1
|
Ruiz-Aracama A, Alberdi-Cedeño J, Nieva-Echevarria B, Martinez-Yusta A, Goicoechea-Oses E. Effect of rosemary extract on sunflower oil degradation studied by 1H NMR: Differences under frying conditions and accelerated storage. Food Chem 2025; 474:143146. [PMID: 39904088 DOI: 10.1016/j.foodchem.2025.143146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 01/17/2025] [Accepted: 01/28/2025] [Indexed: 02/06/2025]
Abstract
The antioxidant capacity of rosemary extract (RE) has been widely studied using classical methodologies, which offer limited information. Instead, Proton Nuclear Magnetic Resonance (1H NMR) informs about the degradation rate of oil components and the nature and evolution of the products formed. This study aims to investigate the effect of RE-addition (containing 0.005 % and 0.02 % of carnosol+carnosic acid) to sunflower oil on its degradation under frying conditions without food (170 ± 5 ºC) and accelerated storage (70 °C) by 1H NMR. In the former, changes in oil viscosity and colour were also studied. During frying, the commercial RE added did not protect the oil, being the degradation of linoleic very similar to control. In contrast, under storage, RE behaved as an antioxidant, mainly at the highest RE-concentration, delaying the degradation of oil components and the formation of oxidation products. Thus, the effect of RE-enrichment on oil degradation depends on the conditions the oil is subjected to.
Collapse
Affiliation(s)
- Ainhoa Ruiz-Aracama
- Food Technology, Faculty of Pharmacy, Lascaray Research Center, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain
| | - Jon Alberdi-Cedeño
- Food Technology, Faculty of Pharmacy, Lascaray Research Center, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain
| | - Barbara Nieva-Echevarria
- Food Technology, Faculty of Pharmacy, Lascaray Research Center, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain
| | - Andrea Martinez-Yusta
- Food Technology, Faculty of Pharmacy, Lascaray Research Center, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain
| | - Encarnacion Goicoechea-Oses
- Food Technology, Faculty of Pharmacy, Lascaray Research Center, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain.
| |
Collapse
|
2
|
Freis AM, Vemulapalli SPB. Analysis of the Generation of Harmful Aldehydes in Edible Oils During Sunlight Exposure and Deep-Frying Using High-Field Proton Nuclear Magnetic Resonance Spectroscopy. Foods 2025; 14:513. [PMID: 39942106 PMCID: PMC11816481 DOI: 10.3390/foods14030513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/14/2025] [Accepted: 01/20/2025] [Indexed: 02/16/2025] Open
Abstract
Edible oils are essential dietary components that provide crucial micronutrients. However, their quality can deteriorate during frying-a common cooking method-and with prolonged light exposure due to chemical reactions such as hydrolysis, oxidation, and polymerization. These processes lead to the formation of harmful compounds, particularly aldehydes. This study investigates how thermal and light exposure impact the chemical composition of five widely used edible oils: olive, rapeseed, sunflower, sesame, and peanut oils. For the thermal treatment, the oils were heated to 190 ± 5 °C in a commercial fryer, with samples taken at the start and after 10 min and 60 min of heating, while intermittently frying chicken nuggets to simulate typical frying conditions. For the light exposure treatment, the oil samples were exposed to direct sunlight for 3 and 8 h, with control samples being collected beforehand. The oil composition was analyzed using an advanced 800 MHz nuclear magnetic resonance (NMR) instrument with a triple-resonance inverse cryoprobe, providing high sensitivity and resolution. The results revealed a significant increase in various aldehyde compounds in all oils under both thermal and light exposure conditions. Notably, this study identified the generation of genotoxic and cytotoxic α,β-unsaturated aldehydes, including 4-hydroperoxy-(E)-2-alkenals, 4-hydroxy-(E)-2-alkenals, and 4,5-epoxy-(E)-2-alkenals. Given the established association of aldehydes with health risks, including cancer, Alzheimer's, and Parkinson's diseases, these findings highlight the importance of monitoring oil degradation during cooking and the appropriate storage of oils to minimize light exposure to reduce potential health risks.
