1
|
Tobar Z, Lee KY, Gaa ME, Moore BP, Li X, Pitesky ME. Evaluation of 16s Long Read Metabarcoding for Characterizing the Microbiome and Salmonella Contamination of Retail Poultry Meat. J Food Prot 2025; 88:100434. [PMID: 39681310 DOI: 10.1016/j.jfp.2024.100434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 12/11/2024] [Accepted: 12/12/2024] [Indexed: 12/18/2024]
Abstract
The traditional gold standard for detection of Salmonella in meat products is bacterial culture with enrichment. While this method is highly sensitive, it is slow and provides an incomplete assessment of isolate taxonomy in positive samples. This study presents a novel PCR-based detection assay which amplifies the 16s-ITS-23s region which is an approximately 2,500 base pair region of the larger ribosomal rrn operon. Intra-assay variation was assessed by splitting each biological sample into 3 technical replicates. Limits of detection (LOD) were assessed by utilizing a serial dilution of a pure culture of Salmonella enterica subsp. enterica serovar Heidelberg spiked into either sterile 1 × PBS or 1 × PBS rinsate of a Salmonella culture-negative chicken meat sample. Results indicate the 16s metabarcoding assay evaluated here could not be reliably used for the detection of Salmonella in adulterated retail meat samples as the LOD observed, 4.70 log colony forming units (CFU)/ml, is above the expected concentration of Salmonella in retail poultry meat samples which previous studies have shown range from under 1 to 2 log CFU/ml. However, due to greater taxonomic resolution afforded by using 16s long reads, the assay allowed alpha diversity assessment of the microbiome of raw poultry meat with the ability to assign taxonomy to the species and strain level for some amplicon sequence variants (ASV). This indicates this process may have value characterizing biodiversity and pathogen contamination of poultry samples in earlier steps of the poultry meat production process where bacterial contamination concentrations are likely to be higher.
Collapse
Affiliation(s)
- Zachary Tobar
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, CA 95616, United States
| | - Katie Y Lee
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, CA 95616, United States
| | - Megan E Gaa
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, CA 95616, United States
| | - Bryshal P Moore
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, CA 95616, United States
| | - Xunde Li
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, CA 95616, United States
| | - Maurice E Pitesky
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, CA 95616, United States.
| |
Collapse
|
2
|
Zbrun MV, Moreno N, Camussone CM, Signorini ML, Primo ME. Comparison of real-time PCR and nested PCR based on the HlyA gene for the detection of Listeria monocytogenes. Application on cheese samples. Braz J Microbiol 2024; 55:1783-1791. [PMID: 38687417 PMCID: PMC11153442 DOI: 10.1007/s42770-024-01353-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 04/22/2024] [Indexed: 05/02/2024] Open
Abstract
The aim of the present study was to compare the performance of a nested polymerase chain reaction (nPCR) and a real-time PCR based on the amplification of the HlyA gene from Listeria monocytogenes using a plasmid DNA standard. Nested PCR was developed with an internal amplification control (IAC). Both techniques were validated in soft cheese samples by comparing their results with the results of the microbiological reference method ISO 11290-1:2017. Cheese samples artificially contaminated with 3.5 to 3,500 UFC/25 g were processed by ISO 11290-1:2017 and, at several times of culture, DNA samples were extracted. All cheeses contaminated with L. monocytogenes were positive for the microbiological method 96 h post contamination and for nPCR and real-time PCR 48 h post contamination. At this time, the HlyA gene was amplified in all contaminated samples. Both molecular techniques showed the same sensitivity, 30 copies/reaction or 3.5 UFC/25 g, when plasmid DNA standard or artificially contaminated cheese samples were used. Finally, eighty soft cheese samples obtained from local retail stores and tested by three methods were negative, indicating a 100% concordance in results. The development of an nPCR with IAC reinforces the reliability of the negative results without increasing the costs of the reaction. Besides, nPCR showed less sensitivity to the presence of inhibitory substances in the reaction. The use of one of these molecular techniques could be easily coupled to the microbiological method, serving as a screening method in the food industry for hygiene monitoring and early identification of contaminated foods.
