1
|
Ma Z, Mondor M, Boesch C, Sánchez-Velázquez OA, Dowle AA, Hernández-Álvarez AJ. The transepithelial transport of peptides derived from insects (Galleria mellonella and Alphitobius diaperinus) through static in vitro digestion (INFOGEST) and their ability to mitigating oxidative stress. Food Chem 2025; 481:144036. [PMID: 40168868 DOI: 10.1016/j.foodchem.2025.144036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 03/19/2025] [Accepted: 03/23/2025] [Indexed: 04/03/2025]
Abstract
Insect protein-derived peptides are gaining attention for their potential bioactivities. This study aimed to evaluate the antioxidant ability of peptides derived from gastrointestinal digestion and assess their absorption through transepithelial transport. Results indicate an increase of antioxidant properties from G. mellonella (W) and A. diaperinus (B) proteins, including reducing power (Fe2+, Cu2+) and radical scavenging (ABTS, DPPH) with enhanced antioxidant activities in gastrointestinal digestates compared to gastric digestates. The inhibition of intracellular Reactive Oxygen Species (ROS) confirmed these findings, the inhibition rates of 40.2 % (W) and 58.5 % (B), respectively. Transepithelial transport analysis demonstrated that peptide absorption primarily occurred between 6 h and 24 h, with W exhibiting a higher apparent permeability coefficient (6.10 × 10-6 cm/s) compared to B (5.91 × 10-7 cm/s). The results highlight the antioxidant potential and absorption capability of insect-derived peptides, with W demonstrating superior antioxidant activity in most assays, whereas B proved more effective in inhibiting intracellular ROS. These findings support the potential of both W and B as bioactive ingredients with functional applications.
Collapse
Affiliation(s)
- Zidan Ma
- Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, UK
| | - Martin Mondor
- Saint-Hyacinthe Research and Development Centre, Agriculture and Agri-Food Canada, Saint-Hyacinthe, QC J2S 8E3, Canada; Department of Chemical Engineering and Biotechnological Engineering, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada; Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec, QC G1V 0A6, Canada
| | - Christine Boesch
- Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, UK
| | | | - Adam A Dowle
- Bioscience Technology Facility, Department of Biology, University of York, York YO10 5DD, UK
| | | |
Collapse
|
2
|
Wang S, Lin S, Li S, Qian X, Li C, Sun N. Effects of different thermal sterilization conditions on the quality of ready-to-eat shrimp based on specific sterilization intensity. Food Chem 2024; 450:139359. [PMID: 38631204 DOI: 10.1016/j.foodchem.2024.139359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/01/2024] [Accepted: 04/12/2024] [Indexed: 04/19/2024]
Abstract
The effects of different thermal sterilization conditions on the quality and digestibility of ready-to-eat (RTE) shrimp were investigated. Compared with the high-temperature (121 °C) and short-time (6 min and 8 min) sterilization, the low-temperature (110 and 115 °C) and long-time (>20 min) sterilization significantly promoted the Maillard and browning reactions and changed the color of the RTE-shrimp. The high sterilization temperature promoted shrimp protein oxidation, resulting in increased carbonyl group, disulfide bond, and free radical content, while the free sulfhydryl group content decreased. This oxidation and tissue destruction at high temperature led to reduced texture properties and altered water distribution within the shrimp's muscles. However, sterilized shrimp exhibited superior digestive properties in an in vitro simulated digestion experiment. High-temperature and short-time sterilization is more effective in mitigating the quality deterioration of RTE-shrimp compared to low-temperature and long-time sterilization.
