1
|
Abdul Manan M. Progress in Probiotic Science: Prospects of Functional Probiotic-Based Foods and Beverages. INTERNATIONAL JOURNAL OF FOOD SCIENCE 2025; 2025:5567567. [PMID: 40259922 PMCID: PMC12011469 DOI: 10.1155/ijfo/5567567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Accepted: 03/27/2025] [Indexed: 04/23/2025]
Abstract
This comprehensive review explores the evolving role of probiotic-based foods and beverages, highlighting their potential as functional and "future foods" that could significantly enhance nutrition, health, and overall well-being. These products are gaining prominence for their benefits in gut health, immune support, and holistic wellness. However, their future success depends on addressing critical safety concerns and navigating administrative complexities. Ensuring that these products "do more good than harm" involves rigorous evaluations of probiotic strains, particularly those sourced from the human gastrointestinal tract. Lactic acid bacteria (LABs) serve as versatile and effective functional starter cultures for the development of probiotic foods and beverages. The review emphasizes the role of LABs as functional starter cultures and the development of precision probiotics in advancing these products. Establishing standardized guidelines and transparent practices is essential, requiring collaboration among regulatory bodies, industry stakeholders, and the scientific community. The review underscores the importance of innovation in developing "friendly bacteria," "super probiotics," precision fermentation, and effective safety assessments. The prospects of functional probiotic-based foods and beverages rely on refining these elements and adapting to emerging scientific advancements. Ultimately, empowering consumers with accurate information, fostering innovation, and maintaining stringent safety standards will shape the future of these products as trusted and beneficial components of a health-conscious society. Probiotic-based foods and beverages, often infused with LABs, a "friendly bacteria," are emerging as "super probiotics" and "future foods" designed to "do more good than harm" for overall health.
Collapse
Affiliation(s)
- Musaalbakri Abdul Manan
- Food Science and Technology Research Centre, Malaysian Agricultural Research and Development Institute (MARDI), MARDI Headquarters, Persiaran MARDI-UPM, Serdang, Selangor, Malaysia
| |
Collapse
|
2
|
Han W, Xiong N, Huang L. Probiotics and nanoparticle-mediated nutrient delivery in the management of transfusion-supported diseases. Front Cell Infect Microbiol 2025; 15:1575798. [PMID: 40292219 PMCID: PMC12021914 DOI: 10.3389/fcimb.2025.1575798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Accepted: 03/25/2025] [Indexed: 04/30/2025] Open
Abstract
Bone marrow is vital for hematopoiesis, producing blood cells essential for oxygen transport, immune defense, and clotting. However, disorders like leukemia, lymphoma, aplastic anemia, and myelodysplastic syndromes can severely disrupt its function, leading to life-threatening complications. Traditional treatments, including chemotherapy and stem cell transplants, have significantly improved patient outcomes but are often associated with severe side effects and limitations, necessitating the exploration of safer, more targeted therapeutic strategies. Nanotechnology has emerged as a promising approach for addressing these challenges, particularly in the delivery of nutraceuticals-bioactive compounds derived from food sources with potential therapeutic benefits. Despite their promise, nutraceuticals often face clinical limitations due to poor bioavailability, instability, and inefficient delivery to target sites. Nanoparticles offer a viable solution by enhancing the stability, absorption, and targeted transport of nutraceuticals to bone marrow while minimizing systemic side effects. This study explores a range of bone marrow disorders, conventional treatment modalities, and the potential of nanoparticles to enhance nutraceutical-based therapies. By improving targeted delivery and therapeutic efficacy, nanoparticles could revolutionize bone marrow disease management, providing patients with more effective and less invasive treatment options. These advancements represent a significant step toward safer and more efficient therapeutic approaches, ultimately improving patient prognosis and overall health.
Collapse
Affiliation(s)
- Wendao Han
- Department of Blood Transfusion, Meizhou People’s Hospital, Meizhou Academy of
Medical Sciences, Meizhou, China
| | | | | |
Collapse
|
3
|
Bashir HH, Hasnain MA, Abbas A, Lee JH, Moon GS. The Impact of Fermented Dairy Products and Probiotics on Bone Health Improvement. Food Sci Anim Resour 2025; 45:449-467. [PMID: 40093630 PMCID: PMC11907416 DOI: 10.5851/kosfa.2025.e7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 01/12/2025] [Accepted: 02/03/2025] [Indexed: 03/19/2025] Open
Abstract
The bone is an important body organ due to its role in locomotion, protection and mineral homeostasis. Bone health is affected by various intrinsic and extrinsic factors like genetics, diet, environment and immune status of an individual. Being a dynamic organ, bones are continuously being remodeled and the remodeling is mediated by an intricate balance of bone formation and resorption which, in turn, are regulated by environmental, genetic, hormonal and neural factors. Lack of balance in any of these factors leads to bone disorders such as osteoporosis. Fermented dairy products along with their probiotics content play a significant role in bone remodeling process ensuring the maintenance of intricate balance in bone forming cells (osteoblasts) and bone resorbing cells (osteoclasts). Proteins and various minerals are important constituents of bone. Dairy products, especially fermented ones, are significant because of being a good source of proteins and minerals required to make and maintain a healthy bone. In addition, these provide the body with probiotics which are involved in bone health improvement by enhancing the bioavailability of dietary constituents, production of short chain fatty acids and reducing the inflammatory components. Hence, fermented dairy products should be a regular part of our diet to keep our bone healthy.
Collapse
Affiliation(s)
- Hafiza Hira Bashir
- Department of Biotechnology, Korea National University of Transportation, Jeungpyeong 27909, Korea
| | - Muhammad Adeel Hasnain
- Major in IT·Biohealth Convergence, Department of IT·Energy Convergence, Graduate School, Korea National University of Transportation, Chungju 27469, Korea
| | - Aoun Abbas
- Department of Biotechnology, Korea National University of Transportation, Jeungpyeong 27909, Korea
| | - Jae-Hyuk Lee
- Department of Biotechnology, Korea National University of Transportation, Jeungpyeong 27909, Korea
| | - Gi-Seong Moon
- Department of Biotechnology, Korea National University of Transportation, Jeungpyeong 27909, Korea
- Major in IT·Biohealth Convergence, Department of IT·Energy Convergence, Graduate School, Korea National University of Transportation, Chungju 27469, Korea
- 4D Convergence Technology Institute, Korea National University of Transportation, Jeungpyeong 27909, Korea
| |
Collapse
|
4
|
Harahap IA, Suliburska J, Karaca AC, Capanoglu E, Esatbeyoglu T. Fermented soy products: A review of bioactives for health from fermentation to functionality. Compr Rev Food Sci Food Saf 2025; 24:e70080. [PMID: 39676350 PMCID: PMC11647071 DOI: 10.1111/1541-4337.70080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/11/2024] [Accepted: 11/19/2024] [Indexed: 12/17/2024]
Abstract
The increasing prevalence of metabolic diseases and the global drive toward achieving Sustainable Development Goals (SDGs) underscore the need for sustainable, nutrient-dense foods. Soybeans (Glycine max), a critical global crop, offer promising solutions; however, their predominant use as animal feed raises concerns regarding food security and environmental sustainability. Fermented soy products-including tempeh, natto, and miso-are rich in bioactive compounds such as peptides and isoflavones, which offer potential therapeutic effects and hold cultural and nutritional significance. These fermented products provide bioactive profiles with unique health-promoting properties. This review critically examines the bioactive compounds generated through fermentation, focusing on their bioconversion pathways in the gastrointestinal tract and their metabolic implications for human health. Recent consumer demand for novel food ingredients with additional biological benefits has fueled research into advanced extraction techniques, enhancing the functional applications of bioactive compounds from these soy-based products. This review further explores innovations in extraction methods that improve bioactive yield and sustainability, reinforcing the applicability of these compounds in health-promoting food interventions. The originality of this review lies in its in-depth exploration of the gastrointestinal bioconversion of fermented soy bioactive compounds alongside the latest sustainable extraction methods designed to optimize their use. Future research should aim to refine fermentation and extraction processes, investigate synergistic microbial interactions, and develop environmentally sustainable production methods. These efforts have the potential to position fermented soy products as essential contributors to global nutritional security and sustainable food systems, addressing both public health and environmental needs.
