1
|
Galanty A, Grudzińska M, Paździora W, Służały P, Paśko P. Do Brassica Vegetables Affect Thyroid Function?-A Comprehensive Systematic Review. Int J Mol Sci 2024; 25:3988. [PMID: 38612798 PMCID: PMC11012840 DOI: 10.3390/ijms25073988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 03/27/2024] [Accepted: 03/31/2024] [Indexed: 04/14/2024] Open
Abstract
Brassica vegetables are widely consumed all over the world, especially in North America, Asia, and Europe. They are a rich source of sulfur compounds, such as glucosinolates (GLSs) and isothiocyanates (ITCs), which provide health benefits but are also suspected of having a goitrogenic effect. Adhering to PRISMA guidelines, we conducted a systematic review to assess the impact of dietary interventions on thyroid function, in terms of the potential risk for people with thyroid dysfunctions. We analyzed the results of 123 articles of in vitro, animal, and human studies, describing the impact of brassica plants and extracts on thyroid mass and histology, blood levels of TSH, T3, T4, iodine uptake, and the effect on thyroid cancer cells. We also presented the mechanisms of the goitrogenic potential of GLSs and ITCs, the limitations of the studies included, as well as further research directions. The vast majority of the results cast doubt on previous assumptions claiming that brassica plants have antithyroid effects in humans. Instead, they indicate that including brassica vegetables in the daily diet, particularly when accompanied by adequate iodine intake, poses no adverse effects on thyroid function.
Collapse
Affiliation(s)
- Agnieszka Galanty
- Department of Pharmacognosy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland; (A.G.); (W.P.); (P.S.)
| | - Marta Grudzińska
- Department of Food Chemistry and Nutrition, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland;
- Doctoral School of Medical and Health Sciences, Jagiellonian University Medical College, 16 Łazarza Str., 31-530 Cracow, Poland
| | - Wojciech Paździora
- Department of Pharmacognosy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland; (A.G.); (W.P.); (P.S.)
- Doctoral School of Medical and Health Sciences, Jagiellonian University Medical College, 16 Łazarza Str., 31-530 Cracow, Poland
| | - Piotr Służały
- Department of Pharmacognosy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland; (A.G.); (W.P.); (P.S.)
| | - Paweł Paśko
- Department of Food Chemistry and Nutrition, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland;
| |
Collapse
|
2
|
Xiong C, Zou X, Phan CW, Huang W, Zhu Y. Enhancing the potential of rapeseed cake as protein-source food by γ-irradiation. Biosci Rep 2024; 44:BSR20231807. [PMID: 38391133 PMCID: PMC10938193 DOI: 10.1042/bsr20231807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 02/05/2024] [Accepted: 02/21/2024] [Indexed: 02/24/2024] Open
Abstract
Rapeseed cake serves as a by-product in the oil extraction industry, characterized by its elevated protein content. However, the presence of antinutritional factors limits the utilization of rapeseed cake as a viable protein source. In this study, different doses of γ-irradiation were used to irradiate rapeseed cake and rapeseed protein isolate was extracted through a modified alkaline solution and acid precipitation method from rapeseed cake. The chemical composition and in vivo acute toxicity of rapeseed protein isolate were determined. The protein recovery rate of rapeseed protein isolate was 39.08 ± 3.01% after irradiation, while the content of antinutritional factors was significantly reduced. Moreover, γ-irradiation did not have any experimentally related effects on clinical observations or clinicopathology in mice. Overall, the reduced antinutrients and increased functional properties suggest that the irradiation of rapeseed cake (<9 kGy) could be utilized as a pre-treatment in the development of rapeseed cake-based value-added protein products.