Collapse
Affiliation(s)
- María V Zbrun
- Instituto de Investigación de La Cadena Láctea (IdICaL) (INTA- CONICET), Ruta 34 Km 227, (2300), Rafaela, Santa Fe, Argentina
- Department of Public Health, Faculty of Veterinary Science, Litoral National University, Kreder 2805, (3080), Esperanza, Santa Fe, Argentina
| | - Nadia Moreno
- Faculty of Technology and Innovation for Development, Food Sciences Area, National University of Rafaela (UNRAf), Bv. Roca 989, (2300), Rafaela, Santa Fe, Argentina
| | - Cecilia M Camussone
- Instituto de Investigación de La Cadena Láctea (IdICaL) (INTA- CONICET), Ruta 34 Km 227, (2300), Rafaela, Santa Fe, Argentina
| | - Marcelo L Signorini
- Instituto de Investigación de La Cadena Láctea (IdICaL) (INTA- CONICET), Ruta 34 Km 227, (2300), Rafaela, Santa Fe, Argentina
- Department of Public Health, Faculty of Veterinary Science, Litoral National University, Kreder 2805, (3080), Esperanza, Santa Fe, Argentina
| | - María E Primo
- Instituto de Investigación de La Cadena Láctea (IdICaL) (INTA- CONICET), Ruta 34 Km 227, Faculty of Technology and Innovation for Development, Food Sciences Area, National University of Rafaela (UNRAf), Bv. Roca 989, (2300), Rafaela, Santa Fe, Argentina.
| |
Collapse
|
3
|
Dinu LD, Al-Zaidi QJ, Matache AG, Matei F. Improving the Efficiency of Viability-qPCR with Lactic Acid Enhancer for the Selective Detection of Live Pathogens in Foods. Foods 2024; 13:1021. [PMID: 38611327 PMCID: PMC11012224 DOI: 10.3390/foods13071021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/22/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024] Open
Abstract
Pathogenic Escherichia coli are the most prevalent foodborne bacteria, and their accurate detection in food samples is critical for ensuring food safety. Therefore, a quick technique named viability-qPCR (v-qPCR), which is based on the ability of a selective dye, such as propidium monoazide (PMA), to differentiate between alive and dead cells, has been developed. Despite diverse, successful applications, v-qPCR is impaired by some practical limitations, including the ability of PMA to penetrate the outer membrane of dead Gram-negative bacteria. The objective of this study is to evaluate the ability of lactic acid (LA) to improve PMA penetration and, thus, the efficiency of v-qPCR in detecting the live fraction of pathogens. The pre-treatment of E. coli ATCC 8739 cells with 10 mM LA greatly increased PMA penetration into dead cells compared to conventional PMA-qPCR assay, avoiding false positive results. The limit of detection when using LA-PMA qPCR is 1% viable cells in a mixture of dead and alive cells. The optimized LA-PMA qPCR method was reliably able to detect log 2 CFU/mL culturable E. coli in milk spiked with viable and non-viable bacteria. Lactic acid is cheap, has low toxicity, and can be used to improve the efficiency of the v-qPCR assay, which is economically interesting for larger-scale pathogen detection applications intended for food matrices.
Collapse
Affiliation(s)
- Laura-Dorina Dinu
- Faculty of Biotechnology, University of Agricultural Sciences and Veterinary Medicine, 011464 Bucharest, Romania; (Q.J.A.-Z.); (A.G.M.); (F.M.)
| | - Quthama Jasim Al-Zaidi
- Faculty of Biotechnology, University of Agricultural Sciences and Veterinary Medicine, 011464 Bucharest, Romania; (Q.J.A.-Z.); (A.G.M.); (F.M.)
| | - Adelina Georgiana Matache
- Faculty of Biotechnology, University of Agricultural Sciences and Veterinary Medicine, 011464 Bucharest, Romania; (Q.J.A.-Z.); (A.G.M.); (F.M.)
| | - Florentina Matei
- Faculty of Biotechnology, University of Agricultural Sciences and Veterinary Medicine, 011464 Bucharest, Romania; (Q.J.A.-Z.); (A.G.M.); (F.M.)
