1
|
Yarmolinsky L, Nakonechny F, Haddis T, Khalfin B, Dahan A, Ben-Shabat S. Natural Antimicrobial Compounds as Promising Preservatives: A Look at an Old Problem from New Perspectives. Molecules 2024; 29:5830. [PMID: 39769919 PMCID: PMC11728848 DOI: 10.3390/molecules29245830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/04/2024] [Accepted: 12/09/2024] [Indexed: 01/14/2025] Open
Abstract
Antimicrobial compounds of natural origin are of interest because of the large number of reports regarding the harmfulness of food preservatives. These natural products can be derived from plants, animal sources, microorganisms, algae, or mushrooms. The aim of this review is to consider known antimicrobials of natural origin and the mechanisms of their action, antimicrobial photodynamic technology, and ultrasound for disinfection. Plant extracts and their active compounds, chitosan and chitosan oligosaccharide, bioactive peptides, and essential oils are highly potent preservatives. It has been experimentally proven that they possess strong antibacterial capabilities against bacteria, yeast, and fungi, indicating the possibility of their use in the future to create preservatives for the pharmaceutical, agricultural, and food industries.
Collapse
Affiliation(s)
- Ludmila Yarmolinsky
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel; (L.Y.); (B.K.)
| | - Faina Nakonechny
- Department of Chemical Engineering, Ariel University, Ariel 4070000, Israel; (F.N.); (T.H.)
| | - Tigabu Haddis
- Department of Chemical Engineering, Ariel University, Ariel 4070000, Israel; (F.N.); (T.H.)
| | - Boris Khalfin
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel; (L.Y.); (B.K.)
| | - Arik Dahan
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel; (L.Y.); (B.K.)
| | - Shimon Ben-Shabat
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel; (L.Y.); (B.K.)
| |
Collapse
|
2
|
Steier V, Osthege M, Helleckes LM, Siska M, von Lieres E, Wiechert W, Reich SJ, Riedel CU, Oldiges M. Quantification of nisin concentration from fluorescence-based antimicrobial activity assay using Bayesian calibration. Biotechnol Prog 2024; 40:e3495. [PMID: 39056486 PMCID: PMC11659795 DOI: 10.1002/btpr.3495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 06/24/2024] [Accepted: 07/07/2024] [Indexed: 07/28/2024]
Abstract
Bacteriocins are ribosomally synthesized peptides with the innate ability to kill or inhibit growth of other bacteria. In recent years, bacteriocins have received increased interest, as their antimicrobial activity enhances food safety and shelf life by combatting pathogens such as Listeria monocytogenes. They also have application potential as an active pharmaceutical compound to combat multidrug-resistant pathogens. As new bacteriocins continue to be discovered, accelerated workflows for screening, identification, and process development have been developed. However, antimicrobial activity measurement is often still limited with regards to quantification and throughput. Here, we present the use of a non-linear calibration model to infer nisin concentrations in cultivation supernatants of Lactococcus lactis ssp. lactis B1629 using readouts of pHluorin2 fluorescence-based antimicrobial activity assays.
