1
|
Xie J, Veigel M, Schmidt H, Gänzle M. Selection of Bacillus spp. as fermentation cultures for production of plant-based cheese analogues. Int J Food Microbiol 2025; 435:111178. [PMID: 40157176 DOI: 10.1016/j.ijfoodmicro.2025.111178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Revised: 03/10/2025] [Accepted: 03/23/2025] [Indexed: 04/01/2025]
Abstract
Bacillus species are beneficial fermentation microbes that exhibit useful technological traits including the expression of extracellular amylolytic and proteolytic enzymes and antimicrobial lipopeptides. In this study, strains of Bacillus spp. were screened through genome analysis and the effect of fermentation of plant-based cheese analogues with the acidification cultures Lactococcus lactis, Lactococcus cremoris and Leuconostoc mesenteroides, and the adjunct culture Lentilactobacillus. buchneri plus Bacillus spp. was investigated. Based on genome analyses of 9 strains of Bacillus spp., B. velezensis FUA2155, B. amyloliquefaciens FUA2153, and B. subtilis FUA2114 that harbor genes encoding for amylases and proteases and lipopeptide synthases were selected for fermentation of plant cheese. Bacillus strains exhibited metabolic activity during bean germination but were inactive after acidification of the cheese matrix. The strains prolonged the mould-free storage time of plant-based cheese analogues and enhanced proteolysis. Of the three strains, only B. velezensis FUA2155 contributed to accumulation of taste-active glutamate. Lt. buchneri accelerated the inactivation of Ln. mesenteroides and enhanced the prevention against fungal contaminants in plant-based cheese analogues with bacilli at the ripening condition rH of 0.78. Taken together, this study provides evidence that the use of proteolytic strains of Bacillus in combination with the acidification cultures Lc. lactis and Lc. cremoris associated with Ln. mesenteroides and adjunct culture Lt. buchneri improved the quality of fermented plant-based cheese analogues.
Collapse
Affiliation(s)
- Jin Xie
- University of Alberta, Dept. of Agricultural, Food and Nutritional Science, Edmonton, AB, Canada; Aarhus University, Dept. of Biological and Chemical Engineering, Aarhus, Denmark
| | - Mike Veigel
- University of Alberta, Dept. of Agricultural, Food and Nutritional Science, Edmonton, AB, Canada; Universität Hohenheim, Institute of Food Science and Biotechnology, Department of Food Microbiology, Garbenstrasse 28, 70599 Stuttgart, Germany
| | - Herbert Schmidt
- Universität Hohenheim, Institute of Food Science and Biotechnology, Department of Food Microbiology, Garbenstrasse 28, 70599 Stuttgart, Germany
| | - Michael Gänzle
- University of Alberta, Dept. of Agricultural, Food and Nutritional Science, Edmonton, AB, Canada; Hubei University of Technology, College of Food Science and Bioengineering, Wuhan, Hubei, PR China.
| |
Collapse
|
2
|
Sabaghi M, Seyedalmoosavi MM. Applications of sustainable proteins in food and feed, and perspectives on health and circular bioeconomy. Int J Biol Macromol 2025; 309:143193. [PMID: 40246099 DOI: 10.1016/j.ijbiomac.2025.143193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 04/06/2025] [Accepted: 04/14/2025] [Indexed: 04/19/2025]
Abstract
There has been a recent trend towards the use of "sustainable proteins" in attempts to meet the global challenge for healthier and more environmentally friendly food and feed systems. These renewable-source-derived proteins are novel sources of conventional proteins. The extraction methodologies for sustainable proteins, having been developed, are quite efficient in yielding high-quality proteins for such applications. Sustainable proteins have the potential to enhance nutritional profiles, enable advanced food and feed production techniques, and contribute to functional food product development. Furthermore, cross-linking and encapsulation strategies ensure stability and controlled delivery of proteins and derivatives from the green source to healthy pathways. By integrating sustainability assessments and life cycle analysis, sustainable proteins align with global biodiversity and climate goals, fostering a circular bioeconomy; this review explores their potential, focusing on extraction methodologies, functional applications, health benefits, and the role of policy frameworks in advancing resource-efficient and eco-friendly food and feed systems.
Collapse
Affiliation(s)
- Moslem Sabaghi
- Univ Lyon, Université Lyon 1, ISARA Lyon, BioDyMIA Research Unit, Technopole Alimentec, 155 rue Henri de Boissieu, F-01000 Bourg en Bresse, France.
| | - Mohammad M Seyedalmoosavi
- Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), Technology Assessment, Max-Eyth-Allee 100, 14469 Potsdam, Germany.
| |
Collapse
|
3
|
Molina GES, Ras G, da Silva DF, Duedahl-Olesen L, Hansen EB, Bang-Berthelsen CH. Metabolic insights of lactic acid bacteria in reducing off-flavors and antinutrients in plant-based fermented dairy alternatives. Compr Rev Food Sci Food Saf 2025; 24:e70134. [PMID: 40091739 PMCID: PMC11911983 DOI: 10.1111/1541-4337.70134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 01/08/2025] [Accepted: 01/18/2025] [Indexed: 03/19/2025]
Abstract
Multiple sensorial, technological, and nutritional challenges must be overcome when developing plant-based fermented dairy alternatives (PBFDA) to mimic their dairy counterparts. The elimination of plant-derived off-flavors (green, earthy, bitter, astringent) and the degradation of antinutrients are crucial quality factors highlighted by the industry for their effect on consumer acceptance. The adaptation of plant-derived lactic acid bacteria (LAB) species into plant niches is relevant when developing starter cultures for PBFDA products due to their evolutionary acquired ability to degrade plant-based undesirable compounds (off-flavors and antinutrients). Some plant-isolated species, such as Lactiplantibacillus plantarum and Limosilactobacillus fermentum, have been associated with the degradation of phytates, phenolic compounds, oxalates, and raffinose-family oligosaccharides (RFOs), whereas some animal-isolated species, such as Lactobacillus acidophilus strains, can metabolize phytates, RFOs, saponins, phenolic compounds, and oxalates. Some proteolytic LAB strains, such as Lacticaseibacillus paracasei and Lacticaseibacillus rhamnosus, have been characterized to degrade phytates, protease inhibitors, and oxalates. Other species have also been described regarding their abilities to biotransform phytic acid, RFOs, saponins, phenolic compounds, protease inhibitors, oxalates, and volatile off-flavor compounds (hexanal, nonanal, pentanal, and benzaldehyde). In addition, we performed a blast analysis considering antinutrient metabolic genes (42 genes) to up to 5 strains of all qualified presumption of safety-listed LAB species (55 species, 240 strains), finding out potential genotypical capabilities of LAB species that have not conventionally been used as starter cultures such as Lactiplantibacillus pentosus, Lactiplantibacillus paraplantarum, and Lactobacillus diolivorans for plant-based fermentations. This review provides a detailed understanding of genes and enzymes from LAB that target specific compounds in plant-based materials for plant-based fermented food applications.
Collapse
Affiliation(s)
- Guillermo Eduardo Sedó Molina
- Research Group for Microbial Biotechnology and Biorefining, National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Geoffrey Ras
- Combinatorial Microbiology, Novonesis, Hørsholm, Denmark
| | | | - Lene Duedahl-Olesen
- Research Group for Analytical Food Chemistry, National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Egon Bech Hansen
- Research Group for Gut, Microbes, and Health, National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Claus Heiner Bang-Berthelsen
- Research Group for Microbial Biotechnology and Biorefining, National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| |
Collapse
|
4
|
Sözeri Atik D, Huppertz T. Plant-based cheese analogs: structure, texture, and functionality. Crit Rev Food Sci Nutr 2025:1-17. [PMID: 39784502 DOI: 10.1080/10408398.2024.2449234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Plant-based cheese analogs have been developed using plant-based ingredients to mimic the appearance, structure, and flavor of conventional cheeses. Due to the complex composition and structure of cheese, developing plant-based cheese analogs that completely replicate its physicochemical, structural, sensory, and nutritional features is a highly challenging endeavor. Therefore, the design of the structure of plant-based cheese analogs requires a critical evaluation of the functional features of the selected ingredients and the specialized combination of these ingredients to create a desired structure. This review provides a comprehensive understanding of the structure, texture, and functionality of plant-based cheese analogs, covering the formulation and the characteristic properties of the end-use product, such as rheological behavior and microstructural properties, as well as tribology perspectives. Subsequently, the melting and stretchability characteristics of these products have been assessed to comprehend the response of plant-based cheese substitutes when subjected to heat.