Collapse
Affiliation(s)
- Chuan Xiong
- Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610061, China
| | - Xin Zou
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Chia-Wei Phan
- Department of Pharmaceutical Life Sciences, Faculty of Pharmacy, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Wenli Huang
- Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610061, China
| | - Yu Zhu
- Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610061, China
| |
Collapse
|
3
|
Lee YJ, Pan Y, Lim D, Park SH, Sin SI, Kwack K, Park KY. Broccoli Cultivated with Deep Sea Water Mineral Fertilizer Enhances Anti-Cancer and Anti-Inflammatory Effects of AOM/DSS-Induced Colorectal Cancer in C57BL/6N Mice. Int J Mol Sci 2024; 25:1650. [PMID: 38338927 PMCID: PMC10855752 DOI: 10.3390/ijms25031650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/24/2024] [Accepted: 01/26/2024] [Indexed: 02/12/2024] Open
Abstract
This study aimed to determine the alleviating effect of broccoli grown with deep sea water mineral (DSWM) fertilizer extracted from deep sea water on the development of colorectal cancer in C57BL/6N mice treated with AOM/DSS. Naturaldream Fertilizer Broccoli (NFB) cultured with deep sea water minerals (DSWM) showed a higher antioxidant effect and mineral content. In addition, orally administered NFB, showed a level of recovery in the colon and spleen tissues of mice compared with those in normal mice through hematoxylin and eosin (H&E) staining. Orally administered NFB showed the inhibition of the expression of inflammatory cytokine factors IL-1β, IL-6, TNF, IFN-γ, and IL-12 while increasing the expression of IL-10. Furthermore, the expression of inflammatory cytokines and NF-κB in the liver tissue was inhibited, and that of inflammatory enzymes, such as COX-2 and iNOS, was reduced. In the colon tissue, the expression of p53 and p21 associated with cell cycle arrest increased, and that of Bcl-2 associated with apoptosis decreased. Additionally, the expression of Bax, Bad, Bim, Bak, caspase 9, and caspase 3 increased, indicating enhanced activation of apoptosis-related factors. These results demonstrate that oral administration of broccoli cultivated using DSWM significantly restores spleen and colon tissues and simultaneously inhibits the NF-κB pathway while significantly decreasing cytokine expression. Moreover, by inducing cell cycle arrest and activating cell apoptosis, they also suggest alleviating AOM/DSS-induced colon cancer symptoms in C57BL/6N mice.
Collapse
Affiliation(s)
- Yeon-Jun Lee
- Department of Biomedical Science, CHA University, Seongnam 13488, Republic of Korea; (Y.-J.L.); (Y.P.); (D.L.)
| | - Yanni Pan
- Department of Biomedical Science, CHA University, Seongnam 13488, Republic of Korea; (Y.-J.L.); (Y.P.); (D.L.)
| | - Daewoo Lim
- Department of Biomedical Science, CHA University, Seongnam 13488, Republic of Korea; (Y.-J.L.); (Y.P.); (D.L.)
| | - Seung-Hwan Park
- Agriculture Research Center for Carbon Neutral and Healing, Gurye-gun 57607, Republic of Korea
| | - Sin-Il Sin
- Agriculture Research Center for Carbon Neutral and Healing, Gurye-gun 57607, Republic of Korea
| | - KyuBum Kwack
- Department of Biomedical Science, CHA University, Seongnam 13488, Republic of Korea; (Y.-J.L.); (Y.P.); (D.L.)