Collapse
Affiliation(s)
- Shuo Wang
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Songyi Lin
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; Engineering Research Center of Food, Dalian Polytechnic University, Dalian 116034, China
| | - Shuang Li
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Xixin Qian
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Chenqi Li
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Na Sun
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; Engineering Research Center of Food, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
3
|
Napieraj M, Lutton E, Perez J, Boué F, Brûlet A. Destructuration of Canola Protein Gels during In Situ Gastrointestinal Digestion Studied by X-ray Scattering. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:16226-16238. [PMID: 39041952 DOI: 10.1021/acs.langmuir.4c01341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
We are studying the destructuration of canola protein gels, as a solid food model, during in situ gastrointestinal digestion using synchrotron small-angle X-ray scattering (SAXS). Digestion of two gels, prepared by heating pH 8 and pH 11 solutions, was carried out by diffusion of enzymatic juices into the gel from the top of the capillary and monitored for several tens of hours. Very similar time evolutions of SAXS curves occur at different positions of the gel in the capillary, with a delay determined by the distance from the surface initially in contact with the digestive juice. The main phenomena observed are (i) at the scale of the protein conformation (1-5 nm). The scattering curve is a power law, the exponent of which measures the compactness (related to the degree of unfolding). It can be plotted as a function of the characteristic size of proteins/and interprotein distances and as a function of the scattering intensity. Such diagrams clearly show successive digestion processes. For the pH 11 gel, in which proteins are initially hardly unfolded, the digestive processes are unfolding (1st step), recompaction-aggregation phenomena (2nd step) due to gastrointestinal pH conditions and enzymatic cleavage, further unfolding-disaggregation (3rd step), and final protein cleavage (4th step) down to small peptides. For the pH 8 gel, proteins are initially unfolded, and only the last three steps are observed, showing the influence of easier access for the enzymes. (ii) At the scale of large aggregates (10-50 nm), we observe for both gels a decrease in the size and/or number of these aggregates during digestion and alteration of their interfaces. (iii) At the scale of the secondary protein structure, wide-angle X-ray scattering is very useful for detecting the degradation of the secondary protein structure at different steps of digestion.
Collapse
Affiliation(s)
- Maja Napieraj
- Laboratoire Léon Brillouin, UMR12 CEA-CNRS, Université Paris-Saclay, CEA Saclay, F-91191 Gif sur Yvette, France
| | - Evelyne Lutton
- Mathématiques et Informatique Appliquée─Paris, UMR518 AgroParisTech-INRAE, Université Paris-Saclay, 91120 Palaiseau, France
- Institut des Systèmes Complexes, 75013 Paris, France
| | - Javier Perez
- SWING, Synchrotron SOLEIL, Saint-Aubin - BP 48, 91192 Gif sur Yvette, France
| | - François Boué
- Laboratoire Léon Brillouin, UMR12 CEA-CNRS, Université Paris-Saclay, CEA Saclay, F-91191 Gif sur Yvette, France
| | - Annie Brûlet
- Laboratoire Léon Brillouin, UMR12 CEA-CNRS, Université Paris-Saclay, CEA Saclay, F-91191 Gif sur Yvette, France
| |
Collapse
|
4
|
Arnal M, Salcedo L, Talens P, Ribes S. Role of Food Texture, Oral Processing Responses, Bolus Properties, and Digestive Conditions on the Nutrient Bioaccessibility of Al Dente and Soft-Cooked Red Lentil Pasta. Foods 2024; 13:2341. [PMID: 39123533 PMCID: PMC11311959 DOI: 10.3390/foods13152341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/14/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024] Open
Abstract
The purpose of this study was to assess the impact of food texture, oral processing, bolus characteristics, and in vitro digestive conditions on the starch and protein digestibility of al dente and soft-cooked commercial red lentil pasta. For that, samples were cooked as suggested by the provider and their texture properties were promptly analysed. Then, normal and deficient masticated pasta boluses were produced by four healthy subjects, characterised in terms of their oral processing, bolus granulometry, texture and viscoelastic properties, and finally subjected to static in vitro digestion, according to the INFOGEST consensus for both adults and the older adult population. Normal masticated boluses exhibited greater saliva impregnation and lower proportions of large particles, hardness, and stiffness than deficient masticated boluses. Likewise, insufficiently masticated al dente-cooked pasta boluses caused a delay in oral starch digestion owing to the larger particles attained during food oral processing, while reduced intestinal conditions in the elderly only interfere with the release of total soluble proteins in all samples. This work evidences the importance of considering the initial texture of products, oral capabilities, processing behaviour, and physical and mechanical properties of food boluses in digestion studies, opening new prospects in designing pulse-based foods that meet the nutritional requirements of the world's population.