Collapse
Affiliation(s)
- Didem Sözeri Atik
- Department of Food Science and Nutrition, University of Minnesota, St. Paul, Minnesota, USA
| | - Thom Huppertz
- School of Food and Nutritional Sciences, University College Cork, Cork, Ireland
- FrieslandCampina, Amersfoort, The Netherlands
| |
Collapse
|
5
|
Da Silva N, Anderson GH, Amr AM, Vien S, Fabek H. A comparison of the effects of dairy products with their plant-based alternatives on metabolic responses in healthy young Canadian adults: a randomized crossover study. Appl Physiol Nutr Metab 2025; 50:1-17. [PMID: 39146559 DOI: 10.1139/apnm-2024-0158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Plant-based food demand is rapidly increasing. However, the metabolic responses of plant proteins within their commercially available form remain unclear. Two randomized crossover experiments compared plant-based alternatives to dairy on postprandial glycemia, metabolic hormones, and appetite before and after a fixed-size (12 kcal/kg body weight) pasta meal in sixteen healthy young adults (eight males and eight females). In experiment 1, participants (22.8 ± 2.3 year) consumed one serving of Greek yogurt (175 g), cheddar cheese (30 g), plant-based cheese (30 g), or plant-based yogurt (175 g). In experiment 2, participants (22.3 ± 2.4 year) consumed one serving (250 mL) of cow's milk, vanilla soy beverage or vanilla almond beverage, and (30 g) of cheddar cheese or plant-based cheese. Blood glucose, insulin, and appetite were measured at baseline, post-treatment, and following a fixed-size pasta meal (post-meal) within 15-30 min. In experiment 2, C-peptide, glucagon-like peptide-1 (GLP-1), and ghrelin were measured. Greek yogurt and cheddar cheese lowered post-meal blood glucose more than their plant-based alternatives (p < 0.01) and post-treatment blood glucose was higher following almond beverage than cheddar cheese and plant-based cheese (p < 0.01). In experiment 1, post-treatment insulin was higher after Greek yogurt than cheddar cheese and plant-based cheese and all treatments post-meal (p < 0.02). Post-meal appetite was lower after plant-based yogurt than cheddar cheese and plant-based cheese (p < 0.01). In experiment 2, post-treatment insulin was higher after almond beverage compared to all treatments (p < 0.01), and post-meal GLP-1 was higher after milk than almond beverage (p = 0.03). We conclude that the physiological functionality of plant-based alternatives as measured by blood glucose, insulin, C-peptide, and GLP-1 did not replicate the metabolic functions of dairy products. Clinical trial registry number: http://clinicaltrials.gov (NCT04600128 and NCT05919667).
Collapse
Affiliation(s)
- Nicole Da Silva
- University of Toronto, Department of Nutritional Sciences, Temerty Faculty of Medicine, Medical Sciences Building, 5th Floor, 1 King's College Circle, Toronto, ON M5S 1A8, Canada
| | - G Harvey Anderson
- University of Toronto, Department of Nutritional Sciences, Temerty Faculty of Medicine, Medical Sciences Building, 5th Floor, 1 King's College Circle, Toronto, ON M5S 1A8, Canada
| | - Amira M Amr
- University of Toronto, Department of Nutritional Sciences, Temerty Faculty of Medicine, Medical Sciences Building, 5th Floor, 1 King's College Circle, Toronto, ON M5S 1A8, Canada
| | - Shirley Vien
- University of Toronto, Department of Nutritional Sciences, Temerty Faculty of Medicine, Medical Sciences Building, 5th Floor, 1 King's College Circle, Toronto, ON M5S 1A8, Canada
| | - Hrvoje Fabek
- University of Toronto, Department of Nutritional Sciences, Temerty Faculty of Medicine, Medical Sciences Building, 5th Floor, 1 King's College Circle, Toronto, ON M5S 1A8, Canada
| |
Collapse
|
6
|
Sedó Molina GE, Ras G, Barone G, Fernández-Varela R, Felix da Silva D, Jacobsen C, Duedahl-Olesen L, Bech Hansen E, Heiner Bang-Berthelsen C. Multiphasic and mixture lactic acid bacteria screening approach for the removal of antinutrients and off-flavors present in a pea, oat and potato blend. Food Res Int 2024; 197:115200. [PMID: 39593285 DOI: 10.1016/j.foodres.2024.115200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/26/2024] [Accepted: 10/17/2024] [Indexed: 11/28/2024]
Abstract
The antinutrients and off-flavors present in plant-based foods are some of the major organoleptic and consumer acceptance drawbacks considered when developing plant-based fermented dairy alternatives (PBFDA). Here, we investigated a combination of genotypical and phenotypical consecutive screening methods to find out the optimal single- and combination of lactic acid bacteria (LAB) strains based on volatile off-flavors, phenolic acids, saponins, and trypsin inhibitor degradation through the fermentation of a pea, oat, and potato (POP) blend. Lactiplantibacillus plantarum strains were the most optimal for the partial/complete degradation of p-coumaric (>98 %) and ferulic acid (10-20 %) compounds in the POP blend. Leuconostoc pseudomesenteroides strains, and their PII-type proteinases were demonstrated to be effective degrading trypsin inhibitors. Also, specific Leuconostoc mesenteroides and L. plantarum strains achieved higher degradation rates of plant saponins such as avenacoside A (10-40 % degradation) and soyasaponin B (55-75 % degradation) present, correlated with their β-glucosidase activity (30-50 U/mL). Strict heterofermentative LABs such as Leuconostoc spp. strains were significantly better at removing hexanal, pentanal, benzaldehyde, and nonanal up to 85 % after 6 h. Finally, 384 combinations of 2 and 3 LAB selected strains (L. plantarum - L. mesenteroides - L. pseudomesenteroides) were tested at different strain-ratios, which demonstrated synergistic effects at degrading ferulic acid to more than 80 %, increasing acidification rates, and producing higher concentrations of diacetyl and acetoin (up to 3.28 and 28.13 µg/g sample) when L. pseudomesenteroides 1993 was included in the mix. This study demonstrated the potential of using unconventional plant-adapted LAB strains as starter cultures for the elimination of multiple unwanted compounds for the development of higher quality PBFDA without the use of conventional dairy-based LAB isolates. Finally, the screening approach could be used for microbial screening purposes throughout the development of starter cultures for plant-based yogurts, cheese, and other non-dairy fermented products.
Collapse
Affiliation(s)
- Guillermo Eduardo Sedó Molina
- Research Group for Microbial Biotechnology and Biorefining, National Food Institute, Technical University of Denmark, Building 202, 2800 Kongens Lyngby, Denmark
| | - Geoffrey Ras
- Combinatorial Microbiology, Novonesis, Gl. Venlighedsvej 14, 2970 Hørsholm, Denmark
| | - Giovanni Barone
- Ingredients and Dairy Technology, Department of Food Science, University of Copenhagen, 1958 Frederiksberg, Denmark
| | | | | | - Charlotte Jacobsen
- Research Group for Bioactives - Analysis and Application, National Food Institute, Technical University of Denmark, Building 202, 2800 Kongens Lyngby, Denmark
| | - Lene Duedahl-Olesen
- Research Group for Analytical Food Chemistry, National Food Institute, Technical University of Denmark, Building 202, 2800 Kongens Lyngby, Denmark
| | - Egon Bech Hansen
- Research Group for Gut, Microbes and Health, National Food Institute, Technical University of Denmark, Building 202, 2800 Kongens Lyngby, Denmark
| | - Claus Heiner Bang-Berthelsen
- Research Group for Microbial Biotechnology and Biorefining, National Food Institute, Technical University of Denmark, Building 202, 2800 Kongens Lyngby, Denmark.
| |
Collapse
|
7
|
Xue J, Yin Y. Plant-Based Food: From Nutritional Value to Health Benefits. Foods 2024; 13:3595. [PMID: 39594011 PMCID: PMC11593942 DOI: 10.3390/foods13223595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 11/01/2024] [Accepted: 11/07/2024] [Indexed: 11/28/2024] Open
Abstract
The United Nations' 2030 Sustainable Development Goals present a transformative vision for addressing challenges related to food security, nutrition, and health, with plant-based foods poised to play a crucial role [...].
Collapse
Affiliation(s)
| | - Yongqi Yin
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225009, China;
| |
Collapse
|
8
|
Zhang X, Zhang Z, Shen A, Zhang T, Jiang L, El-Seedi H, Zhang G, Sui X. Legumes as an alternative protein source in plant-based foods: Applications, challenges, and strategies. Curr Res Food Sci 2024; 9:100876. [PMID: 39435454 PMCID: PMC11491897 DOI: 10.1016/j.crfs.2024.100876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 09/22/2024] [Accepted: 10/01/2024] [Indexed: 10/23/2024] Open
Abstract
Since animal proteins may pose a threat to the global environment and human health, the development of alternative proteins has become an inevitable trend in the future. Legumes are considered to be one of the most promising sources of sustainable alternative animal proteins. Legume proteins are considered to exhibit excellent processing properties, including emulsification, gelation, and foaming, which have led to their widespread use in the food industry. Moreover, legume proteins are not only taken as substitutes for meat proteins, they also play an essential role in novel plant-based foods (meat, dairy, fermented food, and fat). However, there are few comprehensive overview studies on the application of legume proteins in plant-based foods. Therefore, this review provides a general overview of the main sources, functional properties, and applications in plant-based foods of legume proteins. In addition, challenges to the application of legume proteins in plant-based foods and specific strategies to address these challenges are presented. The review may provide some references for the further application of legume proteins in novel plant-based foods.
