1
|
Latiff NF, Sulaiman NF, Shaik MI, Mohamad NJ, Khairul WM, Daud AI, Sarbon NM. Halochromic smart film: A gelatin-based pH-sensitive film embedded with anthocyanin from roselle (Hibiscus sabdariffa) extracts for potential food spoilage indicator application. J Food Sci 2025; 90:e70134. [PMID: 40111016 PMCID: PMC11924884 DOI: 10.1111/1750-3841.70134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 02/22/2025] [Accepted: 02/25/2025] [Indexed: 03/22/2025]
Abstract
This study developed and characterized a pH-sensitive gelatin-based film incorporated with anthocyanin from roselle extracts (Hibiscus sabdariffa) at varying concentrations (0%-15%). The addition of anthocyanins significantly influenced the film's properties, reducing tensile strength from 1.5 to 1.1 MPa while increasing elongation at break from 312% to 416%. Water vapor permeability also increased with anthocyanin concentration, ranging from 1.02 to 1.47 × 10-⁸ g·m-¹·s-¹·Pa-¹. The film displayed a distinct color change from red to yellow-green across pH 3-10 and when exposed to ammonia gas, highlighting its potential for real-time detection of volatile basic compounds. Fourier transform infrared analysis revealed molecular interactions between gelatin and anthocyanins, with increasing roselle extract concentrations as it showed enhanced amide A, I, II, and III functional groups. Scanning electron micrographs revealed increased surface roughness and microstructural changes with anthocyanin addition. These findings demonstrate the potential of 15% roselle anthocyanin-gelatin films as eco-friendly, pH-sensitive smart packaging materials for food applications.
Collapse
Affiliation(s)
- Najma Farhaten Latiff
- Faculty of Fisheries and Food Science, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu, Malaysia
| | - Nur Fazlin Sulaiman
- Faculty of Fisheries and Food Science, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu, Malaysia
| | - Mannur Ismail Shaik
- Faculty of Fisheries and Food Science, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu, Malaysia
| | - Nizaha Juhaida Mohamad
- Faculty of Fisheries and Food Science, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu, Malaysia
| | - Wan Mohd Khairul
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu, Malaysia
| | - Adibah Izzati Daud
- Faculty of Chemical Engineering & Technology, Universiti Malaysia Perlis, Arau, Perlis, Malaysia
| | - Norizah Mhd Sarbon
- Faculty of Fisheries and Food Science, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu, Malaysia
| |
Collapse
|
2
|
Matheus JRV, Maragoni-Santos C, de Freitas TF, Hackbart EFC, Ribeiro-Santos R, Perrone D, de Sousa AMF, Luchese CL, de Andrade CJ, Fai AEC. Starch-pectin smart tag containing purple carrot peel anthocyanins as a potential indicator of analogous meat freshness. Int J Biol Macromol 2024; 283:137161. [PMID: 39500436 DOI: 10.1016/j.ijbiomac.2024.137161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/05/2024] [Accepted: 10/30/2024] [Indexed: 11/19/2024]
Abstract
Smart films of starch/pectin and purple carrot peel (PCP) containing anthocyanins were developed, characterized, and used as pH-responsive tags to monitor plant-based chicken analogous. This study innovates by incorporating PCP in the film solution both as an extract and as a powder, and the resulting tags were applied to a plant-based food. PCP powder <100-mesh was directly incorporated into the film-forming suspension. For powder >100-mesh, two extracts were tested: an aqueous solution and a 1 % NADES solution added to the film-forming suspension. Quantification of PCP anthocyanins by HPLC showed a higher extraction under acidic conditions (1664 mg C3G equivalents 100 g-1). Films with PCP presented greater light protection. Films with 15 % and 25 % PCP and those with added extract showed better tensile strength (3.0-3.6 MPa), elongation at break (16-20 %) and a water contact angle of 52°. All films responded to pH variations (1 to 14) and ammonia vapor and showed ΔE* values >5. After 3 days, films used as smart tags monitoring chicken analogous presented noticeable color differences for PCPNADES (55 ± 8) and 15%PCP (40 ± 1). PCP showed strong potential as a pigmenting agent in films, especially as an aqueous extract with NADES for use as pH-responsive tags in chicken analogous.
Collapse
Affiliation(s)
- Julia Rabelo Vaz Matheus
- Food and Nutrition Graduate Program, Federal University of Rio de Janeiro State (UNIRIO), Rio de Janeiro, RJ, Brazil
| | - Carollyne Maragoni-Santos
- Food and Nutrition Graduate Program, Federal University of Rio de Janeiro State (UNIRIO), Rio de Janeiro, RJ, Brazil
| | - Thalita Ferreira de Freitas
- Laboratory of Multidisciplinary Practices for Sustainability (LAMPS), Institute of Nutrition, Rio de Janeiro State University (UERJ), Rio de Janeiro, RJ, Brazil
| | - Emily Farias Costa Hackbart
- Laboratory of Multidisciplinary Practices for Sustainability (LAMPS), Institute of Nutrition, Rio de Janeiro State University (UERJ), Rio de Janeiro, RJ, Brazil
| | - Regiane Ribeiro-Santos
- Laboratório de Bioquímica Nutricional e de Alimentos, Biochemistry Department, Chemistry Institute, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | - Daniel Perrone
- Laboratório de Bioquímica Nutricional e de Alimentos, Biochemistry Department, Chemistry Institute, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | | | - Cláudia Leites Luchese
- Latin American Institute of Technology, Infrastructure and Territory (ILATIT), Federal University of Latin American Integration (UNILA), Foz do Iguaçu, PR, Brazil
| | - Cristiano José de Andrade
- Department of Chemical Engineering and Food Engineering, Technological Center, Federal University of Santa Catarina (USFC), Florianópolis, SC, Brazil
| | - Ana Elizabeth Cavalcante Fai
- Food and Nutrition Graduate Program, Federal University of Rio de Janeiro State (UNIRIO), Rio de Janeiro, RJ, Brazil; Laboratory of Multidisciplinary Practices for Sustainability (LAMPS), Institute of Nutrition, Rio de Janeiro State University (UERJ), Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
3
|
Yun D, Wu Y, Yong H, Tang C, Chen D, Kan J, Liu J. Recent Advances in Purple Sweet Potato Anthocyanins: Extraction, Isolation, Functional Properties and Applications in Biopolymer-Based Smart Packaging. Foods 2024; 13:3485. [PMID: 39517269 PMCID: PMC11545044 DOI: 10.3390/foods13213485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 10/27/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
Petroleum-based plastic packaging materials have negative impacts on the environment and food safety. Natural biopolymer-based food packaging materials are the proper substitutes for plastic-based ones, which is because biopolymers are nontoxic, biodegradable and even edible. The incorporation of bioactive and functional substances into a biopolymer-based film matrix can produce novel smart packaging materials. Anthocyanins, one class of natural colorants with potent antioxidant activity and pH-response color-changing ability, are suitable for producing biopolymer-based smart packaging films. The purple sweet potato is a functional food rich in anthocyanins. In the past decade, numerous studies have reported the extraction of anthocyanins from purple sweet potato and the utilization of purple sweet potato anthocyanins (PSPAs) in biopolymer-based smart packaging film production. However, no specific review has summarized the recent advances on biopolymer-based smart packaging films containing PSPAs. Therefore, in this review, we aim to systematically summarize the progress on the extraction, isolation, characterization, purification and functional properties of PSPAs. Moreover, we thoroughly introduce the preparation methods, physical properties, antioxidant and antimicrobial activity, pH sensitivity, stability and applications of biopolymer-based smart packaging films containing PSPAs. Factors affecting the extraction and functional properties of PSPAs as well as the properties of biopolymer-based films containing PSPAs are discussed.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jun Liu
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China; (D.Y.); (Y.W.); (H.Y.); (C.T.); (D.C.); (J.K.)
| |
Collapse
|
4
|
Sabu Mathew S, Jaiswal AK, Jaiswal S. Carrageenan-based sustainable biomaterials for intelligent food packaging: A review. Carbohydr Polym 2024; 342:122267. [PMID: 39048183 DOI: 10.1016/j.carbpol.2024.122267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 05/10/2024] [Accepted: 05/11/2024] [Indexed: 07/27/2024]
Abstract
This article explores the use of carrageenan-based biomaterials in developing sustainable and efficient intelligent food packaging solutions. The research in this field has seen a notable surge, evident from >1000 entries in databases such as Web of Science, PubMed and Science Direct between 2018 and 2023. Various film preparation techniques are explored, including solvent casting, layer-by-layer (LbL) assembly, and electrospinning. Solvent casting is commonly used to incorporate active compounds, while LbL assembly and electrospinning are favored for enhancing mechanical properties and solubility. Carrageenan's film-forming characteristics enable the production of transparent films, ideal for indicator films that facilitate visual inspection for color changes indicative of pH variations, crucial for detecting food spoilage. Surface properties can be modified using additives like plant extracts to regulate moisture interaction, affecting shelf life and food safety. These materials' antioxidant and antimicrobial attributes are highlighted, demonstrating their efficacy against pathogens such as E. coli.
Collapse
Affiliation(s)
- Sneha Sabu Mathew
- Sustainable Packaging & Bioproducts Research (SPBR), School of Food Science and Environmental Health, Technological University Dublin-City Campus, Central Quad, Grangegorman, Dublin D07 ADY7, Ireland; Sustainability and Health Research Hub, Technological University Dublin-City Campus, Grangegorman, Dublin D07 H6K8, Ireland
| | - Amit K Jaiswal
- Sustainable Packaging & Bioproducts Research (SPBR), School of Food Science and Environmental Health, Technological University Dublin-City Campus, Central Quad, Grangegorman, Dublin D07 ADY7, Ireland; Sustainability and Health Research Hub, Technological University Dublin-City Campus, Grangegorman, Dublin D07 H6K8, Ireland
| | - Swarna Jaiswal
- Sustainable Packaging & Bioproducts Research (SPBR), School of Food Science and Environmental Health, Technological University Dublin-City Campus, Central Quad, Grangegorman, Dublin D07 ADY7, Ireland; Sustainability and Health Research Hub, Technological University Dublin-City Campus, Grangegorman, Dublin D07 H6K8, Ireland.
| |
Collapse
|
5
|
Yun D, Li C, Sun J, Xu F, Tang C, Liu J. A comparative study on the structure, physical property and halochromic ability of shrimp freshness indicators produced from nine varieties of steamed purple sweet potato. Food Chem 2024; 449:139222. [PMID: 38583398 DOI: 10.1016/j.foodchem.2024.139222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/13/2024] [Accepted: 03/31/2024] [Indexed: 04/09/2024]
Abstract
Nine varieties of purple sweet potato were steamed and used for the production of shrimp freshness indicators. The impact of purple sweet potato's variety on the structure, physical property and halochromic ability of indicators was determined. Results showed different varieties of purple sweet potato had different starch, crude fiber, pectin, protein, fat and total anthocyanin contents. The microstructure, crystallinity, moisture content, water vapor permeability, tensile strength and elongation at break of indicators were affected by crude fiber content in purple sweet potato. The color, transmission and halochromic ability of indicators was associated with the total anthocyanin content in purple sweet potato. Freshness indicators produced from Fuzi No. 1, Ganzi No. 6, Ningzi No. 2, Ningzi No. 4, Qining No. 2 and Qining No. 18 of purple sweet potato were suitable to indicate shrimp freshness. This study provides useful information on screening suitable varieties of purple sweet potato for intelligent packaging.
