1
|
Wanna R, Bunphan D, Kunlanit B, Khaengkhan P, Khaengkhan P, Bozdoğan H. Chemical Composition of Essential Oil from Apium graveolens L. and Its Biological Activities Against Sitophilus zeamais Motschulsky (Coleoptera: Dryophthoridae). PLANTS (BASEL, SWITZERLAND) 2025; 14:347. [PMID: 39942911 PMCID: PMC11821194 DOI: 10.3390/plants14030347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 01/07/2025] [Accepted: 01/18/2025] [Indexed: 02/16/2025]
Abstract
The use of essential oils from certain herbal plants offers a promising alternative to synthetic insecticides for controlling the maize weevil, Sitophilus zeamais Motschulsky (Coleoptera: Dryophthoridae), a major pest that causes significant damage to stored grains. Essential oils, particularly from aromatic herbs in the Apiaceae family, are widely used in medicinal, cosmetic, and food industries and provided insecticidal properties to mitigate the environmental and health hazards associated with synthetic insecticides. This research aimed to investigate the insecticidal and repellent effects of Apium graveolens L. (celery) seed essential oil against S. zeamais. Chemical analysis of the commercially produced essential oil from A. graveolens seeds was conducted using a gas chromatograph-mass spectrometer (GC-MS), and the biological activity of the essential oil was determined by ingestion, contact, fumigation, and repellent tests. The analysis identified D-limonene (64.21%) and α-humulene (17.46%) as primary components of the oil. Toxicity assays revealed an observable contact toxicity, with higher concentrations and prolonged exposure increasing its effectiveness. The contact toxicity assays reported an LC50 of 19.83 nL/adult after 72 h. Additionally, the essential oil displayed repellent effects, effectively deterring weevils at concentrations above 16 µL/L air, but its feeding deterrence was weak. The essential oil's strong insecticidal and repellent properties, which were concentration- and time-dependent, highlighted its potential as a sustainable alternative to synthetic pesticides for integrated pest management.
Collapse
Affiliation(s)
- Ruchuon Wanna
- Department of Agricultural Technology, Faculty of Technology, Mahasarakham University, Kantarawichai District, Maha Sarakham 44150, Thailand
- Resource Management in Agricultural Technology Research Unit, Mahasarakham University, Kantarawichai District, Maha Sarakham 44150, Thailand
| | - Darika Bunphan
- Department of Agricultural Technology, Faculty of Technology, Mahasarakham University, Kantarawichai District, Maha Sarakham 44150, Thailand
- Resource Management in Agricultural Technology Research Unit, Mahasarakham University, Kantarawichai District, Maha Sarakham 44150, Thailand
| | - Benjapon Kunlanit
- Department of Agricultural Technology, Faculty of Technology, Mahasarakham University, Kantarawichai District, Maha Sarakham 44150, Thailand
- Resource Management in Agricultural Technology Research Unit, Mahasarakham University, Kantarawichai District, Maha Sarakham 44150, Thailand
| | - Phirayot Khaengkhan
- Department of Agricultural Technology, Faculty of Technology, Mahasarakham University, Kantarawichai District, Maha Sarakham 44150, Thailand
- Resource Management in Agricultural Technology Research Unit, Mahasarakham University, Kantarawichai District, Maha Sarakham 44150, Thailand
| | - Parinda Khaengkhan
- Division of Plant Production Technology, Faculty of Agricultural Technology, Kalasin University, Kalasin 46000, Thailand
| | - Hakan Bozdoğan
- Vocational School of Technical Sciences, Department of Plant and Animal Production, Kırşehir Ahi Evran University, Kırşehir 40100, Turkey
| |
Collapse
|
2
|
Yang W, Tian Y, Yang M, Mauck J, Loor JJ, Jia B, Wang S, Fan W, Li Z, Zhang B, Xu C. β-sitosterol alleviates high fatty acid-induced lipid accumulation in calf hepatocytes by regulating cholesterol metabolism. J Steroid Biochem Mol Biol 2024; 243:106543. [PMID: 38740074 DOI: 10.1016/j.jsbmb.2024.106543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/06/2024] [Accepted: 05/09/2024] [Indexed: 05/16/2024]
Abstract
