1
|
Lee CC, Fan H, Tsopmo A, Regenstein JM, Ashaolu TJ. Plant-based antioxidant peptides: impact on oxidative stress and gut microbiota. Crit Rev Food Sci Nutr 2025:1-24. [PMID: 40219794 DOI: 10.1080/10408398.2025.2490270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2025]
Abstract
Plant-based peptides can be obtained from natural and climate-friendly sources. These peptides show various bioactivities including antioxidant activity. Oxidative stress has an impact on the gut microbiota causing inflammation, insulin resistance, osteoporosis, cancer, and several chronic diseases like type 2 diabetes, arthritis, hypertension, and atherosclerosis. Therefore, antioxidant peptides may significantly affect oxidative stress as a potential alternative to conventional medication. The production of antioxidant peptides from plant-based protein sources through conventional and innovative approaches may provide promising strategies to improve gut microbiota. Recent studies in plant-based antioxidant peptides (PBAP) focus on their advanced identification and characterization techniques, structure-activity relationship, improvement of extraction and purification, cellular and molecular mechanisms, specific health applications in preventing and managing conditions with gut microbiota, and commercial applications in nutraceuticals. Short-chain fatty acids and reactive sulfur species are specific gut-derived metabolites that can improve metabolic function by modulating oxidative stress and the immune system. This review highlights the influence of food oxidants on the gut microbiota and PBAP-induced modulation of gut microbiota. Moreover, the production of PBAP and the challenges in their application will be discussed.
Collapse
Affiliation(s)
- Chi Ching Lee
- Department of Food Engineering, Faculty of Engineering and Natural Sciences, Istanbul Sabahattin Zaim University, Istanbul, Turkey
- Department of Food Technology and Nutrition, Faculty of Technologies, Klaipeda State University of Applied Sciences, Klaipeda, Lithuania
| | - Hongbing Fan
- Department of Animal and Food Sciences, Martin-Gatton College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY, USA
| | - Apollinaire Tsopmo
- Food Science and Nutrition Program, Department of Chemistry, Carleton University, Ottawa, Canada
- Institute of Biochemistry, Carleton University, Ottawa, Canada
| | - Joe M Regenstein
- Department of Food Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY, USA
| | - Tolulope Joshua Ashaolu
- Institute for Global Health Innovations, Duy Tan University, Da Nang, Vietnam
- Faculty of Medicine, Duy Tan University, Da Nang, Vietnam
| |
Collapse
|
2
|
Zhu M, Wang Q, Yang Y, Liu X, Zhang J, Li G, Liu W, Xiang X, Chen J. Multiomics approach reveals the comprehensive interactions between nutrition and children's gut microbiota, and microbial and host metabolomes. Nutr J 2025; 24:50. [PMID: 40158160 PMCID: PMC11954295 DOI: 10.1186/s12937-025-01116-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 03/14/2025] [Indexed: 04/01/2025] Open
Abstract
The gut microbiome can modulate nutrient metabolism to produce many metabolites interacting with the host. However, the intricate interactions among dietary intake, the gut microbiome and metabolites, and host metabolites need to be further explored although some studies have been devoted to it. Here, in a cross-sectional studies, 88 children aged 2-12 years were enrolled from northwestern China. The dietary intake data were collected via a designed food frequency questionnaire to calculate plant-based diet indices (PDIs). Stool and plasma samples were collected for metagenomic and broad-targeted metabolomic analysis. Spearman's rank correlation was used to describe the associations between nutrients/PDIs and the gut microbiota and metabolites. PDI was significantly positively associated with Bilophila wadsworthia, Bacteroides thetaiotaomicron, and Alistipes indistinctus, etc., but was obviously negatively correlated with Roseburia intestinalis, Faecalibacterium prausnitzii, etc. However, these species showed no significant associations with either healthy PDI (hPDI) or unhealthy PDI (uPDI). Interestingly, hPDI was significantly positively related to species, including Ruminococcus bicirculans, and was significantly negatively associated with uPDI, and vice versa. The above correlation trends were also observed between PDIs and predicted gut microbial functional pathways, microbial metabolites and the host metabolome. Notably, the significantly related pathways were focused mainly on substances and energy metabolism. PDI was significantly positively associated with the fecal contents of P-aminobenzoate, chenodeoxycholic acid, 4,6-dihydroxyquinoline, quinoline-4,8-diol, etc., but was significantly negatively associated with those of TMAO, FFA, creatine phosphate, etc. In plasma, PDI was significantly positively associated with sarcosine, ornithine, L-histidine, etc., but was distinctly negatively correlated with FFAs, carnitine C2:0, etc. Strikingly, the healthy plant-based diet index (hPDI) is correlated with increased levels of metabolites related to tryptophan metabolism, whereas the unhealthy PDI (uPDI) is linked to increased levels of metabolites associated with tyrosine and sphingolipid metabolism, which are pathways commonly associated with Western diets. Our studies provide reliable data support and a comprehensive understanding of the effects of dietary intake on the gut microbiome and microbial and host metabolites and lay a foundation for further studies of the diet-gut microbiota-microbial metabolites and host metabolism.
Collapse
Affiliation(s)
- Mingyu Zhu
- Nation Health Commission Key Laboratory of Public Nutrition and Health, National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing, 100050, China
| | - Qi Wang
- Cuiying Biomedical Research Center, The Second Hospital & Clinical Medical School, Lanzhou, 730030, China
| | - Yan Yang
- Department of Endocrinology and Metabolism, The Second Hospital & Clinical Medical School, Lanzhou, 730030, China
| | - Xiaobing Liu
- Nation Health Commission Key Laboratory of Public Nutrition and Health, National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing, 100050, China
| | - Jiawen Zhang
- Nation Health Commission Key Laboratory of Public Nutrition and Health, National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing, 100050, China
| | - Guanghao Li
- School of Global Public Health, New York University, New York, NY, 10003, USA
| | - Wenqing Liu
- Department of General Surgery, The Second Hospital & Clinical Medical School, Lanzhou, 730000, China
| | - Xuesong Xiang
- Nation Health Commission Key Laboratory of Public Nutrition and Health, National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing, 100050, China.
| | - Juanjuan Chen
- Cuiying Biomedical Research Center, The Second Hospital & Clinical Medical School, Lanzhou, 730030, China.
| |
Collapse
|
3
|
Al-Refai W, Keenan S, Camera DM, Cooke MB. The Influence of Vegan, Vegetarian, and Omnivorous Diets on Protein Metabolism: A Role for the Gut-Muscle Axis? Nutrients 2025; 17:1142. [PMID: 40218900 PMCID: PMC11990293 DOI: 10.3390/nu17071142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 03/12/2025] [Accepted: 03/17/2025] [Indexed: 04/14/2025] Open
Abstract
There has been a growing interest globally in vegan and vegetarian diets over the last decade for a combination of health, ethical, environmental, spiritual, and social reasons. In line with this popularity, research examining the role of plant-based food sources, including vegan and vegetarian diets, in supporting skeletal muscle remodeling and anabolism in humans has also received considerable attention. The emergence of the microbiota-gut-muscle axis, a bidirectional pathway where the gut microbiota impacts skeletal muscle and vice versa, has been suggested as a potential mediator of food and nutrition's influence on the mechanistic processes that regulate muscle mass and function. Considering inherent nutritional differences between vegan, vegetarian, and omnivorous diets related to the fiber and macronutrient content, presence of anti-nutritional factors, and diverse food and supplemental sources for obtaining protein, it stands to reason that the regulation of the microbiota-gut-muscle axis via diet-induced changes in gut microbiota composition and function may be dissimilar. However, whether this translates into differential effects on the skeletal muscle is unclear. This review article aims to provide a contemporary perspective for how variations in gut microbiota linked to vegan, vegetarian, and omnivorous diets may be a potential mechanism for influencing protein metabolism in skeletal muscle mass via a purported microbiota-gut-muscle axis.
Collapse
Affiliation(s)
- Waed Al-Refai
- Department of Health and Biostatistics, School of Health Sciences, Swinburne University, Melbourne, VIC 3122, Australia;
| | - Stephen Keenan
- Department Sport, Exercise and Nutrition Sciences, School of Allied Health, Human Services and Sport, La Trobe University, Bundoora, VIC 3086, Australia;
| | - Donny M. Camera
- Department of Health and Biostatistics, School of Health Sciences, Swinburne University, Melbourne, VIC 3122, Australia;
| | - Matthew B. Cooke
- Department Sport, Exercise and Nutrition Sciences, School of Allied Health, Human Services and Sport, La Trobe University, Bundoora, VIC 3086, Australia;
| |
Collapse
|
4
|
Lindberg L, Woodside JV, Fitzgerald H, Campbell N, Vogan H, Kelly C, Robinson M, Nugent AP. Plant-Based Meat Alternatives on the Island of Ireland: Changes in the Market and Comparisons with Conventional Meat. Foods 2025; 14:903. [PMID: 40077606 PMCID: PMC11899366 DOI: 10.3390/foods14050903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 03/03/2025] [Accepted: 03/04/2025] [Indexed: 03/14/2025] Open
Abstract
The plant-based meat alternative (PBMA) market and consumer base on the island of Ireland (IOI) has grown rapidly in recent years. Therefore, this study compared the changes in PBMAs available on the IOI over time and the nutritional profiles of PBMAs with meat counterparts. Three online audits of PBMAs available in Tesco's and Sainsbury's in 2021/2022, 2022/2023 and 2023/2024 were conducted. All on-pack information was extracted and analysed using descriptive statistics to identify trends over time. The nutritional content of selected categories of PBMAs identified in the 2023/2024 audit was compared to similar categories of meat using independent samples t-tests or Mann-Whitney-U tests. The number of PBMAs available on the IOI has increased over time (n = 350, n = 321 and n = 398), with a trend in slight improvements in A-scores observed for most categories. Compared to meat, PBMAs had significantly lower total and saturated fat contents and higher carbohydrate, fibre and sugar contents across most categories. The increase in PBMAs over time suggests that the development of new products is ongoing. However, the higher salt contents of PBMAs compared to meat in some categories and only slight improvements in A-scores suggest that focus should be redirected to product reformulation and refinement to improve the nutritional quality of PBMAs.
Collapse
Affiliation(s)
- Leona Lindberg
- Centre for Public Health, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, Belfast BT12 6BJ, UK;
- Institute for Global Food Security, School of Biological Sciences, Queen’s University Belfast, Belfast BT9 5DL, UK (A.P.N.)
| | - Jayne V. Woodside
- Centre for Public Health, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, Belfast BT12 6BJ, UK;
- Institute for Global Food Security, School of Biological Sciences, Queen’s University Belfast, Belfast BT9 5DL, UK (A.P.N.)
| | - Hannah Fitzgerald
- UCD Institute of Food and Health, School of Agriculture and Food Science, University College Dublin, Belfield, D04 V1W8 Dublin, Ireland
| | - Niamh Campbell
- Institute for Global Food Security, School of Biological Sciences, Queen’s University Belfast, Belfast BT9 5DL, UK (A.P.N.)
| | - Hannah Vogan
- Institute for Global Food Security, School of Biological Sciences, Queen’s University Belfast, Belfast BT9 5DL, UK (A.P.N.)
| | - Ciara Kelly
- Institute for Global Food Security, School of Biological Sciences, Queen’s University Belfast, Belfast BT9 5DL, UK (A.P.N.)
| | - Mehrnoush Robinson
- Institute for Global Food Security, School of Biological Sciences, Queen’s University Belfast, Belfast BT9 5DL, UK (A.P.N.)
| | - Anne P. Nugent
- Institute for Global Food Security, School of Biological Sciences, Queen’s University Belfast, Belfast BT9 5DL, UK (A.P.N.)
- UCD Institute of Food and Health, School of Agriculture and Food Science, University College Dublin, Belfield, D04 V1W8 Dublin, Ireland
| |
Collapse
|
5
|
Fernández-Rodríguez R, Bizzozero-Peroni B, Díaz-Goñi V, Garrido-Miguel M, Bertotti G, Roldán-Ruiz A, López-Moreno M. Plant-based meat alternatives and cardiometabolic health: a systematic review and meta-analysis. Am J Clin Nutr 2025; 121:274-283. [PMID: 39653176 DOI: 10.1016/j.ajcnut.2024.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 11/28/2024] [Accepted: 12/04/2024] [Indexed: 12/26/2024] Open
Abstract
BACKGROUND Plant-based meat alternatives (PBMAs) are emerging in global markets. However, the effects of substituting meat for PBMAs on cardiometabolic health are uncertain. OBJECTIVES This study aimed to determine the effects of replacing meat consumption by PBMAs on cardiometabolic parameters in adults. METHODS Five databases were systematically explored from inception to July 2024, searching for RCTs assessing the effects of replacing meat consumption by PBMAs on cardiometabolic parameters in adults without cardiovascular diseases. Meta-analyses were conducted when ≥4 studies addressed the same outcome (i.e. blood lipids, blood pressure, fasting glucose, and body weight). Pooled raw mean differences (MDs) with their 95% CIs were estimated using a random-effects method. Sensitivity analyses were conducted to assess the robustness of our estimates. RESULTS Eight publications from 7 RCTs comprising 369 adults (60% females; mean age range: 24-61 y) were included. The substitution of PBMAs for meat was associated with significant reductions in LDL-cholesterol: -0.25 mmol/L (95% CI: -0.42, -0.08 mmol/L; I2 = 65.8%; n = 7), total cholesterol (TC): -0.29 mmol/L (95% CI: -0.52, -0.06 mmol/L; I2 = 64.8.%; n = 6), and body weight: -0.72 kg (95% CI: -1.02, -0.42 kg; I2 = 0%; n = 5). No significant changes were shown in HDL-cholesterol, triglycerides, blood pressure, or fasting glucose concentrations. Sensitivity analyses considering mycoprotein-based alternatives showed a significant reduction in LDL-cholesterol (MD: -0.37 mmol/L; 95% CI: -0.61, -0.13 mmol/L; I2 = 52.5%; n = 4), and TC (MD: -0.39 mmol/L; 95% CI: -0.56, -0.21 mmol/L; I2 = 0%; n = 4). CONCLUSIONS Our findings suggest substituting PBMAs for meat for ≤8 wk lowered TC (6%), LDL-cholesterol (12%), and body weight (1%) in adults without cardiovascular diseases. PBMAs may facilitate the transition to a plant-based diet, but long-term studies are needed to evaluate their cardiometabolic effects. This trial was registered at PROSPERO as CRD42024556191.