Collapse
Affiliation(s)
- Dawei Yun
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, PR China
| | - Chenchen Li
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, PR China
| | - Jian Sun
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai Area, Xuzhou 221131, Jiangsu, PR China
| | - Fengfeng Xu
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, PR China
| | - Chao Tang
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, PR China
| | - Jun Liu
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, PR China.
| |
Collapse
|
6
|
Jiang H, Wang F, Ma R, Yang T, Liu C, Shen W, Jin W, Tian Y. Advances in valorization of sweet potato peels: A comprehensive review on the nutritional compositions, phytochemical profiles, nutraceutical properties, and potential industrial applications. Compr Rev Food Sci Food Saf 2024; 23:e13400. [PMID: 39030813 DOI: 10.1111/1541-4337.13400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 05/23/2024] [Accepted: 06/14/2024] [Indexed: 07/22/2024]
Abstract
During food production, food processing, and supply chain, large amounts of food byproducts are generated and thrown away as waste, which to a great extent brings about adverse consequences on the environment and economic development. The sweet potato (Ipomoea batatas L.) is cultivated and consumed in many countries. Sweet potato peels (SPPs) are the main byproducts generated by the tuber processing. These residues contain abundant nutrition elements, bioactive compounds, and other high value-added substances; therefore, the reutilization of SPP holds significance in improving their overall added value. SPPs contain abundant phenolic compounds and carotenoids, which might contribute significantly to their nutraceutical properties, including antioxidant, antimicrobial, anticancer, prebiotic, anti-inflammatory, wound-healing, and lipid-lowering effects. It has been demonstrated that SPP could be promisingly revalorized into food industry, including: (1) applications in diverse food products; (2) applications in food packaging; and (3) applications in the recovery of pectin and cellulose nanocrystals. Furthermore, SPP could be used as promising feedstocks for the bioconversion of diverse value-added bioproducts through biological processing.
Collapse
Affiliation(s)
- Haitao Jiang
- State Key Laboratory of Food Science and Resource, Jiangnan University, Wuxi, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
| | - Fan Wang
- State Key Laboratory of Food Science and Resource, Jiangnan University, Wuxi, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
| | - Rongrong Ma
- State Key Laboratory of Food Science and Resource, Jiangnan University, Wuxi, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
| | - Tianyi Yang
- Analysis and Testing Center, Jiangnan University, Wuxi, P. R. China
| | - Chang Liu
- State Key Laboratory of Food Science and Resource, Jiangnan University, Wuxi, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
| | - Wangyang Shen
- School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, P. R. China
| | - Weiping Jin
- School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, P. R. China
| | - Yaoqi Tian
- State Key Laboratory of Food Science and Resource, Jiangnan University, Wuxi, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
- Analysis and Testing Center, Jiangnan University, Wuxi, P. R. China
| |
Collapse
|
7
|
Long W, Lin Y, Lv C, Dong J, Lv M, Lou X. High-compatibility properties of Aronia melanocarpa extracts cross-linked chitosan/polyvinyl alcohol composite film for intelligent food packaging. Int J Biol Macromol 2024; 270:132305. [PMID: 38740148 DOI: 10.1016/j.ijbiomac.2024.132305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/14/2024] [Accepted: 05/10/2024] [Indexed: 05/16/2024]
Abstract
Although the active and intelligent properties of rich in anthocyanin extracts added to films have been extensively studied, there remains a sparsity of research pertaining to the miscibility of blended films. This work focused on the miscibility of the chitosan/polyvinyl alcohol (CP) film caused by the addition of Aronia melanocarpa extracts (AME), which are rich anthocyanins and phenolic acids, and its effect on physicochemical and functional properties. AME facilitated the amidation reaction and ionic interaction of chitosan in CP films, leading to loss of the crystallinity degree of chitosan. Furthermore, the crystal disruption promoted the formation of hydrogen bonds with polyvinyl alcohol (PVA) with the promoted miscibility. CP film incorporated with 8 % AME possessed the highest tensile strength (26.79 MPa), and elongation at break (66.38 %) as well as excellent ultraviolet-visible (UV-vis) light barrier property, water vapor barrier properties, due to its high miscibility degree. Moreover, this film also showed excellent antioxidant, antibacterial activity, and pH response function, which could be used to monitor the storage of highly perishable shrimp. Hence, the AME provided extra functionality and improved miscibility between chitosan and PVA, which showed great potential for the preparation of high-performance bioactive-fortified and intelligent food packaging films.
Collapse
Affiliation(s)
- Wenjie Long
- College of Food Science and Technology, Bohai University, Jinzhou 121013, PR China; National and Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou 121013, PR China
| | - Yawen Lin
- College of Food Science and Technology, Bohai University, Jinzhou 121013, PR China; National and Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou 121013, PR China.
| | - Changxin Lv
- College of Food Science and Technology, Bohai University, Jinzhou 121013, PR China; National and Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou 121013, PR China.
| | - Junli Dong
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China
| | - Meilin Lv
- College of Food Science and Technology, Bohai University, Jinzhou 121013, PR China; National and Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou 121013, PR China
| | - Xiaohua Lou
- College of Food Science and Technology, Bohai University, Jinzhou 121013, PR China; National and Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou 121013, PR China
| |
Collapse
|
8
|
Yue R, Zhang Y, Liu J, Sun J. Preparation of Steamed Purple Sweet Potato-Based Films Containing Mandarin Essential Oil for Smart Packaging. Molecules 2024; 29:2314. [PMID: 38792175 PMCID: PMC11124375 DOI: 10.3390/molecules29102314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/11/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
Anthocyanin-rich steamed purple sweet potato (SPSP) is a suitable raw material to produce smart packaging films. However, the application of SPSP-based films is restricted by the low antimicrobial activity of anthocyanins. In this study, SPSP-based smart packaging films were produced by adding mandarin essential oil (MEO) as an antimicrobial agent. The impact of MEO content (3%, 6%, and 9%) on the structures, properties, and application of SPSP-based films was measured. The results showed that MEO created several pores within films and reduced the hydrogen bonding system and crystallinity of films. The dark purple color of the SPSP films was almost unchanged by MEO. MEO significantly decreased the light transmittance, water vapor permeability, and tensile strength of the films, but remarkably increased the oxygen permeability, thermal stability, and antioxidant and antimicrobial properties of the films. The SPSP-MEO films showed intuitive color changes at different acid-base conditions. The purple-colored SPSP-MEO films turned blue when chilled shrimp and pork were not fresh. The MEO content greatly influenced the structures, physical properties, and antioxidant and antimicrobial activities of the films. However, the MEO content had no impact on the color change ability of the films. The results suggested that SPSP-MEO films have potential in the smart packaging of protein-rich foods.
Collapse
Affiliation(s)
- Ruixue Yue
- Xuzhou Institute of Agricultural Sciences, Jiangsu Xuhuai Area, Xuzhou 221131, China;
| | - Yiren Zhang
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China;
| | - Jun Liu
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China;
| | - Jian Sun
- Xuzhou Institute of Agricultural Sciences, Jiangsu Xuhuai Area, Xuzhou 221131, China;
| |
Collapse
|
9
|
Wang Y, Ju J, Diao Y, Zhao F, Yang Q. The application of starch-based edible film in food preservation: a comprehensive review. Crit Rev Food Sci Nutr 2024; 65:2731-2764. [PMID: 38712440 DOI: 10.1080/10408398.2024.2349735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Using renewable resources for food packaging not only helps reduce our dependence on fossil fuels but also minimizes the environmental impact associated with traditional plastics. Starch has been a hot topic in the field of current research because of its low cost, wide source and good film forming property. However, a comprehensive review in this field is still lacking. Starch-based films offer a promising alternative for sustainable packaging in the food industry. The present paper covers various aspects such as raw material sources, modification methods, and film formation mechanisms. Understanding the physicochemical properties and potential commercial applications is crucial for bridging the gap between research and practical implementation. Finally, the application of starch-based films in the food industry is discussed in detail. Different modifications of starch can improve the mechanical and barrier properties of the films. The addition of active substances to starch-based films can endow them with more functions. Therefore, these factors should be better investigated and optimized in future studies to improve the physicochemical properties and functionality of starch-based films. In summary, this review provides comprehensive information and the latest research progress of starch-based films in the food industry.
Collapse
Affiliation(s)
- Yihui Wang
- Special Food Research Institute, Qingdao Agricultural University, Qingdao, People's Republic of China
- Qingdao Special Food Research Institute, Qingdao, People's Republic of China
- Key Laboratory of Special Food Processing (Co-construction by Ministry and Province), Ministry of Agriculture Rural Affairs, People's Republic of China
- Shandong Technology Innovation Center of Special Food, Qingdao, People's Republic of China
| | - Jian Ju
- Special Food Research Institute, Qingdao Agricultural University, Qingdao, People's Republic of China
- Qingdao Special Food Research Institute, Qingdao, People's Republic of China
- Key Laboratory of Special Food Processing (Co-construction by Ministry and Province), Ministry of Agriculture Rural Affairs, People's Republic of China
- Shandong Technology Innovation Center of Special Food, Qingdao, People's Republic of China
| | - Yuduan Diao
- Institute of Animal Husbandry & Veterinary Science, Shanghai Academy of Agricultural Science
| | - Fangyuan Zhao
- Special Food Research Institute, Qingdao Agricultural University, Qingdao, People's Republic of China
- Qingdao Special Food Research Institute, Qingdao, People's Republic of China
- Key Laboratory of Special Food Processing (Co-construction by Ministry and Province), Ministry of Agriculture Rural Affairs, People's Republic of China
- Shandong Technology Innovation Center of Special Food, Qingdao, People's Republic of China
| | - Qingli Yang
- Special Food Research Institute, Qingdao Agricultural University, Qingdao, People's Republic of China
- Qingdao Special Food Research Institute, Qingdao, People's Republic of China
- Key Laboratory of Special Food Processing (Co-construction by Ministry and Province), Ministry of Agriculture Rural Affairs, People's Republic of China
- Shandong Technology Innovation Center of Special Food, Qingdao, People's Republic of China
| |
Collapse
|
10
|
Ekrem Parlak M, Irmak Sahin O, Neslihan Dundar A, Türker Saricaoglu F, Smaoui S, Goksen G, Koirala P, Al-Asmari F, Prakash Nirmal N. Natural colorant incorporated biopolymers-based pH-sensing films for indicating the food product quality and safety. Food Chem 2024; 439:138160. [PMID: 38086233 DOI: 10.1016/j.foodchem.2023.138160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 11/25/2023] [Accepted: 12/04/2023] [Indexed: 01/10/2024]
Abstract
The current synthetic plastic-based packaging creates environmental hazards that impact climate change. Hence, the topic of the current research in food packaging is biodegradable packaging and its development. In addition, new smart packaging solutions are being developed to monitor the quality of packaged foods, with dual functions as food preservation and quality indicators. In the creation of intelligent and active food packaging, many natural colorants have been employed effectively as pH indicators and active substances, respectively. This review provides an overview of biodegradable polymers and natural colorants that are being extensively studied for pH-indicating packaging. A comprehensive discussion has been provided on the current status of the development of intelligent packaging systems for food, different incorporation techniques, and technical challenges in the development of such green packaging. Finally, the food industry and environmental protection might be revolutionized by pH-sensing biodegradable packaging enabling real-time detection of food product quality and safety.
