.pone.0299976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 05/02/2024] [Indexed: 12/08/2024] Open
Abstract
Summer heatwaves have caused a distinct mortality between urban greening and native plants. However, there are insufficient studies revealing the underlying mechanisms. We hypothesized that differentiation in hydraulic traits and their integration cause the varied heatwave-induced damages between the two plant types. To prove it, three desert native species and five urban greening species were selected as the experimental objects. Then, the number of damaged individuals caused by summer heatwaves were investigated based on the 100 individuals for each species. The hydraulic traits (including hydraulic transport, photosynthetic and leaf traits) of 3-5 mature individuals were measured for each species. The comparative analysis (independent sample t test and one-way ANOVA) and the collaborative analysis (Pearson correlation and network analysis) were used to reveal the differences in heatwave-induced damage, hydraulic traits and their integration between urban greening and native plants. Our results showed that the heatwave-induced damage to urban greening plants was larger than that to native species. Water potentials of leaf and branch in pre-dawn and midday, P50, leaf dry matter content, net photosynthetic rate, transpiration rate and stomatal conductance of desert native species were significantly lower than those of urban greening plants (P < 0.05), while twig specific hydraulic conductivity, Huber value, wood density, intrinsic water use efficiency and the specific leaf area showed opposite patterns (P < 0.05). Trait integration of desert native species (0.63) was much higher than greening plants (0.24). Our results indicate that artificial urban greening plants are more susceptible to drought stress caused by heatwaves than native desert species. In the context of global climate change, in order to maintain the stability and function of urban ecosystems in extreme climate, the screening of greening plants should start from the perspective of hydraulics and trait integration, and more native species with strong drought adaptability should be planted.
Collapse
Affiliation(s)
- Bo-Rui Li
- Department of Geography & Spatial Information/Center for Land and Marine Spatial Utilization and Governance Research, Ningbo University, Ningbo, China
- Institute of Resources and Environment Science, Xinjiang University, Urumqi, China
| | - Nan Sun
- Department of Geography & Spatial Information/Center for Land and Marine Spatial Utilization and Governance Research, Ningbo University, Ningbo, China
| | - Ming-Shan Xu
- Zhejiang Institute of Hydraulics & Estuary (Zhejiang Surveying Institute of Estuary and Coast), Hangzhou, Zhejiang, China
| | - Qi-Xing Sun
- Department of Geography & Spatial Information/Center for Land and Marine Spatial Utilization and Governance Research, Ningbo University, Ningbo, China
| | - Hui-Ming Wang
- Institute of Resources and Environment Science, Xinjiang University, Urumqi, China
| | - Jie Zhou
- Institute of Resources and Environment Science, Xinjiang University, Urumqi, China
| | - Xu Luo
- Department of Geography & Spatial Information/Center for Land and Marine Spatial Utilization and Governance Research, Ningbo University, Ningbo, China
| | - Guang-Hui Lv
- Institute of Resources and Environment Science, Xinjiang University, Urumqi, China
| | - Xiao-Dong Yang
- Department of Geography & Spatial Information/Center for Land and Marine Spatial Utilization and Governance Research, Ningbo University, Ningbo, China
- Institute of Resources and Environment Science, Xinjiang University, Urumqi, China
| |
Collapse
|
5
|
Wang S, Zhou H, He Z, Ma D, Sun W, Xu X, Tian Q. Effects of Drought Stress on Leaf Functional Traits and Biomass Characteristics of Atriplex canescens. PLANTS (BASEL, SWITZERLAND) 2024; 13:2006. [PMID: 39065532 PMCID: PMC11281204 DOI: 10.3390/plants13142006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/17/2024] [Accepted: 07/19/2024] [Indexed: 07/28/2024]
Abstract
Drought is a critical factor constraining plant growth in arid regions. However, the performance and adaptive mechanism of Atriplex canescens (A. canescens) under drought stress remain unclear. Hence, a three-year experiment with three drought gradients was performed in a common garden, and the leaf functional traits, biomass and biomass partitioning patterns of A. canescens were investigated. The results showed that drought stress had significant effects on A. canescens leaf functional traits. A. canescens maintained the content of malondialdehyde (MDA) and the activity of superoxide dismutase (SOD), but the peroxidase (POD) and catalase (CAT) activity decreased, and the content of proline (Pro) and soluble sugar (SS) increased only under heavy drought stress. Under drought stress, the leaves became smaller but denser, the specific leaf area (SLA) decreased, but the dry matter content (LDMC) maintained stability. Total biomass decreased 60% to 1758 g under heavy drought stress and the seed and leaf biomass was only 10% and 20% of non-stress group, but there had no significant difference on root biomass. More biomass was allocated to root under drought stress. The root biomass allocation ratio was doubled from 9.62% to 19.81% under heavy drought, and the root/shoot ratio (R/S) increased from 0.11 to 0.25. The MDA was significantly and negatively correlated with biomass, while the SPAD was significantly and positively correlated with total and aboveground organs biomass. The POD, CAT, Pro and SS had significant correlations with root and seed allocation ratio. The leaf morphological traits related to leaf shape and weight had significant correlations with total and aboveground biomass and biomass allocation. Our study demonstrated that under drought stress, A. canescens made tradeoffs between growth potential and drought tolerance and evolved with a conservative strategy. These findings provide more information for an in-depth understanding of the adaption strategies of A. canescens to drought stress and provide potential guidance for planting and sustainable management of A. canescens in arid and semi-arid regions.