Collapse
Affiliation(s)
- Rubén Fernández-Rodríguez
- Department of Physical Education and Sports, Faculty of Sports Science, Sport and Health University Research Institute (iMUDS), University of Granada, Granada, Spain
| | - Bruno Bizzozero-Peroni
- Health and Social Research Center, Faculty of Nursing, Universidad de Castilla-La Mancha, Cuenca, Spain; Instituto Superior de Educación Física, Universidad de la República, Rivera, Uruguay.
| | - Valentina Díaz-Goñi
- Health and Social Research Center, Faculty of Nursing, Universidad de Castilla-La Mancha, Cuenca, Spain
| | - Miriam Garrido-Miguel
- Health and Social Research Center, Faculty of Nursing, Universidad de Castilla-La Mancha, Cuenca, Spain; Research Network on Chronicity, Primary Care and Health Promotion (RICAPPS), Cuenca, Spain; Faculty of Nursing, Universidad de Castilla-La Mancha, Albacete, Spain
| | - Gabriele Bertotti
- Diet, Planetary Health and Performance, Faculty of Health Sciences, Universidad Francisco de Vitoria, Pozuelo, Madrid, Spain; School of Physiotherapy, Faculty of Health Sciences, Universidad Francisco de Vitoria, Madrid, Spain
| | - Alberto Roldán-Ruiz
- Diet, Planetary Health and Performance, Faculty of Health Sciences, Universidad Francisco de Vitoria, Pozuelo, Madrid, Spain; School of Physiotherapy, Faculty of Health Sciences, Universidad Francisco de Vitoria, Madrid, Spain
| | - Miguel López-Moreno
- Diet, Planetary Health and Performance, Faculty of Health Sciences, Universidad Francisco de Vitoria, Pozuelo, Madrid, Spain; School of Physiotherapy, Faculty of Health Sciences, Universidad Francisco de Vitoria, Madrid, Spain
| |
Collapse
|
6
|
Biazotto KR, Xavier ACH, de Mattos RR, Furlan JM, Wagner R, Bandoni DH, de Rosso VV. Plant-Based Burgers in the Spotlight: A Detailed Composition Evaluation and Comprehensive Discussion on Nutrient Adequacy. Foods 2025; 14:372. [PMID: 39941965 PMCID: PMC11817254 DOI: 10.3390/foods14030372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 01/07/2025] [Accepted: 01/20/2025] [Indexed: 02/16/2025] Open
Abstract
This study aimed to evaluate the nutritional profile of commercial plant-based burgers (PBBs) available in Brazil and to assess their suitability for fulfilling nutritional requirements. Seven PBBs were selected, based on the different protein sources used in the formulations. The proximate and mineral compositions were evaluated, and the fatty acid and amino acid profiles were determined. The protein contents ranged from 5.25 ± 0.37 to 13.55 ± 1.16 g/100 g in the PBBs made from quinoa and a mix of proteins, respectively. The studied PBBs can offer between 46 and 71% of the essential amino acid (EAA) requirements. In addition, the total amount of EAAs provided the nutritional requirements established by the FAO/UN for all of the PBBs, considering the 100 g portion intake. The total fat content in the PBBs ranged from 3.51 ± 0.11 to 12.74 ± 1.93 g/100 g. Linoleic acid and oleic acid were the major fatty acids in the three PBBs, while myristic acid was the major fatty acid in one PBB studied. This study revealed significant differences in the nutritional composition between PBBs marketed in Brazil. Additionally, the lack of regulation allows for considerable variation in their nutritional profiles, making it difficult to compare them with those of meat burgers.
Collapse
Affiliation(s)
- Katia Regina Biazotto
- Food Labeling Observatory, Nutrition and Food Service Research Center (CPPNAC), Federal University of São Paulo (UNIFESP), Santos 11015-020, SP, Brazil
- Graduate Program in Nutrition, Federal University of São Paulo (UNIFESP), São Paulo 04023-062, SP, Brazil
| | - Ana Carolina Hadlich Xavier
- Chromatography and Food Analysis Research Group, Federal University of Pampa (UNIPAMPA), Itaqui 97650-000, RS, Brazil; (A.C.H.X.)
| | - Rosane Ribeiro de Mattos
- Department of Technology and Food Science, Federal University of Santa Maria (UFSM), Santa Maria 97105-900, RS, Brazil; (R.R.d.M.); (J.M.F.)
| | - Júnior Mendes Furlan
- Department of Technology and Food Science, Federal University of Santa Maria (UFSM), Santa Maria 97105-900, RS, Brazil; (R.R.d.M.); (J.M.F.)
| | - Roger Wagner
- Chromatography and Food Analysis Research Group, Federal University of Pampa (UNIPAMPA), Itaqui 97650-000, RS, Brazil; (A.C.H.X.)
| | - Daniel Henrique Bandoni
- Food Labeling Observatory, Nutrition and Food Service Research Center (CPPNAC), Federal University of São Paulo (UNIFESP), Santos 11015-020, SP, Brazil
| | - Veridiana Vera de Rosso
- Food Labeling Observatory, Nutrition and Food Service Research Center (CPPNAC), Federal University of São Paulo (UNIFESP), Santos 11015-020, SP, Brazil
| |
Collapse
|
7
|
Bevilacqua A, Speranza B, Racioppo A, Santillo A, Albenzio M, Derossi A, Caporizzi R, Francavilla M, Racca D, Flagella Z, De Santis MA, Elia A, Conversa G, Luchetti L, Sinigaglia M, Corbo MR. Ultra-Processed Food and Gut Microbiota: Do Additives Affect Eubiosis? A Narrative Review. Nutrients 2024; 17:2. [PMID: 39796436 PMCID: PMC11723215 DOI: 10.3390/nu17010002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/19/2024] [Accepted: 12/22/2024] [Indexed: 01/13/2025] Open
Abstract
The gut microbiota plays a key role in health and disease, but it could be affected by various factors (diet, lifestyle, environment, genetics, etc.). Focusing on diet, while the role of the different styles and choices (Mediterranean vs. Western diet, vegan or vegetarian diets) has been extensively studied, there are a few comprehensive papers on the effects of additives and food processing. Therefore, the main goal of this manuscript is to propose an overview of the link between ultra-processed foods and the gut microbiota based on papers and data available in the literature. The literature search was performed on PubMed and Clinicaltrials.gov, and after the selection of the most relevant articles, the paper proposes a synopsis of the effects of some classes of additives (sweeteners, preservatives, emulsifiers, glutamate, etc.), as well as of some treatments, on the gut microbiota and some pathological conditions.
Collapse
Affiliation(s)
- Antonio Bevilacqua
- Department of Agriculture, Food, Natural Resources and Engineering (DAFNE), University of Foggia, 71122 Foggia, Italy; (B.S.); (A.R.); (A.S.); (M.A.); (A.D.); (R.C.); (M.F.); (D.R.); (Z.F.); (M.A.D.S.); (A.E.); (G.C.); (L.L.); (M.S.); (M.R.C.)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Estévez M, Arjona A, Sánchez-Terrón G, Molina-Infante J, Martínez R. Ultra-processed vegan foods: Healthy alternatives to animal-source foods or avoidable junk? J Food Sci 2024; 89:7008-7021. [PMID: 39379336 DOI: 10.1111/1750-3841.17407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/09/2024] [Accepted: 09/06/2024] [Indexed: 10/10/2024]
Abstract
Animal-source foods (ASFs), namely, meat, milk, eggs, and derived products, are crucial components of a well-balanced diet owing to their contribution with multiple essential nutrients. The benefits of the consumption of ASFs in terms of hedonic responses, emotional well-being, and mood are also widely documented. However, an increasing share of consumers decide to exclude ASFs from their diets. Some of these vegan consumers are inclined to consume so-called "meat" and/or "dairy analogs," which are produced from plant materials (soy, wheat, and oat, among others). In order to simulate appearance, texture, and flavor of ASFs, these industrial vegan foods are designed using an intricate formulation and industrial processing, which justifies their identification as ultraprocessed foods (UPFs). While the introduction of these processed vegan products is becoming popular in developed countries, the consequences of the sustained intake of these products on human health are mostly ignored. Contrarily to common belief, which emphasizes their role as "healthy" alternatives to ASFs, these plant-based UPFs may enclose certain threats, which are reviewed in the present paper. The remarkable differences between vegan UPFs and the genuine ASFs (meat/dairy products) from sensory, nutritional, hedonic, or health perspectives precludes the designation of the former as analogs of the latter. Understanding the basis of these differences would contribute to (i) providing consumers with grounds to make reasoned decisions to consume meat/dairy products and/or the vegan alternatives and (ii) providing food companies with strategies to produce more appealing, nutritive, and healthy industrially processed vegan products.
Collapse
Affiliation(s)
- Mario Estévez
- IPROCAR Research Institute, TECAL Research Group, Universidad de Extremadura, Cáceres, Spain
| | - A Arjona
- Family and Community Medicine, Servicio Extremeño de Salud (SES), Cáceres, Spain
| | - G Sánchez-Terrón
- IPROCAR Research Institute, TECAL Research Group, Universidad de Extremadura, Cáceres, Spain
| | - J Molina-Infante
- Gastroenterology and Hepatology Unit. Hospital Universitario de Cáceres, Servicio Extremeño de Salud (SES), Cáceres, Spain
| | - R Martínez
- Departamento de Sanidad Animal, Grupo de Investigación en Sanidad Animal y Zoonosis (GISAZ), UIC Zoonosis y Enfermedades Emergentes ENZOEM, Universidad de Córdoba, Córdoba, Spain
| |
Collapse
|
9
|
Pettersson J, Post A, Elf M, Wollmar M, Sjöberg A. Meat substitutes in Swedish school meals: nutritional quality, ingredients, and insights from meal planners. Int J Food Sci Nutr 2024; 75:637-649. [PMID: 39229696 DOI: 10.1080/09637486.2024.2395810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 06/27/2024] [Accepted: 08/19/2024] [Indexed: 09/05/2024]
Abstract
This study provides an overview of the ingredients, origin, processing level, nutritional quality and practitioners' insights of commonly used meat substitutes in Swedish school meals. Using quantitative and qualitative data, this study evaluated 59 meat substitutes from 19 brands using Percentage Nutrient Contribution (%NC) to a Swedish school meal based on 30% of the recommended and maximum nutrient intake for teenagers and the NOVA processing framework. Meat substitutes were mince, balls, breaded, burgers, strips, or sausages. Interviews with meal planners (n = 7) revealed experiences with meat substitutes in schools. Most meat substitutes (86%) were classified as ultra-processed foods, with low contributions to saturated fat and free sugars, but high contributions to fibre and salt intakes. Limited micronutrient data suggested significant contributions of potassium, folate, and iron. Meal planners chose meat substitutes for climate reasons, familiarity, and acceptability. Meat substitutes have potential, but processing effects, bioavailability and fortification require further research.