Collapse
Affiliation(s)
- Valentin Steier
- Institute of Bio‐ and Geosciences, IBG‐1: BiotechnologyForschungszentrum Jülich GmbHJülichGermany
- Institute of BiotechnologyRWTH Aachen UniversityAachenGermany
| | - Michael Osthege
- Institute of Bio‐ and Geosciences, IBG‐1: BiotechnologyForschungszentrum Jülich GmbHJülichGermany
| | - Laura M. Helleckes
- Institute of Bio‐ and Geosciences, IBG‐1: BiotechnologyForschungszentrum Jülich GmbHJülichGermany
- Institute of BiotechnologyRWTH Aachen UniversityAachenGermany
| | - Maximilian Siska
- Institute of Bio‐ and Geosciences, IBG‐1: BiotechnologyForschungszentrum Jülich GmbHJülichGermany
- Computational Systems Biotechnology (AVT.CSB)RWTH Aachen UniversityAachenGermany
| | - Eric von Lieres
- Institute of Bio‐ and Geosciences, IBG‐1: BiotechnologyForschungszentrum Jülich GmbHJülichGermany
- Computational Systems Biotechnology (AVT.CSB)RWTH Aachen UniversityAachenGermany
| | - Wolfgang Wiechert
- Institute of Bio‐ and Geosciences, IBG‐1: BiotechnologyForschungszentrum Jülich GmbHJülichGermany
- Computational Systems Biotechnology (AVT.CSB)RWTH Aachen UniversityAachenGermany
| | | | | | - Marco Oldiges
- Institute of Bio‐ and Geosciences, IBG‐1: BiotechnologyForschungszentrum Jülich GmbHJülichGermany
- Institute of BiotechnologyRWTH Aachen UniversityAachenGermany
| |
Collapse
|
3
|
de Carvalho TB, Oliveira M, Gomes AM, Monteiro MJ, Pintado M, Komora N, Durães T, Nunes FM, Cosme F, Patarata L, Brandão TRS, Barbosa JB, Teixeira P. Clean labelling sodium nitrite at pilot scale: In-situ reduction of nitrate from plant sources and its effects on the overall quality and safety of restructured cooked ham. Meat Sci 2024; 216:109572. [PMID: 38970932 DOI: 10.1016/j.meatsci.2024.109572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 06/10/2024] [Accepted: 06/12/2024] [Indexed: 07/08/2024]
Abstract
Growing health and environmental concerns have increased demand for all-natural products, with a focus on clean labelling. Sodium nitrite is the most widely used additive in the meat industry because it imparts the typical cured flavour and colour to meat products and, most importantly, their microbiological safety. However, due to health concerns, the European Commission is proposing revised regulations to reduce nitrate and nitrite levels in meat products. As a result, the meat industry is actively seeking alternatives. This study explored the production of four cooked hams utilising nitrate-rich vegetable sources combined with two different nitrate-reducing commercial food cultures, alongside a control ham prepared with sodium nitrite (150 ppm). Microbiological, physico-chemical (pH, water activity, nitrate and nitrite concentration, lipid profile, lipid oxidation) and sensory (texture and colour profile) characterisation of the products was carried out. Challenge tests for Listeria monocytogenes, Clostridium sporogenes and Clostridium perfringens have been performed to assess the growth of pathogens, if present in the products. Results revealed comparable microbiological and physico-chemical profiles across ham formulations, with minor differences observed in colour parameters for sample C. The sensory analysis showed that for the pilot ham formulations A and D, there were no significant differences in consumer perception compared to the control ham. In the challenge tests, L. monocytogenes levels were similar in both control and tested hams. There were no significant differences in C. sporogenes and C. perfringens counts at any temperature or between test and control samples. These results indicate that this technology has a potential future in the cured meat sector, as regulators mandate the reduction of added synthetic chemicals and consumers seek healthier and more natural ingredients in their daily diets.
Collapse
Affiliation(s)
- Teresa Bento de Carvalho
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Mónica Oliveira
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Ana Maria Gomes
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Maria João Monteiro
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Manuela Pintado
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Norton Komora
- R&D Department, Primor Charcutaria Prima - S.A., Avenida Santiago de Gavião 1142, 4760-003 Vila Nova de Famalicão, Portugal
| | - Tiago Durães
- CQ-VR-Chemistry Research Centre-Vila Real, FoodWin - Food and Wine Chemistry Laboratory, Universidade de Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal
| | - Fernando M Nunes
- CQ-VR-Chemistry Research Centre-Vila Real, FoodWin - Food and Wine Chemistry Laboratory, Universidade de Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal
| | - Fernanda Cosme
- CQ-VR-Chemistry Research Centre-Vila Real, FoodWin - Food and Wine Chemistry Laboratory, Universidade de Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal
| | - Luís Patarata
- CECAV - Veterinary and Animal Research Centre, Universidade-de-Trás-os-Montes e Alto, Portugal
| | - Teresa R S Brandão
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Joana Bastos Barbosa
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Paula Teixeira
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal.