Collapse
Affiliation(s)
- Mahmud Ekrem Parlak
- Department of Food Engineering, Faculty of Engineering and Natural Science, Bursa Technical University, 16310 Yıldırım/BURSA, Turkey
| | - Oya Irmak Sahin
- Department of Chemical Engineering, Faculty of Engineering, Yalova University, 76200 Yalova, Turkey
| | - Ayse Neslihan Dundar
- Department of Food Engineering, Faculty of Engineering and Natural Science, Bursa Technical University, 16310 Yıldırım/BURSA, Turkey
| | - Furkan Türker Saricaoglu
- Department of Food Engineering, Faculty of Engineering and Natural Science, Bursa Technical University, 16310 Yıldırım/BURSA, Turkey
| | - Slim Smaoui
- Laboratory of Microbial Biotechnology and Engineering Enzymes (LMBEE), Center of Biotechnology of Sfax (CBS), University of Sfax, Road of Sidi Mansour Km 6, P.O. Box 1177, 3018 Sfax, Tunisia
| | - Gulden Goksen
- Department of Food Technology, Vocational School of Technical Sciences at Mersin Tarsus Organized Industrial Zone, Tarsus University, 33100 Mersin, Turkey
| | - Pankaj Koirala
- Institute of Nutrition, Mahidol University, 999 Phutthamonthon 4 Road, Salaya, Nakhon Pathom 73170, Thailand
| | - Fahad Al-Asmari
- Department of Food Science and Nutrition, College of Agriculture and Food Sciences, King Faisal University, P.O. Box 400, Al-Ahsa, 31982 Al-Hofuf, Saudi Arabia
| | - Nilesh Prakash Nirmal
- Institute of Nutrition, Mahidol University, 999 Phutthamonthon 4 Road, Salaya, Nakhon Pathom 73170, Thailand.
| |
Collapse
|
11
|
Gao L, Sun H, Nagassa M, Li X, Pei H, Liu S, Gu Y, He S. Edible film preparation by anthocyanin extract addition into acetylated cassava starch/sodium carboxymethyl cellulose matrix for oxidation inhibition of pumpkin seeds. Int J Biol Macromol 2024; 267:131439. [PMID: 38593902 DOI: 10.1016/j.ijbiomac.2024.131439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 04/01/2024] [Accepted: 04/04/2024] [Indexed: 04/11/2024]
Abstract
In this study, an edible film was fabricated by incorporating anthocyanin extract from black rice (AEBR) into acetylated cassava starch (ACS)/carboxymethyl-cellulose (CMC) to enhance the shelf life of pumpkin seeds. The effects of AEBR on the rheological properties of film-forming solutions, as well as the structural characterization and physicochemical properties of the film, were evaluated. Rheological properties of solutions revealed that AEBR was evenly dispersed into polymer matrix and bound by hydrogen bonds, as confirmed by Fourier transform infrared spectroscopy analysis. The appropriate AEBR addition could be compatible with polymer matrix and formed a compact film structure, improving the mechanical properties, barrier properties, and opacity. However, with further addition of AEBR, the tensile strength and water vapor permeability decreased and the tight structure was destroyed. After being stored separately under thermal and UV light accelerated conditions for 20 days, the peroxide value and acid value of roasted pumpkin seeds coated with the AEBR film showed a significant reduction. Moreover, the storage stability of AEBR was improved through the embedding of ACS/CMC biopolymers. These results indicated that AEBR film could effectively delay pumpkin seeds oxidation and prolong their shelf life as an antioxidant material.
Collapse
Affiliation(s)
- Lingyan Gao
- School of Food and Biological Engineering, Engineering Research Center of Bio-process of Ministry of Education, Key Laboratory for Agricultural Products Procssing of Anhui Province, Hefei University of Technology, Hefei 230009, Anhui, PR China
| | - Hanju Sun
- School of Food and Biological Engineering, Engineering Research Center of Bio-process of Ministry of Education, Key Laboratory for Agricultural Products Procssing of Anhui Province, Hefei University of Technology, Hefei 230009, Anhui, PR China.
| | - Merga Nagassa
- School of Food and Biological Engineering, Engineering Research Center of Bio-process of Ministry of Education, Key Laboratory for Agricultural Products Procssing of Anhui Province, Hefei University of Technology, Hefei 230009, Anhui, PR China
| | - Xiao Li
- School of Food and Biological Engineering, Engineering Research Center of Bio-process of Ministry of Education, Key Laboratory for Agricultural Products Procssing of Anhui Province, Hefei University of Technology, Hefei 230009, Anhui, PR China
| | - Hui Pei
- School of Food and Biological Engineering, Engineering Research Center of Bio-process of Ministry of Education, Key Laboratory for Agricultural Products Procssing of Anhui Province, Hefei University of Technology, Hefei 230009, Anhui, PR China
| | - Shuyun Liu
- School of Food and Biological Engineering, Engineering Research Center of Bio-process of Ministry of Education, Key Laboratory for Agricultural Products Procssing of Anhui Province, Hefei University of Technology, Hefei 230009, Anhui, PR China
| | - Yingying Gu
- School of Food and Biological Engineering, Engineering Research Center of Bio-process of Ministry of Education, Key Laboratory for Agricultural Products Procssing of Anhui Province, Hefei University of Technology, Hefei 230009, Anhui, PR China
| | - Shudong He
- School of Food and Biological Engineering, Engineering Research Center of Bio-process of Ministry of Education, Key Laboratory for Agricultural Products Procssing of Anhui Province, Hefei University of Technology, Hefei 230009, Anhui, PR China.
| |
Collapse
|
12
|
Sachcha IH, Paddar K, Minar MM, Rahman L, Hasan SK, Akhtaruzzaman M, Billah MT, Yasmin S. Development of eco-friendly biofilms by utilizing microcrystalline cellulose extract from banana pseudo-stem. Heliyon 2024; 10:e29070. [PMID: 38623235 PMCID: PMC11016604 DOI: 10.1016/j.heliyon.2024.e29070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/28/2024] [Accepted: 03/29/2024] [Indexed: 04/17/2024] Open
Abstract
Banana pseudo-stem, often considered as an underutilized plant part was explored as a potential reinforced material to develop an eco-friendly biofilm for food packaging applications. In this study, Microcrystalline cellulose (MCC) was extracted from banana pseudo-stem by alkali and acid hydrolysis treatment. The extracted MCC was used as a reinforced material in different concentrated polyvinyl alcohol (PVA) matrix alone as well as both PVA and Carboxymethyl Cellulose (CMC) matrix to develop biofilm by solvent casting method. The synthesized MCC powder was characterized by scanning electron microscope to ensure its microcrystalline structure and to observe surface morphology. The biofilms composed of MCC, PVA, and CMC were assessed through Fourier-transform infrared spectroscopy (FTIR), mechanical properties, water content, solubility, swelling degree, moisture barrier property (Water Vapor Permeability - WVP), and light barrier property (Light Transmission and Transparency). The FTIR analysis showed the rich bonding between the materials of the biofilms. The film incorporating a combination of PVA, CMC, and MCC (S6) exhibited the highest tensile strength at 26.67 ± 0.152 MPa, making it particularly noteworthy for applications in food packaging. MCC incorporation increased the tensile strength. The WVP content of the films was observed low among the MCC-induced films which is parallel to other findings. The lowest WVP content was showed by 1% concentrated PVA with MCC (S4) (0.223 ± 0.020 10-9 g/Pahm). The WVP content of S6 film was also considerably low. MCC-incorporated films also acted as a good UV barrier. Transmittance of the MCC induced films at UV range were observed on average 38% (S2), 36% (S4) and 6% (S6) which were almost 6% lower than the control films. The S6 film demonstrated the lowest swelling capacity (1.42%) and water content, indicating a significantly low solubility of the film. The film formulated with mixing of PVA, CMC and MCC (S6) was ahead in terms of food packaging characteristics than other films. Also, the outcomes of this study point out that MCC can be a great natural resource for packaging applications and in that regard, banana pseudo-stem proves to be an excellent source for waste utilization.
Collapse
Affiliation(s)
- Ishmam Haque Sachcha
- Department of Food Engineering and Technology, Hajee Mohammad Danesh Science and Technology University (HSTU), Dinajpur, 5200, Bangladesh
| | - Kushal Paddar
- Department of Food Engineering and Technology, Hajee Mohammad Danesh Science and Technology University (HSTU), Dinajpur, 5200, Bangladesh
| | - Minhajul Matin Minar
- Department of Food Engineering and Technology, Hajee Mohammad Danesh Science and Technology University (HSTU), Dinajpur, 5200, Bangladesh
| | - Latifur Rahman
- Sonali Bag Research Laboratory, Bangladesh Jute Mills Corporation, Dhaka, 1000, Bangladesh
| | - S.M. Kamrul Hasan
- Department of Food Processing and Preservation, Hajee Mohammad Danesh Science and Technology University (HSTU), Dinajpur, 5200, Bangladesh
| | - Md Akhtaruzzaman
- Department of Agro Product Processing Technology, Jashore University of Science and Technology (JUST), Jashore, Bangladesh
| | - Mir Tuhin Billah
- Department of Food Engineering and Technology, Hajee Mohammad Danesh Science and Technology University (HSTU), Dinajpur, 5200, Bangladesh
| | - Sabina Yasmin
- Department of Food Engineering and Technology, Hajee Mohammad Danesh Science and Technology University (HSTU), Dinajpur, 5200, Bangladesh
| |
Collapse
|
13
|
Li Q, Guo A, Rao L, Zhao L, Wang Y, Liao X. Tunable interactions in starch-anthocyanin complexes switched by high hydrostatic pressure. Food Chem 2024; 436:137677. [PMID: 37839121 DOI: 10.1016/j.foodchem.2023.137677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 10/02/2023] [Accepted: 10/04/2023] [Indexed: 10/17/2023]
Abstract
Native starches usually have poor polyphenol-binding efficiency despite remarkable architectural structures. In this study, the interaction between cyandin-3-O-glucose (C3G) and three starches under high hydrostatic pressure was investigated. Pressure (200-550 MPa) was found to promote the binding rate of potato starch from 31.6% to 47.0% but reduced that of corn and pea starch to below 10% at 550 MPa. Microscopy results showed that pressurized corn and pea starch-C3G complexes partially or completely lost spatial structures, whereas potato starch-C3G complexes retained structural integrity. The former had decreased zeta potentials and increased particle sizes at 550 MPa, suggesting surface charges and specific surface area losses caused poor binding. Potato starch-C3G complexes, however, exhibited unchanged zeta potential and particle size but the strongest fluorescence at 200 MPa, indicating a positive binding shift from surface to interior. Overall, high hydrostatic pressure can regulate the interactions of native starches with anthocyanins via spatial structural changes.