- Faculty of Food Industry and Tourism, Transilvania University of Brasov, 500015 Brasov, Romania
| |
Collapse
|
4
|
Song C, Wang B, Wang Y, Liu J, Wang D. Detection of Listeria monocytogenes in Food Using the Proofman-LMTIA Assay. Molecules 2023; 28:5457. [PMID: 37513329 PMCID: PMC10385859 DOI: 10.3390/molecules28145457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/09/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
Microbial factors, including bacteria, viruses, and other pathogens, are significant contributors to foodborne illnesses, posing serious food safety risks due to their potential for rapid growth and contamination. Listeria monocytogenes is one of the most common types of foodborne bacteria that can cause serious foodborne diseases or even fatalities. In this study, a novel nucleic acid amplification method called Proofman-LMTIA was employed to detect Listeria monocytogenes contamination in food. This method combines proofreading enzyme-mediated probe cleavage with ladder-shape melting temperature isothermal amplification. A positive recombinant plasmid was used as a control to ensure the accuracy of the detection results, and primers and Proofman probes were specifically designed for the LMTIA. Genomic DNA was extracted, the reaction temperature was optimized, and the primers' specificity was verified using foodborne pathogens like Staphylococcus aureus, Escherichia coli O157:H7, and Salmonella. The sensitivity was assessed by testing serial dilutions of genomic DNA, and the method's applicability was confirmed by detecting artificially contaminated fresh pork. The established LMTIA method exhibited both high specificity and sensitivity. At the optimal reaction temperature of 63 °C, the primers specifically identified Listeria monocytogenes contamination in pork at a concentration of 8.0 ± 0.7 colony-forming units (CFUs) per 25 g. Furthermore, the Proofman-LMTIA method was applied to test Listeria monocytogenes DNA in 30 food samples purchased from a Chinese retail market, and reassuringly, all results indicated no contamination. Proofman-LMTIA can serve as a reliable and rapid method for detecting Listeria monocytogenes in food, contributing to public health by safeguarding consumers from foodborne illnesses, and strengthening food safety regulations.
Collapse
Affiliation(s)
- Chunmei Song
- Key Laboratory of Biomarker Based Rapid-Detection Technology for Food Safety of Henan Province, Xuchang University, Xuchang 461000, China
| | - Borui Wang
- School of Food and Biological Engineering, Henan University of Science and Technology, Luoyang 471000, China
| | - Yongzhen Wang
- Key Laboratory of Biomarker Based Rapid-Detection Technology for Food Safety of Henan Province, Xuchang University, Xuchang 461000, China
| | - Jinxin Liu
- Key Laboratory of Biomarker Based Rapid-Detection Technology for Food Safety of Henan Province, Xuchang University, Xuchang 461000, China
| | - Deguo Wang
- Key Laboratory of Biomarker Based Rapid-Detection Technology for Food Safety of Henan Province, Xuchang University, Xuchang 461000, China
| |
Collapse
|
5
|
Félix B, Capitaine K, Te S, Felten A, Gillot G, Feurer C, van den Bosch T, Torresi M, Sréterné Lancz Z, Delannoy S, Brauge T, Midelet G, Leblanc JC, Roussel S. Identification by High-Throughput Real-Time PCR of 30 Major Circulating Listeria monocytogenes Clonal Complexes in Europe. Microbiol Spectr 2023; 11:e0395422. [PMID: 37158749 PMCID: PMC10269651 DOI: 10.1128/spectrum.03954-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 04/14/2023] [Indexed: 05/10/2023] Open
Abstract
Listeria monocytogenes is a ubiquitous bacterium that causes a foodborne illness, listeriosis. Most strains can be classified into major clonal complexes (CCs) that account for the majority of outbreaks and sporadic cases in Europe. In addition to the 20 CCs known to account for the majority of human and animal clinical cases, 10 CCs are frequently reported in food production, thereby posing a serious challenge for the agrifood industry. Therefore, there is a need for a rapid and reliable method to identify these 30 major CCs. The high-throughput real-time PCR assay presented here provides accurate identification of these 30 CCs and eight genetic subdivisions within four CCs, splitting each CC into two distinct subpopulations, along with the molecular serogroup of a strain. Based on the BioMark high-throughput