| | - Kun-Young Park
- Graduate School of Integrative Medicine, CHA University, Seongnam 13488, Republic of Korea
| |
Collapse
|
4
|
Artés-Hernández F, Martínez-Zamora L, Cano-Lamadrid M, Hashemi S, Castillejo N. Genus Brassica By-Products Revalorization with Green Technologies to Fortify Innovative Foods: A Scoping Review. Foods 2023; 12:561. [PMID: 36766089 PMCID: PMC9914545 DOI: 10.3390/foods12030561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/16/2023] [Accepted: 01/21/2023] [Indexed: 02/01/2023] Open
Abstract
Food losses and waste reduction are a worldwide challenge involving governments, researchers, and food industries. Therefore, by-product revalorization and the use of key extracted biocompounds to fortify innovative foods seems an interesting challenge to afford. The aim of this review is to evaluate and elucidate the scientific evidence on the use of green technologies to extract bioactive compounds from Brassica by-products with potential application in developing new foods. Scopus was used to search for indexed studies in JCR-ISI journals, while books, reviews, and non-indexed JCR journals were excluded. Broccoli, kale, cauliflower, cabbage, mustard, and radish, among others, have been deeply reviewed. Ultrasound and microwave-assisted extraction have been mostly used, but there are relevant studies using enzymes, supercritical fluids, ultrafiltration, or pressurized liquids that report a great extraction effectiveness and efficiency. However, predictive models must be developed to optimize the extraction procedures. Extracted biocompounds can be used, free or encapsulated, to develop, reformulate, and/or fortify new foods as a good tool to enhance healthiness while preserving their quality (nutritional, functional, and sensory) and safety. In the age of recycling and energy saving, more studies must evaluate the efficiency of the processes, the cost, and the environmental impact leading to the production of new foods and the sustainable extraction of phytochemicals.
Collapse
Affiliation(s)
- Francisco Artés-Hernández
- Postharvest and Refrigeration Group, Department of Agronomical Engineering and Institute of Plant Biotechnology, Universidad Politécnica de Cartagena, 30203 Cartagena, Murcia, Spain
| | - Lorena Martínez-Zamora
- Postharvest and Refrigeration Group, Department of Agronomical Engineering and Institute of Plant Biotechnology, Universidad Politécnica de Cartagena, 30203 Cartagena, Murcia, Spain
- Department of Food Technology, Nutrition, and Food Science, Faculty of Veterinary Sciences, University of Murcia, 30071 Espinardo, Murcia, Spain
| | - Marina Cano-Lamadrid
- Postharvest and Refrigeration Group, Department of Agronomical Engineering and Institute of Plant Biotechnology, Universidad Politécnica de Cartagena, 30203 Cartagena, Murcia, Spain
| | - Seyedehzeinab Hashemi
- Postharvest and Refrigeration Group, Department of Agronomical Engineering and Institute of Plant Biotechnology, Universidad Politécnica de Cartagena, 30203 Cartagena, Murcia, Spain
| | - Noelia Castillejo
- Postharvest and Refrigeration Group, Department of Agronomical Engineering and Institute of Plant Biotechnology, Universidad Politécnica de Cartagena, 30203 Cartagena, Murcia, Spain
| |
Collapse
|
5
|
Turck D, Bohn T, Castenmiller J, De Henauw S, Hirsch‐Ernst KI, Maciuk A, Mangelsdorf I, McArdle HJ, Naska A, Pelaez C, Pentieva K, Siani A, Thies F, Tsabouri S, Vinceti M, Cubadda F, Frenzel T, Heinonen M, Marchelli R, Neuhäuser‐Berthold M, Poulsen M, Prieto Maradona M, Schlatter JR, van Loveren H, Fernández Dumont A, Knutsen HK. Safety of whole seeds of oilseed rape (Brassica napus L emend. Metzg.) as a novel food pursuant to Regulation (EU) 2015/2283. EFSA J 2023; 21:e07706. [PMID: 36655163 PMCID: PMC9835418 DOI: 10.2903/j.efsa.2023.7706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Following a request from the European Commission, the EFSA Panel on Nutrition, Novel Foods and Food Allergens (NDA) was asked to deliver an opinion on whole seeds of oilseed rape as a novel food (NF) pursuant to Regulation (EU) 2015/2283. The NF consists of seeds of oilseed rape, in particular double low white flowering varieties of Brassica napus (oilseed rape Brassica napus L. emend. Metzg). The NF's oilseed rape is produced following drying, cleaning and storage procedures traditionally used for oilseed rape in oil production. The NF is proposed to be used as an ingredient in 'Bread and rolls with special ingredients added' and 'Gluten free bread'. The target population is the general population. The highest daily intake of the NF was estimated for young children as 92.6 mg/kg body weight (bw) per day. The Panel notes that intakes of the NF can result in considerably increased levels of glucosinolates consumption as compared to intakes of glucosinolates from background diets. The Panel asked the applicant for additional studies to support the safety of the NF, but these were not provided. The Panel concludes that the safety of whole seeds of oilseed rape under the proposed conditions of use has not been established.