Collapse
Affiliation(s)
- Josephine Pettersson
- Department of Food and Nutrition and Sport Science, University of Gothenburg, Gothenburg, Sweden
| | - Anna Post
- Department of Food and Nutrition and Sport Science, University of Gothenburg, Gothenburg, Sweden
| | - Maja Elf
- Department of Food and Nutrition and Sport Science, University of Gothenburg, Gothenburg, Sweden
| | - Mari Wollmar
- Department of Food and Nutrition and Sport Science, University of Gothenburg, Gothenburg, Sweden
| | - Agneta Sjöberg
- Department of Food and Nutrition and Sport Science, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
10
|
Izquierdo-Sandoval D, Duan X, Fryganas C, Portolés T, Sancho JV, Rubert J. Untargeted metabolomics unravels distinct gut microbial metabolites derived from plant-based and animal-origin proteins using in vitro modeling. Food Chem 2024; 457:140161. [PMID: 38909452 DOI: 10.1016/j.foodchem.2024.140161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 05/28/2024] [Accepted: 06/17/2024] [Indexed: 06/25/2024]
Abstract
The popularity of plant-based meat alternatives (PBMAs) has sparked a contentious debate about their influence on intestinal homeostasis compared to traditional animal-based meats. This study aims to explore the changes in gut microbial metabolites (GMMs) induced by the gut microbiota on different digested patties: beef meat and pea-protein PBMA. After digesting in vitro, untargeted metabolomics revealed 32 annotated metabolites, such as carnitine and acylcarnitines correlated with beef meat, and 45 annotated metabolites, like triterpenoids and lignans, linked to our PBMA. Secondly, (un)targeted approaches highlighted differences in GMM patterns during colonic fermentations. Our findings underscore significant differences in amino acids and their derivatives. Beef protein fermentation resulted in higher production of methyl-histidine, gamma-glutamyl amino acids, indoles, isobutyric and isovaleric acids. In contrast, PBMAs exhibit a significant release of N-acyl amino acids and unique dipeptides, like phenylalanine-arginine. This research offers valuable insights into how PBMAs and animal-based proteins differently modulate intestinal microenvironments.
Collapse
Affiliation(s)
- David Izquierdo-Sandoval
- Enviromental and Public Health Analytical Chemistry, Research Institute for Pesticides and Water (IUPA), Universitat Jaume I, Av. Sos Baynat S/N, 12071 Castellón de la Plana, Spain
| | - Xiang Duan
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, PR China; Food Quality and Design, Wageningen University & Research, Bornse Weilanden 9, Wageningen 6708, WG, The Netherlands
| | - Christos Fryganas
- Food Quality and Design, Wageningen University & Research, Bornse Weilanden 9, Wageningen 6708, WG, The Netherlands
| | - Tania Portolés
- Enviromental and Public Health Analytical Chemistry, Research Institute for Pesticides and Water (IUPA), Universitat Jaume I, Av. Sos Baynat S/N, 12071 Castellón de la Plana, Spain
| | - Juan Vicente Sancho
- Enviromental and Public Health Analytical Chemistry, Research Institute for Pesticides and Water (IUPA), Universitat Jaume I, Av. Sos Baynat S/N, 12071 Castellón de la Plana, Spain
| | - Josep Rubert
- Food Quality and Design, Wageningen University & Research, Bornse Weilanden 9, Wageningen 6708, WG, The Netherlands; Division of Human Nutrition and Health, Wageningen University & Research, Stippeneng 4, Wageningen 6708, WE, The Netherlands.
| |
Collapse
|
11
|
Ali Z, Stancic S, Becker R, Herby A, Kondapalli SK, Dombrower AM, Barnard ND. Fast-Food Outlets in Hospitals Affiliated With U.S. Medical Schools. Am J Lifestyle Med 2024:15598276241267252. [PMID: 39554915 PMCID: PMC11562236 DOI: 10.1177/15598276241267252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2024] Open
Abstract
Objectives: To determine the current prevalence and type of fast-food outlets at medical-school-affiliated hospitals and compare them to previous findings to assess progress in improving the hospital food environment. Method: We invited medical students at 192 medical and osteopathic schools to complete Sogolytics surveys reporting on fast-food restaurants that are affiliated with their main teaching hospital or medical centers. Results: Of 192 medical and osteopathic schools, 255 individual completed surveys were received from 146 schools. 101 schools (69.2%) reportedly hosted at least one fast-food restaurant associated with the hospitals at which students rotate, these include 15.1% schools that gave a mixed response to the question if fast-food restaurants are present in any affiliated hospitals. 45 schools (30.8%) reported no fast-food restaurants in any affiliated hospitals. The five most common fast-food restaurants reported were Starbucks (27.9%), Subway (18.8%), Chick-fil-A (9.2%), Au Bon Pain (8.8%), and McDonald's (5.4%). Regarding the statement, "It is acceptable for fast-food restaurants to be in hospitals," 27.8% of students strongly disagreed, 29.0% somewhat disagreed, 16.9% neither agreed nor disagreed, 21.2% somewhat agreed, and only 5.1% strongly agreed. Conclusions: The majority of the teaching hospitals affiliated with the schools have at least one fast-food restaurant onsite.
Collapse
Affiliation(s)
- Zeeshan Ali
- Department of Nutrition, Physicians Committee for Responsible Medicine, Washington, DC, USA (ZA, SS, RB, AH, NDB)
| | - Saray Stancic
- Department of Nutrition, Physicians Committee for Responsible Medicine, Washington, DC, USA (ZA, SS, RB, AH, NDB)
| | - Roxanne Becker
- Department of Communication, Physicians Committee for Responsible Medicine, Washington, DC, USA (RB)
| | - Anna Herby
- Department of Nutrition, Physicians Committee for Responsible Medicine, Washington, DC, USA (ZA, SS, RB, AH, NDB)
| | - Sankeerth K Kondapalli
- Department of Internal Medicine-Pediatrics, Rutgers New Jersey Medical School, Newark, NJ, USA (SKK)
| | | | - Neal D. Barnard
- Department of Nutrition, Physicians Committee for Responsible Medicine, Washington, DC, USA (ZA, SS, RB, AH, NDB)
| |
Collapse
|
12
|
Martínez A, Velázquez L, Díaz R, Huaiquipán R, Pérez I, Muñoz A, Valdés M, Sepúlveda N, Paz E, Quiñones J. Impact of Novel Foods on the Human Gut Microbiome: Current Status. Microorganisms 2024; 12:1750. [PMID: 39338424 PMCID: PMC11433882 DOI: 10.3390/microorganisms12091750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 09/30/2024] Open
Abstract
The microbiome is a complex ecosystem of microorganisms that inhabit a specific environment. It plays a significant role in human health, from food digestion to immune system strengthening. The "Novel Foods" refer to foods or ingredients that have not been consumed by humans in the European Union before 1997. Currently, there is growing interest in understanding how "Novel Foods" affect the microbiome and human health. The aim of this review was to assess the effects of "Novel Foods" on the human gut microbiome. Research was conducted using scientific databases, focusing on the literature published since 2000, with an emphasis on the past decade. In general, the benefits derived from this type of diet are due to the interaction between polyphenols, oligosaccharides, prebiotics, probiotics, fibre content, and the gut microbiome, which selectively promotes specific microbial species and increases microbial diversity. More research is being conducted on the consumption of novel foods to demonstrate how they affect the microbiome and, thus, human health. Consumption of novel foods with health-promoting properties should be further explored to maintain the diversity and functionality of the gut microbiome as a potential tool to prevent the onset and progression of chronic diseases.
Collapse
Affiliation(s)
- Ailín Martínez
- Doctoral Program in Science Major in Applied Cellular and Molecular Biology, Universidad de La Frontera, Av. Francisco Salazar 01145, Temuco 4800000, Chile;
- Meat Quality Innovation and Technology Centre (CTI-Carne), Universidad de La Frontera, Temuco 4780000, Chile; (L.V.); (R.D.); (R.H.); (I.P.); (A.M.); (M.V.)
| | - Lidiana Velázquez
- Meat Quality Innovation and Technology Centre (CTI-Carne), Universidad de La Frontera, Temuco 4780000, Chile; (L.V.); (R.D.); (R.H.); (I.P.); (A.M.); (M.V.)
- Faculty of Agricultural and Environmental Sciences, Universidad de La Frontera, Av. Francisco Salazar 01145, Temuco 4780000, Chile;
| | - Rommy Díaz
- Meat Quality Innovation and Technology Centre (CTI-Carne), Universidad de La Frontera, Temuco 4780000, Chile; (L.V.); (R.D.); (R.H.); (I.P.); (A.M.); (M.V.)
- Faculty of Agricultural and Environmental Sciences, Universidad de La Frontera, Av. Francisco Salazar 01145, Temuco 4780000, Chile;
| | - Rodrigo Huaiquipán
- Meat Quality Innovation and Technology Centre (CTI-Carne), Universidad de La Frontera, Temuco 4780000, Chile; (L.V.); (R.D.); (R.H.); (I.P.); (A.M.); (M.V.)
- Doctoral Program in Agrifood and Environment Sciences, Universidad de La Frontera, Temuco 4780000, Chile
| | - Isabela Pérez
- Meat Quality Innovation and Technology Centre (CTI-Carne), Universidad de La Frontera, Temuco 4780000, Chile; (L.V.); (R.D.); (R.H.); (I.P.); (A.M.); (M.V.)
- Doctoral Program in Agrifood and Environment Sciences, Universidad de La Frontera, Temuco 4780000, Chile
| | - Alex Muñoz
- Meat Quality Innovation and Technology Centre (CTI-Carne), Universidad de La Frontera, Temuco 4780000, Chile; (L.V.); (R.D.); (R.H.); (I.P.); (A.M.); (M.V.)
- Doctoral Program in Agrifood and Environment Sciences, Universidad de La Frontera, Temuco 4780000, Chile
| | - Marcos Valdés
- Meat Quality Innovation and Technology Centre (CTI-Carne), Universidad de La Frontera, Temuco 4780000, Chile; (L.V.); (R.D.); (R.H.); (I.P.); (A.M.); (M.V.)
- Doctoral Program in Agrifood and Environment Sciences, Universidad de La Frontera, Temuco 4780000, Chile
| | - Néstor Sepúlveda
- Faculty of Agricultural and Environmental Sciences, Universidad de La Frontera, Av. Francisco Salazar 01145, Temuco 4780000, Chile;
- Doctoral Program in Agrifood and Environment Sciences, Universidad de La Frontera, Temuco 4780000, Chile
| | - Erwin Paz
- UWA Institute of Agriculture, The University of Western Australia, Perth 6009, Australia;
| | - John Quiñones
- Meat Quality Innovation and Technology Centre (CTI-Carne), Universidad de La Frontera, Temuco 4780000, Chile; (L.V.); (R.D.); (R.H.); (I.P.); (A.M.); (M.V.)
- Faculty of Agricultural and Environmental Sciences, Universidad de La Frontera, Av. Francisco Salazar 01145, Temuco 4780000, Chile;
| |
Collapse
|
13
|
Partanen M, Luhio P, Gómez-Gallego C, Kolehmainen M. The role of fiber in modulating plant protein-induced metabolic responses. Crit Rev Food Sci Nutr 2024:1-16. [PMID: 39154210 DOI: 10.1080/10408398.2024.2392149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2024]
Abstract
The rising consumption of plant protein foods and the emergence of meat alternatives have prompted interest in the health benefits of such products, which contain fiber in addition to protein. This review investigates the effect of fiber on plant-based protein metabolism and evaluates its contribution to gut-derived health impacts. Plant proteins, which often come with added fiber, can have varying health outcomes. Factors such as processing and the presence of fiber and starch influence the digestibility of plant proteins, potentially leading to increased proteolytic fermentation in the gut and the production of harmful metabolites. However, fermentable fiber can counteract this effect by serving as a primary substrate for gut microbes, decreasing proteolytic activity. The increased amount of fiber, rather than the protein source itself, plays a significant role in the observed health benefits of plant-based diets in human studies. Differences between extrinsic and intrinsic fiber in the food matrix further impact protein fermentation and digestibility. Thus, in novel protein products without naturally occurring fiber, the health impact may differ from conventional plant protein sources. The influence of various fibers on plant-based protein metabolism throughout the gastrointestinal tract is not fully understood, necessitating further research.
Collapse
Affiliation(s)
- Moona Partanen
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| | - Petri Luhio
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| | - Carlos Gómez-Gallego
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| | - Marjukka Kolehmainen
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
14
|
Jang J, Lee DW. Advancements in plant based meat analogs enhancing sensory and nutritional attributes. NPJ Sci Food 2024; 8:50. [PMID: 39112506 PMCID: PMC11306346 DOI: 10.1038/s41538-024-00292-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 07/23/2024] [Indexed: 08/10/2024] Open
Abstract
The burgeoning demand for plant-based meat analogs (PBMAs) stems from environmental, health, and ethical concerns, yet replicating the sensory attributes of animal meat remains challenging. This comprehensive review explores recent innovations in PBMA ingredients and methodologies, emphasizing advancements in texture, flavor, and nutritional profiles. It chronicles the transition from soy-based first-generation products to more diversified second- and third-generation PBMAs, showcasing the utilization of various plant proteins and advanced processing techniques to enrich sensory experiences. The review underscores the crucial role of proteins, polysaccharides, and fats in mimicking meat's texture and flavor and emphasizes research on new plant-based sources to improve product quality. Addressing challenges like production costs, taste, texture, and nutritional adequacy is vital for enhancing consumer acceptance and fostering a more sustainable food system.
Collapse
Affiliation(s)
- Jiwon Jang
- Graduate Program in Bio-industrial Engineering, Yonsei University, Seoul, 03722, South Korea
| | - Dong-Woo Lee
- Graduate Program in Bio-industrial Engineering, Yonsei University, Seoul, 03722, South Korea.