Collapse
Affiliation(s)
- Iskandar Azmy Harahap
- Department of Molecular Food Chemistry and Food Development, Institute of Food and One HealthGottfried Wilhelm Leibniz University HannoverHannoverGermany
- Department of Human Nutrition and Dietetics, Faculty of Food Science and NutritionPoznan University of Life SciencesPoznanPoland
- Research Organization for HealthNational Research and Innovation AgencyBogorIndonesia
| | - Joanna Suliburska
- Department of Human Nutrition and Dietetics, Faculty of Food Science and NutritionPoznan University of Life SciencesPoznanPoland
| | - Asli Can Karaca
- Department of Food Engineering, Faculty of Chemical and Metallurgical EngineeringIstanbul Technical UniversityIstanbulTurkey
| | - Esra Capanoglu
- Department of Food Engineering, Faculty of Chemical and Metallurgical EngineeringIstanbul Technical UniversityIstanbulTurkey
| | - Tuba Esatbeyoglu
- Department of Molecular Food Chemistry and Food Development, Institute of Food and One HealthGottfried Wilhelm Leibniz University HannoverHannoverGermany
| |
Collapse
|
5
|
Azamian Y, Abdollahzad H, Rezaeian S, Rouhani MH, Fatehi MH. The Effect of Synbiotic Supplementation on Bone Complications, Anemia, and Gastrointestinal Function in Hemodialysis Patients: A Double-Blind Randomized Clinical Trial. Clin Nutr Res 2024; 13:272-283. [PMID: 39526206 PMCID: PMC11543452 DOI: 10.7762/cnr.2024.13.4.272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/27/2024] [Accepted: 09/12/2024] [Indexed: 11/16/2024] Open
Abstract
Probiotics affect biomarkers indicative of bone formation, such as alkaline phosphatase (ALP), calcium status, bone mineralization, bone turnover markers and metabolism. This study aims to investigate the effects of synbiotic on gastrointestinal (GI) disorder, bone complications and anemia in hemodialysis (HD) patients. In this randomized, double-blind, placebo-controlled clinical trial study, HD patients received 2 symbiotic (n = 19) or placebo (n = 17) capsules daily for 12 weeks. GI function, serum levels of bone-specific biomarkers, and serum levels of anemia-specific biomarkers were assessed at the beginning and the end of study. GI function was assessed with gastrointestinal symptom rating scale questionnaire. The data were analyzed using SPSS. At the end of this study, parathyroid hormone levels decreased significantly in the synbiotic group (p = 0.039); however, in comparison to placebo group, the difference was not significant. Decrease of ALP levels in the synbiotic group were not statistically significant. However, a significant difference was seen between the 2 groups at the end of intervention (p = 0.037). Improvement in GI symptoms was observed in both groups, but the reduction rate was higher in the synbiotic group. Additionally, at the end of the study, a significant difference between the 2 groups was observed (p < 0.05). No statistically significant difference was observed in the levels of other factors within each group and between the 2 groups (p > 0.05). Symbiotic supplements after 12 weeks led to an improvement in GI function and ALP levels in HD patients. Further investigation into bone-mineral disorders in HD patients is necessary. Trial Registration Iranian Registry of Clinical Trials Identifier: IRCT20131013014994N7.
Collapse
Affiliation(s)
- Yasaman Azamian
- Student Research Committee, School of Nutritional Sciences and Food Technology, Kermanshah University of Medical Sciences, Kermanshah 6719851351, Iran
| | - Hadi Abdollahzad
- Department of Nutrition, School of Medicine, Urmia University of Medical Sciences, Urmia 5756115111, Iran
- Food and Beverages Safety Research Center, Urmia University of Medical Sciences, Urmia 5717683786, Iran
| | - Shahab Rezaeian
- Infectious Diseases Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6719851351, Iran
| | - Mohammad Hossein Rouhani
- Nutrition and Food Security Research Center, Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan 8174673461, Iran
| | - Mohammad Hossein Fatehi
- Department of Internal Medicine, Farabi Hospital, Isfahan University of Medical Sciences, Isfahan 8174673461, Iran
| |
Collapse
|
6
|
Harahap IA, Schmidt M, Pruszyńska-Oszmałek E, Sassek M, Suliburska J. Impact of Lactobacillus acidophilus and Its Combination with Isoflavone Products on Calcium Status, Calcium Transporters, and Bone Metabolism Biomarkers in a Post-Menopausal Osteoporotic Rat Model. Nutrients 2024; 16:2524. [PMID: 39125403 PMCID: PMC11314490 DOI: 10.3390/nu16152524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 07/27/2024] [Accepted: 07/30/2024] [Indexed: 08/12/2024] Open
Abstract
Osteoporosis in menopausal women requires alternatives to current medications, considering their adverse effects. In this context, probiotics and isoflavone products are promising dietary interventions. The objective of our study was to examine the impacts of Lactobacillus acidophilus and its combination with daidzein and tempeh on calcium status, calcium transporters, and bone metabolism biomarkers in a post-menopausal osteoporotic rat model. A total of 48 female Wistar rats were exposed to a two-stage experiment involving calcium deficit induction and subsequent dietary interventions across six groups. Calcium levels, the gene expression of TRPV5 and TRPV6 calcium transporters, bone histopathology, serum bone metabolism markers, and blood biochemistry were evaluated. The results revealed that, while decreasing serum calcium levels, the groups that received the probiotic L. acidophilus and isoflavone combination exhibited increased bone metabolism biomarkers and decreased calcium transporter expressions, akin to the effects of bisphosphonate. Additionally, significant improvements in bone histopathology were observed in these groups. However, the group receiving probiotic L. acidophilus alone did not exhibit significant changes in bone resorption biomarkers, calcium transporter expression, or various blood parameters. Meanwhile, the combination of probiotic L. acidophilus with tempeh positively influenced hematological parameters and reduced cholesterol and triglyceride levels, but it led to elevated blood glucose levels. Correlation analyses highlighted associations between serum calcium levels, calcium transporter expression, and bone metabolism biomarkers. In conclusion, our findings suggest that the daily consumption of probiotic L. acidophilus in combination with isoflavone products may improve bone health in ovariectomized rats, warranting further research to elucidate potential interactions with other nutrients.
Collapse
Affiliation(s)
- Iskandar Azmy Harahap
- Department of Human Nutrition and Dietetics, Faculty of Food Science and Nutrition, Poznan University of Life Sciences, 60-624 Poznan, Poland
| | - Marcin Schmidt
- Department of Biotechnology and Food Microbiology, Faculty of Food Science and Nutrition, Poznan University of Life Sciences, 60-637 Poznan, Poland
| | - Ewa Pruszyńska-Oszmałek
- Department of Animal Physiology, Biochemistry and Biostructure, Faculty of Veterinary Medicine and Animal Science, Poznan University of Life Sciences, 60-637 Poznan, Poland
| | - Maciej Sassek
- Department of Animal Physiology, Biochemistry and Biostructure, Faculty of Veterinary Medicine and Animal Science, Poznan University of Life Sciences, 60-637 Poznan, Poland
| | - Joanna Suliburska
- Department of Human Nutrition and Dietetics, Faculty of Food Science and Nutrition, Poznan University of Life Sciences, 60-624 Poznan, Poland
| |
Collapse
|
7
|
Chen H, Weng Z, Kalinowska M, Xiong L, Wang L, Song H, Xiao J, Wang F, Shen X. Anti-osteoporosis effect of bioactives in edible medicinal plants: a comprehensive review. Crit Rev Food Sci Nutr 2024:1-17. [PMID: 39093554 DOI: 10.1080/10408398.2024.2386449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Current treatments for osteoporosis include a calcium-rich diet, adequate exercise, and medication. Many synthetic drugs, although fast-acting, can cause a range of side effects for patients when taken over a long period, such as irritation of the digestive tract and a burden on the kidneys. As the world's population ages, the prevalence of osteoporosis is increasing, and the development of safe and effective treatments is urgently needed. Active compounds in edible and medicinal homologous plants have been used for centuries to improve bone quality. It is possible to employ them as dietary supplements to prevent osteoporosis. In this review, we analyze the influencing factors of osteoporosis and systematically summarize the research progress on the anti-osteoporosis effects of active compounds in edible and medicinal homologous plants. The literature suggests that some naturally occurring active compounds in edible and medicinal homologous plants can inhibit bone loss, prevent the degeneration of bone cell microstructure, and reduce bone fragility through alleviating oxidative stress, regulating autophagy, anti-inflammation, improving gut flora, and regulating estrogen level with little side effects. Our review provides useful guidance for the use of edible and medicinal homologous plants and the development of safer novel anti-osteoporosis dietary supplements.
Collapse
Affiliation(s)
- Huiling Chen
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, China
| | - Zebin Weng
- School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Monika Kalinowska
- Department of Chemistry, Biology and Biotechnology, Bialystok University of Technology, Bialystok, Poland
| | - Ling Xiong
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, China
| | - Luanfeng Wang
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, China
| | - Haizhao Song
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, China
| | - Jianbo Xiao
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, China
- Department of Analytical Chemistry and Food Science, Instituto de Agroecoloxía e Alimentación (IAA) - CITEXVI, Universidade de Vigo, Nutrition and Bromatology Group, Vigo, Spain
| | - Fang Wang
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, China
- Beth Israel Deaconess Medical Center/Harvard Medical School, Boston, Massachusetts, USA
| | - Xinchun Shen
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, China
| |
Collapse
|
8
|
Nanashima N, Horie K, Oey I. Blackcurrant extract promotes differentiation of MC3T3‑E1 pre‑osteoblasts. Biomed Rep 2024; 21:121. [PMID: 38978537 PMCID: PMC11229392 DOI: 10.3892/br.2024.1810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 05/23/2024] [Indexed: 07/10/2024] Open
Abstract
Osteoporosis risk increases in menopausal individuals owing to the decrease in estrogen secretion. Blackcurrant extract (BCE) ameliorates osteoporosis; however, the underlying mechanisms are unclear. Furthermore, although BCE has phytoestrogenic activity, its effects on osteoblasts are unknown. In the present study, we investigated BCE-mediated attenuation of osteoporosis using mouse MC3T3-E1 pre-osteoblasts, with a focus on osteogenesis. After treating MC3T3-E1 cells with BCE for 48 h, cell proliferation was assessed using Cell Counting Kit-8. Levels of osteoblast differentiation markers, namely alkaline phosphatase activity and total collagen content in the cells, were evaluated after 3 and 14 days of BCE treatment, respectively. The expression of genes encoding osteoblast differentiation markers, including collagen type I (Col-I), alkaline phosphatase (Alp), bone γ-carboxyglutamate protein (Bglap), and runt-related transcription factor 2 (Runx2), was evaluated using reverse transcription-quantitative polymerase chain reaction. Mineralization of the cells was evaluated using Alizarin Red staining. Femoral tissues of ovariectomized (OVX) rats with or without 3% BCE were stained using ALP to evaluate osteogenic differentiation in femoral tissue. After treating MC3T3-E1 cells with BCE, cell proliferation had increased. BCE treatment increased Alp activity and total collagen content. Moreover, the expression of Col-I, Alp, Bglap, and Runx2 increased in BCE-treated cells. Furthermore, when MC3T3-E1 cells were treated with BCE for 21 days, the levels of calcified nodules increased. Alp staining intensity was stronger in the epiphyses on femoral tissue of OVX rats treated with 3% BCE than in those of untreated OVX rats. The results suggest that BCE may promote osteogenesis by inducing osteoblast differentiation.