| |
Collapse
|
4
|
Freitas AS, Oliveira R, Almeida-Aguiar C. Further Insights on Honey and Propolis from Gerês (Portugal) and Their Bioactivities: Unraveling the Impact of Beehive Relocation. Life (Basel) 2024; 14:506. [PMID: 38672776 PMCID: PMC11050790 DOI: 10.3390/life14040506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/08/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
Propolis, a bee product, is known for its variability of chemical and bioactive profiles. However, Portuguese propolis from Gerês, normally obtained by mixing propolis from three places-Bugalho, Felgueiras and Toutelo-has shown similar chemical and biological profiles over the years. Recently, a new propolis place-Roca-was added to the apiary to replace Bugalho, lost to the 2017 wildfires, hence questioning the previously claimed constancy of Gerês propolis. To unravel to what extent the beehive relocation affected this constancy, we studied different Gerês propolis samples collected in three consecutive years (2017-2019) composed of different combinations of source places. Two honey samples, collected before (2017) and after (2018) the occurrence of the wildfire, were also investigated. Total phenolics, flavonoids and ortho-diphenols contents were determined and the antioxidant and antimicrobial activities were evaluated, using the DPPH assay and the agar dilution method, respectively. Although both antimicrobial and antioxidant activities were generally in the ranges usually obtained from Gerês propolis, some variations were detected for the samples, with different compositions when compared to previous years. This work reinforces the importance of the consistency of a combination of several factors for the protection and preservation of the flora near the hives, providing bee products with more constant chemical and biological profiles over the years.
Collapse
Affiliation(s)
- Ana Sofia Freitas
- CITAB—Centre for the Research and Technology of Agro-Environmental and Biological Sciences, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal;
- Department of Biology, School of Sciences, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- CBMA—Centre of Molecular and Environmental Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Rui Oliveira
- Department of Biology, School of Sciences, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- CBMA—Centre of Molecular and Environmental Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Cristina Almeida-Aguiar
- Department of Biology, School of Sciences, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- CBMA—Centre of Molecular and Environmental Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| |
Collapse
|
5
|
Steier V, Prigolovkin L, Reiter A, Neddermann T, Wiechert W, Reich SJ, Riedel CU, Oldiges M. Automated workflow for characterization of bacteriocin production in natural producers Lactococcus lactis and Latilactobacillus sakei. Microb Cell Fact 2024; 23:74. [PMID: 38433206 PMCID: PMC10910668 DOI: 10.1186/s12934-024-02349-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 02/25/2024] [Indexed: 03/05/2024] Open
Abstract
BACKGROUND Lactic acid bacteria are commonly used as protective starter cultures in food products. Among their beneficial effects is the production of ribosomally synthesized peptides termed bacteriocins that kill or inhibit food-spoiling bacteria and pathogens, e.g., members of the Listeria species. As new bacteriocins and producer strains are being discovered rapidly, modern automated methods for strain evaluation and bioprocess development are required to accelerate screening and development processes. RESULTS In this study, we developed an automated workflow for screening and bioprocess optimization for bacteriocin producing lactic acid bacteria, consisting of microcultivation, sample processing and automated antimicrobial activity assay. We implemented sample processing workflows to minimize bacteriocin adsorption to producer cells via addition of Tween 80 and divalent cations to the cultivation media as well as acidification of culture broth prior to cell separation. Moreover, we demonstrated the applicability of the automated workflow to analyze influence of media components such as MES buffer or yeast extract for bacteriocin producers Lactococcus lactis B1629 and Latilactobacillus sakei A1608. CONCLUSIONS Our automated workflow provides advanced possibilities to accelerate screening and bioprocess optimization for natural bacteriocin producers. Based on its modular concept, adaptations for other strains, bacteriocin products and applications are easily carried out and a unique tool to support bacteriocin research and bioprocess development is provided.