Collapse
Affiliation(s)
- Qin Li
- College of Food Science and Nutritional Engineering, China Agricultural University, National Engineering Research Centre for Fruit and Vegetable Processing, Key Lab of Fruit and Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory for Food Nonthermal Processing, Beijing 100083, China
| | - Aixin Guo
- College of Food Science and Nutritional Engineering, China Agricultural University, National Engineering Research Centre for Fruit and Vegetable Processing, Key Lab of Fruit and Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory for Food Nonthermal Processing, Beijing 100083, China
| | - Lei Rao
- College of Food Science and Nutritional Engineering, China Agricultural University, National Engineering Research Centre for Fruit and Vegetable Processing, Key Lab of Fruit and Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory for Food Nonthermal Processing, Beijing 100083, China
| | - Liang Zhao
- College of Food Science and Nutritional Engineering, China Agricultural University, National Engineering Research Centre for Fruit and Vegetable Processing, Key Lab of Fruit and Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory for Food Nonthermal Processing, Beijing 100083, China
| | - Yongtao Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, National Engineering Research Centre for Fruit and Vegetable Processing, Key Lab of Fruit and Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory for Food Nonthermal Processing, Beijing 100083, China.
| | - Xiaojun Liao
- College of Food Science and Nutritional Engineering, China Agricultural University, National Engineering Research Centre for Fruit and Vegetable Processing, Key Lab of Fruit and Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory for Food Nonthermal Processing, Beijing 100083, China
| |
Collapse
|
14
|
Wen P, Wu J, Wu J, Wang H, Wu H. A Colorimetric Nanofiber Film Based on Ethyl Cellulose/Gelatin/Purple Sweet Potato Anthocyanins for Monitoring Pork Freshness. Foods 2024; 13:717. [PMID: 38472830 DOI: 10.3390/foods13050717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/20/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024] Open
Abstract
In this study, colorimetric indicator nanofiber films based on ethyl cellulose (EC)/gelatin (G) incorporating purple sweet potato anthocyanins (PSPAs) were designed via electrospinning technology for monitoring and maintaining the freshness of pork. The film presented good structural integrity and stability in a humid environment with water vapor permeability (WVP) of 6.07 ± 0.14 × 10-11 g·m-1s-1Pa-1 and water contact angle (WCA) of 81.62 ± 1.43°. When PSPAs were added into the nanofiber films, the antioxidant capacity was significantly improved (p < 0.05) with a DPPH radical scavenging rate of 68.61 ± 1.80%. The nanofiber films showed distinguishable color changes as pH changes and was highly sensitive to volatile ammonia than that of casting films. In the application test, the film color changed from light pink (fresh stage) to light brown (secondary freshness stage) and then to brownish green (spoilage stage), indicating that the nanofiber films can be used to detect the real-time freshness of pork during storage. Meanwhile, it could prolong the shelf life of pork by inhibiting the oxidation degree. Hence, these results suggested that the EC/G/PSPA film has promising future for monitoring freshness and extending shelf life of pork.
Collapse
Affiliation(s)
- Peng Wen
- College of Food Science, Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University, Guangzhou 510642, China
| | - Jinling Wu
- College of Food Science, Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University, Guangzhou 510642, China
| | - Jiahui Wu
- School of Food Science and Engineering, South China University of Technology/Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou 510641, China
| | - Hong Wang
- College of Food Science, Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University, Guangzhou 510642, China
| | - Hong Wu
- School of Food Science and Engineering, South China University of Technology/Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou 510641, China
| |
Collapse
|
15
|
Sharaby MR, Soliman EA, Khalil R. Halochromic smart packaging film based on montmorillonite/polyvinyl alcohol-high amylose starch nanocomposite for monitoring chicken meat freshness. Int J Biol Macromol 2024; 258:128910. [PMID: 38141710 DOI: 10.1016/j.ijbiomac.2023.128910] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 12/10/2023] [Accepted: 12/18/2023] [Indexed: 12/25/2023]
Abstract
Polyvinyl alcohol (PVA) was blended with high amylose starch (HAS) at a ratio of 3:1, and reinforced with montmorillonite (MMT K10) at different concentrations (1, 2, 5, and 7 % w/w of polymers) and anthocyanins (ANT) to develop an active and smart packaging film. MMT addition enhanced the film's mechanical, barrier, thermal, and water resistance properties. Incorporating ANT extracted from roselle calyx into the optimal nanocomposite film (MMT/PVA-HAS II) increased the films' antioxidant, pH-response, and antibacterial properties. FTIR, XRD, and SEM confirmed the intermolecular interactions and even distribution of ANT and MMT in the film matrix. Release rate of ANT was dependent on type of simulant, with higher rate in aqueous solutions compared to alcoholic/fatty food simulants, and cytotoxicity evaluation proved safety of films for food packaging applications. Storage experiments confirmed the potential applicability of the novel halochromic smart film as a promising candidate for monitoring chicken spoilage under abusive storage conditions.
Collapse
Affiliation(s)
- Muhammed R Sharaby
- Basic and Applied Sciences (BAS) Institute, Egypt-Japan University of Science and Technology (E-JUST), New Borg El-Arab city, Alexandria 21934, Egypt; Botany and Microbiology Department, Faculty of Science, Alexandria University, Alexandria 21511, Egypt.
| | - Emad A Soliman
- Polymeric Materials Research Department, Advanced Technology and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, Alexandria 21934, Egypt
| | - Rowaida Khalil
- Botany and Microbiology Department, Faculty of Science, Alexandria University, Alexandria 21511, Egypt
| |
Collapse
|
16
|
DEWI RR, SYAHBANU I, RAHMALIA W. Senggani fruit ( Melastoma malabathricum Linn.) extract as a natural indicator in pH-responsive PVA-taro starch plastic packaging. Turk J Chem 2024; 48:459-469. [PMID: 39050935 PMCID: PMC11265853 DOI: 10.55730/1300-0527.3672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/14/2024] [Accepted: 01/15/2024] [Indexed: 07/27/2024] Open
Abstract
Polyvinyl alcohol (PVA)-starch-based bioplastics are widely used in many applications. pH-responsive plastic packaging was produced through the incorporation of senggani (Melastoma malabathricum Linn.) fruit extract into PVA-taro starch-based plastic packaging. The objective of this research was to examine the characteristics of senggani fruit extract under different pH conditions and explore its application as a pH indicator in intelligent packaging. The senggani fruit was extracted through the maceration method using a solvent comprising 96% ethanol and 3% citric acid, with a ratio of 85:15 (v/v). The senggani fruit extract solution underwent color changes, appearing pink at pH levels below 6, pale purple at pH 7-11, and brownish-yellow at pH 12-14. Notably, the color of the senggani fruit extract solution remained stable at pH < 5. Before the addition of the senggani fruit extract, the PVA-taro starch solution produced a brownish-yellow plastic packaging. However, following the addition of senggani fruit extract, the plastic packaging turned pink. The addition of senggani fruit extract affected the mechanical properties of plastic packaging, resulting in a reduction in swelling from 103.679 ± 2.456% to 57.827 ± 3.563%, a decrease in tensile strength value from 3.827 ± 0.603 Mpa to 1.991 ± 0.460 Mpa, and a decline in the percent elongation value from 156.250 ± 12.392% to 116 ± 6.722%. Plastic packaging incorporating senggani fruit extract exhibits color changes across the pH range of 1-14, accompanied by varying color parameter values (L, a, b, E, and WI). Therefore, it has the potential to be used as intelligent packaging for monitoring food freshness and quality.
Collapse
Affiliation(s)
- Rika Risma DEWI
- Department of Chemistry, Faculty Mathematics and Natural Science, Tanjungpura University, Pontianak,
Indonesia
| | - Intan SYAHBANU
- Department of Chemistry, Faculty Mathematics and Natural Science, Tanjungpura University, Pontianak,
Indonesia
| | - Winda RAHMALIA
- Department of Chemistry, Faculty Mathematics and Natural Science, Tanjungpura University, Pontianak,
Indonesia
| |
Collapse
|
17
|
Jiang K, Li J, Brennan M, Brennan C, Chen H, Qin Y, Yuan M. Smart Indicator Film Based on Sodium Alginate/Polyvinyl Alcohol/TiO 2 Containing Purple Garlic Peel Extract for Visual Monitoring of Beef Freshness. Polymers (Basel) 2023; 15:4308. [PMID: 37959988 PMCID: PMC10649262 DOI: 10.3390/polym15214308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 10/27/2023] [Accepted: 10/31/2023] [Indexed: 11/15/2023] Open
Abstract
The aim of this study was to prepare a novel pH-sensitive smart film based on the addition of purple garlic peel extract (PGE) and TiO2 nanoparticles in a sodium alginate (SA)/polyvinyl alcohol (PVA) matrix to monitor the freshness of beef. FT-IR spectroscopy revealed the formation of stronger interaction forces between PVA/SA, PGE, and TiO2 nanoparticles, which showed good compatibility. In addition, the addition of PGE improved the tensile strength and elongation at break of the composite film, especially in different pH environments, and the color response was obvious. The addition of 1% TiO2 nanoparticles significantly improved the mechanical properties of the film, as well as the light barrier properties of the film. PGE could effectively be uniformly dispersed into the composite film, but it also had a certain slow-release effect on the release of PGE. PGE had high sensitivity under different pH conditions with rich color changes, and the color showed a clear color change from red to yellow-green when the pH increased from 1 to 14. The same change was observed when it was added to the film. In particular, by applying this film to the process of beef preservation, we judged the freshness of beef by monitoring the changes in the TVB-N value and pH value during the storage process of beef and found that the film showed obvious color changes during the storage process of beef, from blue (indicating freshness) to red (indicating non-freshness), and finally to yellow-green (indicating deterioration), which indicated that the color change of the film and the freshness of the beef maintained a highly consistent.