A significant reduction in plasma concentration of cholesterol during early lactation is a common occurrence in high-yielding dairy cows. An insufficient synthesis of cholesterol in the liver has been linked to lipid accumulation caused by high concentrations of fatty acids during negative energy balance (NEB). As ruminant diets do not provide quantitative amounts of cholesterol for absorption, phytosterols such as β-sitosterol may serve to mitigate the shortfall in cholesterol within the liver during NEB. To gain mechanistic insights, primary hepatocytes were isolated from healthy female 1-day old calves for in vitro studies with or without 1.2 mM fatty acids (FA) to induce metabolic stress. Furthermore, hepatocytes were treated with 50 μM β-sitosterol with or without FA. Data were analyzed by one-way ANOVA with subsequent Bonferroni correction. Results revealed that calf hepatocytes treated with FA had greater content of non-esterified fatty acids (NEFA) and triacylglycerol (TAG), and greater mRNA and protein abundance of the lipid synthesis-related SREBF1 and FASN. In contrast, mRNA and protein of CPT1A (fatty acid oxidation) and the cholesterol metabolism-related targets SREBF2, HMGCR, ACAT2, APOA1, ABCA1 and ABCG5 was lower. Content of the antioxidant-related glutathione (GSH) and activities of superoxide dismutase (SOD) also was lower. Compared with FA challenge alone, 50 μM β-sitosterol led to greater mRNA and protein abundance of SREBF2, HMGCR, ACAT2 and ABCG5, and greater content of GSH and activity of SOD. In contrast, compared with the FA group, the mRNA and protein abundance of SREBF1 and ACC1 and the content of TAG and NEFA in the β-sitosterol + FA group were lower. Overall, β-sitosterol can promote cholesterol metabolism and reduce oxidative stress while reducing lipid accumulation in hepatocytes challenged with high concentrations of fatty acids.
Collapse
Affiliation(s)
- Wei Yang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Yan Tian
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Mingmao Yang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A & F University, Xianyang 712100, China
| | - John Mauck
- Mammalian Nutri Physio Genomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana, IL, United States
| | - Juan J Loor
- Mammalian Nutri Physio Genomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana, IL, United States
| | - Bin Jia
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China; Branch of Animal Husbandry and Veterinary of Heilongjiang Academy of Agricultural Sciences, Qiqihar 163005, China
| | - Shuang Wang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Wenwen Fan
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Zhendong Li
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Bingbing Zhang
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Chuang Xu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China; College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
3
|
Nouioura G, El fadili M, El Hachlafi N, Maache S, Mssillou I, A. Abuelizz H, Lafdil FZ, Er-rahmani S, Lyoussi B, Derwich E. Coriandrum sativum L., essential oil as a promising source of bioactive compounds with GC/MS, antioxidant, antimicrobial activities : in vitro and in silico predictions. Front Chem 2024; 12:1369745. [PMID: 38974992 PMCID: PMC11226197 DOI: 10.3389/fchem.2024.1369745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 04/29/2024] [Indexed: 07/09/2024] Open
Abstract
Introduction: Coriandrum sativum L. essential oil (CS-EO) is being evaluated in vitro for its antioxidant and antimicrobial properties, and its volatile compounds are to be identified as part of this exploratory study. Methods: The processes underlying the in vitro biological properties were explained using in silico simulations, including drug-likeness prediction, molecular docking, and pharmacokinetics (absorption, distribution, metabolism, excretion, and toxicity-ADMET). Chemical screening of CS-EO was conducted using gas chromatography-mass spectrometry (GC-MS). Five in vitro complementary techniques were used to assess the antioxidant activity of CS-EO: reducing power (RP), 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2'-azinobis (3-ethylbenzothiazoline-6-sulfonate) (ABTS) radical scavenging activity, β-Carotene bleaching test (BCBT), and phosphomolybdenum assay (TAC). Results: According to GC-MS analysis, linalool (59.04%), γ-Terpinene (13.02%), and α-Pinene (6.83%) are the main constituents of CS-EO. Based on the in vitro antioxidant assay results, CS-EO has been found to have a superior antioxidant profile. Its estimated scavenging rates for ABTS+ are 0.51 ± 0.04 mg/mL, BCBT is 9.02 ± 0.01 mg/mL, and CS-EO is 1.52 ± 0.14 mg/mL. C. sativum demonstrated 6.13 ± 0.00 μg/mL for reducing power and 213.44 ± 0.45 mg AAE/mL for total antioxidant activity. The in vitro antimicrobial activity of CS-EO was assessed against five strains, including two gram-positive bacteria, two gram-negative bacteria, and one fungal strain (Candida albicans). Significant antibacterial and antifungal activities against all strains were found using the disc-diffusion assay, with zones of inhibition larger than 15 mm. The microdilution test highlighted the lowest MIC and MBC values with gram-positive bacteria, ranging from 0.0612 to 0.125% v/v for MIC and 0.125% v/v for MBC. The fungal strain's MFC was 1.0% v/v and its MIC was measured at 0.5%. Based on the MBC/MIC and MFC/MIC ratios, CS-EO exhibits bactericidal and fungicidal activity. The ADMET study indicates that the primary CS-EO compounds are good candidates for the development of pharmaceutical drugs due to their favorable pharmacokinetic properties. Conclusion: These results point to a potential application of this plant as a natural remedy and offer empirical backing for its traditional uses. It is a promising environmentally friendly preservative that can be used extensively in the food and agricultural industries to prevent aflatoxin contamination and fungal growth in stored goods.