Collapse
Affiliation(s)
| | | | - Pau Talens
- Instituto Universitario de Ingeniería de Alimentos—Food UPV, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain; (M.A.); (L.S.); (S.R.)
| | | |
Collapse
|
5
|
Sánchez-García J, Muñoz-Pina S, García-Hernández J, Tárrega A, Heredia A, Andrés A. Protein digestibility and ACE inhibitory activity of fermented flours in older adults and standard gastrointestinal simulation. Food Res Int 2024; 180:114080. [PMID: 38395555 DOI: 10.1016/j.foodres.2024.114080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 01/23/2024] [Accepted: 01/29/2024] [Indexed: 02/25/2024]
Abstract
Consumption of essential amino acids responsible for muscle protein synthesis is important in preventing sarcopenia among older individuals. This population may experience gastrointestinal disorders that inhibit protein digestibility, making it crucial to address. Therefore, solid-state fermentation (SSF) using Pleurotus ostreatus and air drying has been suggested as a means of improving the protein digestibility of lentils and quinoa. SSF combined with air drying at 70 °C resulted in a slight increase in protein hydrolysis compared to unfermented samples. SSF was found to boost the proportion of small peptides to 35 %. Following digestion, SSF and drying yielded bioactive peptides of 1400 and 450 Da, with a range of 11 % to 28 %, respectively, and peptides < 190 Da making up 60 % of the total. SSF promoted valine, leucine, and isoleucine generation; however, hot air drying reduced free amino acids due to the amino acid-reducing sugar bonding but was never lower than the initial content of its unfermented counterpart. Furthermore, SSF and drying at 70 °C improved the release of hydrophobic amino acids (>70 mg/g dry basis) and negatively charged amino acids (>20 mg/g dry basis) in lentils during digestion. The SSF samples exhibited lower angiotensin converting enzyme (ACE) inhibitory activity, ≤35 %, compared to unfermented flours after digestion. However, the ACE inhibitory activity increased in SSF-dried samples, in part because of melanoidins generated during drying. Finally, lower values of protein digestibility and thus smaller peptides, amino acid profile, and ACE inhibitory activity of fermented flours were found in the older adult digestion model.
Collapse
Affiliation(s)
- Janaina Sánchez-García
- Instituto Universitario de Ingeniería de Alimentos - FoodUPV, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
| | - Sara Muñoz-Pina
- Instituto Universitario de Ingeniería de Alimentos - FoodUPV, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain.
| | - Jorge García-Hernández
- Centro Avanzado de Microbiología de Alimentos (CAMA), Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
| | - Amparo Tárrega
- Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC), Agustín Escardino, 7, 46980 Paterna, Valencia, Spain
| | - Ana Heredia
- Instituto Universitario de Ingeniería de Alimentos - FoodUPV, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
| | - Ana Andrés
- Instituto Universitario de Ingeniería de Alimentos - FoodUPV, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
| |
Collapse
|
6
|
Gallego M, Grau R, Talens P. Behaviour of texture-modified meats using proteolytic enzymes during gastrointestinal digestion simulating elderly alterations. Meat Sci 2023; 206:109341. [PMID: 37717338 DOI: 10.1016/j.meatsci.2023.109341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 09/07/2023] [Accepted: 09/07/2023] [Indexed: 09/19/2023]
Abstract
This study aimed to apply different proteolytic enzymes (bromelain, papain, and flavourzyme) to develop texture-modified meats suitable for people with chewing or swallowing problems. The samples were categorised at level 6 (soft and bite-sized food) of the dysphagia diet, characterised in terms of physicochemical and textural parameters, and evaluated for their behaviour during gastrointestinal digestion simulating elderly alterations. In general, the enzyme-treated samples had lower moisture content, weight, and diameter of the piece of meat, and presented colour differences compared to the control samples. Textural analyses did not show significant differences in terms of hardness and cohesiveness for the texture-modified meats, while flavourzyme-treated samples presented less elasticity. Instrumental mastication assay showed the breakdown of samples' structure mainly during the first mastication cycles, with flavourzyme-treated samples presenting slightly higher consistency. The protein digestibility of the meats greatly increased after simulated gastrointestinal digestion, but a decrease in proteolysis for the control and papain-treated samples in the altered gastric model and an increase for flavourzyme-treated samples in the altered both gastric and intestinal model were shown compared to standard conditions. These results allow integrating knowledge to design foods that better meet the requirements of dysphagics or elderly people.