- Department of Biotechnology, Yonsei University, Seoul, 03722, South Korea.
| |
Collapse
|
15
|
Zhang L, Langlois E, Williams K, Tejera N, Omieljaniuk M, Finglas P, Traka MH. A comparative analysis of nutritional quality, amino acid profile, and nutritional supplementations in plant-based products and their animal-based counterparts in the UK. Food Chem 2024; 448:139059. [PMID: 38531295 DOI: 10.1016/j.foodchem.2024.139059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/14/2024] [Accepted: 03/15/2024] [Indexed: 03/28/2024]
Abstract
Plant-based (PB) food products have surged in popularity over the past decade. Available PB products in the UK market were extracted from NielsenIQ Brandbank and compared with animal-based (AB) counterparts in their nutrient contents and calculated Nutri-Scores. The amino acid contents of four beef products and their PB alternatives were analysed by LC-MS/MS. PB products consistently exhibited significantly higher fibre content across all food groups. Protein was significantly higher in AB products from all food groups except beef and ready meals. PB products were more likely to have higher Nutri-Scores compared to AB counterparts, albeit with greater score variability within each food group. Nutrient fortifications were primarily focused on dairy and ready meals; the most supplemented nutrient was vitamin B12 (found in 15% of all products). A higher proportion of EAAs in relation to total protein content was observed in all beef products.
Collapse
Affiliation(s)
- Liangzi Zhang
- Food and Nutrition National Bioscience Research Infrastructure, Quadram Institute Bioscience, Norwich Research Park, Rosalind Franklin Rd, Norwich NR4 7UQ, United Kingdom.
| | - Ellie Langlois
- Food and Nutrition National Bioscience Research Infrastructure, Quadram Institute Bioscience, Norwich Research Park, Rosalind Franklin Rd, Norwich NR4 7UQ, United Kingdom
| | - Katie Williams
- Food and Nutrition National Bioscience Research Infrastructure, Quadram Institute Bioscience, Norwich Research Park, Rosalind Franklin Rd, Norwich NR4 7UQ, United Kingdom
| | - Noemi Tejera
- Food and Nutrition National Bioscience Research Infrastructure, Quadram Institute Bioscience, Norwich Research Park, Rosalind Franklin Rd, Norwich NR4 7UQ, United Kingdom.
| | - Maja Omieljaniuk
- Food and Nutrition National Bioscience Research Infrastructure, Quadram Institute Bioscience, Norwich Research Park, Rosalind Franklin Rd, Norwich NR4 7UQ, United Kingdom
| | - Paul Finglas
- Food and Nutrition National Bioscience Research Infrastructure, Quadram Institute Bioscience, Norwich Research Park, Rosalind Franklin Rd, Norwich NR4 7UQ, United Kingdom.
| | - Maria H Traka
- Food and Nutrition National Bioscience Research Infrastructure, Quadram Institute Bioscience, Norwich Research Park, Rosalind Franklin Rd, Norwich NR4 7UQ, United Kingdom.
| |
Collapse
|
16
|
Del Bo’ C, Chehade L, Tucci M, Canclini F, Riso P, Martini D. Impact of Substituting Meats with Plant-Based Analogues on Health-Related Markers: A Systematic Review of Human Intervention Studies. Nutrients 2024; 16:2498. [PMID: 39125378 PMCID: PMC11314210 DOI: 10.3390/nu16152498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/22/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024] Open
Abstract
The growing drive towards more sustainable dietary patterns has led to an increased demand for and availability of plant-based meat analogues (PBMAs). This systematic review aims to summarize the currently available evidence from human intervention studies investigating the impact of substituting animal meat (AM) with PBMAs in adults. A total of 19 studies were included. Overall, an increase in satiety following PBMA intake was reported, albeit to different extents and not always accompanied by changes in leptin and ghrelin. PBMAs generally resulted in lower protein bioavailability and a smaller increase in plasma essential amino acids in comparison to AM. However, muscle protein synthesis and physical performance were not affected. Finally, conflicting results have been reported for other outcomes, such as pancreatic and gastrointestinal hormones, oxidative stress and inflammation, vascular function, and microbiota composition. In conclusion, we documented that the impact of substituting AM with PBMA products has been scarcely investigated. In addition, the heterogeneity found in terms of study design, population, outcomes, and findings suggests the need for additional high-quality intervention trials, particularly long-term ones, to better clarify the advantages and potential critical issues of such substitutions within sustainable healthy diets.
Collapse
Affiliation(s)
| | | | | | | | - Patrizia Riso
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Division of Human Nutrition, Università degli Studi di Milano, 20133 Milano, Italy (L.C.); (F.C.); (D.M.)
| | | |
Collapse
|
17
|
Belobrajdic DP, Osborne S, Conlon M, Brook H, Addepalli R, Muhlhausler BS. Assessing the Protein Quality, In Vitro Intestinal Iron Absorption and Human Faecal Microbiota Impacts of Plant-Based Mince. Nutrients 2024; 16:2339. [PMID: 39064781 PMCID: PMC11279466 DOI: 10.3390/nu16142339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/12/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
The nutritional quality of plant-based meat analogues compared to traditional meat products has been questioned in recent commentary, particularly in relation to protein quality and micronutrient bioavailability. However, the attributes of specific products within this category are unclear. We therefore undertook a comprehensive assessment of the compositional and functional attributes of v2food® (Sydney, Australia) plant-based mince, including an assessment of the effects of reformulation, including the addition of amino acids, ascorbic acid, and different forms of elemental iron. The protein digestibility and protein quality of v2food® plant-based mince were comparable to beef mince in the standardized INFOGEST system, and favourable effects on microbiota composition and short-chain fatty acid (SCFA) production were demonstrated in an in vitro digestion system. The use of ferrous sulphate as an iron source improved in vitro intestinal iron absorption by ~50% in comparison to other forms of iron (p < 0.05), although levels were ~3-fold lower than beef mince, even in the presence of ascorbic acid. In conclusion, the current study identified some favourable nutritional attributes of plant-based v2food® mince, specifically microbiota and SCFA changes, as well as other areas where further reformulation could be considered to further enhance the bioavailability of key nutrients. Further studies to assess the effect of plant-based meat analogues on health measures in vivo will be important to improve knowledge in this area.
Collapse
Affiliation(s)
- Damien P. Belobrajdic
- Health and Biosecurity, Commonwealth Scientific and Industrial Research Organisation, Adelaide, SA 5000, Australia; (D.P.B.); (M.C.); (H.B.)
- College of Medicine and Public Health, Health Flinders University, Bedford Park, SA 5042, Australia
| | - Simone Osborne
- Agriculture and Food, Commonwealth Scientific and Industrial Research Organisation, Brisbane, QLD 4067, Australia; (S.O.); (R.A.)
| | - Michael Conlon
- Health and Biosecurity, Commonwealth Scientific and Industrial Research Organisation, Adelaide, SA 5000, Australia; (D.P.B.); (M.C.); (H.B.)
| | - Henri Brook
- Health and Biosecurity, Commonwealth Scientific and Industrial Research Organisation, Adelaide, SA 5000, Australia; (D.P.B.); (M.C.); (H.B.)
| | - Rama Addepalli
- Agriculture and Food, Commonwealth Scientific and Industrial Research Organisation, Brisbane, QLD 4067, Australia; (S.O.); (R.A.)
| | - Beverly S. Muhlhausler
- Health and Biosecurity, Commonwealth Scientific and Industrial Research Organisation, Adelaide, SA 5000, Australia; (D.P.B.); (M.C.); (H.B.)
- School of Agriculture, Food and Wine, The University of Adelaide, Adelaide, SA 5005, Australia
- South Australian Health and Medical Research Institute, Adelaide, SA 5001, Australia
| |
Collapse
|
18
|
Xie Y, Cai L, Zhou G, Li C. Comparison of nutritional profile between plant-based meat analogues and real meat: A review focusing on ingredients, nutrient contents, bioavailability, and health impacts. Food Res Int 2024; 187:114460. [PMID: 38763688 DOI: 10.1016/j.foodres.2024.114460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/26/2024] [Accepted: 05/01/2024] [Indexed: 05/21/2024]
Abstract
In order to fully understand the nutritional heterogeneity of plant-based meat analogues and real meat, this review summarized their similarities and differences in terms of ingredients, nutrient contents, bioavailability and health impacts. Plant-based meat analogues have some similarities to real meat. However, plant-based meat analogues are lower in protein, cholesterol and VB12 but higher in dietary fiber, carbohydrates, sugar, salt and various food additives than real meat. Moreover, some nutrients in plant-based meat analogues, such as protein and iron, are less bioavailable. There is insufficient evidence that plant-based meat analogues are healthier, which may be related to the specific attributes of these products such as formulation and degree of processing. As things stand, it is necessary to provide comprehensive nutrition information on plant-based meat products so that consumers can make informed choices based on their nutritional needs.
Collapse
Affiliation(s)
- Yunting Xie
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, MOST; Key Laboratory of Meat Processing, MARA; Jiangsu Innovative Center of Meat Production, Processing and Quality Control; College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Linlin Cai
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, MOST; Key Laboratory of Meat Processing, MARA; Jiangsu Innovative Center of Meat Production, Processing and Quality Control; College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Guanghong Zhou
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, MOST; Key Laboratory of Meat Processing, MARA; Jiangsu Innovative Center of Meat Production, Processing and Quality Control; College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Chunbao Li
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, MOST; Key Laboratory of Meat Processing, MARA; Jiangsu Innovative Center of Meat Production, Processing and Quality Control; College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
19
|
Mertens E, Deriemaeker P, Van Beneden K. Analysis of the Nutritional Composition of Ready-to-Use Meat Alternatives in Belgium. Nutrients 2024; 16:1648. [PMID: 38892581 PMCID: PMC11175014 DOI: 10.3390/nu16111648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/20/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024] Open
Abstract
BACKGROUND The interest in meat alternatives has increased over the years as people embrace more varied food choices because of different reasons. This study aims to analyse the nutritional composition of ready-to-use meat alternatives and compare them with meat (products). METHODS Nutritional composition values were collected in 2022 of all ready-to-use meat alternatives in Belgian supermarkets, as well as their animal-based counterparts. A one-sample t-test was performed to test the nutritional composition of ready-to-use meat alternatives against norm values, while an independent samples t-test was used to make the comparison with meat. RESULTS Minced meat and pieces/strips/cubes scored favourably on all norm values. Cheeseburgers/schnitzels, nut/seed burgers and sausages contained more than 10 g/100 g total fat. The saturated fat and salt content was lower than the norm value in each category. Legume burgers/falafel contained less than 10 g/100 g protein. Vegetarian/vegan minced meat and bacon contained fewer calories, total and saturated fat, and more fibre compared to their animal-based counterparts. CONCLUSIONS Minced meat and pieces/strips/cubes came out as the most favourable categories regarding nutritional composition norm values. Vegetarian/vegan steak came out the least favourable compared to steak, while vegetarian/vegan minced meat and vegetarian/vegan bacon came out the most favourable compared to their animal-based counterparts.
Collapse
Affiliation(s)
- Evelien Mertens
- Department of Health Care, Design and Technology, Nutrition and Dietetics Program, Erasmushogeschool Brussel, 1090 Brussels, Belgium; (P.D.); (K.V.B.)
- Department of Movement and Sport Sciences, Faculty of Physical Education and Physiotherapy, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Peter Deriemaeker
- Department of Health Care, Design and Technology, Nutrition and Dietetics Program, Erasmushogeschool Brussel, 1090 Brussels, Belgium; (P.D.); (K.V.B.)
- Department of Movement and Sport Sciences, Faculty of Physical Education and Physiotherapy, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Katrien Van Beneden
- Department of Health Care, Design and Technology, Nutrition and Dietetics Program, Erasmushogeschool Brussel, 1090 Brussels, Belgium; (P.D.); (K.V.B.)
| |
Collapse
|
20
|
Averina OV, Poluektova EU, Zorkina YA, Kovtun AS, Danilenko VN. Human Gut Microbiota for Diagnosis and Treatment of Depression. Int J Mol Sci 2024; 25:5782. [PMID: 38891970 PMCID: PMC11171505 DOI: 10.3390/ijms25115782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/21/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024] Open
Abstract
Nowadays, depressive disorder is spreading rapidly all over the world. Therefore, attention to the studies of the pathogenesis of the disease in order to find novel ways of early diagnosis and treatment is increasing among the scientific and medical communities. Special attention is drawn to a biomarker and therapeutic strategy through the microbiota-gut-brain axis. It is known that the symbiotic interactions between the gut microbes and the host can affect mental health. The review analyzes the mechanisms and ways of action of the gut microbiota on the pathophysiology of depression. The possibility of using knowledge about the taxonomic composition and metabolic profile of the microbiota of patients with depression to select gene compositions (metagenomic signature) as biomarkers of the disease is evaluated. The use of in silico technologies (machine learning) for the diagnosis of depression based on the biomarkers of the gut microbiota is given. Alternative approaches to the treatment of depression are being considered by balancing the microbial composition through dietary modifications and the use of additives, namely probiotics, postbiotics (including vesicles) and prebiotics as psychobiotics, and fecal transplantation. The bacterium Faecalibacterium prausnitzii is under consideration as a promising new-generation probiotic and auxiliary diagnostic biomarker of depression. The analysis conducted in this review may be useful for clinical practice and pharmacology.