Collapse
Affiliation(s)
| | - Sahithya Phani Babu Vemulapalli
- Institute for Chemistry and Biology of the Marine Environment (ICBM), School of Mathematics and Science, Carl von Ossietzky Universität Oldenburg, Ammerländer Heerstraße 114–118, 26129 Oldenburg, Germany;
| |
Collapse
|
3
|
Mehany T, González-Sáiz JM, Pizarro C. Recent advances in spectroscopic approaches for assessing the stability of bioactive compounds and quality indices of olive oil during deep-frying: Current knowledge, challenges, and implications. Food Chem 2025; 464:141624. [PMID: 39423542 DOI: 10.1016/j.foodchem.2024.141624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/18/2024] [Accepted: 10/09/2024] [Indexed: 10/21/2024]
Abstract
Foods fried in olive oil received great attention due to its bioactive profile, antioxidants, high stability, and health benefits. However, several chemical alterations contribute to olive oil degradation during deep-frying (DF), and negatively modify its safety and quality. Therefore, measuring the quality indices of olive oil is a vital topic. The classical chemical approaches are destructive and use toxic chemicals, thus, a harmless and real-time analytical technique has become increasingly critical. This review highlights the recent advances of spectroscopic technologies (STs) stand-alone or integrated with chemometrics to provide reliable, rapid, low-cost, sustainable, multi-parametric, and eco-friendly method for monitoring the quality and safety of olive oil during thermal processing, moreover, the limitations of STs are included. The present review offers fundamental insights regarding the degradation of deep-fried olive oil and provides recent evidence in spectroscopy that can be used as consistent method, providing more benefits for the consumers and food industry.
Collapse
Affiliation(s)
- Taha Mehany
- Department of Chemistry, University of La Rioja, 26006 Logroño, Spain.
| | | | - Consuelo Pizarro
- Department of Chemistry, University of La Rioja, 26006 Logroño, Spain.
| |
Collapse
|
4
|
Liang X, Huang L, Liu R, Li X, Huang X, Zhang H, Wang X, Wu G. Oxidative Lipidomics to Unravel the Glycerol Core Aldehydes of Three Typical Unsaturated Triglycerides under Simulated Heating Conditions. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:28425-28438. [PMID: 39661830 DOI: 10.1021/acs.jafc.4c08994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
Glycerol core aldehydes (GCAs) are significant nonvolatile aldehyde compounds generated in heated edible oils, which may pose potential health risks. Utilizing the complementary CID and EAD mass spectrometry data, this study introduced a predict-to-hit strategy, identifying 42 types of GCAs from oxidized OOO, LLL, and LnLnLn. Structural analysis revealed that oxidation occurred at both the sn-2 and sn-1/3 positions of triglyceride (TG), with the Sn-1/3 position exhibiting greater susceptibility as the degree of TG unsaturation increased. As the temperature increases, the concentration of saturated GCAs steadily rises, while unsaturated GCAs exhibit an initial increase, followed by a decrease. During further oxidation, GCAs tend to convert into hydroxyl compounds, monocyclic epoxides, dicyclic epoxides, and polycyclic epoxides, with epoxy groups predominantly forming at the 9,10 positions. These observations enhance our understanding of the formation of GCAs and promote the search for strategies to delay or prevent oxidation.