Collapse
Affiliation(s)
- Marta Gallego
- Departamento Tecnología de Alimentos, Instituto Universitario de Ingeniería de Alimentos - FoodUPV, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
| | - Raúl Grau
- Departamento Tecnología de Alimentos, Instituto Universitario de Ingeniería de Alimentos - FoodUPV, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
| | - Pau Talens
- Departamento Tecnología de Alimentos, Instituto Universitario de Ingeniería de Alimentos - FoodUPV, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain.
| |
Collapse
|
7
|
Sánchez-García J, Muñoz-Pina S, García-Hernández J, Tárrega A, Heredia A, Andrés A. In Vitro Digestion Assessment (Standard vs. Older Adult Model) on Antioxidant Properties and Mineral Bioaccessibility of Fermented Dried Lentils and Quinoa. Molecules 2023; 28:7298. [PMID: 37959717 PMCID: PMC10649959 DOI: 10.3390/molecules28217298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/23/2023] [Accepted: 10/26/2023] [Indexed: 11/15/2023] Open
Abstract
The growing number of older adults necessitates tailored food options that accommodate the specific diseases and nutritional deficiencies linked with ageing. This study aims to investigate the influence of age-related digestive conditions in vitro on the phenolic profile, antioxidant activity, and bioaccessibility of minerals (Ca, Fe, and Mg) in two types of unfermented, fermented, and fermented dried quinoa and lentils. Solid-state fermentation, combined with drying at 70 °C, significantly boosted the total phenolic content in Castellana and Pardina lentils from 5.05 and 6.6 to 10.5 and 7.5 mg gallic acid/g dry weight, respectively, in the bioaccessible fraction following the standard digestion model, compared to the unfermented samples. The phenolic profile post-digestion revealed elevated levels of vanillic and caffeic acids in Castellana lentils, and vanillic acid in Pardina lentils, while caffeic acids in Castellana lentils were not detected in the bioaccessible fraction. The highest antioxidant potency composite index was observed in digested fermented dried Castellana lentils, with white quinoa samples exhibiting potency above 80%. Mineral bioaccessibility was greater in fermented and fermented dried samples compared to unfermented ones. Finally, the digestive changes that occur with ageing did not significantly affect mineral bioaccessibility, but compromised the phenolic profile and antioxidant activity.
Collapse
Affiliation(s)
- Janaina Sánchez-García
- Instituto Universitario de Ingeniería de Alimentos (FoodUPV), Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain; (J.S.-G.); (A.H.); (A.A.)
| | - Sara Muñoz-Pina
- Instituto Universitario de Ingeniería de Alimentos (FoodUPV), Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain; (J.S.-G.); (A.H.); (A.A.)
| | - Jorge García-Hernández
- Centro Avanzado de Microbiología de Alimentos (CAMA), Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
| | - Amparo Tárrega
- Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC), Agustín Escardino 7, 46980 Valencia, Spain;
| | - Ana Heredia
- Instituto Universitario de Ingeniería de Alimentos (FoodUPV), Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain; (J.S.-G.); (A.H.); (A.A.)
| | - Ana Andrés
- Instituto Universitario de Ingeniería de Alimentos (FoodUPV), Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain; (J.S.-G.); (A.H.); (A.A.)
| |
Collapse
|
8
|
D’Antonio V, Battista N, Di Mattia CD, Sacchetti G, Ramal-Sanchez M, Prete R, Angelino D, Serafini M. Edible insects and legumes exert an antioxidant effect on human colon mucosal cells stressed with 2,2'-azobis (2-amidinopropane)-dihydrochloride. Front Nutr 2023; 10:1219837. [PMID: 37485379 PMCID: PMC10358759 DOI: 10.3389/fnut.2023.1219837] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 06/22/2023] [Indexed: 07/25/2023] Open
Abstract
Introduction Edible insects have been recognized as a more sustainable source of nutrients and bio-active compounds than animal-based products, in line with classical vegetable sources such as legumes. In this study, we assessed the antioxidant properties of four edible insects (silkworms, grasshoppers, mealworms and giant worms) and four legume seeds (lentils, chickpeas, Roveja peas and grass peas). Methods After the aqueous extraction or in vitro simulated digestion process, selected products were assessed for: (i) in vitro antioxidant capacity through Ferric Reducing Antioxidant Power (FRAP) assay; (ii) the ability to reduce free radicals production induced by a pro-oxidant agent in cells of human colonic mucosa. Results All the aqueous extracts and digesta of edible insects displayed significantly higher in vitro antioxidant activity than legumes. Moreover, edible insects at all tested concentrations were able to exert an antioxidant effect in the cellular model, while legumes were effective mainly at high concentrations. Discussion Despite human trials are need to confirm and define these results in a physiological situation, here we suggest a role for edible insects in oxidative stress prevention. Since oxidative stress is strongly correlated with several intestinal pathologies, the results obtained could be interesting for the prevention and relief of the negative symptoms, offering new advantages to their already known ecological and nutritional properties.