Collapse
Affiliation(s)
- Olga V. Averina
- Vavilov Institute of General Genetics, Russian Academy of Sciences (RAS), 119333 Moscow, Russia; (E.U.P.); (Y.A.Z.); (A.S.K.); (V.N.D.)
| | - Elena U. Poluektova
- Vavilov Institute of General Genetics, Russian Academy of Sciences (RAS), 119333 Moscow, Russia; (E.U.P.); (Y.A.Z.); (A.S.K.); (V.N.D.)
| | - Yana A. Zorkina
- Vavilov Institute of General Genetics, Russian Academy of Sciences (RAS), 119333 Moscow, Russia; (E.U.P.); (Y.A.Z.); (A.S.K.); (V.N.D.)
- V. Serbsky National Medical Research Centre of Psychiatry and Narcology, Kropotkinsky per. 23, 119034 Moscow, Russia
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, Zagorodnoe Highway 2, 115191 Moscow, Russia
| | - Alexey S. Kovtun
- Vavilov Institute of General Genetics, Russian Academy of Sciences (RAS), 119333 Moscow, Russia; (E.U.P.); (Y.A.Z.); (A.S.K.); (V.N.D.)
| | - Valery N. Danilenko
- Vavilov Institute of General Genetics, Russian Academy of Sciences (RAS), 119333 Moscow, Russia; (E.U.P.); (Y.A.Z.); (A.S.K.); (V.N.D.)
| |
Collapse
|
21
|
Gräfenhahn M, Beyrer M. Plant-Based Meat Analogues in the Human Diet: What Are the Hazards? Foods 2024; 13:1541. [PMID: 38790841 PMCID: PMC11121679 DOI: 10.3390/foods13101541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/25/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
Research regarding meat analogues is mostly based on formulation and process development. Information concerning their safety, shelf life, and long-term nutritional and health effects is limited. This article reviews the existing literature and analyzes potential hazards introduced or modified throughout the processing chain of plant-based meat analogues via extrusion processing, encompassing nutritional, microbiological, chemical, and allergen aspects. It was found that the nutritional value of plant-based raw materials and proteins extracted thereof increases along the processing chain. However, the nutritional value of plant-based meat analogues is lower than that of e.g., animal-based products. Consequently, higher quantities of these products might be needed to achieve a nutritional profile similar to e.g., meat. This could lead to an increased ingestion of undigestible proteins and dietary fiber. Although dietary fibers are known to have many positive health benefits, they present a hazard since their consumption at high concentrations might lead to gastrointestinal reactions. Even though there is plenty of ongoing research on this topic, it is still not clear how the sole absorption of metabolites derived from plant-based products compared with animal-based products ultimately affects human health. Allergens were identified as a hazard since plant-based proteins can induce an allergic reaction, are known to have cross-reactivities with other allergens and cannot be eliminated during the processing of meat analogues. Microbiological hazards, especially the occurrence of spore- and non-spore-forming bacteria, do not represent a particular case if requirements and regulations are met. Lastly, it was concluded that there are still many unknown variables and open questions regarding potential hazards possibly present in meat analogues, including processing-related compounds such as n-nitrosamines, acrylamide, and heterocyclic aromatic amino acids.
Collapse
Affiliation(s)
- Maria Gräfenhahn
- Institute of Life Technologies, University of Applied Sciences and Arts Western Switzerland Valais-Wallis (HES-SO VS), 1950 Sion, Switzerland
| | | |
Collapse
|
22
|
El Sadig R, Wu J. Are novel plant-based meat alternatives the healthier choice? Food Res Int 2024; 183:114184. [PMID: 38760126 DOI: 10.1016/j.foodres.2024.114184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/24/2024] [Accepted: 02/28/2024] [Indexed: 05/19/2024]
Abstract
The global market for plant-based meat alternatives (PBMAs) is expanding quickly. In this narrative review, analysis of the most recent scientific literature was achieved to understand the nutritional profile, health implications, and the challenges faced by PBMAs. On the positive side, most PBMAs are good sources of dietary fiber, contain phytochemicals, have comparable levels of iron, and are lower in calories, saturated fat, and cholesterol than meat. However, PBMAs frequently contain anti-nutrients, have less protein, iron, and vitamin B12, are lower in protein quality, and also have higher amounts of sodium. Substituting PBMAs for meats may cause iron, vitamin B12, and less likely protein deficiency for these vulnerable population such as women, older adults, and individuals with disorders. PBMAs fall into the category of ultra-processed foods, indicating a need to develop minimally processed, clean-label products. Replacing red meat with healthy plant-based foods is associated with lower risks of cardiovascular diseases, type 2 diabetes, and total mortality. There is a lack of robust, long-term evidence on the role of PBMAs consumption in health. As the nutrient contents of PBMAs can vary, consumers must read nutrition facts labels and ingredient lists to select a product that best fits their nutritional and health objectives.
Collapse
Affiliation(s)
- Rowan El Sadig
- Department of Agricultural, Food and Nutritional Science, University of Alberta, 4-10 Agriculture/Forestry Centre, Edmonton, Alberta T6G 2P5, Canada
| | - Jianping Wu
- Department of Agricultural, Food and Nutritional Science, University of Alberta, 4-10 Agriculture/Forestry Centre, Edmonton, Alberta T6G 2P5, Canada.
| |
Collapse
|
23
|
Nájera Espinosa S, Hadida G, Jelmar Sietsma A, Alae-Carew C, Turner G, Green R, Pastorino S, Picetti R, Scheelbeek P. Mapping the evidence of novel plant-based foods: a systematic review of nutritional, health, and environmental impacts in high-income countries. Nutr Rev 2024:nuae031. [PMID: 38657969 DOI: 10.1093/nutrit/nuae031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024] Open
Abstract
CONTEXT Shifting from current dietary patterns to diets rich in plant-based (PB) foods and lower in animal-based foods (ABFs) is generally regarded as a suitable strategy to improve nutritional health and reduce environmental impacts. Despite the recent growth in supply of and demand for novel plant-based foods (NPBFs), a comprehensive overview is lacking. OBJECTIVES This review provides a synthesis of available evidence, highlights challenges, and informs public health and environmental strategies for purposeful political decision-making by systematically searching, analyzing, and summarizing the available literature. DATA SOURCES Five peer-reviewed databases and grey literature sources were rigorously searched for publications. DATA EXTRACTION Study characteristics meeting the inclusion criteria regarding NPBF nutrient composition and health and environmental outcomes in high-income countries were extracted. DATA ANALYSIS Fifty-seven peer-reviewed and 36 grey literature sources were identified; these were published in 2016-2022. NPBFs typically have substantially lower environmental impacts than ABFs, but the nutritional contents are complex and vary considerably across brands, product type, and main primary ingredient. In the limited evidence on the health impacts, shifts from ABFs to PB meats were associated with positive health outcomes. However, results were mixed for PB drinks, with links to micronutrient deficiencies. CONCLUSION If carefully selected, certain NPBFs have the potential to be healthier and nutrient-rich alternatives to ABFs and typically have smaller environmental footprints. More disaggregated categorization of various types of NPBFs would be a helpful step in guiding consumers and key stakeholders to make informed decisions. To enable informed policymaking on the inclusion of NPBFs in dietary transitions as part of a wider net-zero and health strategy, future priorities should include nutritional food standards, labelling, and subdivisions or categorizations of NPBFs, as well as short- and long-term health studies evaluating dietary shifts from ABFs to NPBFs and standardized environmental impact assessments, ideally from independent funders.
Collapse
Affiliation(s)
- Sarah Nájera Espinosa
- Department of Population Health, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Genevieve Hadida
- Department of Population Health, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Anne Jelmar Sietsma
- Priestley International Centre for Climate, University of Leeds, Leeds, United Kingdom
| | - Carmelia Alae-Carew
- Department of Population Health, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Grace Turner
- Department of Public Health, Environment and Society, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Rosemary Green
- Department of Population Health, London School of Hygiene and Tropical Medicine, London, United Kingdom
- Centre on Climate Change and Planetary Health, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Silvia Pastorino
- Department of Population Health, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Roberto Picetti
- Department of Population Health, London School of Hygiene and Tropical Medicine, London, United Kingdom
- Centre on Climate Change and Planetary Health, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Pauline Scheelbeek
- Department of Population Health, London School of Hygiene and Tropical Medicine, London, United Kingdom
- Centre on Climate Change and Planetary Health, London School of Hygiene & Tropical Medicine, London, United Kingdom
| |
Collapse
|
24
|
Hoffman R. Defining "plant-based meats". Eur J Clin Nutr 2024; 78:72-73. [PMID: 37679569 DOI: 10.1038/s41430-023-01340-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 08/25/2023] [Accepted: 08/29/2023] [Indexed: 09/09/2023]
Affiliation(s)
- Richard Hoffman
- School of Life Sciences, University of Hertfordshire, Hatfield, Herts, AL10 9AB, UK.
| |
Collapse
|
25
|
|
26
|
Pentjuss A, Bolmanis E, Suleiko A, Didrihsone E, Suleiko A, Dubencovs K, Liepins J, Kazaks A, Vanags J. Pichia pastoris growth-coupled heme biosynthesis analysis using metabolic modelling. Sci Rep 2023; 13:15816. [PMID: 37739976 PMCID: PMC10516909 DOI: 10.1038/s41598-023-42865-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 09/15/2023] [Indexed: 09/24/2023] Open
Abstract
Soy leghemoglobin is one of the most important and key ingredients in plant-based meat substitutes that can imitate the colour and flavour of the meat. To improve the high-yield production of leghemoglobin protein and its main component-heme in the yeast Pichia pastoris, glycerol and methanol cultivation conditions were studied. Additionally, in-silico metabolic modelling analysis of growth-coupled enzyme quantity, suggests metabolic gene up/down-regulation strategies for heme production. First, cultivations and metabolic modelling analysis of P. pastoris were performed on glycerol and methanol in different growth media. Glycerol cultivation uptake and production rates can be increased by 50% according to metabolic modelling results, but methanol cultivation-is near the theoretical maximum. Growth-coupled metabolic optimisation results revealed the best feasible upregulation (33 reactions) (1.47% of total reactions) and 66 downregulation/deletion (2.98% of total) reaction suggestions. Finally, we describe reaction regulation suggestions with the highest potential to increase heme production yields.
Collapse
Affiliation(s)
- Agris Pentjuss
- Microbiology and Biotechnology Institute, University of Latvia, Jelgavas Street 1, Riga, 1004, Latvia.
- Latvian State Institute of Wood Chemistry, Dzerbenes Street 27, Riga, 1006, Latvia.
| | - Emils Bolmanis
- Latvian Biomedical Research and Study Centre, Ratsupites Street 1 K-1, Riga, 1067, Latvia
| | - Anastasija Suleiko
- Latvian State Institute of Wood Chemistry, Dzerbenes Street 27, Riga, 1006, Latvia
- Bioreactors.Net AS, Dzerbenes Street 27, Riga, 1006, Latvia
| | - Elina Didrihsone
- Latvian State Institute of Wood Chemistry, Dzerbenes Street 27, Riga, 1006, Latvia
| | - Arturs Suleiko
- Latvian State Institute of Wood Chemistry, Dzerbenes Street 27, Riga, 1006, Latvia
- Bioreactors.Net AS, Dzerbenes Street 27, Riga, 1006, Latvia
| | - Konstantins Dubencovs
- Latvian State Institute of Wood Chemistry, Dzerbenes Street 27, Riga, 1006, Latvia
- Bioreactors.Net AS, Dzerbenes Street 27, Riga, 1006, Latvia
| | - Janis Liepins
- Microbiology and Biotechnology Institute, University of Latvia, Jelgavas Street 1, Riga, 1004, Latvia
| | - Andris Kazaks
- Latvian Biomedical Research and Study Centre, Ratsupites Street 1 K-1, Riga, 1067, Latvia
| | - Juris Vanags
- Latvian State Institute of Wood Chemistry, Dzerbenes Street 27, Riga, 1006, Latvia
- Bioreactors.Net AS, Dzerbenes Street 27, Riga, 1006, Latvia
| |
Collapse
|
27
|
Flint M, Bowles S, Lynn A, Paxman JR. Novel plant-based meat alternatives: future opportunities and health considerations. Proc Nutr Soc 2023; 82:370-385. [PMID: 36603854 DOI: 10.1017/s0029665123000034] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Present food systems threaten population and environmental health. Evidence suggests reduced meat and increased plant-based food consumption would align with climate change and health promotion priorities. Accelerating this transition requires greater understanding of determinants of plant-based food choice. A thriving plant-based food industry has emerged to meet consumer demand and support dietary shift towards plant-based eating. 'Traditional' plant-based diets are low-energy density, nutrient dense, low in saturated fat and purportedly associated with health benefits. However, fast-paced contemporary lifestyles continue to fuel growing demand for meat-mimicking plant-based convenience foods which are typically ultra-processed. Processing can improve product safety and palatability and enable fortification and enrichment. However, deleterious health consequences have been associated with ultra-processing, though there is a paucity of equivocal evidence regarding the health value of novel plant-based meat alternatives (PBMAs) and their capacity to replicate the nutritional profile of meat-equivalents. Thus, despite the health halo often associated with plant-based eating, there is a strong rationale to improve consumer literacy of PBMAs. Understanding the impact of extensive processing on health effects may help to justify the use of innovative methods designed to maintain health benefits associated with particular foods and ingredients. Furthering knowledge regarding the nutritional value of novel PBMAs will increase consumer awareness and thus support informed choice. Finally, knowledge of factors influencing engagement of target consumer subgroups with such products may facilitate production of desirable, healthier PBMAs. Such evidence-based food manufacturing practice has the potential to positively influence future individual and planetary health.