Collapse
Affiliation(s)
- Xin Liang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, National Engineering Research Center for Functional Food, International Joint Research Laboratory for Lipid Nutrition and Safety, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Jiangsu 214126, China
- Food Laboratory of Zhongyuan, Luohe City 462300, Henan Province, China
| | - Luelue Huang
- School of Food and Drug, Shenzhen Polytechnic University, No. 2190 Liuxian Road, Shenzhen 518055, China
| | - Ran Liu
- School of Food and Drug, Shenzhen Polytechnic University, No. 2190 Liuxian Road, Shenzhen 518055, China
| | - Xu Li
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, 9 Seyuan Road, Nantong 226019, Jiangsu, China
| | - Xiaoyu Huang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, National Engineering Research Center for Functional Food, International Joint Research Laboratory for Lipid Nutrition and Safety, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Jiangsu 214126, China
- Food Laboratory of Zhongyuan, Luohe City 462300, Henan Province, China
| | - Hui Zhang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, National Engineering Research Center for Functional Food, International Joint Research Laboratory for Lipid Nutrition and Safety, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Jiangsu 214126, China
- Food Laboratory of Zhongyuan, Luohe City 462300, Henan Province, China
| | - Xingguo Wang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, National Engineering Research Center for Functional Food, International Joint Research Laboratory for Lipid Nutrition and Safety, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Jiangsu 214126, China
- Food Laboratory of Zhongyuan, Luohe City 462300, Henan Province, China
| | - Gangcheng Wu
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, National Engineering Research Center for Functional Food, International Joint Research Laboratory for Lipid Nutrition and Safety, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Jiangsu 214126, China
- Food Laboratory of Zhongyuan, Luohe City 462300, Henan Province, China
| |
Collapse
|
5
|
Abrante-Pascual S, Nieva-Echevarría B, Goicoechea-Oses E. Vegetable Oils and Their Use for Frying: A Review of Their Compositional Differences and Degradation. Foods 2024; 13:4186. [PMID: 39767128 PMCID: PMC11675685 DOI: 10.3390/foods13244186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/13/2024] [Accepted: 12/17/2024] [Indexed: 01/11/2025] Open
Abstract
This review provides an overview of the main vegetable oils of different botanical origin and composition that can be used for frying worldwide (olive and extra-virgin olive oil, high-oleic sunflower oil, rapeseed oil, peanut oil, rice bran oil, sunflower oil, corn oil, soybean oil, cottonseed oil, palm oil, palm kernel oil and coconut oil) and their degradation during this process. It is well known that during this culinary technique, oil's major and minor components degrade throughout different reactions, mainly thermoxidation, polymerization and, to a lesser extent, hydrolysis. If severe high temperatures are employed, isomerization to trans fatty acyl chains and cyclization are also possible. The factors conditioning frying medium degradation are addressed, including oil composition (unsaturation degree, fatty acyl chain length and "free" fatty acid content, and presence of beneficial and detrimental minor components), together with frying conditions and food characteristics. Likewise, this review also tackles how the frying oil and other processing conditions may impact on fried food quality (oil absorption, texture, flavor and color). Finally, potential health implications of fried food consumption are briefly reviewed.
Collapse
Affiliation(s)
| | | | - Encarnacion Goicoechea-Oses
- Department of Food Technology, Faculty of Pharmacy, Lascaray Research Center, University of the Basque Country (UPV/EHU), 01006 Vitoria-Gasteiz, Spain
| |
Collapse
|
6
|
Ampem G, Le Gresley A, Grootveld M, Patrick Naughton D. Effectiveness of different antioxidants in suppressing the evolution of thermally induced peroxidation products in hemp seed oil. Food Res Int 2024; 188:114415. [PMID: 38823855 DOI: 10.1016/j.foodres.2024.114415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/18/2024] [Accepted: 04/20/2024] [Indexed: 06/03/2024]
Abstract
Several scientific studies have warned that the ingestion of dietary lipid oxidation products (LOPs) may initiate or exacerbate the development of several chronic non-communicable diseases in humans. Indeed, the constantly increasing consumption of culinary oils by larger global populations indicates the need for scientific techniques to suppress the evolution of LOPs in thermo-oxidised oils. This study employed a 600.13 MHz frequency NMR spectrometer in evaluating the effect of 10, 50, and 100 ppm concentrations of chemical compounds reported to have antioxidant properties in continuously-stirred and thermally stressed polyunsaturated fatty acid (PUFA)-rich hemp seed oil at a frying temperature of 180℃ for 180 min. Research data acquired showed that the antioxidants α- and γ-tocopherol, γ-oryzanol, β-carotene, eugenol, resveratrol, ascorbyl palmitate, gentisic acid, and L-ascorbic acid all played a vital role in suppressing the evolution of secondary aldehydic lipid oxidation products in hemp seed oil. However, the most ineffective LOP-suppressing agent was L-lysine, an observation which may be accountable by its poor oil solubility. Nonetheless, trends deduced for compounds acting as antioxidants were mainly unique for each class of agent tested. Conversely, the antioxidant capacity of resveratrol was consistently higher, and this effect was found to be independent of its added amounts. This report provides a direct approach in developing scientific methods for the suppression of LOPs in thermo-oxidatively susceptible PUFA-rich cooking oils.