Collapse
Affiliation(s)
- Shuai Wang
- Linze Inland River Basin Research Station, Chinese Ecosystem Research Network, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; (S.W.); (H.Z.); (D.M.); (W.S.); (Q.T.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hai Zhou
- Linze Inland River Basin Research Station, Chinese Ecosystem Research Network, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; (S.W.); (H.Z.); (D.M.); (W.S.); (Q.T.)
| | - Zhibin He
- Linze Inland River Basin Research Station, Chinese Ecosystem Research Network, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; (S.W.); (H.Z.); (D.M.); (W.S.); (Q.T.)
| | - Dengke Ma
- Linze Inland River Basin Research Station, Chinese Ecosystem Research Network, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; (S.W.); (H.Z.); (D.M.); (W.S.); (Q.T.)
| | - Weihao Sun
- Linze Inland River Basin Research Station, Chinese Ecosystem Research Network, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; (S.W.); (H.Z.); (D.M.); (W.S.); (Q.T.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xingzhi Xu
- College of Pratacultural Science, Gansu Agricultural University, Lanzhou 730070, China;
| | - Quanyan Tian
- Linze Inland River Basin Research Station, Chinese Ecosystem Research Network, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; (S.W.); (H.Z.); (D.M.); (W.S.); (Q.T.)
| |
Collapse
|
6
|
Beringer J, Moore CE, Cleverly J, Campbell DI, Cleugh H, De Kauwe MG, Kirschbaum MUF, Griebel A, Grover S, Huete A, Hutley LB, Laubach J, Van Niel T, Arndt SK, Bennett AC, Cernusak LA, Eamus D, Ewenz CM, Goodrich JP, Jiang M, Hinko‐Najera N, Isaac P, Hobeichi S, Knauer J, Koerber GR, Liddell M, Ma X, Macfarlane C, McHugh ID, Medlyn BE, Meyer WS, Norton AJ, Owens J, Pitman A, Pendall E, Prober SM, Ray RL, Restrepo‐Coupe N, Rifai SW, Rowlings D, Schipper L, Silberstein RP, Teckentrup L, Thompson SE, Ukkola AM, Wall A, Wang Y, Wardlaw TJ, Woodgate W. Bridge to the future: Important lessons from 20 years of ecosystem observations made by the OzFlux network. GLOBAL CHANGE BIOLOGY 2022; 28:3489-3514. [PMID: 35315565 PMCID: PMC9314624 DOI: 10.1111/gcb.16141] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 01/30/2022] [Accepted: 02/08/2022] [Indexed: 06/14/2023]
Abstract
In 2020, the Australian and New Zealand flux research and monitoring network, OzFlux, celebrated its 20th anniversary by reflecting on the lessons learned through two decades of ecosystem studies on global change biology. OzFlux is a network not only for ecosystem researchers, but also for those 'next users' of the knowledge, information and data that such networks provide. Here, we focus on eight lessons across topics of climate change and variability, disturbance and resilience, drought and heat stress and synergies with remote sensing and modelling. In distilling the key lessons learned, we also identify where further research is needed to fill knowledge gaps and improve the utility and relevance of the outputs from OzFlux. Extreme climate variability across Australia and New Zealand (droughts and flooding rains) provides a natural laboratory for a global understanding of ecosystems in this time of accelerating climate change. As evidence of worsening global fire risk emerges, the natural ability of these ecosystems to recover from disturbances, such as fire and cyclones, provides lessons on adaptation and resilience to disturbance. Drought and heatwaves are common occurrences across large parts of the region and can tip an ecosystem's carbon budget from a net CO2 sink to a net CO2 source. Despite such responses to stress, ecosystems at OzFlux sites show their resilience to climate variability by rapidly pivoting back to a strong carbon sink upon the return of favourable conditions. Located in under-represented areas, OzFlux data have the potential for reducing uncertainties in global remote sensing products, and these data provide several opportunities to develop new theories and improve our ecosystem models. The accumulated impacts of these lessons over the last 20 years highlights the value of long-term flux observations for natural and managed systems. A future vision for OzFlux includes ongoing and newly developed synergies with ecophysiologists, ecologists, geologists, remote sensors and modellers.