Collapse
Affiliation(s)
- Naoki Nanashima
- Department of Nutrition, Faculty of Health Science, Aomori University of Health and Welfare, Aomori 030-8505, Japan
- Department of Bioscience and Laboratory Medicine, Hirosaki University Graduate School of Health Sciences, Aomori 036-8564, Japan
| | - Kayo Horie
- Department of Bioscience and Laboratory Medicine, Hirosaki University Graduate School of Health Sciences, Aomori 036-8564, Japan
| | - Indrawati Oey
- Department of Food Science, University of Otago, Dunedin 9054, New Zealand
- Riddet Institute, Palmerston North 4442, New Zealand
| |
Collapse
|
9
|
Harahap IA, Moszak M, Czlapka-Matyasik M, Skrypnik K, Bogdański P, Suliburska J. Effects of daily probiotic supplementation with Lactobacillus acidophilus on calcium status, bone metabolism biomarkers, and bone mineral density in postmenopausal women: a controlled and randomized clinical study. Front Nutr 2024; 11:1401920. [PMID: 39010860 PMCID: PMC11247006 DOI: 10.3389/fnut.2024.1401920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 06/11/2024] [Indexed: 07/17/2024] Open
Abstract
Background Menopause poses significant health risks for women, particularly an increased vulnerability to fractures associated with osteoporosis. Dietary interventions have emerged as promising strategies, focusing on mitigating the risk of osteoporosis rather than solely addressing the established disease. This 12-week randomized controlled trial aimed to analyze the effects of consuming Lactobacillus acidophilus probiotics on calcium levels, biomarkers of bone metabolism, and bone mineral density (BMD) profiles in postmenopausal women. Methods Fifty-five participants were randomly assigned to receive either a placebo (n = 25) or the probiotic L. acidophilus UALa-01™ (n = 30) daily via oral intervention. Throughout the study, evaluations included body composition, blood biochemical parameters, serum calcium levels, and biomarkers of bone metabolism. Additionally, Dual-energy X-ray absorptiometry was used to measure BMD profiles. Results The findings delineated that the probiotic group experienced a decrease in serum calcium levels compared to their initial levels. However, hair calcium levels and biomarkers related to bone metabolism showed no notable changes within this group. Consumption of probiotic L. acidophilus also seemed to prevent fluctuations in bone turnover markers. Moreover, there were no significant alterations in BMD levels at the lumbar spine, left femur, and total body in the probiotic group. Additionally, probiotic intake led to favorable outcomes by significantly reducing both body fat and visceral fat during the intervention period. Conversely, an adverse effect of consuming probiotic L. acidophilus was observed with a significant increase in glucose concentration. Conclusion In conclusion, the consumption of L. acidophilus probiotics daily for 12 weeks among postmenopausal women does not affect the profile of BMD, but it may help in stabilizing bone turnover. It is important to note that most measured parameters were within the normal range for this population. However, it is worth noting that 3 months of probiotic supplementation could potentially disrupt calcium and glucose status in postmenopausal women.
Collapse
Affiliation(s)
- Iskandar Azmy Harahap
- Department of Human Nutrition and Dietetics, Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Poznań, Poland
| | - Małgorzata Moszak
- Department of Treatment of Obesity, Metabolic Disorders and Clinical Dietetics, Poznań University of Medical Sciences, Poznań, Poland
| | - Magdalena Czlapka-Matyasik
- Department of Human Nutrition and Dietetics, Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Poznań, Poland
| | - Katarzyna Skrypnik
- Department of Human Nutrition and Dietetics, Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Poznań, Poland
| | - Paweł Bogdański
- Department of Treatment of Obesity, Metabolic Disorders and Clinical Dietetics, Poznań University of Medical Sciences, Poznań, Poland
| | - Joanna Suliburska
- Department of Human Nutrition and Dietetics, Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Poznań, Poland
| |
Collapse
|
10
|
Goudarzi F, Kiani A, Nami Y, Shahmohammadi A, Mohammadalipour A, Karami A, Haghshenas B. Potential probiotic Lactobacillus delbrueckii subsp. lactis KUMS-Y33 suppresses adipogenesis and promotes osteogenesis in human adipose-derived mesenchymal stem cell. Sci Rep 2024; 14:9689. [PMID: 38678043 PMCID: PMC11055903 DOI: 10.1038/s41598-024-60061-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 04/18/2024] [Indexed: 04/29/2024] Open
Abstract
Today, probiotics are considered to be living microorganisms whose consumption has a certain number of beneficial effects on the consumer. The present study aimed to investigate the effect of a new probiotic extract (Lactobacillus delbrueckii subsp. lactis KUMS Y33) on the differentiation process of human adipose-derived stem cells (hADSCs) into adipocytes and osteocytes and, as a result, clarify its role in the prevention and treatment of bone age disease. Several bacteria were isolated from traditional yogurt. They were evaluated to characterize the probiotic's activity. Then, the isolated hADSCs were treated with the probiotic extract, and then osteogenesis and adipogenesis were induced. To evaluate the differentiation process, oil red O and alizarin red staining, a triglyceride content assay, an alkaline phosphatase (ALP) activity assay, as well as real-time PCR and western blot analysis of osteocyte- and adipocyte-specific genes, were performed. Ultimately, the new strain was sequenced and registered on NBCI. In the probiotic-treated group, the triglyceride content and the gene expression and protein levels of C/EBP-α and PPAR-γ2 (adipocyte-specific markers) were significantly decreased compared to the control group (P < 0.05), indicating an inhibited adipogenesis process. Furthermore, the probiotic extract caused a significant increase in the ALP activity, the expression levels of RUNX2 and osteocalcin, and the protein levels of collagen I and FGF-23 (osteocyte-specific markers) in comparison to the control group (P < 0.05), indicating an enhanced osteogenesis process. According to the results of the present study, the probiotic extract inhibits adipogenesis and significantly increases osteogenesis, suggesting a positive role in the prevention and treatment of osteoporosis and opening a new aspect for future in-vivo study.
Collapse
Affiliation(s)
- Farjam Goudarzi
- Regenerative Medicine Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Amir Kiani
- Regenerative Medicine Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Yousef Nami
- Department of Food Biotechnology, Branch for Northwest and West Region, Agricultural Biotechnology Research Institute of Iran, Agricultural Research, Education and Extension Organization (AREEO), Tabriz, Iran
| | - Azin Shahmohammadi
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Adel Mohammadalipour
- Department of Clinical Biochemistry, Isfahan Pharmaceutical Sciences Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Afshin Karami
- Departments of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Babak Haghshenas
- Regenerative Medicine Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
11
|
Tayyib HMU, Ali A, Jabeen S, Habib-Ur-Rehman, Kamran H, Bajaber MA, Usman M, Zhang X. Restoration of gut dysbiosis through Clostridium butyricum and magnesium possibly balance blood glucose levels: an experimental study. BMC Microbiol 2024; 24:105. [PMID: 38561662 PMCID: PMC10983686 DOI: 10.1186/s12866-024-03218-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 02/07/2024] [Indexed: 04/04/2024] Open
Abstract
Diabetes mellitus (DM) is a chronic metabolic disorder characterized by an elevated level of blood glucose due to the absence of insulin secretion, ineffectiveness, or lack of uptake of secreted insulin in the body. The improperly diagnosed and poorly managed DM can cause severe damage to organs in the body like the nerves, eyes, heart, and kidneys. This study was aimed at investigating the effect of Clostridium butyricum (probiotic) with magnesium supplementation to evaluate the effect on gut microbial dysbiosis and blood glucose levels. In the laboratory, 6-8 weeks old 24 male albino rats weighing 200-250 g were given free access to water and food. Diabetes was induced using streptozotocin (60 mg/kg) in overnight fasted rats. Diabetic rats were randomly divided into four groups (n = 6, 6 replicates in each group). Metformin (100 mg/kg/day) with a standard basal diet was provided to control group (G0), Clostridium butyricum (1.5 × 105 CFU/day) with standard basal diet was provided to treatment group (G1), magnesium (500 mg/kg/day) was provided to group (G2). Clostridium butyricum (1.5 × 105 CFU/day) and magnesium (300 mg/kg/day) in combination with a standard basal diet was provided to group (G3). Blood Glucose, Magnesium blood test and microbial assay were done. Random blood glucose levels were monitored twice a week for 21 days and were represented as mean of each week. The results conclude that Clostridium butyricum (1.5 × 105 CFU) is very effective in balancing random blood glucose levels from 206.6 ± 67.7 to 85.1 ± 3.8 (p = 0.006) compared to other groups (p > 0.005). The results of stool analysis showed that Clostridium butyricum as probiotic restores microbial dysbiosis as evident by the 105 CFU Clostridium butyricum load in G1, which was higher than G0, G2 and G3 which were 103 and 104 CFU respectively. The findings of this study conclude that Clostridium butyricum supplementation improved blood glucose levels and intestinal bacterial load in type II diabetes mellitus.