Collapse
Affiliation(s)
- Megan Flint
- Food and Nutrition Subject Group, Sheffield Hallam University, Sheffield S1 1WB, UK
| | - Simon Bowles
- Food and Nutrition Subject Group, Sheffield Hallam University, Sheffield S1 1WB, UK
| | - Anthony Lynn
- Food and Nutrition Subject Group, Sheffield Hallam University, Sheffield S1 1WB, UK
| | - Jenny R Paxman
- Food and Nutrition Subject Group, Sheffield Hallam University, Sheffield S1 1WB, UK
| |
Collapse
|
28
|
McClements DJ. Ultraprocessed plant-based foods: Designing the next generation of healthy and sustainable alternatives to animal-based foods. Compr Rev Food Sci Food Saf 2023; 22:3531-3559. [PMID: 37350040 DOI: 10.1111/1541-4337.13204] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 05/29/2023] [Accepted: 06/05/2023] [Indexed: 06/24/2023]
Abstract
Numerous examples of next-generation plant-based foods, such as meat, seafood, egg, and dairy analogs, are commercially available. These products are usually designed to have physicochemical properties, sensory attributes, and functional behaviors that match those of the animal-sourced products they are designed to replace. However, there has been concern about the potential negative impacts of these foods on human nutrition and health. In particular, many of these products have been criticized for being ultraprocessed foods that contain numerous ingredients and are manufactured using harsh processing operations. In this article, the concept of ultraprocessed foods is introduced and its relevance to describe the properties of next-generation plant-based foods is discussed. Most commercial plant-based meat, seafood, egg, and dairy analogs currently available do fall into this category, and so can be classified as ultraprocessed plant-based (UPB) foods. The nutrient content, digestibility, bioavailability, and gut microbiome effects of UPB foods are compared to those of animal-based foods, and the potential consequences of any differences on human health are discussed. Some commercial UPB foods would not be considered healthy based on their nutrient profiles, especially those plant-based cheeses that contain low levels of protein and high levels of fat, starch, and salt. However, it is argued that UPB foods can be designed to have good nutritional profiles and beneficial health effects. Finally, areas where further research are still needed to create a more healthy and sustainable food supply are discussed.
Collapse
Affiliation(s)
- David Julian McClements
- Department of Food Science & Bioengineering, Zhejiang Gongshang University, Hangzhou, China
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts, USA
| |
Collapse
|
29
|
Revel-Muroz A, Akulinin M, Shilova P, Tyakht A, Klimenko N. Stability of human gut microbiome: Comparison of ecological modelling and observational approaches. Comput Struct Biotechnol J 2023; 21:4456-4468. [PMID: 37745638 PMCID: PMC10511340 DOI: 10.1016/j.csbj.2023.08.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/27/2023] [Accepted: 08/27/2023] [Indexed: 09/26/2023] Open
Abstract
The gut microbiome plays a pivotal role in the human body, and perturbations in its composition have been linked to various disorders. Stability is an essential property of a healthy human gut microbiome, which allows it to maintain its functional richness under the external influences. This property has been explored through two distinct methodologies - mathematical modelling based on ecological principles and statistical analysis drawn from observations in interventional studies. Here we conducted a meta-analysis aimed to compare the two approaches utilising the data from 9 interventional and time series studies encompassing 3512 gut microbiome profiles obtained via 16S rRNA gene sequencing. By employing the previously published compositional Lotka-Volterra method, we modelled the dynamics of the microbial community and evaluated ecological stability measures. These measures were compared to those based on observed microbiome changes. There was a substantial correlation between the outcomes of the two approaches. Particularly, local stability assessed within the ecological paradigm was positively correlated with observational stability measures accounting for the compositional nature of microbiome data. Additionally, we were able to reproduce the previously reported inverse relationship between the community's robustness to microorganism loss and local stability, attributed to the distinct impacts of coefficient characterising the network decomposition on these two stability assessments. Our findings demonstrate harmonisation between the ecological and observational approaches to microbiome analysis, advancing the understanding of healthy gut microbiome concept. This paves the way to develop efficient microbiome-targeting interventions for disease prevention and treatment.
Collapse
Affiliation(s)
- Anastasia Revel-Muroz
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - Mikhail Akulinin
- Department of Biological and Medical Physics, Moscow Institute of Physics and Technology, Institutskiy per. 9, Dolgoprudny, Moscow Region, Russia
| | - Polina Shilova
- Department of Biology, Moscow State University, 1–12 Leninskie Gory, Moscow, Russia
| | - Alexander Tyakht
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
- Atlas Biomed Group - Knomx LLC, Interchange House, Office 1.58, 81–85 Station Road, Croydon CR0 2AJ, United Kingdom
| | - Natalia Klimenko
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
- Atlas Biomed Group - Knomx LLC, Interchange House, Office 1.58, 81–85 Station Road, Croydon CR0 2AJ, United Kingdom
| |
Collapse
|
30
|
McClements IF, McClements DJ. Designing healthier plant-based foods: Fortification, digestion, and bioavailability. Food Res Int 2023; 169:112853. [PMID: 37254427 DOI: 10.1016/j.foodres.2023.112853] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 04/12/2023] [Accepted: 04/14/2023] [Indexed: 06/01/2023]
Abstract
Many consumers are incorporating more plant-based foods into their diets as a result of concerns about the environmental, ethical, and health impacts of animal sourced foods like meat, seafood, egg, and dairy products. Foods derived from animals negatively impact the environment by increasing greenhouse gas emissions, land use, water use, pollution, deforestation, and biodiversity loss. The livestock industry confines and slaughters billions of livestock animals each year. There are concerns about the negative impacts of some animal sourced foods, such as red meat and processed meat, on human health. The livestock industry is a major user of antibiotics, which is leading to a rise in the resistance of several pathogenic microorganisms to antibiotics. It is often assumed that a plant-based diet is healthier than one containing more animal sourced foods, but this is not necessarily the case. Eating more fresh fruits, vegetables, nuts, and whole grain cereals has been linked to improved health outcomes but it is unclear whether next-generation plant-based foods, such as meat, seafood, egg, and dairy analogs are healthier than the products they are designed to replace. Many of these new products are highly processed foods that contain high levels of saturated fat, sugar, starch, and salt, and low levels of micronutrients, nutraceuticals, and dietary fibers. Moreover, they are often rapidly digested in the gastrointestinal tract because processing disrupts plant tissues and releases the macronutrients. Consequently, it is important to formulate plant-based foods to reduce the levels of nutrients linked to adverse health effects and increase the levels linked to beneficial health effects. Moreover, it is important to design the food matrix so that the macronutrients are not digested and absorbed too quickly, but the micronutrients are highly bioavailable. In this article, we discuss how next-generation plant-based foods can be made healthier by controlling their nutrient profile, digestibility, and bioavailability.
Collapse
|
31
|
Bester A, O'Brien M, Cotter PD, Dam S, Civai C. Shotgun Metagenomic Sequencing Revealed the Prebiotic Potential of a Fruit Juice Drink with Fermentable Fibres in Healthy Humans. Foods 2023; 12:2480. [PMID: 37444219 DOI: 10.3390/foods12132480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/13/2023] [Accepted: 06/08/2023] [Indexed: 07/15/2023] Open
Abstract
Fibre-based dietary interventions are at the forefront of gut microbiome modulation research, with a wealth of 16S rRNA information to demonstrate the prebiotic effects of isolated fibres. However, there is a distinct lack of data relating to the effect of a combination of soluble and insoluble fibres in a convenient-to-consume fruit juice food matrix on gut microbiota structure, diversity, and function. Here, we aimed to determine the impact of the MOJU Prebiotic Shot, an apple, lemon, ginger, and raspberry fruit juice drink blend containing chicory inulin, baobab, golden kiwi, and green banana powders, on gut microbiota structure and function. Healthy adults (n = 20) were included in a randomised, double-blind, placebo-controlled, cross-over study, receiving 60 mL MOJU Prebiotic Shot or placebo (without the fibre mix) for 3 weeks with a 3-week washout period between interventions. Shotgun metagenomics revealed significant between-group differences in alpha and beta diversity. In addition, the relative abundance of the phyla Actinobacteria and Desulfobacteria was significantly increased as a result of the prebiotic intervention. Nine species were observed to be differentially abundant (uncorrected p-value of <0.05) as a result of the prebiotic treatment. Of these, Bifidobacterium adolescentis and CAG-81 sp900066785 (Lachnospiraceae) were present at increased abundance relative to baseline. Additionally, KEGG analysis showed an increased abundance in pathways associated with arginine biosynthesis and phenylacetate degradation during the prebiotic treatment. Our results show the effects of the daily consumption of 60 mL MOJU Prebiotic Shot for 3 weeks and provide insight into the functional potential of B. adolescentis.
Collapse
Affiliation(s)
- Adri Bester
- London Agri Food Innovation Clinic (LAFIC), School of Applied Sciences, London South Bank University, London SE1 0AA, UK
| | | | | | | | - Claudia Civai
- London Agri Food Innovation Clinic (LAFIC), School of Applied Sciences, London South Bank University, London SE1 0AA, UK
| |
Collapse
|
32
|
Wang Y, Jian C. Novel plant-based meat alternatives: Implications and opportunities for consumer nutrition and health. ADVANCES IN FOOD AND NUTRITION RESEARCH 2023; 106:241-274. [PMID: 37722774 DOI: 10.1016/bs.afnr.2023.03.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/20/2023]
Abstract
Against the backdrop of the global protein transition needed to remain within planetary boundaries, there is an influx of plant-based meat alternatives that seek to approximate the texture, flavor and/or nutrient profiles of conventional animal meat. These novel plant-based meat alternatives, enabled by advances in food technology, can be fundamentally different from the whole-plant foods from which they are derived. One of the reasons is the necessity to use food additives on various occasions, since consumers' acceptance of plant-based meat products primarily depends on the organoleptic properties. Consequently, a high degree of heterogeneity in formulation and nutritional profiles exists both within and between product categories of plant-based meat alternatives with unknown effects on several aspects of human health. This is further complicated by the differences in digestibility and bioavailability between proteins from animal and plant sources, which have a profound impact on colonic fermentation, nutritional adequacy and potential health effects. On the other hand, emerging strategies provide opportunities to develop affordable, delicious and nutritious plant-based meat alternatives that align with consumer interests.
Collapse
Affiliation(s)
- Yaqin Wang
- Department of Food and Nutrition, University of Helsinki, Helsinki, Finland.
| | - Ching Jian
- Department of Food and Nutrition, University of Helsinki, Helsinki, Finland; Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
33
|
Elechi JOG, Sirianni R, Conforti FL, Cione E, Pellegrino M. Food System Transformation and Gut Microbiota Transition: Evidence on Advancing Obesity, Cardiovascular Diseases, and Cancers-A Narrative Review. Foods 2023; 12:2286. [PMID: 37372497 PMCID: PMC10297670 DOI: 10.3390/foods12122286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/22/2023] [Accepted: 05/23/2023] [Indexed: 06/29/2023] Open
Abstract
Food, a vital component of our daily life, is fundamental to our health and well-being, and the knowledge and practices relating to food have been passed down from countless generations of ancestors. Systems may be used to describe this extremely extensive and varied body of agricultural and gastronomic knowledge that has been gathered via evolutionary processes. The gut microbiota also underwent changes as the food system did, and these alterations had a variety of effects on human health. In recent decades, the gut microbiome has gained attention due to its health benefits as well as its pathological effects on human health. Many studies have shown that a person's gut microbiota partially determines the nutritional value of food and that diet, in turn, shapes both the microbiota and the microbiome. The current narrative review aims to explain how changes in the food system over time affect the makeup and evolution of the gut microbiota, advancing obesity, cardiovascular disease (CVD), and cancer. After a brief discussion of the food system's variety and the gut microbiota's functions, we concentrate on the relationship between the evolution of food system transformation and gut microbiota system transition linked to the increase of non-communicable diseases (NCDs). Finally, we also describe sustainable food system transformation strategies to ensure healthy microbiota composition recovery and maintain the host gut barrier and immune functions to reverse advancing NCDs.