Collapse
|
7
|
Filipe JC, Rymer PD, Byrne M, Hardy G, Mazanec R, Ahrens CW. Signatures of natural selection in a foundation tree along Mediterranean climatic gradients. Mol Ecol 2022; 31:1735-1752. [PMID: 35038378 PMCID: PMC9305101 DOI: 10.1111/mec.16351] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 01/04/2022] [Accepted: 01/10/2022] [Indexed: 11/30/2022]
Abstract
Temperature and precipitation regimes are rapidly changing, resulting in forest dieback and extinction events, particularly in Mediterranean‐type climates (MTC). Forest management that enhance forests’ resilience is urgently required, however adaptation to climates in heterogeneous landscapes with multiple selection pressures is complex. For widespread trees in MTC we hypothesized that: patterns of local adaptation are associated with climate; precipitation is a stronger factor of adaptation than temperature; functionally related genes show similar signatures of adaptation; and adaptive variants are independently sorting across the landscape. We sampled 28 populations across the geographic distribution of Eucalyptus marginata (jarrah), in South‐west Western Australia, and obtained 13,534 independent single nucleotide polymorphic (SNP) markers across the genome. Three genotype‐association analyses that employ different ways of correcting population structure were used to identify putatively adapted SNPs associated with independent climate variables. While overall levels of population differentiation were low (FST = 0.04), environmental association analyses found a total of 2336 unique SNPs associated with temperature and precipitation variables, with 1440 SNPs annotated to genic regions. Considerable allelic turnover was identified for SNPs associated with temperature seasonality and mean precipitation of the warmest quarter, suggesting that both temperature and precipitation are important factors in adaptation. SNPs with similar gene functions had analogous allelic turnover along climate gradients, while SNPs among temperature and precipitation variables had uncorrelated patterns of adaptation. These contrasting patterns provide evidence that there may be standing genomic variation adapted to current climate gradients, providing the basis for adaptive management strategies to bolster forest resilience in the future.
Collapse
Affiliation(s)
- J C Filipe
- Centre for Terrestrial Ecosystem Science and Sustainability, Harry Butler Institute, Murdoch University
| | - P D Rymer
- Hawkesbury Institute for the Environment, Western Sydney University
| | - M Byrne
- Biodiversity and Conservation Science, Department of Biodiversity, Conservation and Attractions
| | - G Hardy
- Centre for Terrestrial Ecosystem Science and Sustainability, Harry Butler Institute, Murdoch University
| | - R Mazanec
- Biodiversity and Conservation Science, Department of Biodiversity, Conservation and Attractions
| | - C W Ahrens
- Hawkesbury Institute for the Environment, Western Sydney University
| |
Collapse
|
8
|
Pritzkow C, Szota C, Williamson V, Arndt SK. Previous drought exposure leads to greater drought resistance in eucalypts through changes in morphology rather than physiology. TREE PHYSIOLOGY 2021; 41:1186-1198. [PMID: 33530102 DOI: 10.1093/treephys/tpaa176] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 12/22/2020] [Indexed: 06/12/2023]
Abstract
Over their lifetime, trees are repeatedly exposed to droughts. It is therefore important to understand whether repeated drought exposure makes trees more or less drought tolerant. Here, we investigated the effect of repeated droughts on functional trait expression and tree function in Eucalyptus obliqua. Further, we tested whether previous drought exposure enabled trees to avoid leaf death for longer under a subsequent severe drought. Trees were subjected for 1 year to 2 drought-rewatering cycles (drought treatment) or well-watered conditions, before imposing a severe drought. Trees in the drought treatment reduced their overall leaf area and biomass, whereas leaf-level anatomical, morphological and physiological traits remained mostly unaffected. There were no differences in water potential at the turgor loss point, leaf xylem vulnerability to embolism, leaf size, maximum xylem vessel diameter or cell wall thickness between treatments after the conditioning period. When exposed to a subsequent severe drought, trees previously exposed to drought were more drought tolerant due to a lower water potential at leaf death and tree-level morphological rather than physiological adjustments. Trees previously exposed to drought were smaller and used less water, which delayed leaf death for 39 days compared with 22 days for the well-watered trees. Our study indicates that previous drought exposure can facilitate tree-level morphological adjustment, which potentially enhances survival of E. obliqua trees during subsequent drought events.
Collapse
Affiliation(s)
- Carola Pritzkow
- School of Ecosystem and Forest Sciences, University of Melbourne, 500 Yarra Blvd, Burnley, VIC, 3121, Australia
- School of Biology, University of Tasmania, 55 Private Bag, Hobart, TAS, 7001, Australia
| | - Christopher Szota
- School of Ecosystem and Forest Sciences, University of Melbourne, 500 Yarra Blvd, Burnley, VIC, 3121, Australia
| | - Virginia Williamson
- School of Ecosystem and Forest Sciences, University of Melbourne, 500 Yarra Blvd, Burnley, VIC, 3121, Australia
| | - Stefan K Arndt
- School of Ecosystem and Forest Sciences, University of Melbourne, 500 Yarra Blvd, Burnley, VIC, 3121, Australia
| |
Collapse
|