Collapse
Affiliation(s)
- Hafiz Muhammad Ubaid Tayyib
- Department of Bioinformatics, School of Medical Informatics and Engineering, Xuzhou Medical University, Xuzhou, P. R. China
- University Institute of Diet and Nutritional Sciences, Faculty of Allied Health Sciences, The University of Lahore, Lahore, Pakistan
| | - Amjed Ali
- University Institute of Physical therapy, Faculty of Allied Health Sciences, The University of Lahore, Lahore, Pakistan
| | - Shaista Jabeen
- University Institute of Diet and Nutritional Sciences, Faculty of Allied Health Sciences, The University of Lahore, Lahore, Pakistan
| | - Habib-Ur-Rehman
- University Institute of Diet and Nutritional Sciences, Faculty of Allied Health Sciences, The University of Lahore, Lahore, Pakistan
| | - Hafsa Kamran
- University Institute of Diet and Nutritional Sciences, Faculty of Allied Health Sciences, The University of Lahore, Lahore, Pakistan
| | - Majed A Bajaber
- Department of Chemistry, Faculty of Science, King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia
| | - Muhammad Usman
- Department of Bioinformatics, School of Medical Informatics and Engineering, Xuzhou Medical University, Xuzhou, P. R. China.
| | - Xiao Zhang
- Department of Bioinformatics, School of Medical Informatics and Engineering, Xuzhou Medical University, Xuzhou, P. R. China.
- Yantai Longch Technologies. CO., LTD, Yantai, P. R. China.
| |
Collapse
|
12
|
Harahap IA, Kuligowski M, Cieslak A, Kołodziejski PA, Suliburska J. Effect of Tempeh and Daidzein on Calcium Status, Calcium Transporters, and Bone Metabolism Biomarkers in Ovariectomized Rats. Nutrients 2024; 16:651. [PMID: 38474779 DOI: 10.3390/nu16050651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/22/2024] [Accepted: 02/24/2024] [Indexed: 03/14/2024] Open
Abstract
Menopause marks a critical life stage characterized by hormonal changes that significantly impact bone health, leading to a heightened susceptibility to bone fractures. This research seeks to elucidate the impact of daidzein and tempeh on calcium status, calcium transporters, and bone metabolism in an ovariectomized rat model. Forty female Wistar rats, aged 3 months, participated in a two-phase experiment. The initial phase involved inducing a calcium deficit, while the second phase comprised dietary interventions across five groups: Sham (S) and Ovariectomy (O) with a standard diet, O with bisphosphonate (OB), O with pure daidzein (OD), and O with tempeh (OT). Multiple parameters, encompassing calcium levels, calcium transporters, bone histopathology, and serum bone metabolism markers, were evaluated. The findings revealed that the OT group showcased heightened levels of bone turnover markers, such as pyridinoline, C-telopeptide of type I collagen, bone alkaline phosphatase, and procollagen type I N-terminal propeptide, in contrast to S and O groups, with statistical significance (p < 0.05). Histopathologically, both the OD and OT groups exhibited effects akin to the OB group, indicating a decrease in the surface area occupied by adipocytes in the femoral bone structure, although statistically non-equivalent, supporting the directionally similar trends. Although TRPV5 and TRPV6 mRNA expression levels in the jejunum and duodenum did not display statistically significant differences (p > 0.05), the OD and OT groups exhibited increased expression compared to the O group. We hypothesized that obtained results may be related to the effect of isoflavones on estrogen pathways because of their structurally similar to endogenous estrogen and weak estrogenic properties. In conclusion, the daily consumption of pure daidzein and tempeh could potentially improve and reinstate calcium status, calcium transport, and bone metabolism in ovariectomized rats. Additionally, isoflavone products demonstrate effects similar to bisphosphonate drugs on these parameters in ovariectomized rats.
Collapse
Affiliation(s)
- Iskandar Azmy Harahap
- Department of Human Nutrition and Dietetics, Faculty of Food Science and Nutrition, Poznan University of Life Sciences, 60-624 Poznan, Poland
| | - Maciej Kuligowski
- Department of Food Technology of Plant Origin, Faculty of Food Science and Nutrition, Poznan University of Life Sciences, 60-624 Poznan, Poland
| | - Adam Cieslak
- Department of Animal Nutrition, Faculty of Veterinary Medicine and Animal Science, Poznan University of Life Sciences, 60-637 Poznan, Poland
| | - Paweł A Kołodziejski
- Department of Animal Physiology, Biochemistry and Biostructure, Faculty of Veterinary Medicine and Animal Science, Poznan University of Life Sciences, 60-637 Poznan, Poland
| | - Joanna Suliburska
- Department of Human Nutrition and Dietetics, Faculty of Food Science and Nutrition, Poznan University of Life Sciences, 60-624 Poznan, Poland
| |
Collapse
|
13
|
Harahap IA, Olejnik A, Kowalska K, Suliburska J. Effects of Daidzein, Tempeh, and a Probiotic Digested in an Artificial Gastrointestinal Tract on Calcium Deposition in Human Osteoblast-like Saos-2 Cells. Int J Mol Sci 2024; 25:1008. [PMID: 38256081 PMCID: PMC10815870 DOI: 10.3390/ijms25021008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 12/27/2023] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
Adequate calcium intake is crucial for the prevention and treatment of bone-related issues. Developing a nutritional source of readily bioavailable calcium is particularly significant for individuals deficient in this essential element and at risk of developing osteoporosis. This research aimed to evaluate the impact of tempeh (T), daidzein (D), and Lactobacillus acidophilus (LA) within a simulated intestinal environment consisting of Caco-2 epithelial and Saos-2 cells, focusing on their implications for bone mineralization mechanisms. In the initial phase, calcium bioaccessibility from calcium citrate (CaCt), LA, D, the daidzein combination D-CaCt-LA (D1:1:1), and the tempeh combination T-CaCt-LA (T1:1:1) was assessed through digestion simulation. The calcium content of both untreated and digested samples was determined using atomic absorption spectrometry (AAS). In the subsequent stage, the digested samples were used to induce intestinal absorption in differentiated enterocyte-like Caco-2 cells. The permeable fractions were then evaluated in a culture of osteoblast-like Saos-2 cells. Preliminary cellular experiments employed the MTT assay to assess cytotoxicity. The results indicated that the analyzed products did not influence the deposition of extracellular calcium in Saos-2 cells cultured without mineralization stimulators. The combined formulations of permeable fractions of digested CaCt, LA, D, and T demonstrated the capacity to enhance the proliferation of Saos-2 cells. In Saos-2 cells, D, D1:1:1, and LA showed no discernible impact on intracellular calcium accumulation, whereas T and T1:1:1 reduced the calcium deposits. Additionally, mRNA transcripts and alkaline phosphatase (ALP) activity levels in Saos-2 cells cultured without mineralization induction were unaffected by the analyzed products. An examination of the products revealed no discernible effect on ALP activity or mRNA expression during Saos-2 cell differentiation. Our findings suggest that tempeh, daidzein, and L. acidophilus did not positively impact cellular calcium deposition in Saos-2 cells. However, tempeh, daidzein and its combination, and L. acidophilus might enhance the process of osteogenic differentiation in Saos-2 cells. Nevertheless, this study did not identify any synergistic impact on calcium deposition and the process of osteogenic differentiation in Saos-2 cells of isoflavones and probiotics.
Collapse
Affiliation(s)
- Iskandar Azmy Harahap
- Department of Human Nutrition and Dietetics, Faculty of Food Science and Nutrition, Poznan University of Life Sciences, 60-624 Poznan, Poland;
| | - Anna Olejnik
- Department of Biotechnology and Food Microbiology, Faculty of Food Science and Nutrition, Poznan University of Life Sciences, 60-624 Poznan, Poland; (A.O.); (K.K.)
| | - Katarzyna Kowalska
- Department of Biotechnology and Food Microbiology, Faculty of Food Science and Nutrition, Poznan University of Life Sciences, 60-624 Poznan, Poland; (A.O.); (K.K.)
| | - Joanna Suliburska
- Department of Human Nutrition and Dietetics, Faculty of Food Science and Nutrition, Poznan University of Life Sciences, 60-624 Poznan, Poland;
| |
Collapse
|
14
|
Zou S, Yang X, Li N, Wang H, Gui J, Li J. Association of probiotic ingestion with serum sex steroid hormones among pre- and postmenopausal women from the NHANES, 2013-2016. PLoS One 2023; 18:e0294436. [PMID: 37972004 PMCID: PMC10653486 DOI: 10.1371/journal.pone.0294436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 11/01/2023] [Indexed: 11/19/2023] Open
Abstract
BACKGROUND Sex hormone-related diseases, encompassing a wide range of conditions from reproductive disorders to certain cancers, pose significant health challenges worldwide. Recent scientific investigations have highlighted the intricate interplay between the gut microbiome and sex hormone regulation, indicating the potential for microbiota-targeted interventions in the management of such diseases. Although individual studies have elucidated the influence of the gut microbiome on sex hormones, a comprehensive cross-sectional examination of the population-wide prevalence of probiotic intake and its correlation with sex hormones is still lacking. OBJECTIVES This study aimed to evaluate the association of probiotic ingestion with sex hormones in pre- and post-menopausal women. METHODS We conducted an observational cohort study comprising a nationally representative sample of adults who participated in the National Health and Nutrition Examination Survey between 2013 and 2016. Probiotic ingestion was considered when a subject reported yogurt or probiotic supplement consumption during the 24-h dietary recall or during the Dietary Supplement Use 30-Day questionnaire. A survey-weighted generalized linear model was used to analyze the association between probiotic intake and female/male sex hormones. To reduce selection bias, we used propensity score matching (PSM). RESULTS This study included 2,699 women, with 537 of them consuming yogurt and/or dietary supplements containing probiotics, while the remaining 2,162 women did not consume any probiotics. The findings indicated that there were associations between probiotic intake and sex hormone levels in premenopausal and postmenopausal women. For premenopausal women, probiotic intake was positively associated with estradiol (E2) levels. On the contrary, in postmenopausal women, probiotic intake was inversely associated with total testosterone (TT) levels. CONCLUSIONS This study indicated that probiotic consumption was associated with higher E2 level in premenopausal women and lower TT level in postmenopausal women. Probiotic intake might be a sensible strategy for preventing sex hormone-related diseases.