Collapse
Affiliation(s)
- Kai Jiang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650550, China; (K.J.); (J.L.); (H.C.)
| | - Jiang Li
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650550, China; (K.J.); (J.L.); (H.C.)
| | - Margaret Brennan
- School of Science, Royal Melbourne Institute of Technology University, Melbourne 3000, Australia; (M.B.); (C.B.)
| | - Charles Brennan
- School of Science, Royal Melbourne Institute of Technology University, Melbourne 3000, Australia; (M.B.); (C.B.)
| | - Haiyan Chen
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650550, China; (K.J.); (J.L.); (H.C.)
| | - Yuyue Qin
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650550, China; (K.J.); (J.L.); (H.C.)
| | - Mingwei Yuan
- Green Preparation Technology of Biobased Materials National & Local Joint Engineering Research Center, Yunnan Minzu University, Kunming 650500, China
| |
Collapse
|
18
|
Chen Q, Zhang P, You N, Xu Y, Zhang Y, Luan P, Lin B, Wang Z, Zhang L. Preparation and characterization of corn starch-based antimicrobial indicator films containing purple corncob anthocyanin and tangerine peel essential oil for monitoring pork freshness. Int J Biol Macromol 2023; 251:126320. [PMID: 37579905 DOI: 10.1016/j.ijbiomac.2023.126320] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/22/2023] [Accepted: 08/10/2023] [Indexed: 08/16/2023]
Abstract
A novel antibacterial indicator film was prepared by mixing corn starch with tangerine peel essential oil (TEO) Pickering emulsion emulsified by ultrasonic and esterified modified starch (UDSt), and then incorporated with purple corncob anthocyanin (PCA), which was used to monitor the freshness of pork. The results showed that the UDSt can effectively stabilize the TEO emulsion. PCA showed obvious color changes at different pH. With the increase of pH, the color of film changed from red to yellow, and its response to volatile ammonia changed from pink to cyan, showing better response ability. The loading of TEO conferred the film excellent bacteriostatic ability against E. coli and S. aureus. The film also had good ability of light blocking and free radical scavenging. In the process of pork deterioration, the antibacterial indicator film changed from pink to yellow, which was closely related to pork quality and had a good linear indicator correlation. The addition of TEO reduced the release of PCA in the antibacterial indicator film and helped to maintain the functional properties of the film. This type of antibacterial indicator film had considerable application potential in indicating food freshness.
Collapse
Affiliation(s)
- QiJie Chen
- School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha, Hunan Province 410114, People's Republic of China.
| | - Peng Zhang
- School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha, Hunan Province 410114, People's Republic of China
| | - Na You
- School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha, Hunan Province 410114, People's Republic of China
| | - YiNing Xu
- School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha, Hunan Province 410114, People's Republic of China
| | - YaZeng Zhang
- School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha, Hunan Province 410114, People's Republic of China
| | - PengCheng Luan
- School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha, Hunan Province 410114, People's Republic of China
| | - BenPing Lin
- School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha, Hunan Province 410114, People's Republic of China
| | - ZhengMin Wang
- School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha, Hunan Province 410114, People's Republic of China
| | - Li Zhang
- School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha, Hunan Province 410114, People's Republic of China
| |
Collapse
|
19
|
Zabidi N'A, Zainal NN, Tawakkal ISMA, Mohd Basri MS, Ariffin SH, Naim MN. Effect of thymol on properties of bionanocomposites from poly (lactic acid)/poly (butylene succinate)/nanofibrillated cellulose for food packaging application. Int J Biol Macromol 2023; 251:126212. [PMID: 37567533 DOI: 10.1016/j.ijbiomac.2023.126212] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 06/18/2023] [Accepted: 08/05/2023] [Indexed: 08/13/2023]
Abstract
The present study developed the formulation of active bionanocomposites films endowed with the abilities of high biodegradability and antimicrobials for active packaging applications. The aim of this work was to prepare poly (lactic acid)/poly (butylene succinate) (PLA/PBS) blended films reinforced with different concentrations of nanofibrillated cellulose (NFC) and 9 % of thymol essential oil (EO) using the casting method. The active films were further evaluated through Fourier transform infrared spectroscopy (FTIR); as well as mechanical, physical, water vapour permeability (WVP), thermal analysis (TGA), biodegradation, morphological, and antimicrobial (% reduction of bacteria) testing. The tensile strength (TS) of PLA/PBS blend films increased by 12 % with the incorporation of 2 wt% of NFC. The PLA/PBS/NFC with 9 % thymol EO has a good water barrier performance with its tensile strength, elongation at break, and tensile modulus was 13.2 MPa, 13.1 %, and 513 MPa respectively. The presence of NFC promoted the disintegration of PLA/PBS films by 70.5 %. These films promoted the antibacterial activity against S. aureus and E. coli. The study demonstrates that the developed films improved the qualities of chicken fillets and have great potential to be used as active bionanocomposites in food packaging applications.
Collapse
Affiliation(s)
- Nurul 'Afifah Zabidi
- Department of Process and Food Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Nur Najiha Zainal
- Department of Process and Food Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Intan Syafinaz Mohamed Amin Tawakkal
- Department of Process and Food Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia; Laboratory of Halal Services, Halal Products Research Institute, Putra Infoport, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia.
| | - Mohd Salahuddin Mohd Basri
- Department of Process and Food Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia; Laboratory of Halal Services, Halal Products Research Institute, Putra Infoport, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia; Laboratory of Biopolymer and Derivatives, Institute of Tropical Forestry and Forest Products (INTROP), Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Siti Hajar Ariffin
- Department of Process and Food Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia; Laboratory of Halal Services, Halal Products Research Institute, Putra Infoport, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Mohd Nazli Naim
- Department of Process and Food Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| |
Collapse
|
20
|
Nikmanesh A, Baghaei H, Mohammadi Nafchi A. Development and Characterization of Antioxidant and Antibacterial Films Based on Potato Starch Incorporating Viola odorata Extract to Improve the Oxidative and Microbiological Quality of Chicken Fillets during Refrigerated Storage. Foods 2023; 12:2955. [PMID: 37569224 PMCID: PMC10418992 DOI: 10.3390/foods12152955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/23/2023] [Accepted: 08/02/2023] [Indexed: 08/13/2023] Open
Abstract
In this research, the antioxidant and antibacterial activities of active films based on potato starch containing Viola odorata extract (VOE) were investigated both in vitro and in chicken fillets. The VOE was added to the starch film formulation at 0, 1, 2, and 3% (w/v). The results showed that by increasing the extract level, the total phenol content and antioxidant and antibacterial activity of the films against Escherichia coli, Staphylococcus aureus, and Salmonella typhimurium improved remarkably. The results of the meat tests indicated the significant antioxidant and antimicrobial activity of active films containing different levels of VOE in chicken fillets, and a direct relationship was observed between the concentration of the extract and the functional activity of the films, so with the increase in the concentration of the extract in the films, the rate of lipid oxidation and growth of microorganisms in the chicken fillets decreased significantly during the storage period, and less volatile nitrogen bases, metmyoglobin, and oxidation products were produced in the fillets. In general, the results of this research demonstrated that an active film based on potato starch containing VOE (especially 2 and 3% levels) has the ability to extend the oxidative and microbiological shelf life of chicken fillets during cold storage for at least eight days.
Collapse
Affiliation(s)
- Ali Nikmanesh
- Department of Food Science and Technology, Damghan Branch, Islamic Azad University, Damghan, Iran;
| | - Homa Baghaei
- Department of Food Science and Technology, Damghan Branch, Islamic Azad University, Damghan, Iran;
| | - Abdorreza Mohammadi Nafchi
- Food Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia
- Green Biopolymer, Coatings & Packaging Cluster, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia
| |
Collapse
|
21
|
Choi I, Hong W, Lee JS, Han J. Influence of acetylation and chemical interaction on edible film properties and different processing methods for food application. Food Chem 2023; 426:136555. [PMID: 37301044 DOI: 10.1016/j.foodchem.2023.136555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/20/2023] [Accepted: 06/04/2023] [Indexed: 06/12/2023]
Abstract
This study developed sweet potato starch (SPS) based edible films and investigated several methods (acetylation, amidated pectin (AP), and CaCl2 use) to improve the edibility and different processing methods (casting and extruding) to package food possible in commercial use. Starch acetylation was conducted with up to 8 mL of acetic acid (A8) and improved the stretchability and solubility of the film. The AP addition [∼30 wt% (P3)] enhanced the film strength, further increasing solubility. CaCl2 addition [∼150 mg/g of AP (C3)] also positively influenced the film solubility and water barrier properties of the films. The SPS-A8P3C3 film showed 3.41 times higher solubility than the native SPS film. Both casted and extruded SPS-A8P3C3 films drastically dissolved in high-temperature water. When applied to oil packaging, two films could delay the lipid oxidation of the packaged samples. These results demonstrate the usability of edible packaging and extruded film for commercial use.
Collapse
Affiliation(s)
- Inyoung Choi
- Department of Food Science and Technology, University of California-Davis, Davis, CA 95616, USA
| | - Wootaek Hong
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Jung-Soo Lee
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Jaejoon Han
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea; Department of Food Biosciences and Technology, College of Life Sciences and Biotechnology, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea.
| |
Collapse
|
22
|
Dos Santos LF, Biduski B, Lopes ST, Bertolin TE, Dos Santos LR. Brazilian native fruit pomace as a source of bioactive compounds on starch-based films: Antimicrobial activities and food simulator release. Int J Biol Macromol 2023; 242:124900. [PMID: 37201884 DOI: 10.1016/j.ijbiomac.2023.124900] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 05/08/2023] [Accepted: 05/13/2023] [Indexed: 05/20/2023]
Abstract
The bioactive compounds extraction from fruit pomace is an ecological alternative for these abundant and low-added-value by-products. This study aimed to evaluate the antimicrobial potential of pomace extracts from Brazilian native fruits (araçá, uvaia, guabiroba and butiá) and the effect on physicochemical, mechanical properties and the migration of antioxidants and phenolic compounds from starch-based films. The film with butiá extract had the lowest mechanical resistance (1.42 MPa) but the highest elongation (63 %). In comparison, uvaia extract had less impact on film mechanical properties (3.70 MPa and 58 %) compared to the other extracts. The extracts and films showed antimicrobial activity against Listeria monocytogenes, L. inoccua, B. cereus and S. aureu. Approximately 2 cm inhibition halo was noticed for the extracts, while films ranged from 0.33 to 1.46 cm inhibition halo. Films with guabiroba extract had the lowest antimicrobial activity (0.33 to 0.5 cm). The phenolic compounds were released from the film matrix in the first hour at 4 °C with maintenance in the stability. The fatty-food simulator showed a controlled release of antioxidant compounds, which can assist in controlling food oxidation. Brazilian native fruit has shown to be a viable alternative to isolate bioactive compounds and produce film packaging with antimicrobial and antioxidant activities.
Collapse
Affiliation(s)
- Lára Franco Dos Santos
- Graduate Program in Bioexperimentation, University of Passo Fundo, BR 285, 99052-900 Passo Fundo, RS, Brazil
| | - Bárbara Biduski
- Food Quality and Sensory Science Department, Teagasc Food Research Centre, Ashtown, Dublin D15 KN3K, Ireland; Graduate Program in Food Science and Technology, University of Passo Fundo, BR 285, 99052-900 Passo Fundo, RS, Brazil.
| | - Samuel Teixeira Lopes
- Undergraduate Program in Chemical Engineering, University of Passo Fundo (UPF), Passo Fundo, Rio Grande do Sul, Brazil
| | - Telma Elita Bertolin
- Graduate Program in Food Science and Technology, University of Passo Fundo, BR 285, 99052-900 Passo Fundo, RS, Brazil.
| | - Luciana Ruschel Dos Santos
- Graduate Program in Bioexperimentation, University of Passo Fundo, BR 285, 99052-900 Passo Fundo, RS, Brazil.
| |
Collapse
|
23
|
Lan T, Qian S, Song T, Zhang H, Liu J. The chromogenic mechanism of natural pigments and the methods and techniques to improve their stability: A systematic review. Food Chem 2023; 407:134875. [PMID: 36502728 DOI: 10.1016/j.foodchem.2022.134875] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/01/2022] [Accepted: 11/03/2022] [Indexed: 11/13/2022]
Abstract
Pigments have become a very important part of food research, not only adding sensory properties to food, but also providing functional properties to the food system. In this paper, we review the source, structure, modification, encapsulation and current status of the three main types of natural pigments that have been studied in recent years: polyphenolic flavonoids, tetraterpenoids and betaines. By examining the modification of pigment, the improvement of their stability and the impact of new food processing methods on the pigments, a deeper understanding of the properties and applications of the three pigments is gained, the paper reviews the research status of pigments in order to promote their further research and provide new innovations and ideas for future research in this field.