real-time PCR system, our assay analyzes 46 strains against 40 real-time PCR arrays in a single experiment. This European study (i) designed the assay from a broad panel of 3,342 L. monocytogenes genomes, (ii) tested its sensitivity and specificity on 597 sequenced strains collected from 24 European countries, and (iii) evaluated its performance in the typing of 526 strains collected during surveillance activities. The assay was then optimized for conventional multiplex real-time PCR for easy implementation in food laboratories. It has already been used for outbreak investigations. It represents a key tool for assisting food laboratories to establish strain relatedness with human clinical strains during outbreak investigations and for helping food business operators by improving their microbiological management plans. IMPORTANCE Multilocus sequence typing (MLST) is the reference method for Listeria monocytogenes typing but is expensive and takes time to perform, from 3 to 5 days for laboratories that outsource sequencing. Thirty major MLST clonal complexes (CCs) are circulating in the food chain and are currently identifiable only by sequencing. Therefore, there is a need for a rapid and reliable method to identify these CCs. The method presented here enables the rapid identification, by real-time PCR, of 30 CCs and eight genetic subdivisions within four CCs, splitting each CC into two distinct subpopulations. The assay was then optimized on different conventional multiplex real-time PCR systems for easy implementation in food laboratories. The two assays will be used for frontline identification of L. monocytogenes isolates prior to whole-genome sequencing. Such assays are of great interest for all food industry stakeholders and public agencies for tracking L. monocytogenes food contamination.
Collapse
Affiliation(s)
- Benjamin Félix
- ANSES, European Union Reference Laboratory for Listeria monocytogenes, Laboratory for Food Safety, Salmonella and Listeria Unit, University of Paris-Est, Maisons-Alfort, France
| | - Karine Capitaine
- ANSES, European Union Reference Laboratory for Listeria monocytogenes, Laboratory for Food Safety, Salmonella and Listeria Unit, University of Paris-Est, Maisons-Alfort, France
| | - Sandrine Te
- ANSES, European Union Reference Laboratory for Listeria monocytogenes, Laboratory for Food Safety, Salmonella and Listeria Unit, University of Paris-Est, Maisons-Alfort, France
| | - Arnaud Felten
- ANSES, Ploufragan/Plouzané/Niort Laboratory, Viral Genetics and Bio-Security Unit, Université Européenne de Bretagne, Ploufragan, France
| | | | - Carole Feurer
- IFIP–The French Pig and Pork Institute, Department of Fresh and Processed Meat, Le Rheu, France
| | - Tijs van den Bosch
- Wageningen Food Safety Research, Department of Bacteriology, Molecular Technology and Antimicrobial Resistance, Wageningen, The Netherlands
| | - Marina Torresi
- National Reference Laboratory for Listeria monocytogenes, Istituto Zooprofilattico Sperimentale dell'Abruzzo e Molise “G. Caporale” Via Campo Boario, Teramo, Italy
| | - Zsuzsanna Sréterné Lancz
- Microbiological National Reference Laboratory, National Food Chain Safety Office, Food Chain Safety Laboratory Directorate, Budapest, Hungary
| | - Sabine Delannoy
- ANSES, Laboratory for Food Safety, IdentyPath Platform, Maisons-Alfort, France
| | - Thomas Brauge
- ANSES, Laboratory for Food Safety, Bacteriology and Parasitology of Fishery and Aquaculture Products Unit, Boulogne-sur-Mer, France
| | - Graziella Midelet
- ANSES, Laboratory for Food Safety, Bacteriology and Parasitology of Fishery and Aquaculture Products Unit, Boulogne-sur-Mer, France
| | - Jean-Charles Leblanc
- ANSES, European Union Reference Laboratory for Listeria monocytogenes, Laboratory for Food Safety, Salmonella and Listeria Unit, University of Paris-Est, Maisons-Alfort, France
| | - Sophie Roussel
- ANSES, European Union Reference Laboratory for Listeria monocytogenes, Laboratory for Food Safety, Salmonella and Listeria Unit, University of Paris-Est, Maisons-Alfort, France
| |
Collapse
|
6
|
Lima A, França A, Muzny CA, Taylor CM, Cerca N. DNA extraction leads to bias in bacterial quantification by qPCR. Appl Microbiol Biotechnol 2022; 106:7993-8006. [PMID: 36374332 PMCID: PMC10493044 DOI: 10.1007/s00253-022-12276-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 10/28/2022] [Accepted: 11/02/2022] [Indexed: 11/16/2022]