Collapse
Affiliation(s)
- Ghizlane Nouioura
- Laboratory of Natural Substances, Pharmacology, Environment, Modeling, Health and Quality of Life (SNAMOPEQ), Faculty of Sciences Dhar El Mehraz, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Mohamed El fadili
- LIMAS Laboratory, Faculty of Sciences Dhar El Mehraz, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Naoufal El Hachlafi
- Laboratory of Microbial Biotechnology and Bioactive Molecules, Sciences and Technologies Faculty, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Souad Maache
- Laboratory of Natural Substances, Pharmacology, Environment, Modeling, Health and Quality of Life (SNAMOPEQ), Faculty of Sciences Dhar El Mehraz, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Ibrahim Mssillou
- Laboratory of Natural Substances, Pharmacology, Environment, Modeling, Health and Quality of Life (SNAMOPEQ), Faculty of Sciences Dhar El Mehraz, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Hatem A. Abuelizz
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Fatima Zahra Lafdil
- Laboratory of Bio-resources, Biotechnology, Faculty of Sciences, Ethnopharmacology and Health, Mohammed the First University, Oujda, Morocco
| | - Sara Er-rahmani
- Department of Chemistry, University of Torino, Torino, Italy
| | - Badiaa Lyoussi
- Laboratory of Natural Substances, Pharmacology, Environment, Modeling, Health and Quality of Life (SNAMOPEQ), Faculty of Sciences Dhar El Mehraz, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Elhoussine Derwich
- Laboratory of Natural Substances, Pharmacology, Environment, Modeling, Health and Quality of Life (SNAMOPEQ), Faculty of Sciences Dhar El Mehraz, Sidi Mohamed Ben Abdellah University, Fez, Morocco
- Unity of GC/MS and GC, City of Innovation, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| |
Collapse
|
4
|
Ušjak L, Stojković D, Carević T, Milutinović V, Soković M, Niketić M, Petrović S. Chemical Analysis and Investigation of Antimicrobial and Antibiofilm Activities of Prangos trifida (Apiaceae). Antibiotics (Basel) 2024; 13:41. [PMID: 38247600 PMCID: PMC10812483 DOI: 10.3390/antibiotics13010041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/29/2023] [Accepted: 12/29/2023] [Indexed: 01/23/2024] Open
Abstract
Plants of the genus Prangos are intensively investigated as potential new sources of bioactive isolated products. In this work, the chemical composition of volatile constituents (essential oils and headspace volatiles) and dichloromethane extracts, as well as antimicrobial and antibiofilm activities of essential oils and MFDEs (methanol fractions of dichloromethane extracts) of Prangos trifida from Serbia, were investigated. Volatiles of roots, leaves, stems and fruits, and fatty acids and phytosterols in dichloromethane extracts of roots and fruits were analyzed by GC-FID-MS, whereas coumarins in MFDEs by LC-MS and some isolated coumarins by 1H-NMR. Minimum inhibitory concentrations (MICs) and minimum bactericidal concentrations/minimum fungicidal concentrations (MBCs/MFCs) of essential oils and MFDEs were determined against 13 microorganisms. Antibiofilm activity was assessed against four microorganisms. Additionally, congo red and ergosterol binding assays were conducted to elucidate selected mechanisms of antibiofilm action in the case of Candida albicans. Total of 52 volatile constituents, 16 fatty acids, eight phytosterols and 10 coumarins were identified. Essential oils demonstrated significant activity, surpassing that of commercial food preservatives, against six tested molds from the Aspergillus, Penicillium and Trichoderma genera, as well as against bacteria Staphylococcus aureus and Bacillus cereus. Most of the oils strongly inhibited the formation of biofilms by S. aureus, Listeria monocytogenes and Escherichia coli. MFDEs exhibited noteworthy effects against B. cereus and the tested Aspergillus species, particularly A. niger, and significantly inhibited C. albicans biofilm formation. This inhibition was linked to a marked reduction in exopolysaccharide production, while antifungal mechanisms associated with ergosterol remained unaffected.