Collapse
Affiliation(s)
- Tiantong Lan
- National Engineering Laboratory for Wheat and Corn Deep Processing, College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
| | - Sheng Qian
- National Engineering Laboratory for Wheat and Corn Deep Processing, College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
| | - Tingyu Song
- National Engineering Laboratory for Wheat and Corn Deep Processing, College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
| | - Hao Zhang
- National Engineering Laboratory for Wheat and Corn Deep Processing, College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China.
| | - Jingsheng Liu
- National Engineering Laboratory for Wheat and Corn Deep Processing, College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China.
| |
Collapse
|
24
|
Shiau SY, Yu Y, Li J, Huang W, Feng H. Phytochemical-Rich Colored Noodles Fortified with an Aqueous Extract of Clitoria ternatea Flowers. Foods 2023; 12:foods12081686. [PMID: 37107480 PMCID: PMC10137818 DOI: 10.3390/foods12081686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 04/09/2023] [Accepted: 04/17/2023] [Indexed: 04/29/2023] Open
Abstract
Clitoria ternatea (CT) flowers are rich in phytochemicals. An innovative approach was taken to utilize CT flower extract (CTFE) as a functional ingredient with natural pigment by incorporating it into noodles. The aim of this study was to examine the effect of the CTFE amount (0-30%) on the color, texture, phytochemicals, and sensory quality of both dried and cooked noodles. Dried noodles with 30% CTFE had the highest total anthocyanins (9.48 μg/g), polyphenols (612 μg/g), DPPH radical scavenging capacity (165 μg TE/g), and reducing power (2203 μg TE/g). Cooking resulted in a significant decrease in the anthocyanin levels and blue color, while also increasing the greenness of the noodle. Both dried and cooked noodles with 20-30% CTFE showed a significantly higher color preference compared to the control sample. Despite a significant reduction in the cutting force, tensile strength, and extensibility of cooked noodles with 20-30% CTFE, the sensory attributes such as flavor, texture, and overall preferences were similar to those of noodles with 0-30% CTFE. Blue noodles with high phytochemicals, antioxidant activities, and desirable sensory qualities can be produced by the incorporation of 20-30% CTFE.
Collapse
Affiliation(s)
- Sy-Yu Shiau
- Department of Food Nutrition and Safety, Sanda University, Shanghai 201209, China
- Department of Food Science and Technology, Tajen University, Pingtung County 90741, Taiwan
| | - Yanli Yu
- Department of Food Nutrition and Safety, Sanda University, Shanghai 201209, China
| | - Jing Li
- Department of Food Nutrition and Safety, Sanda University, Shanghai 201209, China
| | - Wenbo Huang
- Department of Food Nutrition and Safety, Sanda University, Shanghai 201209, China
| | - Haixia Feng
- Department of Food Nutrition and Safety, Sanda University, Shanghai 201209, China
| |
Collapse
|
25
|
‘Aqilah NMN, Rovina K, Felicia WXL, Vonnie JM. A Review on the Potential Bioactive Components in Fruits and Vegetable Wastes as Value-Added Products in the Food Industry. Molecules 2023; 28:molecules28062631. [PMID: 36985603 PMCID: PMC10052168 DOI: 10.3390/molecules28062631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 03/15/2023] Open
Abstract
The food production industry is a significant contributor to the generation of millions of tonnes of waste every day. With the increasing public concern about waste production, utilizing the waste generated from popular fruits and vegetables, which are rich in high-added-value compounds, has become a focal point. By efficiently utilizing food waste, such as waste from the fruit and vegetable industries, we can adopt a sustainable consumption and production pattern that aligns with the Sustainable Development Goals (SDGs). This paper provides an overview of the high-added-value compounds derived from fruit and vegetable waste and their sources. The inclusion of bioactive compounds with antioxidant, antimicrobial, and antibrowning properties can enhance the quality of materials due to the high phenolic content present in them. Waste materials such as peels, seeds, kernels, and pomace are also actively employed as adsorbents, natural colorants, indicators, and enzymes in the food industry. Therefore, this article compiles all consumer-applicable uses of fruit and vegetable waste into a single document.
Collapse
Affiliation(s)
| | - Kobun Rovina
- Correspondence: ; Tel.: +006-088-320000 (ext. 8713); Fax: +006-088-320993
| | | | | |
Collapse
|
26
|
Luz RF, Ferreira RDR, Silva CNS, Miranda BM, Piccoli RH, Silva MS, Paula LC, Leles MIG, Fernandes KF, Cruz MV, Batista KA. Development of a Halochromic, Antimicrobial, and Antioxidant Starch-Based Film Containing Phenolic Extract from Jaboticaba Peel. Foods 2023; 12:653. [PMID: 36766181 PMCID: PMC9914361 DOI: 10.3390/foods12030653] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 01/27/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
In this study, the antioxidant, antimicrobial, mechanical, optical, and barrier attributes of Solanum lycocarpum starch bio-based edible films incorporated with a phenolic extract from jaboticaba peel were investigated. Aiming to determine the effect of the polymers and the phenolic extract on the properties of the films, a three-factor simplex-lattice design was employed, and the formulation optimization was based on the produced films' antioxidant potential. The optimized formulation of the starch-PEJP film showed a reddish-pink color with no cracks or bubbles and 91% antioxidant activity against DPPH radical. The optimized starch-PEJP film showed good transparency properties and a potent UV-blocking action, presenting color variation as a function of the pH values. The optimized film was also considerably resistant and highly flexible, showing a water vapor permeability of 3.28 × 10-6 g m-1 h-1 Pa-1. The microbial permeation test and antimicrobial evaluation demonstrated that the optimized starch-PEJP film avoided microbial contamination and was potent in reducing the growth of Escherichia coli, Staphylococcus aureus, and Salmonella spp. In summary, the active starch-PEJP film showed great potential as an environmentally friendly and halochromic material, presenting antioxidant and antimicrobial properties and high UV-protecting activity.
Collapse
Affiliation(s)
- Rafaela F. Luz
- Federal University of Goias, Samambaia Campus, Goiânia 74690-900, GO, Brazil
| | | | - Cassio N. S. Silva
- Federal University of Goias, Samambaia Campus, Goiânia 74690-900, GO, Brazil
| | - Bruna M. Miranda
- Federal University of Goias, Samambaia Campus, Goiânia 74690-900, GO, Brazil
| | - Roberta H. Piccoli
- Food Science Department, Federal University of Lavras, Lavras 37200-000, MG, Brazil
| | - Monique S. Silva
- Food Science Department, Federal University of Lavras, Lavras 37200-000, MG, Brazil
| | - Ladyslene C. Paula
- Department of Food Engineering, Federal University of Rondônia, Ariquemes 76870-000, RO, Brazil
| | - Maria Inês G. Leles
- Federal University of Goias, Samambaia Campus, Goiânia 74690-900, GO, Brazil
| | - Kátia F. Fernandes
- Federal University of Goias, Samambaia Campus, Goiânia 74690-900, GO, Brazil
| | - Maurício V. Cruz
- Federal Institute for Education, Science, and Technology of Goias, Goiânia 74270-040, GO, Brazil
| | - Karla A. Batista
- Federal Institute for Education, Science, and Technology of Goias, Goiânia 74270-040, GO, Brazil
| |
Collapse
|
27
|
Characterization of Biodegradable Films Made from Taro Peel ( Colocasia esculenta) Starch. Polymers (Basel) 2023; 15:polym15020338. [PMID: 36679218 PMCID: PMC9862323 DOI: 10.3390/polym15020338] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/02/2023] [Accepted: 01/06/2023] [Indexed: 01/11/2023] Open
Abstract
Studies of renewable polymers have highlighted starch’s role to replace petroleum-based components to produce biodegradable films with plastic-like qualities. In this study, the novelty of taro peel starch (TPS) to produce such films using the casting technique is reported for the first time. A response surface method (RSM) approach was employed to optimize different concentrations of TPS (2.5−3.5%, w/w) and glycerol (25−35%, w/w) and investigate their effects on the physico-mechanical and water barrier properties of TPS films. TPS films showed a positive linear effect (p < 0.05) for thickness (0.058−0.088 mm), opacity (1.95−2.67), water vapor permeability (0.06−0.09 g∙m/m2∙kPa∙h), and cubic effect (p < 0.05) for moisture content (0.58−1.57%), which were linked to high starch concentrations when plasticized with glycerol. X-ray diffraction analysis of TPS films depicted “amorphous”-type crystalline structure peaks at 19.88°, while the thermogravimetric analysis of the film samples exhibited 75−80% of the weight loss of TPS film in the second phase between temperatures of 300 °C to 400 °C. All films exhibited homogenous, transparent surfaces with flexibility, and completely degraded in 5 days in simulated river water and composting soil environments, which confirmed TPS as a promising film polymer in food packaging.
Collapse
|
28
|
Zhao R, Chen J, Yu S, Niu R, Yang Z, Wang H, Cheng H, Ye X, Liu D, Wang W. Active chitosan/gum Arabic-based emulsion films reinforced with thyme oil encapsulating blood orange anthocyanins: Improving multi-functionality. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2022.108094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
29
|
Zhao R, Guo H, Yan T, Li J, Xu W, Deng Y, Zhou J, Ye X, Liu D, Wang W. Fabrication of multifunctional materials based on chitosan/gelatin incorporating curcumin-clove oil emulsion for meat freshness monitoring and shelf-life extension. Int J Biol Macromol 2022; 223:837-850. [PMID: 36343838 DOI: 10.1016/j.ijbiomac.2022.10.271] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 10/29/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022]
Abstract
A new multifunctional film with active and intelligent effects was developed by incorporating curcumin-clove oil emulsion into natural materials. The basic properties, functional characteristics, and pH/NH3-sensitivity of films were investigated, and then these films were applied to extend shelf-life and monitor freshness of meat. Curcumin solution and emulsion illustrated significant color variations at different pH values. The incorporation of emulsion improved the UV-vis barrier and water resistance properties of films, which blocked most of UV-light and its water contact angle reached 100.03°. Meanwhile, the films had stronger mechanical strength and higher thermal stability, with elongation at break reaching 79.18 % and the maximum degradation temperature rising to 316 °C. Moreover, emulsion made films have a slow-release effect on clove oil, which not only enhanced the antioxidant property but also significantly improved their antibacterial activity. Additionally, the multifunctional films presented a significant color response to acidic/alkaline environments over a short time interval and could be easily identified by naked eyes. Finally, the films effectively extended the shelf-life of fresh meat by 3 days at 4 °C and visually monitored freshness through color changes in real-time. This knowledge provides insights and ideas for the development of novel food packaging with both active and intelligent functions.