Collapse
Affiliation(s)
- Gilbert Ampem
- Department of Chemical and Pharmaceutical Sciences, HSSCE Faculty, Kingston University, Kingston-upon-Thames, Surrey KT1 2EE, UK
| | - Adam Le Gresley
- Department of Chemical and Pharmaceutical Sciences, HSSCE Faculty, Kingston University, Kingston-upon-Thames, Surrey KT1 2EE, UK.
| | - Martin Grootveld
- Health and Life Sciences, De Montfort University, Leicester LE1 9BH, UK
| | - Declan Patrick Naughton
- Department of Chemical and Pharmaceutical Sciences, HSSCE Faculty, Kingston University, Kingston-upon-Thames, Surrey KT1 2EE, UK
| |
Collapse
|
7
|
Neves BB, Pinto S, Pais R, Batista J, Domingues MR, Melo T. Looking into the lipid profile of avocado and byproducts: Using lipidomics to explore value-added compounds. Compr Rev Food Sci Food Saf 2024; 23:e13351. [PMID: 38682674 DOI: 10.1111/1541-4337.13351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 03/26/2024] [Accepted: 03/28/2024] [Indexed: 05/01/2024]
Abstract
Consumer priorities in healthy diets and lifestyle boosted the demand for nutritious and functional foods as well as plant-based ingredients. Avocado has become a food trend due to its nutritional and functional values, which in turn is increasing its consumption and production worldwide. Avocado edible portion has a high content of lipids, with the pulp and its oil being rich in monounsaturated fatty acids and essential omega - 3 and omega - 6 polyunsaturated fatty acids (PUFA). These fatty acids are mainly esterified in triacylglycerides, the major lipids in pulp, but also in minor components such as polar lipids (phospholipids and glycolipids). Polar lipids of avocado have been overlooked despite being recently highlighted with functional properties as well. The growth in the industry of avocado products is generating an increased amount of their byproducts, such as seed and peels (nonedible portions), still undervalued. The few studies on avocado byproducts pointed out that they also contain interesting lipids, with seeds particularly rich in polar lipids bearing PUFA, and thus can be reused as a source of add-value phytochemical. Mass spectrometry-based lipidomics approaches appear as an essential tool to unveil the complex lipid signature of avocado and its byproducts, contributing to the recognition of value-added lipids and opening new avenues for their use in novel biotechnological applications. The present review provides an up-to-date overview of the lipid signature from avocado pulp, peel, seed, and its oils.
Collapse
Affiliation(s)
- Bruna B Neves
- Mass Spectrometry Center, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, Aveiro, Portugal
- CESAM-Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Santiago University Campus, Aveiro, Portugal
| | - Sara Pinto
- Mass Spectrometry Center, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, Aveiro, Portugal
- CESAM-Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Santiago University Campus, Aveiro, Portugal
| | - Rita Pais
- Mass Spectrometry Center, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, Aveiro, Portugal
- CESAM-Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Santiago University Campus, Aveiro, Portugal
| | - Joana Batista
- Mass Spectrometry Center, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, Aveiro, Portugal
- CESAM-Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Santiago University Campus, Aveiro, Portugal
| | - M Rosário Domingues
- Mass Spectrometry Center, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, Aveiro, Portugal
- CESAM-Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Santiago University Campus, Aveiro, Portugal
| | - Tânia Melo
- Mass Spectrometry Center, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, Aveiro, Portugal
- CESAM-Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Santiago University Campus, Aveiro, Portugal
| |
Collapse
|
8
|
Ampem G, Le Gresley A, Grootveld M, Naughton DP. High-resolution 1H NMR analysis of continuous and discontinuous thermo-oxidative susceptibility of culinary oils during frying at 180 °C. J Food Drug Anal 2023; 31:95-115. [PMID: 37224552 PMCID: PMC10208671 DOI: 10.38212/2224-6614.3439] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 09/28/2022] [Indexed: 09/19/2024] Open
Abstract