Collapse
Affiliation(s)
- Xin Zhang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Zhaonan Zhang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Ao Shen
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Tianyi Zhang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Lianzhou Jiang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Hesham El-Seedi
- Pharmacognosy Group, Department of Pharmaceutical Biosciences, BMC, Uppsala University, Box 591, SE 751 24, Uppsala, Sweden
| | - Guohua Zhang
- College of Life Science, Shanxi University, Taiyuan 030006, China
| | - Xiaonan Sui
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
9
|
Khiabani A, Xiao H, Wätjen AP, Tovar M, Poulsen VK, Hansen EB, Bang-Berthelsen CH. Exploring the Diversity and Potential Use of Flower-Derived Lactic Acid Bacteria in Plant-Based Fermentation: Insights into Exo-Cellular Polysaccharide Production. Foods 2024; 13:2907. [PMID: 39335836 PMCID: PMC11430985 DOI: 10.3390/foods13182907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/24/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
Isolation of new plant-derived lactic acid bacteria (LAB) is highly prioritized in developing novel starter cultures for plant-based fermentation. This study explores the diversity of LAB in Danish flowers and their potential use for plant-based food fermentation. A total of 46 flower samples under 34 genera were collected for LAB isolation. By introducing an enrichment step, a total of 61 LAB strains were isolated and identified using MALDI-TOF and 16S rRNA sequencing. These strains represent 24 species across 9 genera, predominantly Leuconostoc mesenteroides, Fructobacillus fructosus, Apilactobacillus ozensis, and Apilactobacillus kunkeei. Phenotypic screening for exo-cellular polysaccharide production revealed that 40 strains exhibited sliminess or ropiness on sucrose-containing agar plates. HPLC analysis confirmed that all isolates produced exo-cellular polysaccharides containing glucose, fructose, or galactose as sugar monomers. Therefore, the strains were glucan, fructan, and galactan producers. The suitability of these strains for plant-based fermentation was characterized by using almond, oat, and soy milk. The results showed successful acidification in all three types of plant-based matrices but only observed texture development in soy by Leuconostoc, Weissella, Lactococcus, Apilactobacillus, and Fructobacillus. The findings highlight the potential of flower-derived LAB strains for texture development in soy-based dairy alternatives.
Collapse
Affiliation(s)
- Azadeh Khiabani
- Research Group for Microbial Biotechnology and Biorefining, National Food Institute, Technical University of Denmark, Kemitrovet, Building 202, 2800 Kongens Lyngby, Denmark
| | - Hang Xiao
- Research Group for Microbial Biotechnology and Biorefining, National Food Institute, Technical University of Denmark, Kemitrovet, Building 202, 2800 Kongens Lyngby, Denmark
| | - Anders Peter Wätjen
- Research Group for Microbial Biotechnology and Biorefining, National Food Institute, Technical University of Denmark, Kemitrovet, Building 202, 2800 Kongens Lyngby, Denmark
| | - Miguel Tovar
- Microbe & Culture Research, Novonesis A/S, Gammel Venlighedsvej 14, 2970 Hørsholm, Denmark
| | - Vera Kuzina Poulsen
- Microbe & Culture Research, Novonesis A/S, Gammel Venlighedsvej 14, 2970 Hørsholm, Denmark
| | - Egon Bech Hansen
- Research Group for Gut, Microbes and Health, National Food Institute, Technical University of Denmark, Kemitrovet, Building 202, 2800 Kongens Lyngby, Denmark
| | - Claus Heiner Bang-Berthelsen
- Research Group for Microbial Biotechnology and Biorefining, National Food Institute, Technical University of Denmark, Kemitrovet, Building 202, 2800 Kongens Lyngby, Denmark
| |
Collapse
|
10
|
Xie J, Gänzle MG. Selection of adjunct cultures for the ripening of plant cheese analogues. Food Microbiol 2024; 122:104555. [PMID: 38839234 DOI: 10.1016/j.fm.2024.104555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 04/17/2024] [Accepted: 04/26/2024] [Indexed: 06/07/2024]
Abstract
Fermentation contributes to the taste and odor of plant cheeses. The selection of functional cultures for the fermentation of plant cheeses, however, is in its infancy. This study aimed to select lactic acid bacteria for ripening of soy and lupin cheese analogues. Bacillus velezensis and B. amyloliquefaciens were used for germination of seeds to produce proteolytic enzymes; Lactococcus lactis and Lactiplantibacillus plantarum served as primary acidifying cultures. Levilactobacillus hammesii, Furfurilactobacillus milii, or Lentilactobacillus buchneri were assessed as adjunct cultures for the ripening of plant cheese. Growth of bacilli was inhibited at low pH. Both Lc. lactis and Lp. plantarum were inactived during plant cheese ripening. Cell counts of Lv. hammesii remained stable over 45 d of ripening while Ff. milii and Lt. buchneri grew slowly. Sequencing of full length 16S rRNA genes confirmed that the inocula the plant cheeses accounted for more than 98% of the bacterial communities. HPLC analysis revealed that Lt. buchneri metabolized lactate to acetate and 1,2-propanediol during ripening. Bacilli enhanced proteolysis as measured by quantification of free amino nitrogen, and the release of glutamate. LC-MS/MS analysis quantified kokumi-active dipeptides. The concentrations of γ-Glu-Leu, γ-Glu-Ile, and γ-Glu-Ala, γ-Glu-Cys in unripened cheeses were increased by seed germination but γ-Glu-Phe was degraded. Lt. buchneri but not Lv. hammesii or Ff. milii accumulated γ-Glu-Val, γ-Glu-Ile or γ-Glu-Leu during ripening, indicating strain-specific differences. In conclusion, a consortium of bacilli, acidification cultures and adjunct cultures accumulates taste- and kokumi-active compounds during ripening of plant cheeses.
Collapse
Affiliation(s)
- Jin Xie
- University of Alberta, Dept. of Agricultural, Food and Nutritional Science, Edmonton, Canada
| | - Michael G Gänzle
- University of Alberta, Dept. of Agricultural, Food and Nutritional Science, Edmonton, Canada; Hubei University of Technology, College of Bioengineering and Food Science, Wuhan, Hubei, China.
| |
Collapse
|
11
|
Palatzidi A, Nikoloudaki O, Torreiro MG, Matteucci C, Ferrentino G, Scampicchio MM, Di Cagno R, Gobbetti M. Novel formulations for developing fresh hybrid cheese analogues utilizing fungal-fermented brewery side-stream flours. Curr Res Food Sci 2024; 9:100829. [PMID: 39286429 PMCID: PMC11404057 DOI: 10.1016/j.crfs.2024.100829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 08/06/2024] [Accepted: 08/23/2024] [Indexed: 09/19/2024] Open
Abstract
This study investigated the development of hybrid cheese analogues (HCA) made with fermented brewery side-stream ingredients (spent yeast and malt rootlets) and dairy milk. Different percentages of side-stream flours (3.5%, 5%, and 7.5%) were mixed with pasteurized milk, and the developed HCA were evaluated for their biochemical and textural properties. The addition of a fermentation step improved nutrient availability and led to pH (range 4.79-5.60) and moisture content (range 45.86%-61.29%) similar to traditional animal-based fresh cheeses (control). The inclusion of side-stream flours led to coagulation, even without rennet addition. The higher the concentration of the flour used, the faster the coagulation time, suggesting synergistic effect between the enzymes of the rennet and the enzymes present in the fermented side-stream flours. Nevertheless, textural properties were inferior compared to the control. Selected HCA formulations with added 3.5% flour exhibited increased counts of enterococci and enterobacteria cell densities, ranging from 7.28 ± 0.03 to 7.72 ± 0.09 log CFU/g and 4.90 ± 0.16 to 5.41 ± 0.01 log CFU/g, respectively. Compared to the control sample, HCA formulations exhibited higher concentrations of organic acids, peptides, and free amino acids (FAAs). Lactic acid reached up to 23.78 ± 0.94 g/kg of dry matter (DM), while the peptide area reached up to 22918.50 ± 2370.93 mL⋅AU. Additionally, the total concentration of individual FAAs reached up to 2809.74 ± 104.85 mg/kg of DM, contrasted with the control, which resulted in lower concentrations (847.65 ± 0.02 mg/kg of DM). The overall findings suggested that despite challenges in microbiological quality and textural properties, HCA produced with the inclusion of up to 3.5% brewery side-stream flours could be a sustainable solution to produce nutritious dairy alternatives.
Collapse
Affiliation(s)
- Anastasia Palatzidi
- Free University of Bozen-Bolzano, Faculty of Agricultural, Environmental and Food Sciences, Piazza Universit'a 1, 39100, Bolzano, BZ, Italy
| | - Olga Nikoloudaki
- Free University of Bozen-Bolzano, Faculty of Agricultural, Environmental and Food Sciences, Piazza Universit'a 1, 39100, Bolzano, BZ, Italy
- International Competence Centre for Food Fermentations-ICOFF, Noitech Park, Via Ipazia 2, 39100, Bolzano, BZ, Italy
| | | | | | - Giovanna Ferrentino
- Free University of Bozen-Bolzano, Faculty of Agricultural, Environmental and Food Sciences, Piazza Universit'a 1, 39100, Bolzano, BZ, Italy
| | - Matteo Mario Scampicchio
- Free University of Bozen-Bolzano, Faculty of Agricultural, Environmental and Food Sciences, Piazza Universit'a 1, 39100, Bolzano, BZ, Italy
| | - Raffaella Di Cagno
- Free University of Bozen-Bolzano, Faculty of Agricultural, Environmental and Food Sciences, Piazza Universit'a 1, 39100, Bolzano, BZ, Italy
- International Competence Centre for Food Fermentations-ICOFF, Noitech Park, Via Ipazia 2, 39100, Bolzano, BZ, Italy
| | - Marco Gobbetti
- Free University of Bozen-Bolzano, Faculty of Agricultural, Environmental and Food Sciences, Piazza Universit'a 1, 39100, Bolzano, BZ, Italy
- International Competence Centre for Food Fermentations-ICOFF, Noitech Park, Via Ipazia 2, 39100, Bolzano, BZ, Italy
| |
Collapse
|
12
|
Fabiszewska A, Wierzchowska K, Dębkowska I, Śliczniak W, Ziółkowska M, Jasińska K, Kobus J, Nowak D, Zieniuk B. Plant-Based Alternatives to Mold-Ripened Cheeses as an Innovation among Dairy Analogues. Foods 2024; 13:2305. [PMID: 39063389 PMCID: PMC11275504 DOI: 10.3390/foods13142305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/17/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024] Open
Abstract
There is a growing demand for vegan products and plant-based food when dealing with the impact of livestock on the climate crisis. The aim of this study was to develop a formulation for a plant-based analogue of mold-ripened cheese. Were investigated the following plant materials: cashews, pistachios, soy flour, chickpea flour, pea protein, pumpkin protein, hemp protein, and spirulina powder. Plant matrices were fermented with lactic acid bacteria (LAB) starter cultures and cheese starter cultures of mold species Geotrichum candidum and Penicillium camemberti. All microorganisms' growth were tested in a vegan-type culture medium. Calcium supplementation was applied and followed by an in-depth analysis of the elemental composition of selected analogues with inductively coupled plasma optical emission spectroscopy. The physicochemical and organoleptic analyses of plant-based alternatives of Camembert were conducted. This is the first paper describing novel formulations for plant-based alternatives for Camembert cheese prepared with techniques mimicking the original milk product.