Collapse
Affiliation(s)
- Valentin Steier
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Jülich, Germany
- Institute of Biotechnology, RWTH Aachen University, Aachen, Germany
| | - Lisa Prigolovkin
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Jülich, Germany
- Institute of Biotechnology, RWTH Aachen University, Aachen, Germany
| | - Alexander Reiter
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Jülich, Germany
- Institute of Biotechnology, RWTH Aachen University, Aachen, Germany
| | | | - Wolfgang Wiechert
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Jülich, Germany
- Computational Systems Biotechnology (AVT.CSB), RWTH Aachen University, Aachen, Germany
| | | | | | - Marco Oldiges
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Jülich, Germany.
- Institute of Biotechnology, RWTH Aachen University, Aachen, Germany.
| |
Collapse
|
6
|
Feixia D, Ya L, Dafei L, Dingjiang Z, Guiping H, Zeliang W, Lirong J. Kaili Red sour soup: Correlations in composition/microbial metabolism and flavor profile during post-fermentation. Food Chem 2024; 435:137602. [PMID: 37813025 DOI: 10.1016/j.foodchem.2023.137602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 08/31/2023] [Accepted: 09/24/2023] [Indexed: 10/11/2023]
Abstract
Flavor and chemical changes with microbial succession during Red-Sour-Soup (RSS) post-fermentation were urgent to be revealed for quality control. RSS post-fermentation could be divided into three stages according to acidity, nutrients exhausting and total colony counts, without coliform bacteria growth nor nitrite peak was observed. Lactobacillus acetotolerans induced over 50 % increase of lactic acid, finally conducing to the lactic acid-dominated sour taste of RSS. The volatile compounds totally increased by 25.70 % in chili sauce and 32.58 % in tomato sauce (p < 0.05). In early-/middle-stage (pH > 3.5), alcohols and short-chain fatty acids increased, and butyric acid with unpleasant odor became the maximum flavor contributor. Nevertheless, in late-stage (pH < 3.5), with the reduction of alcohols and fatty acids, esters, 2-nonanone and terpenoids with pleasant flavors increased by Clavispora lusitaniae, Pichia, Cladosporium delicatulum and Rozellomycota sp.. In conclusion, the post-fermentation, especially L. acetotolerans metabolism and aciduric fungal esterification were essential for RSS characteristic flavor formation.
Collapse
Affiliation(s)
- Duan Feixia
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, PR China
| | - Luo Ya
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, PR China
| | - Li Dafei
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, PR China
| | - Zhong Dingjiang
- Majing Mingyang Food Co., Ltd., Qiandongnan 556000, PR China
| | - He Guiping
- Majing Mingyang Food Co., Ltd., Qiandongnan 556000, PR China
| | - Wei Zeliang
- Core Facilities of West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Jia Lirong
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, PR China.
| |
Collapse
|
7
|
Wang M, Liu H, Dang Y, Li D, Qiao Z, Wang G, Liu G, Xu J, Li E. Antifungal Mechanism of Cinnamon Essential Oil against Chinese Yam-Derived Aspergillus niger. J FOOD PROCESS PRES 2023. [DOI: 10.1155/2023/5777460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
Abstract
Chinese yam with damaged outer skin can be easily oxidized and infected by spoilage fungi. To find preservatives in the storage of the Chinese yam, Aspergillus niger 103 was isolated, identified, and determined as the dominant spoilage fungus in Chinese yam according to Koch’s postulates. Then, the strain was used as a model to screen antifungal agents and study antifungal mechanisms in this study. We found that cinnamon essential oil was the best antifungal agent, and the minimum concentration against Aspergillus niger 103 was 25 μg/mL. The storage life of Chinese yam could significantly extend by 27.66 days by spraying with cinnamon essential oil (25 μg/mL). To further explore the antifungal mechanism of cinnamon essential oil against Aspergillus niger 103, alkaline phosphatase activity and electrolyte content in the fungal solution were measured. The alkaline phosphatase activity and electrolyte content of the fungal solution with cinnamon essential oil were significantly increased than those without cinnamon essential oil, which showed that the cinnamon essential oil could destroy the integrity of the cell wall and cell membrane of Aspergillus niger 103, and disrupted cellular homeostasis of Aspergillus niger 103.