Lipid oxidations products (LOPs) are reactive mutagenic and carcinogenic species known to be generated in thermally stressed culinary oils. Mapping the evolution of LOPs in culinary oils exposed to standard frying practices - both continuous and discontinuous thermo-oxidation - at 180 °C is vital to our understanding of these processes, and to the development of scientific solutions for their effective suppression. Modifications in the chemical compositions of the thermo-oxidised oils were analysed using a high-resolution proton nuclear magnetic resonance (1H NMR) technique. Research findings acquired showed that polyunsaturated fatty acid (PUFA)-rich culinary oils were the most susceptible to thermo-oxidation. Consistently, coconut oil, which has a very high saturated fatty acid (SFA) content, was highly resistant to the thermo-oxidative methods employed. Furthermore, continuous thermo-oxidation produced greater substantive changes in the oils evaluated than discontinuous episodes. Indeed, for 120 min thermo-oxidation durations, both continuous and discontinuous methods exerted a unique impact on the contents and levels of aldehydic LOPs formed in the oils. This report exposes daily used culinary oils to thermo-oxidation, and therefore, it permits assessments of their peroxidative susceptibilities. It also serves as a reminder to the scientific community to investigate approaches for suppressing toxic LOPs generation in culinary oils exposed to these processes, most notably those involving their reuse.
Collapse
Affiliation(s)
- Gilbert Ampem
- Department of Chemistry and Pharmaceutical Sciences, SEC Faculty, Kingston University, Kingston-upon-Thames, Surrey, KT1 2EE,
UK
| | - Adam Le Gresley
- Department of Chemistry and Pharmaceutical Sciences, SEC Faculty, Kingston University, Kingston-upon-Thames, Surrey, KT1 2EE,
UK
| | - Martin Grootveld
- Leicester School of Pharmacy, HLS Faculty, De Montfort University, Leicester, LE1 9BH,
UK
| | - Declan P. Naughton
- Department of Chemistry and Pharmaceutical Sciences, SEC Faculty, Kingston University, Kingston-upon-Thames, Surrey, KT1 2EE,
UK
| |
Collapse
|
9
|
Low-Field Benchtop NMR Spectroscopy for Quantification of Aldehydic Lipid Oxidation Products in Culinary Oils during Shallow Frying Episodes. Foods 2023; 12:foods12061254. [PMID: 36981180 PMCID: PMC10048026 DOI: 10.3390/foods12061254] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/07/2023] [Accepted: 03/10/2023] [Indexed: 03/18/2023] Open
Abstract
Introduction: Toxic aldehydic lipid oxidation products (LOPs) arise from the thermo-oxidative deterioration of unsaturated fatty acids present in heated culinary oils when exposed to high-temperature frying episodes, and currently these effects represent a major public health concern. Objectives: In this study, we investigated the applications of low-field (LF), benchtop NMR analysis to detect and quantify toxic aldehyde species in culinary oils following their exposure to laboratory-simulated shallow frying episodes (LSSFEs) at 180 °C. Four culinary oils of variable fatty acid (FA) composition were investigated to determine the analytical capabilities of the LF NMR instrument. Oil samples were also analysed using a medium-field (400 MHz) NMR facility for comparative purposes. Results: Aldehydes were quantified as total saturated and total α,β-unsaturated classes. The time-dependent production of α,β-unsaturated aldehydes decreased in the order chia > rapeseed ≈ soybean > olive oils, as might be expected from their polyunsaturated and monounsaturated FA (PUFA and MUFA, respectively) contents. A similar but inequivalent trend was found for saturated aldehyde concentrations. These data strongly correlated with medium-field 1H NMR data obtained, although LF-determined levels were significantly lower in view of its inability to detect or quantify the more minor oxygenated aldehydic LOPs present. Lower limit of detection (LLOD) values for this spectrometer were 0.19 and 0.18 mmol/mol FA for n-hexanal and trans-2-octenal, respectively. Aldehydic lipid hydroperoxide precursors of aldehydic LOPs were also detectable in LF spectra. Conclusions: We therefore conclude that there is scope for application of these smaller, near-portable NMR facilities for commercial or ‘on-site’ quality control determination of toxic aldehydic LOPs in thermally stressed frying oils.