Collapse
Affiliation(s)
- Agata Fabiszewska
- Department of Chemistry, Institute of Food Sciences, Warsaw University of Life Sciences-SGGW, 159c Nowoursynowska St., 02-776 Warsaw, Poland
| | - Katarzyna Wierzchowska
- Department of Chemistry, Institute of Food Sciences, Warsaw University of Life Sciences-SGGW, 159c Nowoursynowska St., 02-776 Warsaw, Poland
| | - Ilona Dębkowska
- Faculty of Biology and Biotechnology, Warsaw University of Life Sciences-SGGW, 159 Nowoursynowska St., 02-776 Warsaw, Poland
| | - Weronika Śliczniak
- Faculty of Biology and Biotechnology, Warsaw University of Life Sciences-SGGW, 159 Nowoursynowska St., 02-776 Warsaw, Poland
| | - Magdalena Ziółkowska
- Faculty of Biology and Biotechnology, Warsaw University of Life Sciences-SGGW, 159 Nowoursynowska St., 02-776 Warsaw, Poland
| | - Karina Jasińska
- Department of Chemistry, Institute of Food Sciences, Warsaw University of Life Sciences-SGGW, 159c Nowoursynowska St., 02-776 Warsaw, Poland
| | - Joanna Kobus
- Faculty of Food Technology, Warsaw University of Life Sciences-SGGW, 159c Nowoursynowska St., 02-776 Warsaw, Poland
| | - Dorota Nowak
- Department of Food Engineering and Process Management, Institute of Food Sciences, Warsaw University of Life Sciences-SGGW, 159c Nowoursynowska St., 02-776 Warsaw, Poland
| | - Bartłomiej Zieniuk
- Department of Chemistry, Institute of Food Sciences, Warsaw University of Life Sciences-SGGW, 159c Nowoursynowska St., 02-776 Warsaw, Poland
| |
Collapse
|
13
|
Kumar R, Guleria A, Padwad YS, Srivatsan V, Yadav SK. Smart proteins as a new paradigm for meeting dietary protein sufficiency of India: a critical review on the safety and sustainability of different protein sources. Crit Rev Food Sci Nutr 2024:1-50. [PMID: 39011754 DOI: 10.1080/10408398.2024.2367564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
India, a global leader in agriculture, faces sustainability challenges in feeding its population. Although primarily a vegetarian population, the consumption of animal derived proteins has tremendously increased in recent years. Excessive dependency on animal proteins is not environmentally sustainable, necessitating the identification of alternative smart proteins. Smart proteins are environmentally benign and mimic the properties of animal proteins (dairy, egg and meat) and are derived from plant proteins, microbial fermentation, insects and cell culture meat (CCM) processes. This review critically evaluates the technological, safety, and sustainability challenges involved in production of smart proteins and their consumer acceptance from Indian context. Under current circumstances, plant-based proteins are most favorable; however, limited land availability and impending climate change makes them unsustainable in the long run. CCM is unaffordable with high input costs limiting its commercialization in near future. Microbial-derived proteins could be the most sustainable option for future owing to higher productivity and ability to grow on low-cost substrates. A circular economy approach integrating agri-horti waste valorization and C1 substrate synthesis with microbial biomass production offer economic viability. Considering the use of novel additives and processing techniques, evaluation of safety, allergenicity, and bioavailability of smart protein products is necessary before large-scale adoption.
Collapse
Affiliation(s)
- Raman Kumar
- Applied Phycology and Food Technology Laboratory, Biotechnology Division, CSIR - Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Human Resource Development Centre (CSIR-HRDC) Campus, Ghaziabad, Uttar Pradesh, India
| | - Aditi Guleria
- Applied Phycology and Food Technology Laboratory, Biotechnology Division, CSIR - Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
| | - Yogendra S Padwad
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Human Resource Development Centre (CSIR-HRDC) Campus, Ghaziabad, Uttar Pradesh, India
- Protein Processing Centre, Dietetics, and Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
| | - Vidyashankar Srivatsan
- Applied Phycology and Food Technology Laboratory, Biotechnology Division, CSIR - Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Human Resource Development Centre (CSIR-HRDC) Campus, Ghaziabad, Uttar Pradesh, India
| | - Sudesh Kumar Yadav
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Human Resource Development Centre (CSIR-HRDC) Campus, Ghaziabad, Uttar Pradesh, India
- CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
| |
Collapse
|
14
|
Rana A, Taneja NK, Raposo A, Alarifi SN, Teixeira-Lemos E, Lima MJ, Gonçalves JC, Dhewa T. Exploring prebiotic properties and its probiotic potential of new formulations of soy milk-derived beverages. Front Microbiol 2024; 15:1404907. [PMID: 39050628 PMCID: PMC11266073 DOI: 10.3389/fmicb.2024.1404907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 06/25/2024] [Indexed: 07/27/2024] Open
Abstract
Introduction The food and beverage industry has shown a growing interest in plant-based beverages as alternatives to traditional milk consumption. Soy milk is derived from soy beans and contains proteins, isoflavones, soy bean oligosaccharides, and saponins, among other ingredients. Because of its high nutritive value and versatility, soy milk has gained a lot of attention as a functional food. Methods The present work aims to explore the prebiotic properties and gastrointestinal tolerance potential of new formulations of soy milk-derived drinks to be fermented with riboflavin-producing probiotic Lactiplantibacillus plantarum MTCC (Microbial Type Culture Collection and Gene Bank) 25432, Lactiplantibacillus plantarum MTCC 25433, and Lactobacillus acidophilus NCIM (National Collection of Industrial Microorganisms) 2902 strains. Results and discussion The soy milk co-fermented beverage showed highest PAS (1.24 ± 0.02) followed by soy milk beverages fermented with L. plantarum MTCC 25433 (0.753 ± 0.0) when compared to the commercial prebiotic raffinose (1.29 ± 0.01). The findings of this study suggested that the soy milk beverages exhibited potent prebiotic activity, having the ability to support the growth of probiotics, and the potential to raise the content of several bioactive substances. The higher prebiotics activity score showed that the higher the growth rate of probiotics microorganism, the lower the growth of pathogen. For acidic tolerance, all fermented soy milk managed to meet the minimal requirement of 106 viable probiotic cells per milliliter at pH 2 (8.13, 8.26, 8.30, and 8.45 logs CFU/mL, respectively) and pH 3.5 (8.11, 8.07, 8.39, and 9.01 log CFU/mL, respectively). The survival rate of soy milk LAB isolates on bile for 3 h ranged from 84.64 to 89.60%. The study concluded that lactobacilli could thrive in gastrointestinal tract. The sensory evaluation scores for body and texture, color, flavor, and overall acceptability showed a significant difference (p < 0.05) between the fermented probiotic soy milk and control samples. Soy milk fermented with a combination of L. plantarum MTCC 25432 & MTCC 25433 demonstrated the highest acceptability with the least amount of beany flavor. The findings of the study suggest soy milk's potential in plant-based beverage market.
Collapse
Affiliation(s)
- Ananya Rana
- Department of Interdisciplinary Sciences, National Institute of Food Technology Entrepreneurship and Management, Sonipat, Haryana, India
| | - Neetu Kumra Taneja
- Department of Interdisciplinary Sciences, National Institute of Food Technology Entrepreneurship and Management, Sonipat, Haryana, India
| | - António Raposo
- CBIOS (Research Center for Biosciences and Health Technologies), Universidade Lusófona de Humanidades e Tecnologias, Lisboa, Portugal
| | - Sehad N. Alarifi
- Department of Food and Nutrition Science, Al-Quwayiyah College of Sciences and Humanities, Shaqra University, Shaqra, Saudi Arabia
| | | | - Maria João Lima
- CERNAS Research Centre, Polytechnic University of Viseu, Viseu, Portugal
| | | | - Tejpal Dhewa
- Department of Nutrition Biology, Central University of Haryana, Mahendragarh, Haryana, India
| |
Collapse
|
15
|
da Silva ARA, Santelli RE, Braz BF, Silva MMN, Melo L, Lemes AC, Ribeiro BD. A Comparative Study of Dairy and Non-Dairy Milk Types: Development and Characterization of Customized Plant-Based Milk Options. Foods 2024; 13:2169. [PMID: 39063253 PMCID: PMC11276104 DOI: 10.3390/foods13142169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/06/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
Plant-based milk has gained considerable attention; however, its high nutritional variation highlights the need for improved formulation designs to enhance its quality. This study aimed to nutritionally compare cow milk with plant-based milk produced from hazelnuts (H), Brazil nuts (BN), cashew nuts (CN), soybeans (S), and sunflower seeds (SS), and to perform physicochemical and technological characterization. The plant-based milk produced with isolated grains showed a nutritional composition inferior to that of cow milk in almost all evaluated parameters, protein content (up to 1.1 g 100 g-1), lipids (up to 2.7 g 100 g-1), color parameters, minerals, and especially calcium (up to 62.4 mg L-1), which were originally high in cow milk (up to 1030 mg L-1). However, the plant-based milk designed using a blend composition was able to promote nutritional enhancement in terms of minerals, especially iron (Fe) and magnesium (Mg), high-quality lipids (up to 3.6 g 100 g-1), and carbohydrates (3.4 g 100 g-1 using CN, BN, and S). The protein content was 1.3% compared to 5.7 in cow milk, and the caloric value of plant-based milk remained 32.8 at 52.1 kcal, similar to cow milk. Satisfactory aspects were observed regarding the shelf life, especially related to microbiological stability during the 11 d of storage at 4 °C. For the designed plant-based milk to be equivalent to cow milk, further exploration for optimizing the blends used to achieve better combinations is required. Furthermore, analyzing possible fortification and preservation methods to increase shelf life and meet the nutritional and sensory needs of the public would be interesting.