Collapse
Affiliation(s)
- Ljuboš Ušjak
- Department of Pharmacognosy, University of Belgrade-Faculty of Pharmacy, Vojvode Stepe 450, 11221 Belgrade, Serbia; (L.U.); (V.M.)
| | - Dejan Stojković
- Department of Plant Physiology, Institute for Biological Research “Siniša Stanković”-National Institute of Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11000 Belgrade, Serbia; (T.C.); (M.S.)
| | - Tamara Carević
- Department of Plant Physiology, Institute for Biological Research “Siniša Stanković”-National Institute of Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11000 Belgrade, Serbia; (T.C.); (M.S.)
| | - Violeta Milutinović
- Department of Pharmacognosy, University of Belgrade-Faculty of Pharmacy, Vojvode Stepe 450, 11221 Belgrade, Serbia; (L.U.); (V.M.)
| | - Marina Soković
- Department of Plant Physiology, Institute for Biological Research “Siniša Stanković”-National Institute of Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11000 Belgrade, Serbia; (T.C.); (M.S.)
| | - Marjan Niketić
- Natural History Museum, Njegoševa 51, 11000 Belgrade, Serbia;
- Serbian Academy of Sciences and Arts, Kneza Mihaila 35/II, 11000 Belgrade, Serbia
| | - Silvana Petrović
- Department of Pharmacognosy, University of Belgrade-Faculty of Pharmacy, Vojvode Stepe 450, 11221 Belgrade, Serbia; (L.U.); (V.M.)
| |
Collapse
|
5
|
M'Rah S, Marichali A, M'Rabet Y, Chatti S, Casabianca H, Hosni K. Morphology, physiology, and biochemistry of zinc-stressed caraway plants. PROTOPLASMA 2023; 260:853-868. [PMID: 36329347 DOI: 10.1007/s00709-022-01818-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 10/22/2022] [Indexed: 06/16/2023]
Abstract
A greenhouse pot experiment was conducted to evaluate the impact of zinc supply (0, 1, and 2 mM Zn as ZnSO4) on morpho-physiological and biochemical parameters of caraway (Carum carvi L.). Exposure to different Zn concentrations for 12 weeks compromised severely all growth parameters (plant height, number of secondary branches, diameter of primary and secondary branches, fresh and dry weight of aerial parts and roots) yield and its components (number of umbels per primary branches and secondary branches; number of umbel per plant; number of seeds per plant; and the weight of 1000 seeds). These manifestations were intimately linked with excessive accumulation of Zn in roots and leaves, alteration of the content of photosynthetic pigments, and extended lipid peroxidation. A manifest increment of proline and soluble sugar content was also observed in response to Zn application. Lipid content in seeds was dropped in Zn-treated plants and the fatty acid profiles were profoundly affected as they were enriched with saturated fatty acids at the expense of unsaturated ones. While improving their oxidative stability as revealed by the reduced values calculated oxidizability and oxidative susceptibility, Zn treatment reduced the lipid nutritional quality of caraway seeds. Moreover, Zn treatment reduced the essential oil yield and its main component carvone while it enhanced the content of its precursor limonene. It also induced alteration of terpene metabolism as revealed in the redirection of the carbon flux to the shikimate/phenylpropanoid pathway resulting in the stimulation of the production of phenolic compounds and their subsequent antioxidant activities.