Collapse
|
10
|
Fan Z, Wang L, Jiang Q, Fan D, Xiao J, Wang M, Zhao Y. Effects of quercetin on emissions of aldehydes from heated docosahexaenoic acid (DHA)-fortified soybean oil. JOURNAL OF HAZARDOUS MATERIALS 2023; 442:130134. [PMID: 36303358 DOI: 10.1016/j.jhazmat.2022.130134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/29/2022] [Accepted: 10/03/2022] [Indexed: 06/16/2023]
Abstract
Home cooking has been considered as an indoor pollution problem since cooking oil fumes contain various toxic chemicals such as aldehydes. Fortifying edible oils with docosahexaenoic acid (DHA) has been applied to enhance the nutritional value of oils. This study designed a frying simulation system and examined the effect of oil type, DHA fortification, heating time, and addition of natural antioxidant on the emissions of aldehydes from heated oils. Results showed that linseed oil had the highest total aldehyde emissions, followed by soybean oil, peanut oil, and palm oil. Fortifying soybean oil with DHA increased the toxic aldehydes emitted. Quercetin, a flavonoid, significantly reduced aldehydes emitted from DHA-fortified soybean oil (by up to 39.80%) to levels similar to those of normal soybean oil. Further analysis showed that DHA-fortified soybean oil with quercetin had a significantly higher DHA and unsaturated fatty acids (UFAs) content than the control oil at each heating time point. The result indicated that quercetin inhibited emissions of aldehydes, at least in part, by protecting UFAs from oxidation. Collectively, quercetin could be used as a natural additive in DHA-fortified and normal cooking oils to reduce aldehyde emissions, indoor air pollution, and preserve functional DHA and other UFAs.
Collapse
Affiliation(s)
- Zhenyu Fan
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai 201306, China
| | - Li Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Qingqing Jiang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai 201306, China
| | - Daming Fan
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Jianbo Xiao
- Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo - Ourense Campus, E-32004 Ourense, Spain
| | - Mingfu Wang
- Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Yueliang Zhao
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai 201306, China.
| |
Collapse
|
11
|
Osheter T, Campisi-Pinto S, Resende MT, Linder C, Wiesman Z. 1H LF-NMR Self-Diffusion Measurements for Rapid Monitoring of an Edible Oil's Food Quality with Respect to Its Oxidation Status. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27186064. [PMID: 36144797 PMCID: PMC9505792 DOI: 10.3390/molecules27186064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 09/13/2022] [Accepted: 09/15/2022] [Indexed: 11/16/2022]
Abstract
The food quality of edible oils is dependent on basic chemical and structural changes that can occur by oxidation during preparation and storage. A rapid and efficient analytical method of the different steps of oil oxidation is described using a time-domain nuclear magnetic resonance (TD-NMR) sensor for measuring signals related to the chemical and physical properties of the oil. The degree of thermal oxidation of edible oils at 80 °C was measured by the conventional methodologies of peroxide and aldehyde analysis. Intact non-modified samples of the same oils were more rapidly analyzed for oxidation using a TD-NMR sensor for 2D T1-T2 and self-diffusion (D) measurements. A good linear correlation between the D values and the conventional chemical analysis was achieved, with the highest correlation of R2 = 0.8536 for the D vs. the aldehyde concentrations during the thermal oxidation of poly-unsaturated linseed oils, the oil most susceptible to oxidation. A good correlation between the D and aldehyde levels was also achieved for all the other oils. The possibility to simplify and minimize the time of oxidative analysis using the TD NMR sensors D values is discussed as an indicator of the oil’s oxidation quality, as a rapid and accurate methodology for the oil industry.