Collapse
Affiliation(s)
- Jasper Okoro Godwin Elechi
- Department of Pharmacy and Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy; (R.S.); (F.L.C.); (E.C.); (M.P.)
| | | | | | | | | |
Collapse
|
34
|
Ashkar F, Wu J. Effects of Food Factors and Processing on Protein Digestibility and Gut Microbiota. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37267055 DOI: 10.1021/acs.jafc.3c00442] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Protein is an essential macronutrient. The nutritional needs of dietary proteins are met by digestion and absorption in the small intestine. Indigestible proteins are further metabolized in the gut and produce metabolites via protein fermentation. Thus, protein indigestibility exerts a wide range of effects on gut microbiota composition and function. This review aims to discuss protein digestibility, the effects of food factors, such as protein sources, intake level, and amino acid composition, and making meat analogues. Besides, it provides an inventory of antinutritional factors and processing techniques that influence protein digestibility and, consequently, the diversity and composition of intestinal microbiota. Future studies are warranted to understand the implication of plant-based analogues on protein digestibility and gut microbiota and to elucidate the mechanisms concerning protein digestibility to host gut microbiota using various omics techniques.
Collapse
Affiliation(s)
- Fatemeh Ashkar
- Department of Agricultural Food and Nutritional Science, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
| | - Jianping Wu
- Department of Agricultural Food and Nutritional Science, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
| |
Collapse
|
35
|
Messina M, Duncan AM, Glenn AJ, Mariotti F. Perspective: Plant-Based Meat Alternatives Can Help Facilitate and Maintain a Lower Animal to Plant Protein Intake Ratio. Adv Nutr 2023; 14:392-405. [PMID: 36906147 PMCID: PMC10201680 DOI: 10.1016/j.advnut.2023.03.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 02/28/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023] Open
Abstract
The health and environmental advantages of plant-predominant diets will likely lead to increasing numbers of consumers reducing their reliance on animal products. Consequently, health organizations and professionals will need to provide guidance on how best to make this change. In many developed countries, nearly twice as much protein is derived from animal versus plant sources. Potential benefits could result from consuming a higher share of plant protein. Advice to consume equal amounts from each source is more likely to be embraced than advice to eschew all or most animal products. However, much of the plant protein currently consumed comes from refined grains, which is unlikely to provide the benefits associated with plant-predominant diets. In contrast, legumes provide ample amounts of protein as well other components such as fiber, resistant starch, and polyphenolics, which are collectively thought to exert health benefits. But despite their many accolades and endorsement by the nutrition community, legumes make a negligible contribution to global protein intake, especially in developed countries. Furthermore, evidence suggests the consumption of cooked legumes will not substantially increase over the next several decades. We argue here that plant-based meat alternatives (PBMAs) made from legumes are a viable alternative, or a complement, to consuming legumes in the traditional manner. These products may be accepted by meat eaters because they can emulate the orosensory properties and functionality of the foods they are intended to replace. PBMAs can be both transition foods and maintenance foods in that they can facilitate the transition to a plant-predominant diet and make it easier to maintain. PBMAs also have a distinct advantage of being able to be fortified with shortfall nutrients in plant-predominant diets. Whether existing PBMAs provide similar health benefits as whole legumes, or can be formulated to do so, remains to be established.
Collapse
Affiliation(s)
- Mark Messina
- Soy Nutrition Institute Global, Washington, DC, USA.
| | - Alison M Duncan
- Department of Human Health and Nutritional Sciences, University of Guelp, Guelph, Ontario, Canada
| | - Andrea J Glenn
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Department of Nutritional Sciences, University of Toronto, Toronto, Ontario, Canada; Toronto 3D Knowledge Synthesis and Clinical Trials Unit, Clinical Nutrition and Risk Factor Modification Centre, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Francois Mariotti
- Université Paris-Saclay, AgroParisTech, INRAE, UMR PNCA, Palaiseau, France
| |
Collapse
|
36
|
Zhou Z, Amer H, Sultani A, Nasr P, Wang Y, Corradini MG, Douglas Goff H, LaPointe G, Rogers MA. The digestive fate of beef versus plant-based burgers from bolus to stool. Food Res Int 2023; 167:112688. [PMID: 37087260 DOI: 10.1016/j.foodres.2023.112688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/22/2023] [Accepted: 03/09/2023] [Indexed: 03/18/2023]
Abstract
Ultra-processed, plant-based burgers (PB) and traditional comminuted-beef burgers (BB) share similar organoleptic characteristics, yet a knowledge gap exists in understanding how consumption of these divergent physical structures alters the lipemic response and gut microbiota. PB, comprised of highly refined ingredients, is formulated with no intact whole food structure, while BB entraps lipids throughout the myofibrillar protein network. PB presented significantly higher free fatty acid (FFA) bioaccessibility (28.2 ± 4.80 %) compared to BB (8.73 ± 0.52 %), as obtained from their FFA release profiles over digestion time after characterizing them with a modified logistic model (SLM), using the simulated TIM Gastro-Intestinal Model (TIM-1). Additionally, the rate of lipolysis, k, obtained from the SLM for PB (90% CI [0.0175, 0.0277] min-1) was higher than for BB (90% CI [0.0113, 0.0171] min-1). Using the Simulated Human Intestinal Microbial Ecosystem (SHIME®), the Firmicutes to Bacteroidetes ratio (F/B ratio) was significantly higher for PB than BB; and linear discriminant analysis effect size (LEfSe) showed Clostridium and Citrobacter were more highly represented in the microbial community for the PB feed, whereas BB feed differentially enriched Megasphaera, Bacteroides, Alistipes, and Blautia at the genus level. Additionally, short-chain fatty acid (SCFA) production was altered (p < 0.05) site-specifically in each colon vessel, which could be attributed to the available substrates and changes in microbial composition. Total SCFAs were significantly higher for PB in the ascending colon (AC) and descending colon (DC) but higher for BB only in the transverse colon (TC). This research illustrates the crucial role of meat analog physical structure in modulating nutritional aspects beyond food composition alone.
Collapse
|
37
|
Sidhu SRK, Kok CW, Kunasegaran T, Ramadas A. Effect of Plant-Based Diets on Gut Microbiota: A Systematic Review of Interventional Studies. Nutrients 2023; 15:nu15061510. [PMID: 36986240 PMCID: PMC10057430 DOI: 10.3390/nu15061510] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/12/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
Plant-based diets have grown increasingly popular across the globe, mainly for their health and environmental benefits. Several studies have identified a link between plant-based diets and the decreased risk of developing cardiovascular diseases, obesity, and other health issues. We systematically reviewed human interventions to identify the relationship between various plant-based food items and the gut microbiome, alongside the biochemical and anthropometric measurements as secondary findings. The study selection process was completed using the COVIDENCE platform. Overall, 203 studies were identified, of which 101 were chosen for title and abstract screening by two independent authors. Following this process, 78 studies were excluded, and the full texts and the reference lists of the remaining 23 records were reviewed using the review eligibility criteria. A manual search yielded five additional articles. In the end, 12 studies were included in the systematic review. We found evidence for short- to moderate-term beneficial effects of plant-based diets versus conventional diets (duration ≤ 13 months) on gut microbiome composition and biochemical and anthropometric measurements in healthy participants as well as obese, cardiovascular, and rheumatoid arthritis patients. However, contradictory results were observed for Enterobacteriaceae, at the family level, and for Faecalibacterium and Coprococcus, at the genus level, of gut microbiome composition. The relationship between plant-based diets and the gut microbiome, alongside their underlying metabolic and inflammatory effects, remains largely unexplored. Hence more interventional studies are needed to address these questions.
Collapse
Affiliation(s)
- Shaneerra Raajlynn Kaur Sidhu
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway 47500, Selangor Darul Ehsan, Malaysia
| | - Chin Wei Kok
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway 47500, Selangor Darul Ehsan, Malaysia
| | - Thubasni Kunasegaran
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway 47500, Selangor Darul Ehsan, Malaysia
| | - Amutha Ramadas
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway 47500, Selangor Darul Ehsan, Malaysia
| |
Collapse
|
38
|
Rizzolo-Brime L, Orta-Ramirez A, Puyol Martin Y, Jakszyn P. Nutritional Assessment of Plant-Based Meat Alternatives: A Comparison of Nutritional Information of Plant-Based Meat Alternatives in Spanish Supermarkets. Nutrients 2023; 15:nu15061325. [PMID: 36986056 PMCID: PMC10058979 DOI: 10.3390/nu15061325] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 02/28/2023] [Accepted: 03/05/2023] [Indexed: 03/30/2023] Open
Abstract
Since the classification of processed meat as carcinogenic by the International Agency for Research on Cancer (IARC) in 2015, an increase in consumption of plant-based meat alternatives (PBMAs) has been observed worldwide. This occurs in a context characterized by concern for health, animal welfare, and sustainability; however, evidence of their nutritional quality is still limited. Therefore, our objective was to evaluate the nutritional profile and processing degree of PBMAs available in Spain. In 2020, products from seven Spanish supermarkets were analyzed for their nutritional content and ingredients. Of the 148 products, the majority were low in sugars but moderate in carbohydrates, total and saturated fat, and high in salt. The main vegetable protein sources were soy (91/148) and wheat gluten (42/148). Comparatively, 43/148 contained animal protein, the most common being egg. Overall, PBMAs had a long list of ingredients and additives, and they were classified as ultra-processed foods (UPFs) according to the NOVA system. This study shows that the PBMAs available in Spanish supermarkets have a variable nutritional composition within and between categories. Further research is needed to determine if replacing meat with these UPFs could be a good alternative towards healthier and more sustainable dietary patterns.
Collapse
Affiliation(s)
- Lucía Rizzolo-Brime
- Unit of Nutrition and Cancer, Cancer Epidemiology Research Programme, Catalan Institute of Oncology (ICO), Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, 08908 Barcelona, Spain
| | - Alicia Orta-Ramirez
- Blanquerna School of Health Sciences, Ramon Llull University, 08025 Barcelona, Spain
| | - Yael Puyol Martin
- Unit of Nutrition and Cancer, Cancer Epidemiology Research Programme, Catalan Institute of Oncology (ICO), Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, 08908 Barcelona, Spain
| | - Paula Jakszyn
- Unit of Nutrition and Cancer, Cancer Epidemiology Research Programme, Catalan Institute of Oncology (ICO), Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, 08908 Barcelona, Spain
- Blanquerna School of Health Sciences, Ramon Llull University, 08025 Barcelona, Spain
| |
Collapse
|
39
|
Melville H, Shahid M, Gaines A, McKenzie BL, Alessandrini R, Trieu K, Wu JHY, Rosewarne E, Coyle DH. The nutritional profile of plant-based meat analogues available for sale in Australia. Nutr Diet 2023; 80:211-222. [PMID: 36651788 DOI: 10.1111/1747-0080.12793] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/24/2022] [Accepted: 12/09/2022] [Indexed: 01/19/2023]
Abstract
AIM To assess the nutritional quality of plant-based meat analogues in Australia, compared to equivalent meat products, and to assess levels of micronutrient fortification in meat analogues. METHODS This cross-sectional study used nutrition composition data for products collected in 2021 from major supermarkets in Australia. Nutritional quality was assessed using the Health Star Rating, energy (kJ), protein (g), saturated fat (g), sodium (mg), total sugars (g), and fibre content (g) per 100 g, and level of food processing using the NOVA classification. Proportion of products fortified with iron, vitamin B12 and zinc were reported. Differences in health star rating and nutrients between food categories were assessed using independent t-tests. RESULTS Seven hundred ninety products (n = 132 plant-based and n = 658 meat) across eight food categories were analysed. Meat analogues had a higher health star rating (mean 1.2 stars, [95% CI: 1.0-1.4 stars], p < 0.001), lower mean saturated fat (-2.4 g/100 g, [-2.9 to -1.8 g/100 g], p < 0.001) and sodium content (-132 mg/100 g, [-186 to -79 mg/100 g], p < 0.001), but higher total sugar content (0.7 g/100 g, [0.4-1.1 g/100 g], p < 0.001). Meat analogues and meat products had a similar proportion of ultra-processed products (84% and 89%, respectively). 12.1% of meat analogues were fortified with iron, vitamin B12 and zinc. CONCLUSION Meat analogues generally had a higher health star rating compared with meat equivalents, however, the nutrient content varied. Most meat analogues were also ultra-processed and few are fortified with key micronutrients found in meat. More research is needed to understand the health impact of these foods.