Collapse
|
9
|
Geng L, Liu K, Zhang H. Lipid oxidation in foods and its implications on proteins. Front Nutr 2023; 10:1192199. [PMID: 37396138 PMCID: PMC10307983 DOI: 10.3389/fnut.2023.1192199] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 05/25/2023] [Indexed: 07/04/2023] Open
Abstract
Lipids in foods are sensitive to various environmental conditions. Under light or high temperatures, free radicals could be formed due to lipid oxidation, leading to the formation of unstable food system. Proteins are sensitive to free radicals, which could cause protein oxidation and aggregation. Protein aggregation significantly affects protein physicochemical characteristics and biological functions, such as digestibility, foaming characteristics, and bioavailability, further reducing the edible and storage quality of food. This review provided an overview of lipid oxidation in foods; its implications on protein oxidation; and the assessment methods of lipid oxidation, protein oxidation, and protein aggregation. Protein functions before and after aggregation in foods were compared, and a discussion for future research on lipid or protein oxidation in foods was presented.
Collapse
Affiliation(s)
- Lianxin Geng
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, China
| | - Kunlun Liu
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, China
- School of Food and Reserves Storage, Henan University of Technology, Zhengzhou, China
| | - Huiyan Zhang
- Zhengzhou Ruipu Biological Engineering Co., Ltd, Zhengzhou, China
| |
Collapse
|
10
|
Gallego M, Ribes S, Grau R, Talens P. Food matrix impact on rheological and digestive properties of protein-enriched and texture-modified mushroom creams. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2022.108143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
11
|
Ozola L, Shengjuler D, Galoburda R, Kruma Z, Straumite E, Kampuse S. Development and Characteristics of Plant-Based Product Prototypes for Oro-Pharyngeal Dysphagia Diet. Foods 2023; 12:foods12030474. [PMID: 36766006 PMCID: PMC9914909 DOI: 10.3390/foods12030474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/11/2023] [Accepted: 01/17/2023] [Indexed: 01/21/2023] Open
Abstract
Patients with dysphagia diseases require food with acceptable textural characteristics. Additionally, due to the consumption of smaller portions, these patients receive insufficient amounts of nutrients. Therefore, this study aimed to develop plant-based purée as a meal for an oro-pharyngeal dysphagia (OD) diet, enriched with proteins, fiber and antioxidant vitamins. The suitability of three protein sources-soy protein isolate, whey protein isolate and brown pea protein concentrate-was tested through evaluation of their effect on the rheological properties of protein-enriched plant-based purées for OD diets. Based on the rheological analysis, whey protein was selected for incorporation into the new product formulations. Two prototypes of soups and two prototypes of desserts produced in this study demonstrated acceptable textural properties and high nutritional value.