Abstract
Quantitative PCR (qPCR) has become a widely used technique for bacterial quantification. The affordability, ease of experimental design, reproducibility, and robustness of qPCR experiments contribute to its success. The establishment of guidelines for minimum information for publication of qPCR experiments, now more than 10 years ago, aimed to mitigate the publication of contradictory data. Unfortunately, there are still a significant number of recent research articles that do not consider the main pitfalls of qPCR for quantification of biological samples, which undoubtedly leads to biased experimental conclusions. qPCR experiments have two main issues that need to be properly tackled: those related to the extraction and purification of genomic DNA and those related to the thermal amplification process. This mini-review provides an updated literature survey that critically analyzes the following key aspects of bacterial quantification by qPCR: (i) the normalization of qPCR results by using exogenous controls, (ii) the construction of adequate calibration curves, and (iii) the determination of qPCR reaction efficiency. It is primarily focused on original papers published last year, where qPCR was applied to quantify bacterial species in different types of biological samples, including multi-species biofilms, human fluids, and water and soil samples. KEY POINTS: • qPCR is a widely used technique used for absolute bacterial quantification. • Recently published papers lack proper qPCR methodologies. • Not including proper qPCR controls significantly affect experimental conclusions.
Collapse
Affiliation(s)
- Angela Lima
- Laboratory of Research in Biofilms Rosário Oliveira (LIBRO), Centre of Biological Engineering (CEB), University of Minho, Braga, Portugal
- LABBELS -Associate Laboratory, Braga, Guimarães, Portugal
| | - Angela França
- Laboratory of Research in Biofilms Rosário Oliveira (LIBRO), Centre of Biological Engineering (CEB), University of Minho, Braga, Portugal
- LABBELS -Associate Laboratory, Braga, Guimarães, Portugal
| | - Christina A Muzny
- Division of Infectious Diseases, University of Alabama at Birmingham, Birmingham, USA
| | - Christopher M Taylor
- Department of Microbiology, Immunology, and Parasitology & Microbial Genomics Resource Group, Louisiana State University Health Sciences Center, New Orleans, USA
| | - Nuno Cerca
- Laboratory of Research in Biofilms Rosário Oliveira (LIBRO), Centre of Biological Engineering (CEB), University of Minho, Braga, Portugal.
- LABBELS -Associate Laboratory, Braga, Guimarães, Portugal.
| |
Collapse
|
7
|
Liu J, Wu D, Chen J, Jia S, Chen J, Wu Y, Li G. CRISPR-Cas systems mediated biosensing and applications in food safety detection. Crit Rev Food Sci Nutr 2022; 64:2960-2985. [PMID: 36218189 DOI: 10.1080/10408398.2022.2128300] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Food safety, closely related to economic development of food industry and public health, has become a global concern and gained increasing attention worldwide. Effective detection technology is of great importance to guarantee food safety. Although several classical detection methods have been developed, they have some limitations in portability, selectivity, and sensitivity. The emerging CRISPR-Cas systems, uniquely integrating target recognition specificity, signal transduction, and efficient signal amplification abilities, possess superior specificity and sensitivity, showing huge potential to address aforementioned challenges and develop next-generation techniques for food safety detection. In this review, we focus on recent progress of CRISPR-Cas mediated biosensing and their applications in food safety monitoring. The properties and principles of commonly used CRISPR-Cas systems are highlighted. Notably, the frequently coupled nucleic acid amplification strategies to enhance their selectivity and sensitivity, especially isothermal amplification methods, as well as various signal output modes are also systematically summarized. Meanwhile, the application of CRISPR-Cas systems-based biosensors in food safety detection including foodborne virus, foodborne bacteria, food fraud, genetically modified organisms (GMOs), toxins, heavy metal ions, antibiotic residues, and pesticide residues is comprehensively described. Furthermore, the current challenges and future prospects in this field are tentatively discussed.