Collapse
Affiliation(s)
- Sabah M'Rah
- Laboratoire Des Substances Naturelles, Institut National de Recherche Et d'Analyse Physico-Chimique (INRAP), Biorechpôle de Sidi Thabet, 2020, Ariana, Tunisia
- Laboratoire Productivité Végétale Et Contraintes Environnementales, Faculté Des Sciences de Tunis, Université Tunis El-Manar, 2092, Tunis, Tunisia
| | - Ahmed Marichali
- Laboratoire Des Substances Naturelles, Institut National de Recherche Et d'Analyse Physico-Chimique (INRAP), Biorechpôle de Sidi Thabet, 2020, Ariana, Tunisia
| | - Yassine M'Rabet
- Laboratoire Des Substances Naturelles, Institut National de Recherche Et d'Analyse Physico-Chimique (INRAP), Biorechpôle de Sidi Thabet, 2020, Ariana, Tunisia
| | - Saber Chatti
- Laboratoire Des Substances Naturelles, Institut National de Recherche Et d'Analyse Physico-Chimique (INRAP), Biorechpôle de Sidi Thabet, 2020, Ariana, Tunisia
| | - Hervé Casabianca
- Université de Lyon, CNRS, Université Claude Bernard Lyon 1, ENS de Lyon, Institut Des Sciences Analytiques, UMR 5280, 5 Rue de La Doua, 69100, Villeurbanne, France
| | - Karim Hosni
- Laboratoire Des Substances Naturelles, Institut National de Recherche Et d'Analyse Physico-Chimique (INRAP), Biorechpôle de Sidi Thabet, 2020, Ariana, Tunisia.
| |
Collapse
|
6
|
Khosrowpour Z, Fahimi S, Jafari F, Tansaz M, Sahranavard S, Faizi M. Beneficial effects of Teucrium polium hydroalcoholic extract on letrozole-induced polycystic ovary syndrome in rat model. Obstet Gynecol Sci 2023; 66:107-117. [PMID: 36575561 PMCID: PMC10025864 DOI: 10.5468/ogs.22129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 08/26/2022] [Accepted: 11/14/2022] [Indexed: 12/29/2022] Open
Abstract
OBJECTIVE Polycystic ovary syndrome (PCOS) is an endocrine disorder that disrupts the menstrual cycle and causes infertility. Considering the increasing use of medicinal plants, the present study aimed to evaluate the effects of Teucrium polium L. on letrozole-induced PCOS in female rats. METHODS Six groups of rats (n=7 each) were evaluated. The control group received 1% carboxy methyl cellulose as vehicle, while the five other groups received letrozole 1 mg/kg orally for 21 days. After PCOS induction, the rats were orally administered T. polium extract (50, 100, and 200 mg/kg) or metformin (200 mg/kg) for 28 days. Subsequently, body and ovarian weights and serum levels of follicle stimulating hormone, luteinizing hormone (LH), estradiol, progesterone, and testosterone were measured. Finally, the ovarian tissues were isolated for histological examination. RESULTS There were no significant changes in weekly body weight in any group. After 21 days of letrozole administration, PCOS induction was confirmed by estrous cycle irregularities and increased LH and testosterone levels. After treatment with the hydroalcoholic extract of T. polium, testosterone and LH levels were significantly reduced in all groups (P<0.05). Histological studies of ovaries in the metformin and T. polium groups exhibited normal follicular development with fewer and smaller cystic follicles than those in the PCOS group. CONCLUSION The hydroalcoholic extract of T. polium improves serum levels of sex hormones, restores ovarian morphology in PCOS-induced rats, and is a good candidate for further clinical trials.