Collapse
Affiliation(s)
- Siying Zou
- Reproductive Medicine Center, ChengDu Fifth People’s Hospital, ChengDu, Sichuan, China
| | - Xu Yang
- Reproductive Medicine Center, ChengDu Fifth People’s Hospital, ChengDu, Sichuan, China
| | - Nihong Li
- Reproductive Medicine Center, ChengDu Fifth People’s Hospital, ChengDu, Sichuan, China
| | - Hong Wang
- Reproductive Medicine Center, ChengDu Fifth People’s Hospital, ChengDu, Sichuan, China
| | - Junhao Gui
- Reproductive Medicine Center, ChengDu Fifth People’s Hospital, ChengDu, Sichuan, China
| | - Junjun Li
- Reproductive Medicine Center, ChengDu Fifth People’s Hospital, ChengDu, Sichuan, China
| |
Collapse
|
15
|
Harahap IA, Kuligowski M, Schmidt M, Kurzawa P, Suliburska J. Influence of Isoflavones and Probiotics on Magnesium Status in Healthy Female Rats. Foods 2023; 12:3908. [PMID: 37959026 PMCID: PMC10647356 DOI: 10.3390/foods12213908] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/21/2023] [Accepted: 10/24/2023] [Indexed: 11/15/2023] Open
Abstract
Isoflavones and probiotics are promising nutrients for bone health, and magnesium (Mg) is essential for bone metabolism. This study aimed to determine the effects of daidzein, genistein and Lactobacillus acidophilus on the Mg status of healthy female rats. Forty-eight rats were randomly assigned to six groups, with the control group receiving a standard diet (AIN 93M). The remaining groups were fed the same diet with added ingredients such as tempeh flour; soy flour; pure daidzein and genistein; L. acidophilus or a combination of daidzein, genistein, and L. acidophilus. Tissue samples were collected after the eight-week intervention, and Mg concentrations were analysed using flame atomic absorption spectrometry. Myeloid and erythroid cells were determined using the haematoxylin and eosin bone staining method. Statistical analyses were conducted using one-way ANOVA with Tukey's post hoc test and Pearson's correlation coefficient. The threshold for significance was p < 0.05. Compared with the control group, adding tempeh to the diet of rats resulted in significant changes in Mg concentrations in various tissues, with a decrease in the kidneys and an increase in the fur. Although not statistically significant compared to the control group, the tempeh group showed increased Mg concentrations in the femur and spleen. The myeloid-to-erythroid cell ratio did not differ significantly among groups, but all intervention groups showed higher ratios than the control group. A strong negative correlation was observed between Mg concentrations in the kidneys and fur. Conversely, a positive correlation was identified between Mg concentrations in the pancreas and fur. Daily consumption of tempeh may improve Mg status in the organism. Intake of pure daidzein, genistein, or probiotic seems to have no effect on Mg concentrations in healthy rats.
Collapse
Affiliation(s)
- Iskandar Azmy Harahap
- Department of Human Nutrition and Dietetics, Faculty of Food Science and Nutrition, Poznan University of Life Sciences, 60-624 Poznan, Poland;
| | - Maciej Kuligowski
- Department of Food Technology of Plant Origin, Faculty of Food Science and Nutrition, Poznan University of Life Sciences, 60-624 Poznan, Poland;
| | - Marcin Schmidt
- Department of Biotechnology and Food Microbiology, Faculty of Food Science and Nutrition, Poznan University of Life Sciences, 60-624 Poznan, Poland;
| | - Paweł Kurzawa
- Department of Clinical Pathology, Poznan University of Medical Sciences, 60-355 Poznan, Poland;
| | - Joanna Suliburska
- Department of Human Nutrition and Dietetics, Faculty of Food Science and Nutrition, Poznan University of Life Sciences, 60-624 Poznan, Poland;
| |
Collapse
|
16
|
Chen G, Chen Y, Hong J, Gao J, Xu Z. Secoisolariciresinol diglucoside regulates estrogen receptor expression to ameliorate OVX-induced osteoporosis. J Orthop Surg Res 2023; 18:792. [PMID: 37875947 PMCID: PMC10594807 DOI: 10.1186/s13018-023-04284-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 10/11/2023] [Indexed: 10/26/2023] Open
Abstract
OBJECTIVE Secoisolariciresinol diglucoside (SDG) is a phytoestrogen that has been reported to improve postmenopausal osteoporosis (PMOP) caused by estrogen deficiency. In our work, we aimed to investigate the mechanism of SDG in regulating the expressions of ERs on PMOP model rats. METHODS Ovariectomization (OVX) was used to establish PMOP model in rats. The experiment was allocated to Sham, OVX, SDG and raloxifene (RLX) groups. After 12-week treatment, micro-CT was used to detect the transverse section of bone. Hematoxylin and Eosin staining and Safranine O-Fast Green staining were supplied to detect the femur pathological morphology of rats. Estradiol (E2), interleukin-6 (IL-6), bone formation and bone catabolism indexes in serum were detected using ELISA. Alkaline phosphatase (ALP) staining was used to detect the osteogenic ability of chondrocytes. Immunohistochemistry and Western blot were applied to detect the protein expressions of estrogen receptors (ERs) in the femur of rats. RESULTS Compared with the OVX group, micro-CT results showed SDG could lessen the injury of bone and improve femoral parameters, including bone mineral content (BMC) and bone mineral density (BMD). Pathological results showed SDG could reduce pathological injury of femur in OVX rats. Meanwhile, SDG decreased the level of IL-6 and regulated bone formation and bone catabolism indexes. Besides, SDG increased the level of E2 and conversed OVX-induced decreased the expression of ERα and ERβ. CONCLUSION The treatment elicited by SDG in OVX rats was due to the reduction of injury and inflammation and improvement of bone formation index, via regulating the expression of E2 and ERs.
Collapse
Affiliation(s)
- Guofang Chen
- Department of Orthopaedics, Zhejiang Xiaoshan Hospital, Hangzhou, 311200, Zhejiang Province, China.
| | - Yansong Chen
- Department of Orthopaedics, Zhejiang Xiaoshan Hospital, Hangzhou, 311200, Zhejiang Province, China
| | - Junyi Hong
- Department of Orthopaedics, Zhejiang Xiaoshan Hospital, Hangzhou, 311200, Zhejiang Province, China
| | - Junwei Gao
- Department of Orthopaedics, Zhejiang Xiaoshan Hospital, Hangzhou, 311200, Zhejiang Province, China
| | - Zhikun Xu
- Department of Orthopaedics, Zhejiang Xiaoshan Hospital, Hangzhou, 311200, Zhejiang Province, China
| |
Collapse
|
17
|
Siddiqui SA, Ali Redha A, Salauddin M, Harahap IA, Rupasinghe HPV. Factors Affecting the Extraction of (Poly)Phenols from Natural Resources Using Deep Eutectic Solvents Combined with Ultrasound-Assisted Extraction. Crit Rev Anal Chem 2023; 55:139-160. [PMID: 37850880 DOI: 10.1080/10408347.2023.2266846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2023]
Abstract
Replacing conventional solvents with deep eutectic solvents (DES) has shown promising effects on the extraction yield of (poly)phenols. DES can be combined with ultrasound-assisted extraction (UAE) to further increase the extraction efficiency of (poly)phenols from natural resources compared to conventional methods. This review discusses the factors associated with DES (composition, solvent-to-sample ratio, extraction duration, and temperature) and UAE (ultrasound frequency, power, intensity, and duty cycle) methods that influence the extraction of (poly)phenols and informs future improvements required in the optimization of the extraction process. For the optimum (poly)phenol extraction from natural resources, the following parameters shall be considered: ultrasound frequency should be in the range of 20-50 kHz, ultrasound intensity in the range of 60-120 W/cm2, ultrasound duty cycle in the range of 40-80%, ultrasound duration for 10-30 minutes, and ultrasound temperature for 25-50 °C. Among the reported DES systems, choline chloride with glycerol or lactic acid, with a solvent-to-sample mass ratio of 10-30:1 shown to be effective. The solvent composition and solvent-to-sample mass ratio should be selected according to the target compound and the source material. However, the high viscosity of DES is among the major limitations. Optimizing these factors can help to increase the yield of extracted (poly)phenols and their applications.