Collapse
|
6
|
Tarafder SK, Biswas M, Sarker U, Ercisli S, Okcu Z, Marc RA, Golokhvast KS. Influence of foliar spray and post-harvest treatments on head yield, shelf-life, and physicochemical qualities of broccoli. Front Nutr 2023; 10:1057084. [PMID: 37139458 PMCID: PMC10149915 DOI: 10.3389/fnut.2023.1057084] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 03/08/2023] [Indexed: 05/05/2023] Open
Abstract
Rapid senescence is the key factor in the deterioration of post-harvest shelf-life in broccoli heads. This study evaluates the head yield and its related traits, and physicochemical attributes of broccoli under four foliar sprays of mineral nutrients (B, Zn, Mo, and B + Zn + Mo) with control. The interaction effects of shelf-life and physicochemical attributes of broccoli for these five pre-harvest and five post-harvest storage treatments (LDP bag, HDP vacuum pack, 2% eggshell powder solution, 2% ascorbic acid, and control) both at cold storage and room temperature were evaluated with three replications. The significantly higher marketable head yield of 28.02 t ha-1, maximum gross return [(Bangladesh Taka (BDT 420300 ha-1)], net return (BDT 30565 ha-1), and maximum benefit-cost ratio (BCR) of 3.67 were obtained from the pre-harvest foliar application of B + Zn + Mo in broccoli. Pre-harvest foliar spray of combined nutrient B + Zn + Mo and post-harvest treatment high-density polyethylene (HDP, 15 μm) vacuum packaging efficiently improve post-harvest physicochemical attributes, viz., compactness, green color, texture, carbohydrates, fats, energy, antioxidants, vitamin C, and total phenols in broccoli head compared to the rest of the treatment combinations. In addition, this treatment combination also confirmed a maximum shelf-life of 24.55 days at cold storage [relative humidity (RH) 90-95% and 4°C] and 7.05 days at room temperature (RH 60-65% and 14-22°C) compared to the rest of the treatment combinations. Therefore, we recommend a pre-harvest foliar spray of combined nutrient elements B + Zn + Mo and an HDP (15 μm) vacuum post-harvest packaging for the maximum benefits for both farmers and consumers to get the best head yield, anticipated physicochemical attributes, and maximum shelf-life of broccoli.