Collapse
Affiliation(s)
- Jianghua Liu
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, China
| | - Di Wu
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast, UK
| | - Jiahui Chen
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, China
| | - Shijie Jia
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, China
| | - Jian Chen
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, China
| | - Yongning Wu
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, China
- NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing, China
| | - Guoliang Li
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, China
| |
Collapse
|
8
|
Detection of Listeria monocytogenes based on teicoplanin functionalized magnetic beads combined with fluorescence assay. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106842] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
9
|
He S, Huang Y, Ma Y, Yu H, Pang B, Liu X, Yin C, Wang X, Wei Y, Tian Y, Zhao C, Xu K, Wang J, Lv C, Song X, Jin M. Detection of four foodborne pathogens based on magnetic separation multiplex PCR and capillary electrophoresis. Biotechnol J 2021; 17:e2100335. [PMID: 34599551 DOI: 10.1002/biot.202100335] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 09/13/2021] [Accepted: 09/15/2021] [Indexed: 02/01/2023]
Abstract
Foodborne pathogen contamination is a major safety issue for many foods and is causing concern worldwide. In this study, a detection system based on magnetic separation, multiplex PCR (MPCR) and capillary electrophoresis (CE) technologies was developed for the simultaneous detection of four foodborne pathogens. Magnetic separation technology is used to rapidly capture pathogenic bacteria in food samples, and then a combination of MPCR and CE can be used to greatly increase detection sensitivity. The detection limit for bacterial DNA reached 10-5 -10-7 ng μL-1 and in the analysis of mocked food samples, the assay showed good sensitivity for bacterial detection ranging from 101 to 105 CFU mL-1 with excellent specificity. Compared to similar detection methodologies, this technique avoids the need for time-consuming enrichment cultures, is more sensitive, and can be used to assay simultaneously four foodborne pathogens.
Collapse
Affiliation(s)
- Shiyu He
- Department of Hygienic Inspection, School of Public Health, Jilin University, Changchun, Jilin, China
| | - Yanzhi Huang
- Research Laboratory, Changchun Children's Hospital, Changchun, Jilin, China
| | - Yingwei Ma
- Research Laboratory, Changchun Children's Hospital, Changchun, Jilin, China
| | - Haoyan Yu
- Department of Hygienic Inspection, School of Public Health, Jilin University, Changchun, Jilin, China
| | - Bo Pang
- Department of Hygienic Inspection, School of Public Health, Jilin University, Changchun, Jilin, China
| | - Xingxing Liu
- Department of Hygienic Inspection, School of Public Health, Jilin University, Changchun, Jilin, China
| | - Caihong Yin
- Department of Hygienic Inspection, School of Public Health, Jilin University, Changchun, Jilin, China
| | - Xiaomu Wang
- Department of Hygienic Inspection, School of Public Health, Jilin University, Changchun, Jilin, China
| | - Yuan Wei
- Department of Hygienic Inspection, School of Public Health, Jilin University, Changchun, Jilin, China
| | - Yuling Tian
- Research Laboratory, Changchun Children's Hospital, Changchun, Jilin, China
| | - Chao Zhao
- Department of Hygienic Inspection, School of Public Health, Jilin University, Changchun, Jilin, China
| | - Kun Xu
- Department of Hygienic Inspection, School of Public Health, Jilin University, Changchun, Jilin, China
- Engineering Research Center of Jilin Public Health Testing, School of Public Health, Jilin University, Changchun, Jilin, China
| | - Juan Wang
- Department of Hygienic Inspection, School of Public Health, Jilin University, Changchun, Jilin, China
| | - Chunping Lv
- Department of Hygienic Inspection, School of Public Health, Jilin University, Changchun, Jilin, China
| | - Xiuling Song
- Department of Hygienic Inspection, School of Public Health, Jilin University, Changchun, Jilin, China
| | - Minghua Jin
- Department of Hygienic Inspection, School of Public Health, Jilin University, Changchun, Jilin, China
| |
Collapse
|