Collapse
Affiliation(s)
- Shahida Anusha Siddiqui
- Campus Straubing for Biotechnology and Sustainability, Technical University of Munich, Straubing, Germany
- German Institute of Food Technologies (DIL e.V.), Quakenbrück, Germany
| | - Ali Ali Redha
- The Department of Public Health and Sport Sciences, University of Exeter Medical School, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Brisbane, Queensland, Australia
| | - Molla Salauddin
- Department of Food Processing Technology, Mir Madan Mohanlal Government Polytechnic, West Bengal State Council of Technical Education, Kolkata, India
| | - Iskandar Azmy Harahap
- Research Organization for Health, National Research and Innovation Agency, Jakarta, Indonesia
| | - H P Vasantha Rupasinghe
- Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, Nova Scotia, Canada
| |
Collapse
|
18
|
Li L, Cheng S, Xu G. Application of neural network and nomogram for the prediction of risk factors for bone mineral density abnormalities: A cross-sectional NHANES-based survey. Heliyon 2023; 9:e20677. [PMID: 37829807 PMCID: PMC10565773 DOI: 10.1016/j.heliyon.2023.e20677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 09/25/2023] [Accepted: 10/04/2023] [Indexed: 10/14/2023] Open
Abstract
Background The risk of bone mineral density abnormalities is inconsistent between eastern and western regions owing to differences in ethnicity and dietary habits. A diet comprising carbohydrates and dietary fiber is not the common daily diet of the American population. Thus far, no studies have assessed the risk of bone mineral density abnormalities in the American population, and no predictive model has considered the intake of carbohydrates, dietary fiber, and coffee, as well as levels of various electrolytes for assessing bone mineral density abnormalities, especially in the elderly. This study conducted a neural network analysis and established a predictive nomogram considering an unusual diet to determine risk factors for bone mineral density abnormalities in the American population, mainly to provide a reference for the prevention and treatment of related bone mineral density abnormalities. Methods Overall, 9871 patients who had complete data were selected from the National Health and Nutrition Examination Survey database during 2017-2020 as the research object, and patients' general clinical characteristics were compared. Neural networks and nomograms were analyzed to screen for and quantify risk factors for bone mineral density abnormalities. Finally, the receiver operating characteristic (ROC) curve, calibration curve, decision curve analysis (DCA), and community indifference curve (CIC) were constructed to comprehensively verify the accuracy, differential ability, and clinical practicability of the neural network and nomogram. Results The important risk factors for bone mineral density abnormalities were caffeine intake, carbohydrate consumption, body mass index (BMI), height, blood sodium, blood calcium, blood phosphorus, blood potassium, dietary fiber, vitamin D, participant age, weight, race, family history, and sex. The nomogram revealed that caffeine intake, carbohydrate consumption, blood potassium, and age were positively correlated with bone mineral density abnormalities, whereas BMI, height, blood phosphate, dietary fiber, and blood sodium were negatively correlated with bone mineral density abnormalities. Women were more prone to these abnormalities than men. The area under the ROC curve values of the neural network and nomogram were 85.8 % and 77.7 %, respectively. The Youden index was 58.04 % and 41.87 %, respectively. The detection sensitivity was 75.73 % and 65.06 %, respectively, and the specificity was 82.31 % and 76.81 %, respectively. Calibration curves of the neural network and nomogram showed better discrimination ability from the standard curve (P > 0.05). DCA and CIC analyses showed that the application of the neural network and nomogram to explore risk factors for bone mineral density abnormalities had certain clinical practicability, and the overall predictive effect of the model was good. Conclusion The outcomes of the neural network and nomogram analyses suggested that diet structure and electrolyte changes are important significant risk factors for bone mineral density abnormalities, especially with increasing carbohydrate and caffeine intake and decreasing dietary fiber intake. The established model can also provide a reference for future risk prediction.
Collapse
Affiliation(s)
- LuWei Li
- Department of Rheumatology and Immunology, The First People's Hospital of Nanning, Nanning, Guangxi, China
- Guilin Medical University, Guilin, Guangxi, China
| | - SiShuai Cheng
- Guilin Medical University, Guilin, Guangxi, China
- Department of Cardiovascular, The 924th Hospital of the Joint Service Support Force of the Chinese People's Liberation Army, Guilin, Guangxi, China
| | - GuoQuan Xu
- Guilin Medical University, Guilin, Guangxi, China
- Department of Urology, The First People's Hospital of Qinzhou, Qinzhou, Guangxi, China
| |
Collapse
|
19
|
Harahap IA, Kuligowski M, Schmidt M, Kołodziejski PA, Suliburska J. Effects of isoflavone and probiotic intake on calcium transport and bone metabolism biomarkers in female rats. Food Sci Nutr 2023; 11:6324-6335. [PMID: 37823105 PMCID: PMC10563734 DOI: 10.1002/fsn3.3571] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/15/2023] [Accepted: 07/09/2023] [Indexed: 10/13/2023] Open
Abstract
Calcium is essential for maintaining bone health as it contributes to bone formation, remodeling, strength, and density. This study investigated the effect of isoflavones and probiotics on calcium transporters' gene expression, serum calcium levels, and bone metabolism biomarkers in healthy female rats. Forty-eight female Wistar rats were classified into six groups. Bone metabolism biomarkers (pyridinoline, deoxypyridinoline, parathyroid hormone, and osteocalcin) and serum calcium levels were measured by enzyme-linked immunosorbent assay (ELISA) and atomic absorption spectroscopy (AAS), respectively. Gene expression of calcium transporters (Trpv5 and Trpv6) was evaluated in duodenum and jejunum tissue samples using quantitative polymerase chain reaction (qPCR). Trpv5 and Trpv6, epithelial calcium channels, play a crucial role in calcium transport and homeostasis in the body. The study consisted of a1-week adaptation period for the rats to adjust to the controlled conditions, followed by an 8-week intervention phase. The daidzein and genistein group showed a significant increase in the gene expression of the Trpv6 transporter in the duodenum and a marked decrease in serum pyridinoline levels compared to the control group. The tempeh and soybean groups showed a significant decrease in the gene expression of the Trpv5 calcium transporter in the jejunum. However, no significant influence of the Lactobacillus acidophilus diet on calcium transport and bone metabolism biomarkers was observed in the L. acidophilus group. The correlation analysis showed a significant positive relationship between serum calcium, bone metabolism biomarkers, and calcium transporters. In conclusion, our study demonstrates that the daidzein and genistein diet improves calcium transport in the duodenum and reduces pyridinoline serum concentrations, while tempeh and soybean diets reduce calcium transport in the jejunum. However, the combination of daidzein, genistein, and L. acidophilus did not demonstrate a synergistic effect on calcium transport and bone metabolism, suggesting that further investigations are needed to elucidate their potential interactions.
Collapse
Affiliation(s)
- Iskandar Azmy Harahap
- Department of Human Nutrition and Dietetics, Faculty of Food Science and NutritionPoznan University of Life SciencesPoznanPoland
| | - Maciej Kuligowski
- Department of Food Technology of Plant Origin, Faculty of Food Science and NutritionPoznan University of Life SciencesPoznanPoland
| | - Marcin Schmidt
- Department of Biotechnology and Food Microbiology, Faculty of Food Science and NutritionPoznan University of Life SciencesPoznanPoland
| | - Paweł A. Kołodziejski
- Department of Animal Physiology, Biochemistry and Biostructure, Faculty of Veterinary Medicine and Animal SciencePoznań University of Life SciencesPoznanPoland
| | - Joanna Suliburska
- Department of Human Nutrition and Dietetics, Faculty of Food Science and NutritionPoznan University of Life SciencesPoznanPoland
| |
Collapse
|
20
|
Harahap IA, Kuligowski M, Schmidt M, Kurzawa P, Pruszyńska-Oszmałek E, Sassek M, Suliburska J. Isoflavones and probiotics effect on bone calcium and bone cells in rats. Heliyon 2023; 9:e16801. [PMID: 37292353 PMCID: PMC10245251 DOI: 10.1016/j.heliyon.2023.e16801] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 05/09/2023] [Accepted: 05/29/2023] [Indexed: 06/10/2023] Open
Abstract
Isoflavones and probiotics have shown the therapeutic potential to alter calcium absorption and bone cell metabolism. This study sought to ascertain the effect of isoflavones and probiotics on calcium status and bone health in healthy female rats. Forty-eight adult female Wistar rats were grouped and fed: a standard diet (control); and standard diets with tempeh; soy; daidzein and genistein; Lactobacillus acidophilus; and a combination of daidzein, genistein, and L. acidophilus. The biochemical serum parameters, such as alanine transaminase, aspartate transaminase, glucose, and triacylglycerol concentrations, were measured, and calcium contents in tissues were determined. After staining the bone with hematoxylin and eosin, the number of osteoblasts, osteocytes, and the percentage of bone marrow adipocytes were counted. Compared with the control group, the soy group showed a significantly lower triacylglycerol concentration. The L. acidophilus group considerably increased the calcium content in the femoral bone. The daidzein and genistein, L. acidophilus, and a combination of daidzein, genistein, and L. acidophilus groups showed significantly lower calcium contents in the heart and kidneys. The daidzein and genistein group significantly enhanced the number of osteoblasts and osteocytes. A substantial inverse correlation was observed between calcium contents in kidneys and osteoblasts. In conclusion, the combination of daidzein, genistein, and L. acidophilus may improve bone calcium concentrations and bone cells. However, no synergistic effect between isoflavones and probiotics was detected in this study.