Collapse
Affiliation(s)
- Aline Rolim Alves da Silva
- Instituto de Química, Universidade Federal do Rio de Janeiro, Av. Athos da Silveira Ramos, 149, Bloco A—Cidade Universitária, Rio de Janeiro 21044-020, RJ, Brazil; (A.R.A.d.S.); (R.E.S.); (B.F.B.); (M.M.N.S.)
| | - Ricardo Erthal Santelli
- Instituto de Química, Universidade Federal do Rio de Janeiro, Av. Athos da Silveira Ramos, 149, Bloco A—Cidade Universitária, Rio de Janeiro 21044-020, RJ, Brazil; (A.R.A.d.S.); (R.E.S.); (B.F.B.); (M.M.N.S.)
| | - Bernardo Ferreira Braz
- Instituto de Química, Universidade Federal do Rio de Janeiro, Av. Athos da Silveira Ramos, 149, Bloco A—Cidade Universitária, Rio de Janeiro 21044-020, RJ, Brazil; (A.R.A.d.S.); (R.E.S.); (B.F.B.); (M.M.N.S.)
| | - Marselle Marmo Nascimento Silva
- Instituto de Química, Universidade Federal do Rio de Janeiro, Av. Athos da Silveira Ramos, 149, Bloco A—Cidade Universitária, Rio de Janeiro 21044-020, RJ, Brazil; (A.R.A.d.S.); (R.E.S.); (B.F.B.); (M.M.N.S.)
| | - Lauro Melo
- Escola de Química, Universidade Federal do Rio de Janeiro. Av. Athos da Silveira Ramos, 149, Bloco E—Cidade Universitária, Rio de Janeiro 21044-020, RJ, Brazil; (L.M.); (A.C.L.)
| | - Ailton Cesar Lemes
- Escola de Química, Universidade Federal do Rio de Janeiro. Av. Athos da Silveira Ramos, 149, Bloco E—Cidade Universitária, Rio de Janeiro 21044-020, RJ, Brazil; (L.M.); (A.C.L.)
| | - Bernardo Dias Ribeiro
- Instituto de Química, Universidade Federal do Rio de Janeiro, Av. Athos da Silveira Ramos, 149, Bloco A—Cidade Universitária, Rio de Janeiro 21044-020, RJ, Brazil; (A.R.A.d.S.); (R.E.S.); (B.F.B.); (M.M.N.S.)
- Escola de Química, Universidade Federal do Rio de Janeiro. Av. Athos da Silveira Ramos, 149, Bloco E—Cidade Universitária, Rio de Janeiro 21044-020, RJ, Brazil; (L.M.); (A.C.L.)
| |
Collapse
|
16
|
Karoui R, Bouaicha I. A review on nutritional quality of animal and plant-based milk alternatives: a focus on protein. Front Nutr 2024; 11:1378556. [PMID: 39036491 PMCID: PMC11259050 DOI: 10.3389/fnut.2024.1378556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 06/11/2024] [Indexed: 07/23/2024] Open
Abstract
In recent years, the demand of consumers for products rich in protein is of significant growth. Due to its structure in tissues, protein is considered an essential nutrient for maintenance and growth. It is well known that dairy foods differ from plant-based milk alternatives in their composition. In addition to protein content, nutrients in milk and plant-based beverages vary greatly in composition and content, such as: Calcium, fiber and fat. The nutritional quality of dairy protein sources depends on both their amino acid composition and bioavailability. Indeed, dairy products are considered to be excellent sources of proteins with high Digestible Indispensable Amino Acid Score (DIAAS) values varying from 100 to 120. However, plant proteins are considered to have generally lower essential amino acid contents and lower DIAAS values than dairy proteins. For example, pea and rice proteins are known to have medium and lower DIAAS with values of 62 and 47, respectively. The present review is dedicated to study the nutritional quality of animal and plant-based milk alternatives, where a focus on protein composition and amount are determined.
Collapse
Affiliation(s)
- Romdhane Karoui
- Univ. Artois, Univ. Lille, Univ. Littoral Côte d’Opale, Univ. Picardie Jules Verne, Univ. de Liège, INRAE, Junia, Lens, France
| | | |
Collapse
|
17
|
Erem E, Kilic-Akyilmaz M. The role of fermentation with lactic acid bacteria in quality and health effects of plant-based dairy analogues. Compr Rev Food Sci Food Saf 2024; 23:e13402. [PMID: 39030804 DOI: 10.1111/1541-4337.13402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/13/2024] [Accepted: 06/15/2024] [Indexed: 07/22/2024]
Abstract
The modern food industry is undergoing a rapid change with the trend of production of plant-based food products that are more sustainable and have less impact on nature. Plant-based dairy analogues have been increasingly popular due to their suitability for individuals with milk protein allergy or lactose intolerance and those preferring a plant-based diet. Nevertheless, plant-based products still have insufficient nutritional quality, undesirable structure, and earthy, green, and bean-like flavor compared to dairy products. In addition, most plant-based foods contain lesser amounts of essential nutrients, antinutrients limiting the bioavailability of some nutrients, and allergenic proteins. Novel processing technologies can be applied to have a homogeneous and stable structure. On the other hand, fermentation of plant-based matrix with lactic acid bacteria can provide a solution to most of these problems. Additional nutrients can be produced and antinutrients can be degraded by bacterial metabolism, thereby increasing nutritional value. Allergenic proteins can be hydrolyzed reducing their immunoreactivity. In addition, fermentation has been found to reduce undesired flavors and to enhance various bioactivities of plant foods. However, the main challenge in the production of fermented plant-based dairy analogues is to mimic familiar dairy-like flavors by producing the major flavor compounds other than organic acids, yielding a flavor profile similar to those of fermented dairy products. Further studies are required for the improvement of the flavor of fermented plant-based dairy analogues through the selection of special microbial cultures and formulations.
Collapse
Affiliation(s)
- Erenay Erem
- Department of Food Engineering, Istanbul Technical University, Istanbul, Türkiye
| | - Meral Kilic-Akyilmaz
- Department of Food Engineering, Istanbul Technical University, Istanbul, Türkiye
| |
Collapse
|
18
|
Diet A, Poix C, Bonnet M, Coelho C, Ripoche I, Decombat C, Priam J, Saunier E, Chalard P, Bornes S, Caldefie-Chezet F, Rios L. Exploring the Impact of French Raw-Milk Cheeses on Oxidative Process Using Caenorhabditis elegans and Human Leukocyte Models. Nutrients 2024; 16:1862. [PMID: 38931217 PMCID: PMC11206881 DOI: 10.3390/nu16121862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/08/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Fermented foods, including cheeses, have garnered increased interest in recent years for their potential health benefits. This study explores the biological properties of eight French raw-milk cheeses-goat cheese, Saint-Nectaire, Cantal, Bleu d'Auvergne, Roquefort, Comté, Brie de Meaux, and Epoisses-on oxidative processes using both in vivo (Caenorhabditis elegans) and in vitro (human leukocytes) models. A cheese fractionation protocol was adapted to study four fractions for each cheese: a freeze-dried fraction (FDC) corresponding to whole cheese, an apolar (ApE), and two polar extracts (W40 and W70). We showed that all cheese fractions significantly improved Caenorhabditis elegans (C. elegans) survival rates when exposed to oxidative conditions by up to five times compared to the control, regardless of the fractionation protocol and the cheese type. They were also all able to reduce the in vivo accumulation of reactive oxygen species (ROS) by up to 70% under oxidative conditions, thereby safeguarding C. elegans from oxidative damage. These beneficial effects were explained by a reduction in ROS production up to 50% in vitro in human leukocytes and overexpression of antioxidant factor-encoding genes (daf-16, skn-1, ctl-2, and sod-3) in C. elegans.