Collapse
Affiliation(s)
- Mingcheng Wang
- College of Biological and Food Engineering, Huanghuai University, Zhumadian, Henan 463000, China
| | - Huiyuan Liu
- College of Biological Science and Engineering, North University for Nationalities, Yinchuan, Ningxia 750021, China
| | - Yuanyuan Dang
- College of Biological and Food Engineering, Huanghuai University, Zhumadian, Henan 463000, China
| | - Dahong Li
- College of Biological and Food Engineering, Huanghuai University, Zhumadian, Henan 463000, China
| | - Zhu Qiao
- College of Biological and Food Engineering, Huanghuai University, Zhumadian, Henan 463000, China
| | - Gailing Wang
- College of Biological and Food Engineering, Huanghuai University, Zhumadian, Henan 463000, China
| | - Guo Liu
- College of Biological and Food Engineering, Huanghuai University, Zhumadian, Henan 463000, China
| | - Jin Xu
- College of Biological and Food Engineering, Huanghuai University, Zhumadian, Henan 463000, China
| | - Enzhong Li
- College of Biological and Food Engineering, Huanghuai University, Zhumadian, Henan 463000, China
| |
Collapse
|
8
|
De Carli C, Aylanc V, Mouffok KM, Santamaria-Echart A, Barreiro F, Tomás A, Pereira C, Rodrigues P, Vilas-Boas M, Falcão SI. Production of chitosan-based biodegradable active films using bio-waste enriched with polyphenol propolis extract envisaging food packaging applications. Int J Biol Macromol 2022; 213:486-497. [PMID: 35640852 DOI: 10.1016/j.ijbiomac.2022.05.155] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 05/10/2022] [Accepted: 05/22/2022] [Indexed: 12/18/2022]
Abstract
Developing biodegradable active films has been a promising green approach to overcoming global concerns over the environmental pollution and human health caused by plastic utilization. This study aimed to develop active films based on chitosan (CS), produced from waste crayfish (Procambarus clarkii) shells enriched with bioactive extract (5-20%) of propolis (PS) and to characterize its properties, envisaging food packaging applications. The chromatographic profile of PS extract confirmed its richness, with 41 phenolic compounds. With increasing extract addition to the chitosan, the thickness of the films increased from 61.7 to 71.7 μm, causing a reduction in the light transmission rate, along with a greenish colour shift. The interactions between PS extract and CS was confirmed by infrared spectroscopy, at the same time that the microstructural integrity of the films was checked on the scanning electron microscopy micrographs. The findings also showed that addition of PS enhanced the films thermal stability and mechanical properties e.g., tensile modulus, yield strength, and stress at break. Besides, it improved the antioxidant and antimicrobial activities. Overall, CS-based composite films seem a promising green alternative to petroleum-based synthetic plastics allowing to extend the shelf life of food products due to their eco-friendly nature.
Collapse
Affiliation(s)
- Cristiane De Carli
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; Universidade Tecnológica Federal do Paraná - UTFPR, Campus Medianeira, 85884-000 Medianeira, Brazil
| | - Volkan Aylanc
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Kheira M Mouffok
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Arantzazu Santamaria-Echart
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Filomena Barreiro
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Andreia Tomás
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Celeide Pereira
- Universidade Tecnológica Federal do Paraná - UTFPR, Campus Medianeira, 85884-000 Medianeira, Brazil
| | - Paula Rodrigues
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Miguel Vilas-Boas
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal.
| | - Soraia I Falcão
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal.
| |
Collapse
|
9
|
Biotechnology Approaches in Food Preservation and Food Safety. Foods 2022; 11:foods11101391. [PMID: 35626961 PMCID: PMC9142032 DOI: 10.3390/foods11101391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 05/07/2022] [Indexed: 02/01/2023] Open
|