Collapse
|
12
|
LU J, CHENG JH, XU Y, CHEN Y, QIAN K, ZHANG Y. Effect of germination on nutritional quality of soybean. FOOD SCIENCE AND TECHNOLOGY 2023. [DOI: 10.1590/fst.008323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Affiliation(s)
- Jinting LU
- Institute of Agricultural Products Processing, China
| | | | - Yayuan XU
- Institute of Agricultural Products Processing, China
| | - Yujie CHEN
- Institute of Agricultural Products Processing, China
| | - Kun QIAN
- Institute of Agricultural Products Processing, China
| | | |
Collapse
|
13
|
Hernández S, Gallego M, Verdú S, Barat JM, Talens P, Grau R. Physicochemical Characterization of Texture-Modified Pumpkin by Vacuum Enzyme Impregnation: Textural, Chemical, and Image Analysis. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02925-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
AbstractTexture-modified pumpkin was developed by using vacuum enzyme impregnation to soften texture to tolerable limits for the elderly population with swallowing and chewing difficulties. The impregnation process and macrostructural and microstructural enzyme action were explored by the laser light backscattering imaging technique and a microscopic study by digital image analysis. Texture was analyzed by a compression assay. The effect of enzyme treatment on antioxidant capacity and sugar content was evaluated and compared to the traditional cooking effect. Image analysis data demonstrated the effectiveness of the impregnation process and enzyme action on plant cell walls. Enzyme-treated samples at the end of the process had lower stiffness values with no fracture point, significantly greater antioxidant capacity and significantly lower total and reducing sugars contents than traditionally cooked pumpkins. The results herein obtained demonstrate the capability of using vacuum impregnation treatment with enzymes to soften pumpkins and their positive effects on antioxidant capacity and sugar content to develop safe and sensory-accepted texture-modified products for specific elderly populations.
Collapse
|
14
|
Sangsukiam T, Duangmal K. Changes in bioactive compounds and health-promoting activities in adzuki bean: Effect of cooking conditions and in vitro simulated gastrointestinal digestion. Food Res Int 2022; 157:111371. [DOI: 10.1016/j.foodres.2022.111371] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 05/04/2022] [Accepted: 05/10/2022] [Indexed: 11/24/2022]
|
15
|
Sánchez-García J, Asensio-Grau A, García-Hernández J, Heredia A, Andrés A. Nutritional and antioxidant changes in lentils and quinoa through fungal solid-state fermentation with Pleurotus ostreatus. BIORESOUR BIOPROCESS 2022; 9:51. [PMID: 38647784 PMCID: PMC10991673 DOI: 10.1186/s40643-022-00542-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 04/27/2022] [Indexed: 11/10/2022] Open
Abstract
Solid-state fermentation (SSF) may be a suitable bioprocess to produce protein-vegetal ingredients with increased nutritional and functional value. This study assessed changes in phenol content, antinutrient content, biomass production and protein production resulting from the metabolic activity of Pleurotus ostreatus, an edible fungus, in lentils and quinoa over 14 days of SSF. The impact of particle size on these parameters was also assessed because the process was conducted in both seeds and flours. Fungus biomass increased during fermentation, reaching 30.0 ± 1.4 mg/g dry basis and 32 ± 3 mg/g dry basis in lentil grain and flour and 52.01 ± 1.08 mg/g dry basis and 45 ± 2 mg/g dry basis in quinoa seeds and flour after 14 days of SSF. Total protein content also increased by 20% to 25% during fermentation, in all cases except lentil flour. However, the soluble protein fraction remained constant. Regarding phytic acid, SSF had a positive impact, with a progressive decrease being higher in flours than in seeds. Regarding antioxidant properties, autoclaving of the substrates promoted the release of polyphenols, together with antioxidant activity (ABTS, DPPH and FRAP), in all substrates. However, these parameters drastically decreased as fermentation progressed. These results provide scientific knowledge for producing lentil- or quinoa-based ingredients with low antinutrient content enriched with protein fungal biomass.
Collapse
Affiliation(s)
- J Sánchez-García
- Instituto Universitario de Ingeniería de Alimentos Para el Desarrollo (IIAD), Universitat Politècnica de València, Camino de Vera s/n, 46022, Valencia, Spain
| | - A Asensio-Grau
- Instituto Universitario de Ingeniería de Alimentos Para el Desarrollo (IIAD), Universitat Politècnica de València, Camino de Vera s/n, 46022, Valencia, Spain
| | - J García-Hernández
- Centro Avanzado de Microbiología de Alimentos (CAMA), Universitat Politècnica de València, Camino de Vera s/n, 46022, Valencia, Spain.