Collapse
|
12
|
Ampem G, Le Gresley A, Grootveld M, Naughton DP. Nuclear Magnetic Resonance Spectroscopic Analysis of the Evolution of Peroxidation Products Arising from Culinary Oils Exposed to Thermal Oxidation: An Investigation Employing 1H and 1H-1H COSY and TOCSY Techniques. Foods 2022; 11:foods11131864. [PMID: 35804680 PMCID: PMC9265948 DOI: 10.3390/foods11131864] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/15/2022] [Accepted: 06/20/2022] [Indexed: 02/05/2023] Open
Abstract
Scientific warnings on the deleterious health effects exerted by dietary lipid oxidation products (LOPs) present in thermally stressed culinary oils have, to date, not received adequate attention given that there has been an increase in the use and consumption of such oil products in everyday life. In this study, high-resolution 1H nuclear magnetic resonance (NMR) analysis was used to characterize and map chemical modifications to fatty acid (FA) acyl groups and the evolution of LOPs in saturated fatty acid (SFA)-rich ghee, monounsaturated fatty acid (MUFA)-rich groundnut, extra virgin olive, and macadamia oils, along with polyunsaturated fatty acid (PUFA)-rich sesame, corn and walnut oils, which were all thermally stressed at 180 °C, continuously and discontinuously for 300 and 480 min, respectively. Results acquired revealed that PUFA-rich culinary oils were more susceptible to thermo-oxidative stress than the others tested, as expected. However, ghee and macadamia oil both generated only low levels of toxic LOPs, and these results demonstrated a striking similarity. Furthermore, at the 120 min thermo-oxidation time-point, the discontinuous thermo-oxidation episodes produced higher concentrations of aldehydic LOPs than those produced during continuous thermo-oxidation sessions for the same duration. On completion of the thermo-oxidation period, a higher level of triacylglycerol chain degradation, and hence, higher concentrations of aldehydes, were registered in culinary oils thermally stressed continuously over those found in discontinuous thermo-oxidized oils. These findings may be crucial in setting targets and developing scientific methods for the suppression of LOPs in thermo-oxidized oils.
Collapse
Affiliation(s)
- Gilbert Ampem
- Department of Chemistry and Pharmaceutical Sciences, SEC Faculty, Kingston University, Kingston-upon-Thames, Surrey KT1 2EE, UK; (G.A.); (D.P.N.)
| | - Adam Le Gresley
- Department of Chemistry and Pharmaceutical Sciences, SEC Faculty, Kingston University, Kingston-upon-Thames, Surrey KT1 2EE, UK; (G.A.); (D.P.N.)
- Correspondence: ; Tel.: +44-(0)20-8417-7432
| | - Martin Grootveld
- Leicester School of Pharmacy, De Montfort University, Leicester LE1 9BH, UK;
| | - Declan P. Naughton
- Department of Chemistry and Pharmaceutical Sciences, SEC Faculty, Kingston University, Kingston-upon-Thames, Surrey KT1 2EE, UK; (G.A.); (D.P.N.)
| |
Collapse
|
13
|
Grootveld M. Evidence-Based Challenges to the Continued Recommendation and Use of Peroxidatively-Susceptible Polyunsaturated Fatty Acid-Rich Culinary Oils for High-Temperature Frying Practises: Experimental Revelations Focused on Toxic Aldehydic Lipid Oxidation Products. Front Nutr 2022; 8:711640. [PMID: 35071288 PMCID: PMC8769064 DOI: 10.3389/fnut.2021.711640] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 12/06/2021] [Indexed: 01/16/2023] Open
Abstract
In this manuscript, a series of research reports focused on dietary lipid oxidation products (LOPs), their toxicities and adverse health effects are critically reviewed in order to present a challenge to the mindset supporting, or strongly supporting, the notion that polyunsaturated fatty acid-laden frying oils are "safe" to use for high-temperature frying practises. The generation, physiological fates, and toxicities of less commonly known or documented LOPs, such as epoxy-fatty acids, are also considered. Primarily, an introduction to the sequential autocatalytic peroxidative degradation of unsaturated fatty acids (UFAs) occurring during frying episodes is described, as are the potential adverse health effects posed by the dietary consumption of aldehydic and other LOP toxins formed. In continuance, statistics on the dietary consumption of fried foods by humans are reviewed, with a special consideration of French fries. Subsequently, estimates of human dietary aldehyde intake are critically explored, which unfortunately are limited to acrolein and other lower homologues such as acetaldehyde and formaldehyde. However, a full update on estimates of quantities derived from fried food sources is provided here. Further items reviewed include the biochemical reactivities, metabolism and volatilities of aldehydic LOPs (the latter of which is of critical importance regarding the adverse health effects mediated by the inhalation of cooking/frying oil fumes); their toxicological actions, including sections focussed on governmental health authority tolerable daily intakes, delivery methods and routes employed for assessing such effects in animal model systems, along with problems encountered with the Cramer classification of such toxins. The mutagenicities, genotoxicities, and carcinogenic potential of aldehydes are then reviewed in some detail, and following this the physiological concentrations of aldehydes and their likely dietary sources are considered. Finally, conclusions from this study are drawn, with special reference to requirements for (1) the establishment of tolerable daily intake (TDI) values for a much wider range of aldehydic LOPs, and (2) the performance of future nutritional and epidemiological trials to explore associations between their dietary intake and the incidence and severity of non-communicable chronic diseases (NCDs).