Collapse
Affiliation(s)
- Zeynab Khosrowpour
- Traditional Medicine and Materia Medica Research Center and Department of Traditional Pharmacy, School of Traditional Medicine, Tehran,
Iran
- Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran,
Iran
| | - Shirin Fahimi
- Traditional Medicine and Materia Medica Research Center and Department of Traditional Pharmacy, School of Traditional Medicine, Tehran,
Iran
- Department of Traditional Pharmacy and Persian Medicine, Faculty of Pharmacy and Pharmaceutical Sciences, Tehran Medical Sciences, Islamic Azad University, Tehran,
Iran
| | - Fateme Jafari
- Traditional Medicine and Materia Medica Research Center and Department of Traditional Pharmacy, School of Traditional Medicine, Tehran,
Iran
| | - Mojgan Tansaz
- Department of Traditional Medicine, School of Traditional Medicine, Tehran,
Iran
| | - Shamim Sahranavard
- Traditional Medicine and Materia Medica Research Center and Department of Traditional Pharmacy, School of Traditional Medicine, Tehran,
Iran
| | - Mehrdad Faizi
- Department of Pharmacology and Toxicology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran,
Iran
| |
Collapse
|
7
|
Wu J, Cao Z, Hassan SSU, Zhang H, Ishaq M, Yu X, Yan S, Xiao X, Jin HZ. Emerging Biopharmaceuticals from Pimpinella Genus. Molecules 2023; 28:molecules28041571. [PMID: 36838559 PMCID: PMC9959726 DOI: 10.3390/molecules28041571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/20/2023] [Accepted: 02/01/2023] [Indexed: 02/10/2023] Open
Abstract
Evolved over eons to encode biological assays, plants-derived natural products are still the first dawn of drugs. Most researchers have focused on natural compounds derived from commonly used Pimpinella species, such as P. anisum, P. thellungiana, P. saxifrage, and P. brachycarpa, to investigate their antioxidant, antibacterial, and anti-inflammatory properties. Ethnopharmacological studies demonstrated that the genus Pimpinella has the homology characteristics of medicine and food and mainly in the therapy of gastrointestinal dysfunction, respiratory diseases, deworming, and diuresis. The natural product investigation of Pimpinella spp. revealed numerous natural products containing phenylpropanoids, terpenoids, flavonoids, coumarins, sterols, and organic acids. These natural products have the potential to provide future drugs against crucial diseases, such as cancer, hypertension, microbial and insectile infections, and severe inflammations. It is an upcoming field of research to probe a novel and pharmaceutically clinical value on compounds from the genus Pimpinella. In this review, we attempt to summarize the present knowledge on the traditional applications, phytochemistry, and pharmacology of more than twenty-five species of the genus Pimpinella.
Collapse
Affiliation(s)
- Jiajia Wu
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
- Department of Natural Product Chemistry, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhen Cao
- Shanghai Institute of Pharmaceutical Industry Co., Ltd., China State Institute of Pharmaceutical Industry, Shanghai 201203, China
| | - Syed Shams ul Hassan
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
- Department of Natural Product Chemistry, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Haozhen Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
- Department of Natural Product Chemistry, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Muhammad Ishaq
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
- Department of Natural Product Chemistry, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xu Yu
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
- Department of Natural Product Chemistry, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shikai Yan
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
- Institute of Chinese Medicinal Sciences, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Xue Xiao
- Institute of Chinese Medicinal Sciences, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Correspondence: (X.X.); (H.-Z.J.); Tel./Fax: +86-21-34205989 (H.J.)
| | - Hui-Zi Jin
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
- Department of Natural Product Chemistry, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
- Correspondence: (X.X.); (H.-Z.J.); Tel./Fax: +86-21-34205989 (H.J.)
| |
Collapse
|
8
|
Polyphenols, Saponins and Phytosterols in Lentils and Their Health Benefits: An Overview. Pharmaceuticals (Basel) 2022; 15:ph15101225. [PMID: 36297337 PMCID: PMC9609092 DOI: 10.3390/ph15101225] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 09/30/2022] [Indexed: 11/28/2022] Open
Abstract
The lentil (Lens culinaris L.) is one of the most important legumes (family, Fabaceae). It is a natural functional food rich in many bioactive compounds, such as polyphenols, saponins and phytosterols. Several studies have demonstrated that the consumption of lentils is potentially important in reducing the incidence of a number of chronic diseases, due to their bioactive compounds. The most common polyphenols in lentils include phenolic acids, flavan-3-ol, flavonols, anthocyanidins, proanthocyanidins or condensed tannins, and anthocyanins, which play an important role in the prevention of several degenerative diseases in humans, due to their antioxidant activity. Furthermore, lentil polyphenols are reported to have antidiabetic, cardioprotective and anticancer activities. Lentil saponins are triterpene glycosides, mainly soyasaponins I and βg. These saponins have a plasma cholesterol-lowering effect in humans and are important in reducing the risk of many chronic diseases. Moreover, high levels of phytosterols have been reported in lentils, especially in the seed coat, and β-sitosterol, campesterol, and stigmasterol are the most abundant. Beyond their hypocholesterolemic effect, phytosterols in lentils are known for their anti-inflammatory activity. In this review, the current information on the nutritional composition, bioactive compounds including polyphenols, saponins and phytosterols, and their associated health-promoting effects are discussed.