Collapse
Affiliation(s)
- Sushanta Kumar Tarafder
- Department of Agro Product Processing Technology, Jashore University of Science and Technology, Jashore, Bangladesh
| | - Mrityunjoy Biswas
- Department of Agro Product Processing Technology, Jashore University of Science and Technology, Jashore, Bangladesh
| | - Umakanta Sarker
- Department of Genetics and Plant Breeding, Faculty of Agriculture, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
- *Correspondence: Umakanta Sarker
| | - Sezai Ercisli
- Department of Horticulture, Faculty of Agriculture, Ataturk University, Erzurum, Türkiye
| | - Zuhal Okcu
- Department of Gastronomy, Faculty of Tourism, Ataturk University, Erzurum, Türkiye
| | - Romina Alina Marc
- Department of Food Engineering, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania
| | - Kirill S. Golokhvast
- Siberian Federal Scientific Center of Agrobiotechnology RAS, Krasnoobsk, Russia
- Kirill S. Golokhvast
| |
Collapse
|
7
|
Xie H, Rutz J, Maxeiner S, Grein T, Thomas A, Juengel E, Chun FKH, Cinatl J, Haferkamp A, Tsaur I, Blaheta RA. Plant-Derived Sulforaphane Suppresses Growth and Proliferation of Drug-Sensitive and Drug-Resistant Bladder Cancer Cell Lines In Vitro. Cancers (Basel) 2022; 14:cancers14194682. [PMID: 36230603 PMCID: PMC9564120 DOI: 10.3390/cancers14194682] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/20/2022] [Accepted: 09/21/2022] [Indexed: 11/24/2022] Open
Abstract
Simple Summary The natural compound sulforaphane is highly popular among tumor patients, since it is suggested to prevent oncogenesis and cancer progression. However, knowledge about its precise mode of action, particularly when drug resistance has been established, remains poor. The present study demonstrates the proliferation-blocking effects of SFN on a panel of drug-resistant bladder cancer cell lines. Abstract Combined cisplatin–gemcitabine (GC) application is standard for treating muscle-invasive bladder cancer. However, since rapid resistance to treatment often develops, many patients turn to supplements in the form of plant-based compounds. Sulforaphane (SFN), derived from cruciferous vegetables, is one such compound, and the present study was designed to investigate its influence on growth and proliferation in a panel of drug-sensitive bladder cancer cell lines, as well as their gemcitabine- and cisplatin-resistant counterparts. Chemo-sensitive and -resistant RT4, RT112, T24, and TCCSUP cell lines were exposed to SFN in different concentrations, and tumor growth, proliferation, and clone formation were evaluated, in addition to apoptosis and cell cycle progression. Means of action were investigated by assaying cell-cycle-regulating proteins and the mechanistic target of rapamycin (mTOR)/AKT signaling cascade. SFN significantly inhibited growth, proliferation, and clone formation in all four tumor cell lines. Cells were arrested in the G2/M and/or S phase, and alteration of the CDK–cyclin axis was closely associated with cell growth inhibition. The AKT/mTOR signaling pathway was deactivated in three of the cell lines. Acetylation of histone H3 was up-regulated. SFN, therefore, does exert tumor-suppressive properties in cisplatin- and gemcitabine-resistant bladder cancer cells and could be beneficial in optimizing bladder cancer therapy.
Collapse
Affiliation(s)
- Hui Xie
- Department of Urology and Pediatric Urology, University Medical Center Mainz, 55131 Mainz, Germany
- Department of Urology, Goethe-University, 60590 Frankfurt am Main, Germany
| | - Jochen Rutz
- Department of Urology and Pediatric Urology, University Medical Center Mainz, 55131 Mainz, Germany
| | - Sebastian Maxeiner
- Department of Urology and Pediatric Urology, University Medical Center Mainz, 55131 Mainz, Germany
| | - Timothy Grein
- Department of Urology and Pediatric Urology, University Medical Center Mainz, 55131 Mainz, Germany
| | - Anita Thomas
- Department of Urology and Pediatric Urology, University Medical Center Mainz, 55131 Mainz, Germany
| | - Eva Juengel
- Department of Urology and Pediatric Urology, University Medical Center Mainz, 55131 Mainz, Germany
| | - Felix K.-H. Chun
- Department of Urology, Goethe-University, 60590 Frankfurt am Main, Germany
| | - Jindrich Cinatl
- Institute of Medical Virology, University Hospital, Goethe-University, 60596 Frankfurt am Main, Germany
| | - Axel Haferkamp
- Department of Urology and Pediatric Urology, University Medical Center Mainz, 55131 Mainz, Germany
| | - Igor Tsaur
- Department of Urology and Pediatric Urology, University Medical Center Mainz, 55131 Mainz, Germany
| | - Roman A. Blaheta
- Department of Urology and Pediatric Urology, University Medical Center Mainz, 55131 Mainz, Germany
- Correspondence:
| |
Collapse
|