Collapse
Affiliation(s)
- Runan Zhao
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China
| | - Haocheng Guo
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China
| | - Tianyi Yan
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China
| | - Jiaheng Li
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China
| | - Weidong Xu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China
| | - Yong Deng
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China
| | - Jianwei Zhou
- Zhejiang University Ningbo Institute of Technology, Ningbo 315100, China; Hainan Institute of Zhejiang University, Sanya 572025, China; Ningbo Research Institute, Zhejiang University, Ningbo 315100, China; Innovation Center of Yangtze River Delta, Zhejiang University, Jiashan 314100, China
| | - Xingqian Ye
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China
| | - Donghong Liu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China; Ningbo Research Institute, Zhejiang University, Ningbo 315100, China; Innovation Center of Yangtze River Delta, Zhejiang University, Jiashan 314100, China
| | - Wenjun Wang
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China; Innovation Center of Yangtze River Delta, Zhejiang University, Jiashan 314100, China.
| |
Collapse
|
30
|
A new method to prepare color-changeable smart packaging films based on the cooked purple sweet potato. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.108397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
31
|
Ebrahimi V, Mohammadi Nafchi A, Bolandi M, Baghaei H. Fabrication and characterization of a pH-sensitive indicator film by purple basil leaves extract to monitor the freshness of chicken fillets. Food Packag Shelf Life 2022. [DOI: 10.1016/j.fpsl.2022.100946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
32
|
Viscusi G, Lamberti E, Gerardi C, Giovinazzo G, Gorrasi G. Encapsulation of Grape ( Vitis vinifera L.) Pomace Polyphenols in Soybean Extract-Based Hydrogel Beads as Carriers of Polyphenols and pH-Monitoring Devices. Gels 2022; 8:734. [PMID: 36421556 PMCID: PMC9690163 DOI: 10.3390/gels8110734] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/04/2022] [Accepted: 11/07/2022] [Indexed: 05/12/2024] Open
Abstract
In this work, novel bio-based hydrogel beads were fabricated by using soybean extract as raw waste material loaded with Lambrusco extract, an Italian grape cultivar. The phenolic profile and the total amount of anthocyanins from the Lambrusco extract were evaluated before encapsulating it in soybean extract-based hydrogels produced through an ionotropic gelation technique. The physical properties of the produced hydrogel beads were then studied in terms of their morphological and spectroscopic properties. Swelling degree was evaluated in media with different pH levels. The release kinetics of Lambrusco extract were then studied over time as a function of pH of the release medium, corroborating that the acidity/basicity could affect the release rate of encapsulated molecules, as well as their counter-diffusion. The pH-sensitive properties of wine extract were studied through UV-Vis spectroscopy while the colorimetric responses of loaded hydrogel beads were investigated in acidic and basic solutions. Finally, in the framework of circular economy and sustainability, the obtained data open routes to the design and fabrication of active materials as pH-indicator devices from food industry by-products.
Collapse
Affiliation(s)
- Gianluca Viscusi
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 84084 Fisciano, Italy
| | - Elena Lamberti
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 84084 Fisciano, Italy
| | - Carmela Gerardi
- National Research Council-Institute of Science of Food Production (CNR-ISPA), Via Monteroni, 73100 Lecce, Italy
| | - Giovanna Giovinazzo
- National Research Council-Institute of Science of Food Production (CNR-ISPA), Via Monteroni, 73100 Lecce, Italy
| | - Giuliana Gorrasi
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 84084 Fisciano, Italy
| |
Collapse
|
33
|
Akhter S, Khan MA, Mahmud S, Biki SP, Shamsuzzoha M, Hasan SK, Ahmed M. Biosynthesis and characterization of bacterial nanocellulose and polyhydroxyalkanoate films using bacterial strains isolated from fermented coconut water. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
34
|
Li C, Yun D, Wang Z, Xu F, Tang C, Liu J. Development of Shrimp Freshness Indicating Films by Embedding Anthocyanins-Rich Rhododendron simsii Flower Extract in Locust Bean Gum/Polyvinyl Alcohol Matrix. MATERIALS (BASEL, SWITZERLAND) 2022; 15:ma15217557. [PMID: 36363149 PMCID: PMC9656595 DOI: 10.3390/ma15217557] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/09/2022] [Accepted: 10/25/2022] [Indexed: 06/01/2023]
Abstract
Freshness indicating films containing anthocyanins are one type of smart packaging technology. Anthocyanins in the films can show visual color changes when food spoilage occurs, thereby indicating the freshness degree of food in real-time. Rhododendron simsii is a landscape plant with attractive flowers that are abundant in anthocyanins. In this study, smart packaging films were prepared by embedding 2% and 4% R. simsii flower anthocyanins (RA) in locust bean gum- (LBG) and polyvinyl alcohol- (PVA) based matrices. The micro-structure, barrier, mechanical, thermal, antioxidant, and color-changeable properties of the films were determined. The potential application of the films in indicating the freshness of shrimp at 4 °C was also investigated. Results showed that the RA interacted with the LBG/PVA matrices through hydrogen bonds, which significantly improved the barrier, mechanical, thermal, antioxidant, pH-sensitive, and ammonia-sensitive properties of the films. Meanwhile, the performance of the films was remarkably influenced by the content of the RA. The film containing 4% RA had the highest light blocking ability, tensile strength (38.32 MPa), elongation at break (58.18%), and antioxidant activity, and also showed the lowest water vapor permeability (22.10 × 10-11 g m-1 s-1 Pa-1) and oxygen permeability (0.36 cm3 mm m-2 day-1 atm-1). The films containing 2% and 4% RA could effectively change their colors when the level of total volatile basic nitrogen in the shrimp exceeded the safe value, which demonstrated the suitability of the films for indicating the freshness degree of shrimp.
Collapse
|
35
|
Liu M, Zhang S, Ye Y, Liu X, He J, Wei L, Zhang D, Zhou J, Cai J. Robust Electrospinning-Constructed Cellulose Acetate@Anthocyanin Ultrafine Fibers: Synthesis, Characterization, and Controlled Release Properties. Polymers (Basel) 2022; 14:polym14194036. [PMID: 36235984 PMCID: PMC9571753 DOI: 10.3390/polym14194036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/17/2022] [Accepted: 09/22/2022] [Indexed: 12/02/2022] Open
Abstract
Anthocyanin has attracted increasing attention due to its superior biological activity. However, the inherently poor stability of anthocyanin limits its practical applications. In this study, a fast and straightforward method was developed to improve the stability of anthocyanin. Cellulose acetate ultrafine fiber-loaded anthocyanin (CA@Anthocyanin UFs) was prepared by robust electrospinning, and the potential application of cellulose acetate ultrafine fibers (CA UFs) as a bioactive substance delivery system was comprehensively investigated. The experimental results showed that CA@Anthocyanin UFs had protective effects on anthocyanin against temperature, light, and pH. The results of the artificially simulated gastric fluid (pH = 2.0) indicated that the CA@Anthocyanin UFs had a controllable release influence on anthocyanin. A 2,2-Diphenyl-1-picrylhydrazyl (DPPH) radical-scavenging assay suggested that the CA@Anthocyanin UFs still had an excellent antioxidant activity similar to anthocyanin. This work demonstrated the potential application of robust electrospinning-constructed cellulose acetate ultrafine fibers in bioactive substance delivery and controlled release systems, as well as its prospects in green packaging due to the nature of this environmentally friendly composite.
Collapse
Affiliation(s)
- Mingzhu Liu
- National R&D Center for Se-Rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-Rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, China
| | - Shilei Zhang
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, China
| | - Yuanyuan Ye
- National R&D Center for Se-Rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-Rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, China
| | - Xiaoqing Liu
- National R&D Center for Se-Rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-Rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, China
| | - Jiangling He
- National R&D Center for Se-Rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-Rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
- Correspondence: (J.H.); (J.C.)
| | - Lingfeng Wei
- National R&D Center for Se-Rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-Rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, China
| | - Die Zhang
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, China
| | - Jiaojiao Zhou
- National R&D Center for Se-Rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-Rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Jie Cai
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, China
- Correspondence: (J.H.); (J.C.)
| |
Collapse
|
36
|
Che Hamzah NH, Khairuddin N, Muhamad II, Hassan MA, Ngaini Z, Sarbini SR. Characterisation and Colour Response of Smart Sago Starch-Based Packaging Films Incorporated with Brassica oleracea Anthocyanin. MEMBRANES 2022; 12:913. [PMID: 36295672 PMCID: PMC9607244 DOI: 10.3390/membranes12100913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/07/2022] [Accepted: 09/09/2022] [Indexed: 06/16/2023]
Abstract
To meet the need for food products to be safe and fresh, smart food packaging that can monitor and give information about the quality of packaged food has been developed. In this study, pH-sensitive films with sago starch and various anthocyanin concentrations of Brassica oleracea also known as red cabbage anthocyanin (RCA) at 8, 10, 12, and 14% (w/v) were manufactured using the solvent casting process. Investigation of the physicochemical, mechanical, thermal, and morphological characteristics of the films was performed and analysed. The response of these materials against pH changes was evaluated with buffers of different pH. When the films were exposed to a series of pH buffers (pH 3, 5, 9, 11, and 13), the RCA-associated films displayed a spectacular colour response. In addition, the ability of the starch matrix to overcome the leaching and release of anthocyanins was investigated. Higher concentrations of RCA can maintain the colour difference of films after being immersed in a series of buffer solutions ranging from acidic to basic conditions. Other than that, incorporating RCA extracts into the starch formulation increased the thickness whereas the water content, swelling degree, tensile strength, and elongation at break decreased as compared to films without RCA. The immobilisation of anthocyanin into the film was confirmed by the FTIR measurements. The surface patterns of films were heterogeneous and irregular due to the presence of RCA extract aggregates, which increased as the extract concentration enhanced. However, this would not affect the properties of films. An increase in thermal stability was noted for the anthocyanin-containing films at the final stage of degradation in TGA analysis. It is concluded that RCA and sago starch formulation has great potential to be explored for food packaging purposes.