Collapse
Affiliation(s)
- Anna Diet
- Université Clermont Auvergne (UCA), Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), VetAgro Sup, Unité Mixte de Recherche Fromage (UMRF), F-15000 Aurillac, France; (C.P.); (M.B.); (C.C.); (S.B.); (L.R.)
| | - Christophe Poix
- Université Clermont Auvergne (UCA), Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), VetAgro Sup, Unité Mixte de Recherche Fromage (UMRF), F-15000 Aurillac, France; (C.P.); (M.B.); (C.C.); (S.B.); (L.R.)
| | - Muriel Bonnet
- Université Clermont Auvergne (UCA), Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), VetAgro Sup, Unité Mixte de Recherche Fromage (UMRF), F-15000 Aurillac, France; (C.P.); (M.B.); (C.C.); (S.B.); (L.R.)
| | - Christian Coelho
- Université Clermont Auvergne (UCA), Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), VetAgro Sup, Unité Mixte de Recherche Fromage (UMRF), F-15000 Aurillac, France; (C.P.); (M.B.); (C.C.); (S.B.); (L.R.)
| | - Isabelle Ripoche
- Université Clermont Auvergne (UCA), Centre National de la Recherche Scientifique (CNRS), Clermont Auvergne Institut National Polytechnique (INP), Institut de Chimie de Clermont-Ferrand (ICCF), F-63000 Clermont-Ferrand, France; (I.R.); (P.C.)
| | - Caroline Decombat
- Université Clermont Auvergne, INRAE, Unité de Nutrition Humaine (UNH), Centre de Recherche en Nutrition Humaine Auvergne (CRNH-Auvergne), F-63000 Clermont-Ferrand, France (F.C.-C.)
| | - Julien Priam
- Dômes Pharma, ZAC de Champ Lamet, 3 Rue Andrée Citröen, F-63284 Pont-du-Château, France; (J.P.); (E.S.)
| | - Etienne Saunier
- Dômes Pharma, ZAC de Champ Lamet, 3 Rue Andrée Citröen, F-63284 Pont-du-Château, France; (J.P.); (E.S.)
| | - Pierre Chalard
- Université Clermont Auvergne (UCA), Centre National de la Recherche Scientifique (CNRS), Clermont Auvergne Institut National Polytechnique (INP), Institut de Chimie de Clermont-Ferrand (ICCF), F-63000 Clermont-Ferrand, France; (I.R.); (P.C.)
| | - Stéphanie Bornes
- Université Clermont Auvergne (UCA), Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), VetAgro Sup, Unité Mixte de Recherche Fromage (UMRF), F-15000 Aurillac, France; (C.P.); (M.B.); (C.C.); (S.B.); (L.R.)
| | - Florence Caldefie-Chezet
- Université Clermont Auvergne, INRAE, Unité de Nutrition Humaine (UNH), Centre de Recherche en Nutrition Humaine Auvergne (CRNH-Auvergne), F-63000 Clermont-Ferrand, France (F.C.-C.)
| | - Laurent Rios
- Université Clermont Auvergne (UCA), Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), VetAgro Sup, Unité Mixte de Recherche Fromage (UMRF), F-15000 Aurillac, France; (C.P.); (M.B.); (C.C.); (S.B.); (L.R.)
| |
Collapse
|
19
|
Andaç AE, Tuncel NB, Tuncel NY. Characterisation of Pea Milk Analogues Using Different Production Techniques. Food Technol Biotechnol 2024; 62:177-187. [PMID: 39045306 PMCID: PMC11261646 DOI: 10.17113/ftb.62.02.24.8356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 05/29/2024] [Indexed: 07/25/2024] Open
Abstract
Research background Among legumes, peas are characterised by their high protein content, low glycaemic index and exceptional versatility. However, their potential as a food is often compromised by their undesirable off-flavour and taste. Hence, this study focuses on minimising off-flavours through simple pretreatments with the aim of improving the potential for the production of pea milk analogues. Pea milk analogues are a burgeoning type of plant-based milk alternatives in the growing plant-based market. Experimental approach Pea seeds were subjected to different pretreatments: (i) dry milling, (ii) blanching followed by soaking in alkaline solution and subsequent dehulling and (iii) vacuum. Typical physicochemical properties such as pH, viscosity, colour, titratable acidity and yield were measured to obtain a brief overview of the products. Consumer acceptance test, descriptive sensory analysis, gas chromatography-mass spectrometry and gas chromatography-olfactometry were used to map the complete sensory profile and appeal of the pea milk substitutes. Results and conclusions The L* values of the pea milk analogues were significantly lower than those of cow's milk, while a*, b*, viscosity and pH were similar. In the descriptive sensory analysis, sweet, astringent, pea-like, cooked, hay-like, boiled corn and green notes received relatively higher scores. The vacuum-treated pea milk analogues received higher scores for flavour and overall acceptability in the consumer acceptance test. The pretreatments resulted in significant changes in the volatile profiles of the pea milk analogues. Some volatiles typically associated with off-flavour, such as hexanal, were found in higher concentrations in blanched pea milk analogues. Among the applied pretreatments, vacuum proved to be the most effective method to reduce the content of volatile off-flavour compounds. Novelty and scientific contribution This study stands out as a rare investigation to characterise pea milk analogues and to evaluate the impact of simple pretreatments on the improvement of their sensory properties. The results of this study could contribute to the development of milk alternatives that offer both high nutritional value and strong appeal to consumers.
Collapse
Affiliation(s)
- Ali Emre Andaç
- Onsekiz Mart University, Faculty of Engineering, Department of Food Engineering, 17100 Çanakkale, Turkey
| | - Necati Barış Tuncel
- Onsekiz Mart University, Faculty of Engineering, Department of Food Engineering, 17100 Çanakkale, Turkey
| | - Neşe Yılmaz Tuncel
- Onsekiz Mart University, Faculty of Applied Sciences, Department of Food Technology, 17100 Çanakkale, Turkey
| |
Collapse
|
20
|
Sedó Molina GE, Shetty R, Jacobsen C, Duedahl-Olesen L, Hansen EB, Bang-Berthelsen CH. Synergistic effect of the coculture of Leuconostoc pseudomesenteroides and Lactococcus lactis, isolated from honeybees, on the generation of plant-based dairy alternatives based on soy, pea, oat, and potato drinks. Food Microbiol 2024; 118:104427. [PMID: 38049267 DOI: 10.1016/j.fm.2023.104427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 11/07/2023] [Accepted: 11/13/2023] [Indexed: 12/06/2023]
Abstract
The production of plant-based dairy alternatives has been majorly focused on the improvement of sensorial, technological and nutritional properties, to be able to mimic and replace milk-based fermented products. The presence of off-flavours and antinutrients, the lack of production of dairy-like flavours or the metabolic inaccessibility of plant proteins are some of the challenges to overcome to generate plant-based dairy alternatives. However, in the present study, it is demonstrated how the synergistic effect of two LAB strains, when cocultured, can simultaneously solve those challenges when fermenting in four different plant-based raw materials: soy, pea, oat, and potato drinks (SPOP). The fermentation was performed through the mono- and co-culture of the two LAB strains isolated from Apis mellifera (honeybee): Leuconostoc pseudomesenteroides NFICC 2004 and Lactococcus lactis NFICC 2005. Firstly, the coculture of both strains demonstrated to increase the acidification rate of the four plant matrices. Moreover, L. pseudomesenteroides (LP) demonstrated to in situ produce high concentrations of mannitol when fructose was present as C-source. Furthermore, L. pseudomesenteroides, which encoded for PII-proteinase, demonstrated to break down SPOP proteins, releasing free amino acids that were used by L.lactis (LL) for growth and metabolism. Lastly, the analysis of their co-metabolic volatile performance showed the principal ability of removal of the main off-flavours found in SPOP, such as hexanal, 1-octen-3-ol, 2-pentylfuran, pentanal, octanal, heptanal, and nonanal, mainly led by L. pseudomesenteroides, as well as the production of dairy-like flavours, such as diacetyl and 3-methyl-1-butanol, triggered by L. lactis metabolism. Overall, these findings endorsed the use of honeybee isolated strains as starter cultures, demonstrated the potential of coupling genotypes and phenotypes of multiple strains to improve the organoleptic properties suggesting a potential of combining plant-based matrices for the generation of future high-quality plant-based dairy alternatives.
Collapse
Affiliation(s)
- Guillermo Eduardo Sedó Molina
- Research Group for Microbial Biotechnology and Biorefining, National Food Institute, Technical University of Denmark, Denmark
| | - Radhakrishna Shetty
- Research Group for Microbial Biotechnology and Biorefining, National Food Institute, Technical University of Denmark, Denmark
| | - Charlotte Jacobsen
- Research Group for Bioactives - Analysis and Application, National Food Institute, Technical University of Denmark, Denmark
| | - Lene Duedahl-Olesen
- Research Group for Analytical Food Chemistry, National Food Institute, Technical University of Denmark, Denmark
| | - Egon Bech Hansen
- Research Group for Gut, Microbes and Health, National Food Institute, Technical University of Denmark, Denmark
| | - Claus Heiner Bang-Berthelsen
- Research Group for Microbial Biotechnology and Biorefining, National Food Institute, Technical University of Denmark, Denmark.
| |
Collapse
|
21
|
Xie J, Yap G, Simpson D, Gänzle M. The effect of seed germination and Bacillus spp. on the ripening of plant cheese analogs. Appl Environ Microbiol 2024; 90:e0227623. [PMID: 38319095 PMCID: PMC10952449 DOI: 10.1128/aem.02276-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 01/13/2024] [Indexed: 02/07/2024] Open
Abstract
Consumer demand for plant cheeses is increasing, but challenges of improving both flavor and quality remain. This study investigated the microbiological and physicochemical impact of seed germination and fermentation with Bacillus velezensis and Bacillus amyloliquefaciens on the ripening of plant cheese analogs. Chlorine treatment or addition of Lactiplantibacillus plantarum and Lactococcus lactis controlled microbial growth during seed germination. Lp. plantarum and Lc. lactis also served as starter cultures for the acidification of soy and lupine milk and were subsequently present in the unripened plant cheese as dominant microbes. Acidification also inhibited the growth and metabolic activity of bacilli but Bacillus spores remained viable throughout ripening. During plant cheese ripening, Lc. lactis was inactivated before Lp. plantarum and the presence of bacilli during seed germination delayed Lc. lactis inactivation. Metagenomic sequencing of full-length 16S rRNA gene amplicons confirmed that the relative abundance of the inoculated strains in each ripened cheese sample exceeded 99%. Oligosaccharides including raffinose, stachyose, and verbascose were rapidly depleted in the initial stage of ripening. Both germination and the presence of bacilli during seed germination had impact on polysaccharide hydrolysis during ripening. Bacilli but not seed germination enhanced proteolysis of plant cheese during ripening. In conclusion, the use of germination with lactic acid bacteria in combination with Bacillus spp. exhibited the potential to improve the quality of ripened plant cheeses with a positive effect on the reduction of hygienic risks. IMPORTANCE The development of novel plant-based fermented food products for which no traditional templates exist requires the development of starter cultures. Although the principles of microbial flavor formation in plant-based analogs partially overlap with dairy fermentations, the composition of the raw materials and thus likely the selective pressure on the activity of starter cultures differs. Experiments that are described in this study explored the use of seed germination, the use of lactic acid bacteria, and the use of bacilli to reduce hygienic risks, to acidify plant milk, and to generate taste-active compounds through proteolysis and fermentative conversion of carbohydrates. The characterization of fermentation microbiota by culture-dependent and culture-independent methods also confirmed that the starter cultures used were able to control microbial communities throughout 90 d of ripening. Taken together, the results provide novel tools for the development of plant-based analogs of fermented dairy products.