Collapse
|
9
|
Thotathil V, Rizk HH, Fakrooh A, Sreerama L. Phytochemical Analysis of Acaciaehrenbergiana (Hayne) Grown in Qatar: Identification of Active Ingredients and Their Biological Activities. Molecules 2022; 27:molecules27196400. [PMID: 36234937 PMCID: PMC9571875 DOI: 10.3390/molecules27196400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/24/2022] [Accepted: 09/25/2022] [Indexed: 11/23/2022] Open
Abstract
Acacia ehrenbergiana (Hayne), also known as Salam, is a highly drought resistant shrub distributed in North and East Africa, and the Arabian Peninsula. The plant is gathered for its gum and fiber, and is an important legume species for indigenous populations. In this study, the phytochemical analysis, antibacterial, and antioxidant properties of various alcoholic and aqueous extracts of Acacia ehrenbergiana grown in Qatar were investigated. The qualitative phytochemical screening of this species exhibited the presence of glycosides, tannins, flavonoids, terpenoids, saponins, phenol, and anthraquinones in various extracts. The agar diffusion method was performed to check the antibacterial activity. The acetone and ethanol extracts showed 85% antibacterial activity of the control against Gram-negative E. coli, while the acetone extract had 65% activity against the Bacillus Gram-positive species. The highest activity against Staphylococcus aureus was 65% for the butanol extract. The antioxidant capacities were evaluated by the DPPH method. Various extracts exhibited antioxidant activities similar to or higher than standard antioxidants, with the highest percent inhibition of 95% for the acetone and ethanol extracts. The acetone extracts were further purified by reverse phase combiflash chromatography followed by HPLC. Three of the pure compounds isolated were subjected to MS, FTIR, and NMR spectral analysis and were found to be stigmasterol, spinasterol, and theogallin. In conclusion, the observed antibacterial and antioxidant activities as well as the presence of secondary metabolites with potential medicinal activities makes Acacia ehrenbergiana a potent valuable endemic medicinal plant.
Collapse
|
10
|
Evaluation of chemical components of herbs and spices from Thailand and effect on lipid oxidation of fish during storage. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01624-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
11
|
Evaluation of Formulated Herbal Syrup (Containing Fennel, Anise, and Celery) on the Letrozole-Induced Polycystic Ovary Syndrome Model. Jundishapur J Nat Pharm Prod 2022. [DOI: 10.5812/jjnpp-120814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Background: Polycystic ovary syndrome (PCOS) is a complex endocrine disorder associated with irregular menstrual cycles, hyperandrogenism, obesity, and reduced fertility. Objectives: The present study aimed to formulate herbal syrup based on Iranian traditional medicine (ITM) and evaluate its effect on the letrozole-induced PCOS model in female rats. Methods: The herbal syrup contains anise, fennel, and celery seed extracts. Five different formulations were made with different percentages of additive components. Quality control and stability tests were performed on the selected formulation. During the in vivo step, 6 groups of rats were evaluated: The control group (received carboxymethyl cellulose 1% as a vehicle) and the other 5 groups (received letrozole 1 mg/kg orally for 21 days). During 21 days, daily vaginal smears were examined to detect irregularities of the estrous cycle. After induction of PCOS, rats were orally administered with herbal syrup (1, 2, 4 mL/kg) or metformin (200 mg/kg) for 28 days. Moreover, body and ovarian weights, serum follicle-stimulating hormone (FSH), luteinizing hormone (LH), estradiol, progesterone, and testosterone were measured. Finally, ovarian tissues were isolated for histological examination. Results: The best formulation of the syrup contained the plant extract (totally 10%), sugar (50%), sodium benzoate (0.1%), and potassium sorbate (0.1%). Body weight was significantly increased in all groups compared to the control group, and after treatment, a significant weight reduction was seen in the metformin and 1-mL/kg dose group. Following PCOS induction, ovary weight was significantly increased, while after treatment, it showed a significant decrease. After 21 days of letrozole administration, induction of PCOS was confirmed by the irregularities in estrous cycles and an increase in testosterone and LH levels. After treatments with the syrup, LH levels significantly decreased in all groups (P < 0.05), and serum testosterone and FSH levels significantly decreased in the 2-mL/kg dose group compared to the PCOS group (P < 0.05). Estradiol and progesterone levels significantly increased in the treatment groups in a dose-dependent manner. Histological studies of metformin and herbal syrup groups exhibited normal follicular development with fewer and smaller cystic follicles compared to the PCOS group. Conclusions: The herbal syrup made from anise, fennel, and celery seed extracts improved serum levels of sex hormones, recovered the ovarian morphology in PCOS-induced rats, and can be a good candidate for further clinical trials.