| | - A Heredia
- Instituto Universitario de Ingeniería de Alimentos Para el Desarrollo (IIAD), Universitat Politècnica de València, Camino de Vera s/n, 46022, Valencia, Spain
| | - A Andrés
- Instituto Universitario de Ingeniería de Alimentos Para el Desarrollo (IIAD), Universitat Politècnica de València, Camino de Vera s/n, 46022, Valencia, Spain
| |
Collapse
|
16
|
Can Karaca A, Nickerson M, Caggia C, Randazzo CL, Balange AK, Carrillo C, Gallego M, Sharifi-Rad J, Kamiloglu S, Capanoglu E. Nutritional and Functional Properties of Novel Protein Sources. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2022.2067174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Asli Can Karaca
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Istanbul, Turkey
| | - Michael Nickerson
- Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, Canada
| | - Cinzia Caggia
- Department of Agriculture, Food and Environment (Di3A), University of Catania, Catania, Italy
- ProBioEtna srl, Spin off of Univesity of Catania, Catania, Italy
| | - Cinzia L. Randazzo
- Department of Agriculture, Food and Environment (Di3A), University of Catania, Catania, Italy
- ProBioEtna srl, Spin off of Univesity of Catania, Catania, Italy
| | - Amjad K. Balange
- Technology, ICAR-Central Institute of Fisheries EducationDepartment of Post-Harvest, Mumbai, India
| | - Celia Carrillo
- Bromatología, Facultad de Ciencias, Universidad de BurgosÁrea de Nutrición y , Burgos, Spain
| | - Marta Gallego
- Departamento de Tecnología de Alimentos, Universitat Politècnica de València, Valencia, Spain
| | - Javad Sharifi-Rad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Senem Kamiloglu
- Department of Food Engineering, Faculty of Agriculture, Bursa Uludag University, Bursa, Turkey
- Science and Technology Application and Research Center (BITUAM), Bursa Uludag University, Bursa, Turkey
| | - Esra Capanoglu
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Istanbul, Turkey
| |
Collapse
|
17
|
Wang Y, Selomulya C. Food rheology applications of large amplitude oscillation shear (LAOS). Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.05.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
18
|
Giangrieco I, Tamburrini M, Tuppo L, Pasquariello MS, Ciardiello MA. Healthy biological activities in legume flours from industrial cooking. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
19
|
Functionalization of legume proteins using high pressure processing: Effect on technofunctional properties and digestibility of legume proteins. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113106] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
20
|
Ribes S, Gallego M, Barat JM, Grau R, Talens P. Impact of chia seed mucilage on technological, sensory, and in vitro digestibility properties of a texture-modified puree. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.104943] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
21
|
Ribes S, Grau R, Talens P. Use of chia seed mucilage as a texturing agent: Effect on instrumental and sensory properties of texture-modified soups. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107171] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
22
|
Mashiane P, Manhivi VE, Shoko T, Slabbert RM, Sultanbawa Y, Sivakumar D. Cooking African Pumpkin Leaves ( Momordicabalsamina L.) by Stir-Frying Improved Bioactivity and Bioaccessibility of Metabolites-Metabolomic and Chemometric Approaches. Foods 2021; 10:foods10112890. [PMID: 34829171 PMCID: PMC8621757 DOI: 10.3390/foods10112890] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/16/2021] [Accepted: 11/17/2021] [Indexed: 01/22/2023] Open
Abstract
The leaves of African pumpkins (Momordica balsamina L.) are a commonly consumed traditional vegetable. They are a good source of polyphenolic antioxidants and carotenoids, which are, however, affected by cooking or digestion. We investigated the effect of household cooking methods (stir-frying or boiling) on the changes in bioactive metabolites, antioxidant capacity, release and accessibility of β-carotene and also inhibition of inhibitory activity against α-amylase and α-glucosidase enzymes during in vitro digestion of African pumpkin leaves compared to the raw leaves. Compared to boiled or raw leaves, stir-frying improved the availability of bioactive metabolites at the gastrointestinal phase. Quercetin 3-galactoside and rhamnetin 3-O-glucoside (marker compounds) discriminated the stir-fried leaves from raw leaves and boiled leaves after digestion. Stir-frying improved the release and accessibility of β-carotene and enhanced the antioxidant activities compared to boiling. Dialysable fractions of stir-fried leaves exhibited the greatest inhibitory activity against α-amylase and α-glucosidase enzymes compared to the raw and boiled leaves, as well as acarbose. Stir-frying, therefore, is recommended for use in household cooking to benefit consumers by increasing the intake of phenolics and β-carotene.