Collapse
Affiliation(s)
- Jin Xie
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Canada
| | - Gloria Yap
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Canada
| | - David Simpson
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Canada
| | - Michael Gänzle
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Canada
| |
Collapse
|
22
|
Rebaza-Cardenas T, Montes-Villanueva ND, Fernández M, Delgado S, Ruas-Madiedo P. Microbiological and physical-chemical characteristics of the Peruvian fermented beverage "Chicha de siete semillas": Towards the selection of strains with acidifying properties. Int J Food Microbiol 2023; 406:110353. [PMID: 37591132 DOI: 10.1016/j.ijfoodmicro.2023.110353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 06/29/2023] [Accepted: 08/05/2023] [Indexed: 08/19/2023]
Abstract
Traditional fermented beverages have been consumed worldwide for centuries. Such is the case of "Chicha de siete semillas" which is originally from the province of Huanta, in Ayacucho, Peru. In this work we have analyzed the chemical composition and bacterial diversity of products manufactured from six producers, who have used different combinations of cereals, pseudocereals, legumes and aromatic herbs, although maize was present in all of them. The fermented beverages had a low pH, mainly due to the production of lactic acid, whereas ethanol was, in general, present in low concentrations. Most of the products were rich in GABA, the content of biogenic amines being very low, as corresponds to a product with a short maturation time (less than 4 days). A metataxonomic analysis revealed that Streptococcaceae and Leuconostocaceae families were dominant in the majority of the beverages, Streptococcus spp. and Leuconostoc spp. being the representative genera, respectively. The result was corroborated by culture-dependent techniques, since these were the most abundant genera isolated and identified in all samples, with Streptococcus macedonicus and Leuconostoc lactis as representative species. In lower proportions other isolates were identified as Lactobacillus delbrueckii, Lactiplantibacillus plantarum, Furfurilactobacillus rossiae, Weissella confusa and Enterococcus faecium. The genetic profile of 26 S. macedonicus isolates was determined by RAPD-PCR and REP-PCR, showing five different patterns distinguishable with the first technique. One representative strain from each genetic pattern was further characterized and used to ferment a maize-based matrix (with saccharose) in order to know their technological potential. All strains were able to ferment the beverage at 30 °C in a short time (about 6 h) reaching a pH below 4.5 and they remained viable after 24 h; the main organic acid contributing to the pH decrease was lactic acid. Therefore, S. macedonicus is a good candidate for being part of a putative starter culture, since it is a species well adapted to this cereal-based food niche.
Collapse
Affiliation(s)
- Teresa Rebaza-Cardenas
- Instituto de Productos Lácteos de Asturias (IPLA), CSIC, Paseo Río Linares s/n, 33300 Villaviciosa, Asturias, Spain; Facultad de Ingeniería Agraria, Universidad Católica Sedes Sapientiae (UCSS), Lima, Peru
| | | | - María Fernández
- Instituto de Productos Lácteos de Asturias (IPLA), CSIC, Paseo Río Linares s/n, 33300 Villaviciosa, Asturias, Spain
| | - Susana Delgado
- Instituto de Productos Lácteos de Asturias (IPLA), CSIC, Paseo Río Linares s/n, 33300 Villaviciosa, Asturias, Spain
| | - Patricia Ruas-Madiedo
- Instituto de Productos Lácteos de Asturias (IPLA), CSIC, Paseo Río Linares s/n, 33300 Villaviciosa, Asturias, Spain.
| |
Collapse
|
23
|
Jikah AN, Edo GI. Moringa oleifera: a valuable insight into recent advances in medicinal uses and pharmacological activities. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:7343-7361. [PMID: 37532676 DOI: 10.1002/jsfa.12892] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 07/17/2023] [Accepted: 08/03/2023] [Indexed: 08/04/2023]
Abstract
Moringa oleifera is an important medicinal plant in several countries; for example, Nigeria, the USA, Turkey, Germany, Greece, and Ukraine. The abundant bioactive and nutritional properties of this plant make it useful in many and diverse areas of life, including the health, cosmetic, agricultural, and food industries to mention but a few. Research has found that the presence of proteins, carbohydrates, lipids, vitamins, minerals, flavonoids, phenols, alkaloids, fatty acids, saponins, essential oils, folate, aromatic hydrocarbons, sterols, glucosinolates, and glycosides, among others, characterize the moringa nutrient profile and, as a result, give rise to its remedial effects on ailments such as wounds, stomach and duodenal ulcers, allergies, obesity, diabetes, inflammation, asthma, and so on. It is the aim of this review to provide an insight into such medicinal and pharmacological remedies attributed to moringa, stating both the past and recent discoveries. This review article also takes a look into the botanical features, bioactive compounds, antinutrients, food applications, bacterial fermentation products, biosafety, industrial applications, and other uses of moringa. Finally, with the belief that knowledge is progressive, we acknowledge that there are things yet undiscovered about this wonder plant that will be of value both to medicine and general life; we therefore recommend that research work continues on the moringa plant. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
| | - Great Iruoghene Edo
- Department of Chemical Science, Faculty of Science, Delta State University of Science and Technology, Ozoro, Nigeria
- Department of Petroleum Chemistry, Faculty of Science, Delta State University of Science and Technology, Ozoro, Nigeria
| |
Collapse
|
24
|
Goksen G, Sugra Altaf Q, Farooq S, Bashir I, Capozzi V, Guruk M, Bavaro SL, Sarangi PK. A glimpse into plant-based fermented products alternative to animal based products: Formulation, processing, health benefits. Food Res Int 2023; 173:113344. [PMID: 37803694 DOI: 10.1016/j.foodres.2023.113344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 07/29/2023] [Accepted: 08/03/2023] [Indexed: 10/08/2023]
Abstract
Fermented foods and beverages are increasingly being included in the diets of people around the world, as they significantly contribute to flavor and interest in nutrition and food consumption. Plant sources, like cereals and pulses, are employed to produce vegan fermented foods that are either commercially available or the subject of ongoing scientific investigation. In addition, the inclination towards nutritionally healthy, natural, and clean-label products amongst consumers has encouraged the development of vegan fermented products alternative to animal-based products for industrial-scale production. However, as the vegan diet is more restrictive than the vegetarian diet, manufacturing food products for vegans presents a significant problem due to the limited availability of many raw materials. So further research is required on this topic. This paper aims to review the formulation, quality, microbial resources, health benefits, and safety of foods that can be categorised as vegan fermented foods and beverages.
Collapse
Affiliation(s)
- Gulden Goksen
- Department of Food Technology, Vocational School of Technical Sciences at Mersin Tarsus Organized Industrial Zone, Tarsus University, 33100 Mersin, Türkiye.