Collapse
Affiliation(s)
- Iskandar Azmy Harahap
- Department of Human Nutrition and Dietetics, Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Poznań, Poland
| | - Maciej Kuligowski
- Department of Food Technology of Plant Origin, Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Poznań, Poland
| | - Marcin Schmidt
- Department of Biotechnology and Food Microbiology, Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Poznań, Poland
| | - Paweł Kurzawa
- Department of Clinical Pathology, Poznań University of Medical Sciences, Poznań, Poland
| | - Ewa Pruszyńska-Oszmałek
- Department of Animal Physiology, Biochemistry and Biostructure, Faculty of Veterinary Medicine and Animal Science, Poznań University of Life Sciences, Poznań, Poland
| | - Maciej Sassek
- Department of Animal Physiology, Biochemistry and Biostructure, Faculty of Veterinary Medicine and Animal Science, Poznań University of Life Sciences, Poznań, Poland
| | - Joanna Suliburska
- Department of Human Nutrition and Dietetics, Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Poznań, Poland
| |
Collapse
|
21
|
Harahap IA, Kuligowski M, Schmidt M, Suliburska J. The impact of soy products, isoflavones, and Lactobacillus acidophilus on iron status and morphological parameters in healthy female rats. J Trace Elem Med Biol 2023; 78:127183. [PMID: 37120971 DOI: 10.1016/j.jtemb.2023.127183] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 04/16/2023] [Accepted: 04/26/2023] [Indexed: 05/02/2023]
Abstract
BACKGROUND Isoflavones and probiotics are two major factors involved in bone health. Osteoporosis and disturbances in iron (Fe) levels are common health problems in aging women. This study aimed to analyze how soybean products, daidzein, genistein, and Lactobacillus acidophilus (LA) affect Fe status and blood morphological parameters in healthy female rats. METHODS A total of 48 Wistar rats aged 3 months were randomly divided into six groups. The control group (K) received a standard diet (AIN 93 M). The remaining five groups received a standard diet supplemented with the following: tempeh flour (TP); soy flour (RS); daidzein and genistein (DG); Lactobacillus acidophilus DSM20079 (LA); as well as a combination of daidzein, genistein, and L. acidophilus DSM20079 (DGLA). After 8 weeks of intervention, blood samples of the rats were collected for morphological analysis, whereas tissue samples were collected and kept at -80 °C until Fe analysis. Red blood cells, hemoglobin, hematocrit, mean corpuscular volume (MCV), mean corpuscular hemoglobin, mean corpuscular hemoglobin concentration, platelets (PLTs), red cell distribution width, white blood cells, neutrophils (NEUT), lymphocytes (LYM), monocytes, eosinophils (EOS), and basophils were measured for blood morphological analysis. Fe concentrations were determined using flame atomic spectrometry. For statistical analysis, an ANOVA test for significance at the 5 % level was used. The relationship between tissue Fe levels and blood morphological parameters was determined using Pearson's correlation. RESULTS Although no significant differences were observed in the Fe content between all diets, the TP group showed significantly higher levels of NEUT and lower levels of LYM than the control group. Compared with the DG and DGLA groups, the TP group showed a dramatically higher PLT level. In addition, the RS group showed significantly higher Fe concentrations in the spleen compared with the standard diet. Compared with the DG, LA, and DGLA groups, the RS group also showed significantly higher Fe concentrations in the liver. Compared with the TP, DG, LA, and DGLA groups, the RS group showed dramatically higher Fe concentrations in the femur. Pearson's correlations between blood morphological parameters and Fe levels in tissues were observed, especially a negative correlation between the Fe level in the femur and the NEUT concentration (-0.465) and a strong positive correlation between the Fe level in the femur and the LYM concentration (0.533). CONCLUSION Soybean flour was found to increase Fe levels in rats, whereas tempeh may alter anti-inflammatory blood parameters. Isoflavones and probiotics did not affect Fe status in healthy female rats.
Collapse
Affiliation(s)
- Iskandar Azmy Harahap
- Department of Human Nutrition and Dietetics, Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Poznań, Poland
| | - Maciej Kuligowski
- Department of Food Technology of Plant Origin, Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Poznań, Poland
| | - Marcin Schmidt
- Department of Biotechnology and Food Microbiology, Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Poznań, Poland
| | - Joanna Suliburska
- Department of Human Nutrition and Dietetics, Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Poznań, Poland.
| |
Collapse
|
22
|
Can probiotics decrease the risk of postmenopausal osteoporosis in women? PHARMANUTRITION 2023. [DOI: 10.1016/j.phanu.2023.100336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
|
23
|
Mannino F, D’Angelo T, Pallio G, Ieni A, Pirrotta I, Giorgi DA, Scarfone A, Mazziotti S, Booz C, Bitto A, Squadrito F, Irrera N. The Nutraceutical Genistein-Lycopene Combination Improves Bone Damage Induced by Glucocorticoids by Stimulating the Osteoblast Formation Process. Nutrients 2022; 14:4296. [PMID: 36296984 PMCID: PMC9612338 DOI: 10.3390/nu14204296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 09/28/2022] [Accepted: 10/12/2022] [Indexed: 01/24/2023] Open
Abstract
Chronic glucocorticoid (GC) therapy is the most common cause of iatrogenic osteoporosis and represents an important risk factor for osteoporosis and bone fractures. New therapeutic approaches are required in order to treat osteoporosis and reduce the side effects related to the use of anti-osteoporotic drugs. In this context, previous studies reported the efficacy of some isoflavones and carotenoids, such as lycopene and genistein, on the reduction of the risk of fracture related to osteoporosis. The aim of this study was to investigate the effects of a combined oral treatment, consisting of genistein and lycopene, in an experimental model of glucocorticoid-induced osteoporosis (GIO). GIO was induced by subcutaneous injection of methylprednisolone (MP, 30 mg/kg) for 60 days, whereas the control group (Sham) received saline solution only. Following induction, MP animals randomly were assigned to receive alendronate, genistein, lycopene, or the association of genistein and lycopene or saline solution for additional 60 days together with MP. Femurs obtained from the Sham group were used for osteoblasts extraction; they were then incubated with dexamethasone (DEX) for 24 h to be then treated with lycopene or genistein or the association of lycopene and genistein for an additional 24 h. Treatments with lycopene and genistein restored the impaired mineralization of cells observed following DEX treatment and stimulated osteoblast differentiation by increasing the depressed expression of bALP and RUNX2 (p < 0.0001). Wnt5a, β-catenin, and Nrf-2 expression were significantly increased following genistein and lycopene treatment (p < 0.0001), thus confirming their antioxidant activity as well as their ability in stimulating osteoblast function, mostly when genistein and lycopene were used in association. The combined treatment of genistein and lycopene improved the bone damage induced by glucocorticoids and significantly restored the normal architecture of bones as well as adequate interconnectivity of bone trabeculae, thus increasing bone mineral density parameters. The obtained data demonstrated that genistein and lycopene but in particular their association might prevent GC’s adverse effects, thus stimulating bone formation and reducing bone resorption, improving bone structure and microarchitecture, through different molecular pathways, such as the Wnt/β-catenin and the Nrf-2 signaling.
Collapse
Affiliation(s)
- Federica Mannino
- Department of Clinical and Experimental Medicine, University of Messina, Via C. Valeria Gazzi, 98125 Messina, Italy
| | - Tommaso D’Angelo
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences, University of Messina, Via C. Valeria Gazzi, 98125 Messina, Italy
- Department of Radiology and Nuclear Medicine, Erasmus MC, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands
| | - Giovanni Pallio
- Department of Clinical and Experimental Medicine, University of Messina, Via C. Valeria Gazzi, 98125 Messina, Italy
| | - Antonio Ieni
- Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi”, University of Messina, Via C. Valeria Gazzi, 98125 Messina, Italy
| | - Igor Pirrotta
- Department of Clinical and Experimental Medicine, University of Messina, Via C. Valeria Gazzi, 98125 Messina, Italy
| | - Domenico Antonio Giorgi
- Department of Clinical and Experimental Medicine, University of Messina, Via C. Valeria Gazzi, 98125 Messina, Italy
| | - Alessandro Scarfone
- Department of Clinical and Experimental Medicine, University of Messina, Via C. Valeria Gazzi, 98125 Messina, Italy
| | - Silvio Mazziotti
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences, University of Messina, Via C. Valeria Gazzi, 98125 Messina, Italy
| | - Christian Booz
- Division of Experimental Imaging, Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Alessandra Bitto
- Department of Clinical and Experimental Medicine, University of Messina, Via C. Valeria Gazzi, 98125 Messina, Italy
| | - Francesco Squadrito
- Department of Clinical and Experimental Medicine, University of Messina, Via C. Valeria Gazzi, 98125 Messina, Italy
| | - Natasha Irrera
- Department of Clinical and Experimental Medicine, University of Messina, Via C. Valeria Gazzi, 98125 Messina, Italy
| |
Collapse
|
24
|
Antifreeze Peptides Preparation from Tilapia Skin and Evaluation of Its Cryoprotective Effect on Lacticaseibacillus rhamnosus. Foods 2022; 11:foods11060857. [PMID: 35327279 PMCID: PMC8953377 DOI: 10.3390/foods11060857] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/14/2022] [Accepted: 03/16/2022] [Indexed: 02/04/2023] Open
Abstract
Antifreeze peptides can protect cell membranes and maintain the cell viability of probiotics under cold stress. Given this, antifreeze peptides were prepared from tilapia processing byproducts of tilapia skin by enzymolysis using the response surface methodology (RSM) method. The cryoprotective effects on Lacticaseibacillus rhamnosus ATCC7469 were investigated. Trypsin was selected as the protease for tilapia skin hydrolysis. The optimal hydrolysis conditions consisted of the amount of enzyme (2200 U/g), solid–liquid ratio (1:10, w/v), reaction temperature (49 °C), and reaction time (6.8 h), and the relative survival rate of L. rhamnosus reached 98.32%. Molecular weight (Mw) distribution and peptide sequences of the antifreeze peptides prepared from tilapia skin (APT) under the optimal conditions were analyzed. APT significantly reduced the leakage of extracellular proteins and protected β-galactosidase and lactate dehydrogenase activities of L. rhamnosus. Compared with the saline group, scanning electron microscopy (SEM) observation showed that cells had a more normal, smooth, and entire surface under the protection of APT. These findings indicate that APT can be a new cryoprotectant in preserving probiotics.