Collapse
Affiliation(s)
- Martin Grootveld
- Leicester School of Pharmacy, De Montfort University, Leicester, United Kingdom
| |
Collapse
|
14
|
Ampem G, Gresley AL, Grootveld M, De Mars S, Naughton DP. The impact of partial oil substitution and trace metal ions on the evolution of peroxidation products in thermally stressed culinary oils. Food Chem 2021; 375:131823. [PMID: 34920305 DOI: 10.1016/j.foodchem.2021.131823] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/24/2021] [Accepted: 12/05/2021] [Indexed: 02/01/2023]
Abstract
Suppressing toxic aldehydic lipid oxidation product (LOP) generation in culinary oils is now considered vital, since the deleterious effects arising from their ingestion are implicated in a wide range of disease conditions. Partial substitution involves the replenishment of thermally-stressed culinary oils with corresponding unheated ones. This technique was tested by employing 10%, 25%, 50%, and 75% (v/v) partial substitutions of coconut, olive, rapeseed, and sunflower oils at 180℃ for a 300 min continuous thermo-oxidation duration. Oil samples were analysed by proton nuclear magnetic resonance (1H NMR) spectroscopy. Trace metal levels, including oxidation-reduction (redox)-active metal ions credited with enhancing cooking oil oxidation were also analysed using inductively coupled plasma-optical emission spectroscopy (ICP-OES). As expected, the degree of oil unsaturation, and the % partial substitutions significantly influenced their susceptibility to thermo-oxidation. In view of the very low polyunsaturated fatty acid (PUFA) and monounsaturated fatty acid (MUFA) contents of coconut oil, both the class and concentrations of evolved LOPs were found to be least affected by this partial substitution process. Aldehydic LOPs were greatly suppressed in partially-substituted rapeseed oil. The % suppression activity of LOPs evaluated for the partially substituted oils were generally high making partial oil substitutions an effective chemical-free method in suppressing LOPs at both industrial and commercial levels. In general, the % partial oil substitutions were directly related to the dilution effect observed for LOPs quantified in the oils. Furthermore, trace metal ion concentrations measured in the culinary oils did not influence the evolution of LOPs in the oils.
Collapse
Affiliation(s)
- Gilbert Ampem
- Department of Chemistry and Pharmaceutical Sciences, SEC Faculty, Kingston University, Kingston-upon-Thames, Surrey KT1 2EE, UK
| | - Adam Le Gresley
- Department of Chemistry and Pharmaceutical Sciences, SEC Faculty, Kingston University, Kingston-upon-Thames, Surrey KT1 2EE, UK.
| | - Martin Grootveld
- Health and Life Sciences, De Montfort University, Leicester LE1 9BH, UK
| | - Simon De Mars
- Department of Chemistry and Pharmaceutical Sciences, SEC Faculty, Kingston University, Kingston-upon-Thames, Surrey KT1 2EE, UK
| | - Declan P Naughton
- Department of Chemistry and Pharmaceutical Sciences, SEC Faculty, Kingston University, Kingston-upon-Thames, Surrey KT1 2EE, UK
| |
Collapse
|