Collapse
|
12
|
Shin J, Song MH, Yu JW, Ko EY, Shang X, Oh JW, Keum YS, Saini RK. Anticancer Potential of Lipophilic Constituents of Eleven Shellfish Species Commonly Consumed in Korea. Antioxidants (Basel) 2021; 10:1629. [PMID: 34679763 PMCID: PMC8533504 DOI: 10.3390/antiox10101629] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/11/2021] [Accepted: 10/13/2021] [Indexed: 11/21/2022] Open
Abstract
The present study was aimed to investigate the composition and contents and the major lipophilic compounds, including the sterols, fatty acids, and tocols of shellfish species. Moreover, to explore the antitumor activity of these lipophilic constituents, their cytotoxicity potentials were determined against five different human cancer cells, including colon carcinoma (HCT116), epithelial melanoma (A2058), glioblastoma multiforme (T98G), lung carcinoma (A549), and adenocarcinoma (HeLa). The results show a significant variation in the contents and composition of lipophilic constituents among the studied species. The highest omega-3 (n-3) polyunsaturated fatty acids (PUFAs) were recorded from arrow squid and pacific oysters, accounting for 53.2% and 53.0% of their total fatty acids, respectively. However, the highest cholesterol content was also recorded in arrow squid (154.4 mg/100 g; 92.6% of total sterols). In contrast, in the Japanese littleneck, Yesso scallop, and common orient clam, cholesterol was just 17.1%, 18.3%, and 18.9% of total sterols, respectively, making them the richest source of non-cholesterol sterols (NCS). Lipids extracted from shellfish species showed ABTS+•- and DPPH•-scavenging activities. In the cytotoxicity analysis, lipids extracted from the Argentine red shrimp showed the highest cytotoxicity against glioblastoma multiforme T98G cells, with an IC50 value of 12.3 µg/mL. The composition and cytotoxicity data reported herein may help explore the nutritional and anticancer potentials of shellfish species.
Collapse
Affiliation(s)
- Juhyun Shin
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul 143-701, Korea; (J.S.); (J.-W.O.)
| | - Min-Ho Song
- Department of Crop Science, Konkuk University, Seoul 143-701, Korea; (M.-H.S.); (J.-W.Y.); (Y.-S.K.)
| | - Ji-Woo Yu
- Department of Crop Science, Konkuk University, Seoul 143-701, Korea; (M.-H.S.); (J.-W.Y.); (Y.-S.K.)
| | - Eun-Young Ko
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 143-701, Korea;
| | - Xiaomin Shang
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, Jilin University, Changchun 130062, China;
| | - Jae-Wook Oh
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul 143-701, Korea; (J.S.); (J.-W.O.)
| | - Young-Soo Keum
- Department of Crop Science, Konkuk University, Seoul 143-701, Korea; (M.-H.S.); (J.-W.Y.); (Y.-S.K.)
| | - Ramesh Kumar Saini
- Department of Crop Science, Konkuk University, Seoul 143-701, Korea; (M.-H.S.); (J.-W.Y.); (Y.-S.K.)
| |
Collapse
|