Collapse
|
25
|
Kamil RZ, Murdiati A, Juffrie M, Rahayu ES. Gut Microbiota Modulation of Moderate Undernutrition in Infants through Gummy Lactobacillus plantarum Dad-13 Consumption: A Randomized Double-Blind Controlled Trial. Nutrients 2022; 14:1049. [PMID: 35268024 PMCID: PMC8912314 DOI: 10.3390/nu14051049] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/10/2022] [Accepted: 02/25/2022] [Indexed: 01/03/2023] Open
Abstract
Undernutrition is associated with gut microbiota unbalance, and probiotics are believed to restore it and improve gut integrity. A randomized double-blind controlled trial was conducted to evaluate the efficacy of gummy L. plantarum Dad-13 (108-9 CFU/3 g) to prevent the progression of severe undernutrition. Two groups of moderate undernutrition infants were involved in this study, namely the placebo (n = 15) and probiotics (n = 15) groups, and were required to consume the product for 50 days. 16S rRNA sequencing and qPCR were used for gut microbiota analysis, and gas chromatography was used to analyze Short-Chain Fatty Acid (SCFA). The daily food intake of both groups was recorded using food records. Our results revealed that the probiotic group had better improvements regarding the anthropometry and nutritional status. In addition, L. plantarum Dad-13 modulated the butyric acid-producing bacteria to increase and inhibit the growth of Enterobacteriaceae. This gut modulation was associated with the increment in SCFA, especially total SCFA, propionic, and butyric acid. The number of L. plantarum was increased after the probiotic intervention. However, L. plantarum Dad-13 was not able to change the alpha and beta diversity. Therefore, L. plantarum Dad-13 has been proven to promote the growth of beneficial bacteria.
Collapse
Affiliation(s)
- Rafli Zulfa Kamil
- Department of Food and Agricultural Product Technology, Faculty of Agricultural Technology, Universitas Gadjah Mada, Jl. Flora No 1 Bulaksumur, Yogyakarta 55281, Indonesia; (R.Z.K.); (A.M.)
- Centre for Food and Nutrition Studies, Universitas Gadjah Mada, Jl. Teknika Utara Barek, Yogyakarta 55281, Indonesia
- Centre of Excellence for Probiotics, Universitas Gadjah Mada, Jl. Teknika Utara Barek, Yogyakarta 55281, Indonesia
- Department of Food Technology, Faculty of Animal and Agricultural Sciences, Universitas Diponegoro, Jl. Prof. Soedarto, Tembalang, Semarang 50275, Indonesia
| | - Agnes Murdiati
- Department of Food and Agricultural Product Technology, Faculty of Agricultural Technology, Universitas Gadjah Mada, Jl. Flora No 1 Bulaksumur, Yogyakarta 55281, Indonesia; (R.Z.K.); (A.M.)
| | - Mohammad Juffrie
- Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Jl. Farmako, Senolowo, Sekip Utara, Yogyakarta 55281, Indonesia;
| | - Endang Sutriswati Rahayu
- Department of Food and Agricultural Product Technology, Faculty of Agricultural Technology, Universitas Gadjah Mada, Jl. Flora No 1 Bulaksumur, Yogyakarta 55281, Indonesia; (R.Z.K.); (A.M.)
- Centre for Food and Nutrition Studies, Universitas Gadjah Mada, Jl. Teknika Utara Barek, Yogyakarta 55281, Indonesia
- Centre of Excellence for Probiotics, Universitas Gadjah Mada, Jl. Teknika Utara Barek, Yogyakarta 55281, Indonesia
| |
Collapse
|
26
|
Hameed Majeed M, Kadhem Abd Alsaheb N. Morphological Evaluation of PLA/Soybean Oil Epoxidized Acrylate Three-Dimensional Scaffold in Bone Tissue Engineering. JOURNAL OF RENEWABLE MATERIALS 2022; 10:2391-2408. [DOI: 10.32604/jrm.2022.019887] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
27
|
Rondanelli M, Faliva MA, Barrile GC, Cavioni A, Mansueto F, Mazzola G, Oberto L, Patelli Z, Pirola M, Tartara A, Riva A, Petrangolini G, Peroni G. Nutrition, Physical Activity, and Dietary Supplementation to Prevent Bone Mineral Density Loss: A Food Pyramid. Nutrients 2021; 14:74. [PMID: 35010952 PMCID: PMC8746518 DOI: 10.3390/nu14010074] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 12/21/2021] [Accepted: 12/21/2021] [Indexed: 12/15/2022] Open
Abstract
Bone is a nutritionally modulated tissue. Given this background, aim of this review is to evaluate the latest data regarding ideal dietary approach in order to reduce bone mineral density loss and to construct a food pyramid that allows osteopenia/osteoporosis patients to easily figure out what to eat. The pyramid shows that carbohydrates should be consumed every day (3 portions of whole grains), together with fruits and vegetables (5 portions; orange-colored fruits and vegetables and green leafy vegetables are to be preferred), light yogurt (125 mL), skim milk (200 mL,) extra virgin olive oil (almost 20 mg/day), and calcium water (almost 1 l/day); weekly portions should include fish (4 portions), white meat (3 portions), legumes (2 portions), eggs (2 portions), cheeses (2 portions), and red or processed meats (once/week). At the top of the pyramid, there are two pennants: one green means that osteopenia/osteoporosis subjects need some personalized supplementation (if daily requirements cannot be satisfied through diet, calcium, vitamin D, boron, omega 3, and isoflavones supplementation could be an effective strategy with a great benefit/cost ratio), and one red means that there are some foods that are banned (salt, sugar, inorganic phosphate additives). Finally, three to four times per week of 30-40 min of aerobic and resistance exercises must be performed.
Collapse
Affiliation(s)
- Mariangela Rondanelli
- IRCCS Mondino Foundation, 27100 Pavia, Italy;
- Department of Public Health, Experimental and Forensic Medicine, University of Pavia, 27100 Pavia, Italy
| | - Milena Anna Faliva
- Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona “Istituto Santa Margherita”, University of Pavia, 27100 Pavia, Italy; (M.A.F.); (G.C.B.); (A.C.); (F.M.); (G.M.); (L.O.); (Z.P.); (M.P.); (A.T.)
| | - Gaetan Claude Barrile
- Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona “Istituto Santa Margherita”, University of Pavia, 27100 Pavia, Italy; (M.A.F.); (G.C.B.); (A.C.); (F.M.); (G.M.); (L.O.); (Z.P.); (M.P.); (A.T.)
| | - Alessandro Cavioni
- Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona “Istituto Santa Margherita”, University of Pavia, 27100 Pavia, Italy; (M.A.F.); (G.C.B.); (A.C.); (F.M.); (G.M.); (L.O.); (Z.P.); (M.P.); (A.T.)
| | - Francesca Mansueto
- Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona “Istituto Santa Margherita”, University of Pavia, 27100 Pavia, Italy; (M.A.F.); (G.C.B.); (A.C.); (F.M.); (G.M.); (L.O.); (Z.P.); (M.P.); (A.T.)
| | - Giuseppe Mazzola
- Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona “Istituto Santa Margherita”, University of Pavia, 27100 Pavia, Italy; (M.A.F.); (G.C.B.); (A.C.); (F.M.); (G.M.); (L.O.); (Z.P.); (M.P.); (A.T.)
| | - Letizia Oberto
- Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona “Istituto Santa Margherita”, University of Pavia, 27100 Pavia, Italy; (M.A.F.); (G.C.B.); (A.C.); (F.M.); (G.M.); (L.O.); (Z.P.); (M.P.); (A.T.)
| | - Zaira Patelli
- Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona “Istituto Santa Margherita”, University of Pavia, 27100 Pavia, Italy; (M.A.F.); (G.C.B.); (A.C.); (F.M.); (G.M.); (L.O.); (Z.P.); (M.P.); (A.T.)
| | - Martina Pirola
- Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona “Istituto Santa Margherita”, University of Pavia, 27100 Pavia, Italy; (M.A.F.); (G.C.B.); (A.C.); (F.M.); (G.M.); (L.O.); (Z.P.); (M.P.); (A.T.)
| | - Alice Tartara
- Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona “Istituto Santa Margherita”, University of Pavia, 27100 Pavia, Italy; (M.A.F.); (G.C.B.); (A.C.); (F.M.); (G.M.); (L.O.); (Z.P.); (M.P.); (A.T.)
| | - Antonella Riva
- Research and Development Department, Indena SpA, 20139 Milan, Italy; (A.R.); (G.P.)
| | | | - Gabriella Peroni
- Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona “Istituto Santa Margherita”, University of Pavia, 27100 Pavia, Italy; (M.A.F.); (G.C.B.); (A.C.); (F.M.); (G.M.); (L.O.); (Z.P.); (M.P.); (A.T.)
| |
Collapse
|