Collapse
Affiliation(s)
- Nurul Husna Che Hamzah
- Department of Science and Technology, Faculty of Humanities, Management, and Science, Universiti Putra Malaysia, Bintulu Sarawak Campus, Bintulu 97008, Malaysia
| | - Nozieana Khairuddin
- Department of Science and Technology, Faculty of Humanities, Management, and Science, Universiti Putra Malaysia, Bintulu Sarawak Campus, Bintulu 97008, Malaysia
| | - Ida Idayu Muhamad
- Department of Bioprocess and Polymer Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310, Malaysia
| | - Mohd Ali Hassan
- Department of Bioprocess Technology, Faculty of Biotechnology and Science Biomolecule, Universiti Putra Malaysia, Serdang 43400, Malaysia
| | - Zainab Ngaini
- Department of Chemistry, Faculty of Resource Science and Technology, Universiti Malaysia Sarawak, Kota Samarahan 94300, Malaysia
| | - Shahrul Razid Sarbini
- Department of Crop Science, Faculty of Agricultural Science and Forestry, Universiti Putra Malaysia, Bintulu Sarawak Campus, Bintulu 97008, Malaysia
| |
Collapse
|
37
|
Comparison of the physical and functional properties of food packaging films containing starch and polyphenols from different varieties of wolfberry. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01534-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
38
|
Insights into pH-modulated interactions between native potato starch and cyanidin-3-O-glucoside: Electrostatic interaction-dependent binding. Food Res Int 2022; 156:111129. [DOI: 10.1016/j.foodres.2022.111129] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/08/2022] [Accepted: 03/09/2022] [Indexed: 11/21/2022]
|
39
|
Characterization of active and pH-sensitive poly(lactic acid) (PLA)/nanofibrillated cellulose (NFC) films containing essential oils and anthocyanin for food packaging application. Int J Biol Macromol 2022; 212:220-231. [PMID: 35597382 DOI: 10.1016/j.ijbiomac.2022.05.116] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 05/12/2022] [Accepted: 05/16/2022] [Indexed: 02/02/2023]
Abstract
Active and pH-sensitive films of poly(lactic acid) (PLA)/nanofibrillated cellulose (NFC) have been fabricated and tested. The PLA and PLA/NFC films with 1.5% NFC were prepared via solvent casting method, with different loadings of essential oil (EO), including thymol and curry, being added at 5, 10, and 15%. The fixed content of anthocyanin powder (1%) was incorporated into the films as a pH indicator. The active PLA and PLA/NFC films were characterised on their physical, mechanical, thermal, and biodegradation properties. The addition of NFC reduced the tensile strength but increased the flexibility of films due to the plasticizing effect of EOs. The PLA/EO and PLA/NFC/EO films containing curry demonstrated a slightly higher strength than the films with thymol. The flexibility of films was increased at higher loading of EO regardless of the types of EO. The thermal profile demonstrated that the neat PLA film had a higher maximum degradation temperature than the active PLA/EO and PLA/NFC/EO films. The active PLA/EO and PLA/NFC/EO films containing anthocyanin successfully changed its colour in pH 2.0 and 14.0. The PLA/NFC films with thymol and anthocyanin formulation could inhibit fungus growth better in the cherry tomato sample than the PLA/NFC films with curry and anthocyanin.
Collapse
|
40
|
Tavassoli M, Alizadeh Sani M, Khezerlou A, Ehsani A, Jahed-Khaniki G, McClements DJ. Smart Biopolymer-Based Nanocomposite Materials Containing pH-Sensing Colorimetric Indicators for Food Freshness Monitoring. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27103168. [PMID: 35630645 PMCID: PMC9143397 DOI: 10.3390/molecules27103168] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/06/2022] [Accepted: 05/10/2022] [Indexed: 11/16/2022]
Abstract
Nanocomposite biopolymer materials containing colorimetric pH-responsive indicators were prepared from gelatin and chitosan nanofibers. Plant-based extracts from barberry and saffron, which both contained anthocyanins, were used as pH indicators. Incorporation of the anthocyanins into the biopolymer films increased their mechanical, water-barrier, and light-screening properties. Infrared spectroscopy and scanning electron microscopy analysis indicated that a uniform biopolymer matrix was formed, with the anthocyanins distributed evenly throughout them. The anthocyanins in the composite films changed color in response to alterations in pH or ammonia gas levels, which was used to monitor changes in the freshness of packaged fish during storage. The anthocyanins also exhibited antioxidant and antimicrobial activity, which meant that they could also be used to slow down the degradation of the fish. Thus, natural anthocyanins could be used as both freshness indicators and preservatives in biopolymer-based nanocomposite packaging materials. These novel materials may therefore be useful alternatives to synthetic plastics for some food packaging applications, thereby improving the environmental friendliness and sustainability of the food supply.
Collapse
Affiliation(s)
- Milad Tavassoli
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz 5166614711, Iran; (M.T.); (A.K.)
- Nutrition Research Center, Department of Food Science and Technology, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz 516615731, Iran
| | - Mahmood Alizadeh Sani
- Division of Food Safety and Hygiene, Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran 1417614411, Iran; (M.A.S.); (G.J.-K.)
| | - Arezou Khezerlou
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz 5166614711, Iran; (M.T.); (A.K.)
- Nutrition Research Center, Department of Food Science and Technology, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz 516615731, Iran
| | - Ali Ehsani
- Nutrition Research Center, Department of Food Science and Technology, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz 516615731, Iran
- Correspondence: (A.E.); (D.J.M.)
| | - Gholamreza Jahed-Khaniki
- Division of Food Safety and Hygiene, Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran 1417614411, Iran; (M.A.S.); (G.J.-K.)
| | - David Julian McClements
- Department of Food Science, University of Massachusetts Amherst, Amherst, MA 01003, USA
- Correspondence: (A.E.); (D.J.M.)
| |
Collapse
|
41
|
Electrospinning as a Promising Process to Preserve the Quality and Safety of Meat and Meat Products. COATINGS 2022. [DOI: 10.3390/coatings12050644] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Fresh and processed meat products are staple foods worldwide. However, these products are considered perishable foods and their deterioration depends partly on the inner and external properties of meat. Beyond conventional meat preservation approaches, electrospinning has emerged as a novel effective alternative to develop active and intelligent packaging. Thus, this review aims to discuss the advantages and shortcomings of electrospinning application for quality and safety preservation of meat and processed meat products. Electrospun fibres are very versatile, and their features can be modulated to deliver functional properties such as antioxidant and antimicrobial effects resulting in shelf-life extension and in some cases product quality improvement. Compared to conventional processes, electrospun fibres provide advantages such as casting and coating in the fabrication of active systems, indicators, and sensors. The approaches for improving, stabilizing, and controlling the release of active compounds and highly sensitive, rapid, and reliable responsiveness, under changes in real-time are still challenging for innovative packaging development. Despite their advantages, the active and intelligent electrospun fibres for meat packaging are still restricted to research and not yet widely used for commercial products. Industrial validation of lab-scale achievements of electrospinning might boost their commercialisation. Safety must be addressed by evaluating the impact of electrospun fibres migration from package to foods on human health. This information will contribute into filling knowledge gaps and sustain clear regulations.
Collapse
|
42
|
Salević A, Stojanović D, Lević S, Pantić M, Đorđević V, Pešić R, Bugarski B, Pavlović V, Uskoković P, Nedović V. The Structuring of Sage (Salvia officinalis L.) Extract-Incorporating Edible Zein-Based Materials with Antioxidant and Antibacterial Functionality by Solvent Casting versus Electrospinning. Foods 2022; 11:foods11030390. [PMID: 35159540 PMCID: PMC8834357 DOI: 10.3390/foods11030390] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/21/2022] [Accepted: 01/24/2022] [Indexed: 02/04/2023] Open
Abstract
In this study, in order to develop zein-based, edible, functional food-contact materials in different forms incorporating sage extract (10, 20, and 30%), solvent casting and electrospinning were employed. The study aimed to assess the effects of the applied techniques and the extract’s incorporation on the materials’ properties. The solvent casting generated continuous and compact films, where the extract’s incorporation provided more homogenous surfaces. The electrospinning resulted in non-woven mats composed of ribbon-like fibers in the range of 1.275–1.829 µm, while the extract’s incorporation provided thinner and branched fibers. The results indicated the compatibility between the materials’ constituents, and efficient and homogenous extract incorporation within the zein matrices, with more probable interactions occurring during the solvent casting. All of the formulations had a high dry matter content, whereas the mats and the formulations incorporating the extract had higher solubility and swelling in water. The films and mats presented similar DPPH• and ABTS•+ radical scavenging abilities, while the influence on Staphylococcus aureus and Salmonella enterica subsp. enterica serovar Typhimurium bacteria, and the growth inhibition, were complex. The antioxidant and antibacterial activity of the materials were more potent after the extract’s incorporation. Overall, the results highlight the potential of the developed edible materials for use as food-contact materials with active/bioactive functionality.
Collapse
Affiliation(s)
- Ana Salević
- Department of Food Technology and Biochemistry, Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia; (A.S.); (S.L.); (M.P.); (V.P.)
| | - Dušica Stojanović
- Department of Materials Science and Engineering, Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11000 Belgrade, Serbia; (D.S.); (P.U.)
| | - Steva Lević
- Department of Food Technology and Biochemistry, Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia; (A.S.); (S.L.); (M.P.); (V.P.)
| | - Milena Pantić
- Department of Food Technology and Biochemistry, Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia; (A.S.); (S.L.); (M.P.); (V.P.)
| | - Verica Đorđević
- Department of Chemical Engineering, Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11000 Belgrade, Serbia; (V.Đ.); (R.P.); (B.B.)
| | - Radojica Pešić
- Department of Chemical Engineering, Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11000 Belgrade, Serbia; (V.Đ.); (R.P.); (B.B.)
| | - Branko Bugarski
- Department of Chemical Engineering, Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11000 Belgrade, Serbia; (V.Đ.); (R.P.); (B.B.)
| | - Vladimir Pavlović
- Department of Food Technology and Biochemistry, Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia; (A.S.); (S.L.); (M.P.); (V.P.)
| | - Petar Uskoković
- Department of Materials Science and Engineering, Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11000 Belgrade, Serbia; (D.S.); (P.U.)
| | - Viktor Nedović
- Department of Food Technology and Biochemistry, Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia; (A.S.); (S.L.); (M.P.); (V.P.)
- Correspondence: ; Tel.: +381-11-441-3154
| |
Collapse
|
43
|
Progress in the Valorization of Fruit and Vegetable Wastes: Active Packaging, Biocomposites, By-Products, and Innovative Technologies Used for Bioactive Compound Extraction. Polymers (Basel) 2021; 13:polym13203503. [PMID: 34685262 PMCID: PMC8539143 DOI: 10.3390/polym13203503] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/06/2021] [Accepted: 10/08/2021] [Indexed: 12/16/2022] Open
Abstract
According to the Food Wastage Footprint and Climate Change Report, about 15% of all fruits and 25% of all vegetables are wasted at the base of the food production chain. The significant losses and wastes in the fresh and processing industries is becoming a serious environmental issue, mainly due to the microbial degradation impacts. There has been a recent surge in research and innovation related to food, packaging, and pharmaceutical applications to address these problems. The underutilized wastes (seed, skin, rind, and pomace) potentially present good sources of valuable bioactive compounds, including functional nutrients, amylopectin, phytochemicals, vitamins, enzymes, dietary fibers, and oils. Fruit and vegetable wastes (FVW) are rich in nutrients and extra nutritional compounds that contribute to the development of animal feed, bioactive ingredients, and ethanol production. In the development of active packaging films, pectin and other biopolymers are commonly used. In addition, the most recent research studies dealing with FVW have enhanced the physical, mechanical, antioxidant, and antimicrobial properties of packaging and biocomposite systems. Innovative technologies that can be used for sensitive bioactive compound extraction and fortification will be crucial in valorizing FVW completely; thus, this article aims to report the progress made in terms of the valorization of FVW and to emphasize the applications of FVW in active packaging and biocomposites, their by-products, and the innovative technologies (both thermal and non-thermal) that can be used for bioactive compounds extraction.
Collapse
|