Collapse
Affiliation(s)
- Petunia Mashiane
- Department of Horticulture, Tshwane University of Technology, Pretoria 0001, South Africa; (P.M.); (R.M.S.)
- Phytochemical Food Network Research Group, Department of Crop Sciences, Tshwane University of Technology, Pretoria 0001, South Africa; (V.E.M.); (T.S.)
| | - Vimbainashe E. Manhivi
- Phytochemical Food Network Research Group, Department of Crop Sciences, Tshwane University of Technology, Pretoria 0001, South Africa; (V.E.M.); (T.S.)
| | - Tinotenda Shoko
- Phytochemical Food Network Research Group, Department of Crop Sciences, Tshwane University of Technology, Pretoria 0001, South Africa; (V.E.M.); (T.S.)
| | - Retha M. Slabbert
- Department of Horticulture, Tshwane University of Technology, Pretoria 0001, South Africa; (P.M.); (R.M.S.)
| | - Yasmina Sultanbawa
- Agricultural Research Council Industrial Transformation Training Centre for Uniquely Australian Foods, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD 4072, Australia;
| | - Dharini Sivakumar
- Phytochemical Food Network Research Group, Department of Crop Sciences, Tshwane University of Technology, Pretoria 0001, South Africa; (V.E.M.); (T.S.)
- Agricultural Research Council Industrial Transformation Training Centre for Uniquely Australian Foods, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD 4072, Australia;
- Correspondence:
| |
Collapse
|
23
|
Ribes S, Estarriaga R, Grau R, Talens P. Physical, sensory, and simulated mastication properties of texture-modified Spanish sauce using different texturing agents. Food Funct 2021; 12:8181-8195. [PMID: 34291785 DOI: 10.1039/d1fo00742d] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
This study aims to evaluate the colour texture, flow, viscoelastic, sensory, and simulated mastication properties, in the presence and absence of artificial saliva, of texture-modified Spanish sauce at different temperatures (25 °C, 37 °C and/or 55 °C). Sauce texture was modified using five hydrocolloids (modified starch (MS), guar gum (GG), tara gum (TG), sodium carboxymethylcellulose (CMC), and chia seed mucilage (CSM) as an alternative texturing agent), achieving two well-differentiated consistencies: honey-like and pudding-like. The MS, GG, TG and CSM sauces showed greater consistency, firmness, stiffness, and resistance to flow than the CMC samples. Furthermore, the internal structure of CMC sauces was the most affected by temperature changes. The addition of saliva decreased the apparent viscosity, consistency, and adhesiveness of the sauces. Among the samples studied, the GG and CSM texture-modified sauces would be suitable for dysphagic patients because of their good elasticity, relatively high resistance to deformation and structural stability, as well as better resistance to salivary α-amylase action. However, CSM sauces obtained the lowest sensory attribute scores. This work opens the door to the use of CSM as a texturing agent and demonstrates the importance of considering not only the hydrocolloid type and consistency level, but also the administration temperature of dysphagia-oriented products. Selecting a suitable texturing agent is of great importance for safe and easy swallowing by dysphagic patients.
Collapse
Affiliation(s)
- Susana Ribes
- Departamento Tecnología de Alimentos, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain.
| | | | | | | |
Collapse
|
24
|
Pasqualone A, Costantini M, Labarbuta R, Summo C. Production of extruded-cooked lentil flours at industrial level: Effect of processing conditions on starch gelatinization, dough rheological properties and techno-functional parameters. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111580] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
25
|
Öztürk-Kerimoğlu B. A promising strategy for designing reduced-fat model meat emulsions by utilization of pea protein-agar agar gel complex. FOOD STRUCTURE 2021. [DOI: 10.1016/j.foostr.2021.100205] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
26
|
Toldrá F, Mora L. Proteins and Bioactive Peptides in High Protein Content Foods. Foods 2021; 10:foods10061186. [PMID: 34070265 PMCID: PMC8225136 DOI: 10.3390/foods10061186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 05/19/2021] [Accepted: 05/21/2021] [Indexed: 12/02/2022] Open
|