Collapse
Affiliation(s)
- Hannah Melville
- The University of Sydney, Children's Hospital at Westmead Clinical School, Westmead, Australia
| | - Maria Shahid
- The George Institute for Global Health, University of New South Wales, Sydney, Australia
| | - Allison Gaines
- The George Institute for Global Health, University of New South Wales, Sydney, Australia.,Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, United Kingdom
| | - Briar L McKenzie
- The George Institute for Global Health, University of New South Wales, Sydney, Australia
| | - Roberta Alessandrini
- Wolfson Institute of Population Health, Queen Mary University of London, London, United Kingdom
| | - Kathy Trieu
- The George Institute for Global Health, University of New South Wales, Sydney, Australia
| | - Jason H Y Wu
- The George Institute for Global Health, University of New South Wales, Sydney, Australia
| | - Emalie Rosewarne
- The George Institute for Global Health, University of New South Wales, Sydney, Australia
| | - Daisy H Coyle
- The George Institute for Global Health, University of New South Wales, Sydney, Australia
| |
Collapse
|
40
|
Muhlhausler BS, Belobrajdic D, Wymond B, Benassi-Evans B. Assessing the Effect of Plant-Based Mince on Fullness and Post-Prandial Satiety in Healthy Male Subjects. Nutrients 2022; 14:nu14245326. [PMID: 36558487 PMCID: PMC9781508 DOI: 10.3390/nu14245326] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/09/2022] [Accepted: 12/10/2022] [Indexed: 12/16/2022] Open
Abstract
This study aimed to assess the effect of substituting plant-based mince for beef mince in a standard pasta meal on the amount consumed and on objective and subjective measures of post-prandial satiety. Healthy, adult males (n = 24) consumed a pasta lunch meal containing either plant-based or beef mince at separate visits, and the amount consumed measured at each visit. Perceptions of hunger, fullness and satisfaction were recorded and blood samples collected before and for 3 h after eating, when a buffet meal was provided. Participants consumed 586 kJ less of the pasta meal prepared with plant-based mince compared to beef mince (p < 0.05). Energy intake at the buffet meal and measures of fullness, satiety and satisfaction after the pasta meal were not different between plant and beef mince (p > 0.05). Post-prandial Glucagon-Like Peptide-1 (GLP-1), but not insulin or leptin concentrations, were lower after the plant-based pasta meal (p < 0.05). Our results suggest that the pasta meal containing plant-based mince was more satiating than an equivalent meal prepared with beef mince, and that this was not associated with greater energy intake at a subsequent meal occasion. Further studies that evaluate the longer-term effects of replacing meat with plant-based mince on energy intakes and explore the mechanisms underlying the lower consumption of the plant-based mince meal would be valuable.
Collapse
Affiliation(s)
- Beverly S. Muhlhausler
- Human Health, Health and Biosecurity, CSIRO, Adelaide, SA 5000, Australia
- School of Agriculture, Food and Wine, The University of Adelaide, Adelaide, SA 5005, Australia
- South Australian Health and Medical Research Institute, Adelaide, SA 5001, Australia
- Correspondence: ; Tel.: +61-(0)8305-0697
| | - Damien Belobrajdic
- Human Health, Health and Biosecurity, CSIRO, Adelaide, SA 5000, Australia
| | - Brooke Wymond
- Human Health, Health and Biosecurity, CSIRO, Adelaide, SA 5000, Australia
| | | |
Collapse
|
41
|
Plant-based animal product alternatives are healthier and more environmentally sustainable than animal products. FUTURE FOODS 2022. [DOI: 10.1016/j.fufo.2022.100174] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
|
42
|
Safdar B, Zhou H, Li H, Cao J, Zhang T, Ying Z, Liu X. Prospects for Plant-Based Meat: Current Standing, Consumer Perceptions, and Shifting Trends. Foods 2022; 11:3770. [PMID: 36496577 PMCID: PMC9739557 DOI: 10.3390/foods11233770] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/14/2022] [Accepted: 11/17/2022] [Indexed: 11/24/2022] Open
Abstract
Dietary habits have a substantial influence on both planet and individual health. High intake of animal products has significant negative effects on the environment and on human health; hence, a reduction in meat consumption is necessary. The transition towards plant-based meat (PBM) is one of the potential solutions for environmental and health issues. To achieve this goal, it is important to understand the dietary habits and demands of consumers. This review was designed with a focus on PBM alternatives, dietary shifts during the COVID-19 pandemic, the drivers of consumers' perceptions in various countries, and the measures that can promote the shift towards PBM. The PBM market is predicted to grow with rising awareness, familiarity, and knowledge in the coming years. Companies must focus on the categories of anticipated benefits to aid consumers in making the switch to a diet higher in PBM alternatives if they want to win over the target market.
Collapse
Affiliation(s)
- Bushra Safdar
- National Soybean Processing Industry Technology Innovation Center, Beijing Technology and Business University (BTBU), Beijing 100048, China
- Plant Meat (Hangzhou) Health Technology Limited Company, Hangzhou 311121, China
| | - Haochun Zhou
- Plant Meat (Hangzhou) Health Technology Limited Company, Hangzhou 311121, China
| | - He Li
- National Soybean Processing Industry Technology Innovation Center, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Jinnuo Cao
- Plant Meat (Hangzhou) Health Technology Limited Company, Hangzhou 311121, China
| | - Tianyu Zhang
- National Soybean Processing Industry Technology Innovation Center, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Zhiwei Ying
- Plant Meat (Hangzhou) Health Technology Limited Company, Hangzhou 311121, China
| | - Xinqi Liu
- National Soybean Processing Industry Technology Innovation Center, Beijing Technology and Business University (BTBU), Beijing 100048, China
- Plant Meat (Hangzhou) Health Technology Limited Company, Hangzhou 311121, China
| |
Collapse
|
43
|
Lappi J, Silventoinen-Veijalainen P, Vanhatalo S, Rosa-Sibakov N, Sozer N. The nutritional quality of animal-alternative processed foods based on plant or microbial proteins and the role of the food matrix. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.09.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
44
|
Romanov VA, Karasev IA, Klimenko NS, Koshechkin SI, Tyakht AV, Malikhova OA. Luminal and Tumor-Associated Gut Microbiome Features Linked to Precancerous Lesions Malignancy Risk: A Compositional Approach. Cancers (Basel) 2022; 14:5207. [PMID: 36358626 PMCID: PMC9653741 DOI: 10.3390/cancers14215207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 10/19/2022] [Accepted: 10/20/2022] [Indexed: 08/30/2023] Open
Abstract
Colorectal cancer is the third most commonly diagnosed cancer worldwide. Human gut microbiome plays important roles in protecting against it, as well as contributing to its onset and progression. Identification of specific bacterial taxa associated with early stages of colorectal cancer may help develop effective microbiome-based diagnostics. For precancerous lesions, links of their characteristics to luminal and tumor-associated microbiome composition are to be elucidated. Paired stool and tumor brush biopsy samples were collected from 50 patients with precancerous lesions and early forms of colon cancer; their microbial communities were profiled using high-throughput 16S rRNA sequencing. We showed that the microbiome differences between stool and biopsy samples can be to a high extent computationally corrected. Compositionality-aware statistical analysis of microbiome composition revealed its associations with the number of lesions, lesion type, location and malignization pathway. A major determinant of precancerous lesions malignancy risk-the number of lesions-was positively associated with the abundance of H2S-producing taxa. Our results contribute to the basis for developing early non-invasive colorectal cancer diagnostics via identifying microorganisms likely participating in early stages of cancer pathogenesis.
Collapse
Affiliation(s)
- Vladimir A. Romanov
- Atlas Biomed Group—Knomx LLC, Tintagel House, 92 Albert Embankment, Lambeth, London SE1 7TY, UK
| | - Ivan A. Karasev
- N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia, 24 Kashirskoe Shosse, 115478 Moscow, Russia
| | - Natalia S. Klimenko
- Atlas Biomed Group—Knomx LLC, Tintagel House, 92 Albert Embankment, Lambeth, London SE1 7TY, UK
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology Russian Academy of Sciences, 34/5 Vavilova Str., 119334 Moscow, Russia
| | - Stanislav I. Koshechkin
- Atlas Biomed Group—Knomx LLC, Tintagel House, 92 Albert Embankment, Lambeth, London SE1 7TY, UK
| | - Alexander V. Tyakht
- Atlas Biomed Group—Knomx LLC, Tintagel House, 92 Albert Embankment, Lambeth, London SE1 7TY, UK
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology Russian Academy of Sciences, 34/5 Vavilova Str., 119334 Moscow, Russia
| | - Olga A. Malikhova
- N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia, 24 Kashirskoe Shosse, 115478 Moscow, Russia
| |
Collapse
|
45
|
Crimarco A, Landry MJ, Carter MM, Gardner CD. Assessing the effects of alternative plant-based meats v. animal meats on biomarkers of inflammation: a secondary analysis of the SWAP-MEAT randomized crossover trial. J Nutr Sci 2022; 11:e82. [PMID: 36304815 PMCID: PMC9554424 DOI: 10.1017/jns.2022.84] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 08/29/2022] [Accepted: 08/30/2022] [Indexed: 12/14/2022] Open
Abstract
Alternative plant-based meats have grown in popularity with consumers recently and researchers are examining the potential health effects, or risks, from consuming these products. Because there have been no studies to date that have specifically assessed the health effects of plant-based meats on biomarkers of inflammation, the purpose of this work was to conduct a secondary analysis of the Study With Appetizing Plantfood - Meat Eating Alternatives Trial (SWAP-MEAT). SWAP-MEAT was a randomised crossover trial that involved generally healthy adults eating 2 or more servings of plant-based meats per day for 8 weeks (i.e. Plant phase) followed by 2 or more servings of animal meats per day for 8 weeks (i.e. Animal phase). Results of linear mixed-effects models indicated only 4 out of 92 biomarkers reached statistical significance. The results were contrary to our hypothesis, since we expected relative improvements in biomarkers of inflammation from the plant-based meats.
Collapse
Affiliation(s)
- Anthony Crimarco
- Stanford Prevention Research Center, Stanford School of Medicine, Stanford, CA, USA
| | - Matthew J. Landry
- Stanford Prevention Research Center, Stanford School of Medicine, Stanford, CA, USA
| | - Matthew M. Carter
- Microbiology and Immunology, Stanford School of Medicine, Stanford, CA, USA
| | | |
Collapse
|
46
|
Plant-Based Meat Analogues from Alternative Protein: A Systematic Literature Review. Foods 2022; 11:foods11182870. [PMID: 36140998 PMCID: PMC9498552 DOI: 10.3390/foods11182870] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/09/2022] [Accepted: 09/13/2022] [Indexed: 11/17/2022] Open
Abstract
This study aimed to conduct a systematic literature review (SLR) of the research performed in the plant-based meat analogues area. Historical, current, and future tendencies are discussed. The paper offers a comprehensive SLR coupled with a bibliometric analysis of the publication from 1972 to January 2022. The articles were obtained using a research string and precise inclusion and exclusion criteria from two prominent databases, Scopus and Web of Science (WoS). The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) flow technique was used to describe the data screening and selection. In total, 84 publications were selected for further analysis after a thorough literature assessment. From this study, six main themes were identified: (1) objectives of the study; (2) type of plant protein; (3) product type; (4) added ingredients; (5) texturization technique; and (6) quality assessment considered in the studies. Recent trends in publication imply that meat analogue technology is gaining prominence. This review revealed significant research on improving meat analogues via texturization. Even though extrusion is used industrially, the technique is still in its infancy and needs improvement. Future studies should focus more on fiber and protein-protein interactions, macromolecule conformation and mechanisms, diversifying or improving current methods, sensory attributes, and gastrointestinal absorption rate of each novel protein ingredient.
Collapse
|
47
|
Wang J, Kadyan S, Ukhanov V, Cheng J, Nagpal R, Cui L. Recent advances in the health benefits of pea protein (Pisum sativum): bioactive peptides and the interaction with the gut microbiome. Curr Opin Food Sci 2022. [DOI: 10.1016/j.cofs.2022.100944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
48
|
Giacalone D, Clausen MP, Jaeger SR. Understanding barriers to consumption of plant-based foods and beverages: Insights from sensory and consumer science. Curr Opin Food Sci 2022. [DOI: 10.1016/j.cofs.2022.100919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
49
|
Gastaldello A, Giampieri F, De Giuseppe R, Grosso G, Baroni L, Battino M. The rise of processed meat alternatives: A narrative review of the manufacturing, composition, nutritional profile and health effects of newer sources of protein, and their place in healthier diets. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
50
|
Bryngelsson S, Moshtaghian H, Bianchi M, Hallström E. Nutritional assessment of plant-based meat analogues on the Swedish market. Int J Food Sci Nutr 2022; 73:889-901. [PMID: 35658803 DOI: 10.1080/09637486.2022.2078286] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Nutritional quality of 142 plant-based meat analogues (PBMAs) on the Swedish market were assessed by nutritional contribution (NC) to recommended nutrient intake, three labelling systems (Keyhole, Nutri-Score, nutrition claims) and comparisons to meat references. Based on median (min-max) NC for macronutrients, PBMAs in general appeared as healthy options to meat due to higher NC per 100 g for fibre [PBMAs: 15% (1-33%) vs meat: 0% (0-2%)] and lower NC for saturated fat [PBMAs: 4% (0-59%) vs meat: 15% (1-51%)]. The NC per 100 g for salt was substantial for both PBMAs [25% (5-52%)] and meat [24% (2-55%)]. Limited data for micronutrients indicated that PBMAs are higher in iron compared to meat. Nutrition quality varied both between and within product categories. Mince, bite/fillet and nugget analogues were the main healthier categories, according to labelling systems. Bioavailability of iron, protein quality and effects of processing are important future aspects to consider.
Collapse
Affiliation(s)
- Susanne Bryngelsson
- Department of Agriculture and Food, RISE Research Institutes of Sweden, Lund, Sweden
| | - Hanieh Moshtaghian
- Department of Agriculture and Food, RISE Research Institutes of Sweden, Gothenburg, Sweden
| | - Marta Bianchi
- Department of Agriculture and Food, RISE Research Institutes of Sweden, Gothenburg, Sweden
| | - Elinor Hallström
- Department of Agriculture and Food, RISE Research Institutes of Sweden, Lund, Sweden
| |
Collapse
|