| | - Qazi Sugra Altaf
- Department of Food Engineering, Cukurova University, Balcali 01380, Adana, Türkiye
| | - Salma Farooq
- Desh Bhagat University, Mandi Gobindgarh, Punjab 147203, India; Islamic University of Science and Technology Awantipora, Pulwama 192301, India
| | - Iqra Bashir
- Sher-e-Kashmir University of Agricultural Sciences and Technology, India
| | - Vittorio Capozzi
- National Research Council of Italy - Institute of Sciences of Food Production (ISPA), c/o CS-DAT, via Protano, 71121 Foggia, Italy
| | - Mumine Guruk
- Department of Food Engineering, Cukurova University, Balcali 01380, Adana, Türkiye
| | - Simona Lucia Bavaro
- National Research Council of Italy - Institute of Sciences of Food Production (ISPA), Largo Paolo Braccini 2, 10095 Grugliasco, Turin, Italy
| | | |
Collapse
|
25
|
Demir H, Aydemir LY, Özel MŞ, Koca E, Şimşek Aslanoğlu M. Application of plant-based proteins for fortification of oat yogurt storage stability and bioactivity. J Food Sci 2023; 88:4079-4096. [PMID: 37589296 DOI: 10.1111/1750-3841.16729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 07/07/2023] [Accepted: 07/16/2023] [Indexed: 08/18/2023]
Abstract
The purpose of this study was to evaluate the addition of plant-based peanut protein isolate (PNP) and commercial pea protein (CPP) on the quality of oat yogurt (OY). PNP and CPP were partially characterized for techno-functional properties. PNP had higher solubility (acidic and basic regions) and emulsifying activity than CPP. The water absorption capacity of CPP is significantly (p < 0.05) higher than PNP. Amino acid profiles of PNP and CPP were promising for the nutritional enhancement of OYs. OYs with PNP or CPP (0.5, 1, 2% w/v) were stored for 21 days and compared to the control group with no protein. On the 21st day of storage, (i) PNP- or CPP-added OYs were found to be comparable to the control with respect to post-acidification and viscosity, (ii) syneresis was more evident in PNP-added OYs than in CPP-added ones, (iii) total color change of 1% CPP-added OY was equal to the control, and (iv) hardnesses of control, 2% PNP, and 2% CPP-added OYs were 0.29 ± 0.00, 0.39 ± 0.01, and 0.45 ± 0.00 N, respectively. No adverse sensory effects were detected for CPP or PNP addition. Both proteins increased the total phenolic, soluble protein, antioxidant, antihypertensive, and α-glucosidase inhibition activity of oat milk and OYs, with PNP superior to CPP overall. Compared to oat milk, the fermentation process increased ACE inhibition activity in in vitro digested samples, whereas it reduced digested yogurts' antioxidant activity. Utilization of PNP in OY can solve the waste problem of peanut producers and the texture problem of the OY producers while formulating a functional product. PRACTICAL APPLICATION: Plant-based (PB) yogurts have a growing consumer demand. The low-protein content of PB yogurts results in low acceptance with respect to their undesirable textural and sensorial attributes. This study provided a technical basis for the PB yogurt manufacturers focusing on the addition of commercial pea protein and isolated peanut protein into oat yogurt formulation without any thickeners or flavors. In vitro digestion of protein-added oat milk and oat yogurts showed the benefits of fermentation on bioactivity to the consumers.
Collapse
Affiliation(s)
- Hande Demir
- Department of Food Engineering, Osmaniye Korkut Ata University, Osmaniye, Turkey
| | - Levent Yurdaer Aydemir
- Department of Food Engineering, Adana Alparslan Türkeş Science and Technology University, Adana, Turkey
| | - Muhammed Şefik Özel
- Graduate School of Natural and Applied Sciences, Osmaniye Korkut Ata University, Osmaniye, Turkey
| | - Esra Koca
- Department of Food Engineering, Adana Alparslan Türkeş Science and Technology University, Adana, Turkey
| | | |
Collapse
|
26
|
Ziarno M, Zaręba D, Ścibisz I, Kozłowska M. Comprehensive studies on the stability of yogurt-type fermented soy beverages during refrigerated storage using dairy starter cultures. Front Microbiol 2023; 14:1230025. [PMID: 37692397 PMCID: PMC10485619 DOI: 10.3389/fmicb.2023.1230025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 08/09/2023] [Indexed: 09/12/2023] Open
Abstract
Introduction This study aimed to assess the feasibility of utilizing commercially available dairy starter cultures to produce yogurt-type fermented soy beverages and evaluate the fundamental properties of the resulting products. Methods Sixteen different starter cultures commonly used in the dairy industry for producing fermented milks, such as yogurt, were employed in the study. The study investigated the acidification curves, acidification kinetics, live cell population of starter microflora during refrigerated storage, pH changes, water-holding capacity, texture analysis, carbohydrates content, and fatty acid profile of the yogurt-type fermented soy beverage. Results and Discussion The results demonstrated that the starter cultures exhibited distinct pH changes during the fermentation process, and these changes were statistically significant among the cultures. The acidification kinetics of different cultures of lactic acid bacteria showed characteristic patterns, which can be used to select the most suitable cultures for specific product production. The study also revealed that the choice of starter culture significantly influenced the starter microorganisms population in the yogurt-type fermented soy beverage. Additionally, the pH values and water-holding capacity of the beverages were affected by both the starter cultures and the duration of refrigerated storage. Texture analysis indicated that storage time had a significant impact on hardness and adhesiveness, with stabilization of these parameters observed after 7-21 days of storage. Furthermore, the fermentation process resulted in changes in the carbohydrate content of the soy beverages, which varied depending on the starter culture used.
Collapse
Affiliation(s)
- Małgorzata Ziarno
- Department of Food Technology and Assessment, Institute of Food Science, Warsaw University of Life Sciences – SGGW (WULS-SGGW), Warsaw, Poland
| | - Dorota Zaręba
- Professor E. Pijanowski Catering School Complex in Warsaw, Warsaw, Poland
| | - Iwona Ścibisz
- Department of Food Technology and Assessment, Institute of Food Science, Warsaw University of Life Sciences – SGGW (WULS-SGGW), Warsaw, Poland
| | - Mariola Kozłowska
- Department of Chemistry, Institute of Food Science, Warsaw University of Life Sciences – SGGW (WULS-SGGW), Warsaw, Poland
| |
Collapse
|
27
|
Xu J, Xu X, Hua D, Yuan Z, Bai M, Song H, Yang L, Li J, Zhu D, Liu H. Defatted hempseed meal altered the metabolic profile of fermented yogurt and enhanced the ability to alleviate constipation in rats. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:4778-4791. [PMID: 36971462 DOI: 10.1002/jsfa.12575] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 02/24/2023] [Accepted: 03/27/2023] [Indexed: 06/08/2023]
Abstract
BACKGROUND Hempseeds (Cannabis sativa L.) are rich in easily digestible proteins, fats, polyunsaturated fatty acids, and insoluble fiber and are of high nutritional value. Probiotics have been found to relieve constipation, which solves a health problem that constantly troubles a lot of people. Therefore, the changes in the metabolites of fermented yogurt with or without 10% defatted hempseed meal (10% SHY or 0% SHY respectively) were studied and their laxative effects were examined through animal experiments. RESULTS Amino acids and peptides, terpene glycosides, carbohydrates, lineolic acids, and fatty acids were found to be the major contributors to the discrimination of the metabolic profile between 0% SHY and 10% SHY. The differentially accumulated metabolites may lead to the discrepancy in the yogurt's functionality. Animal experiments showed that the 10% SHY treatment prevented constipation by increasing feces number, fecal water content, and small intestinal transit rate and reducing inflammatory injury in loperamide-induced constipated rats. Further analysis of the gut microbiota revealed that 10% SHY gavage increased the relative abundances of the Lactobacillus, Allobaculum, Turicibacter, Oscillibacter, Ruminococcus, and Phascolarctobacterium genera in the constipated rats, whereas Akkermansia, Clostridium_XIVa, Bacteroides, Staphylococcus, and Clostridium_IV were decreased. The combination of defatted hempseed meal and probiotics was found to be effective in relieving constipation, probably due to the enriched amino acids and peptides, such as Thr-Leu and lysinoalanine through correlation analysis. CONCLUSION Our findings indicated that defatted hempseed meal in yogurt altered the metabolic profile and effectively alleviated constipation in rats, which is a promising therapeutic candidate for constipation. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jiaxin Xu
- College of Food Science and Technology, Bohai University, Jinzhou, China
| | - Xinyue Xu
- College of Food Science and Technology, Bohai University, Jinzhou, China
| | - Dong Hua
- College of Food Science and Technology, Bohai University, Jinzhou, China
| | - Zhiheng Yuan
- College of Food Science and Technology, Bohai University, Jinzhou, China
| | - Miao Bai
- College of Food Science and Technology, Bohai University, Jinzhou, China
| | - Hong Song
- College of Food Science and Technology, Bohai University, Jinzhou, China
| | - Lina Yang
- College of Food Science and Technology, Bohai University, Jinzhou, China
| | - Jifeng Li
- Liaoning Qiaopai Biotech Co. Ltd, Jinzhou, China
| | - Danshi Zhu
- College of Food Science and Technology, Bohai University, Jinzhou, China
| | - He Liu
- College of Food Science and Technology, Bohai University, Jinzhou, China
| |
Collapse
|
28
|
Lima Nascimento LG, Odelli D, Fernandes de Carvalho A, Martins E, Delaplace G, Peres de Sá Peixoto Júnior P, Nogueira Silva NF, Casanova F. Combination of Milk and Plant Proteins to Develop Novel Food Systems: What Are the Limits? Foods 2023; 12:2385. [PMID: 37372596 DOI: 10.3390/foods12122385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/26/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
In the context of a diet transition from animal protein to plant protein, both for sustainable and healthy scopes, innovative plant-based foods are being developing. A combination with milk proteins has been proposed as a strategy to overcome the scarce functional and sensorial properties of plant proteins. Based on this mixture were designed several colloidal systems such as suspensions, gels, emulsions, and foams which can be found in many food products. This review aims to give profound scientific insights on the challenges and opportunities of developing such binary systems which could soon open a new market category in the food industry. The recent trends in the formulation of each colloidal system, as well as their limits and advantages are here considered. Lastly, new approaches to improve the coexistence of both milk and plant proteins and how they affect the sensorial profile of food products are discussed.
Collapse
Affiliation(s)
- Luis Gustavo Lima Nascimento
- Departamento de Tecnologia de Alimentos, Universidade Federal de Viçosa (UFV), Viçosa 36570-900, MG, Brazil
- Laboratoire de Processus aux Interfaces et Hygiène des Matériaux, INRAE, 59009 Lille, France
| | - Davide Odelli
- Departamento de Tecnologia de Alimentos, Universidade Federal de Viçosa (UFV), Viçosa 36570-900, MG, Brazil
| | | | - Evandro Martins
- Departamento de Tecnologia de Alimentos, Universidade Federal de Viçosa (UFV), Viçosa 36570-900, MG, Brazil
| | - Guillaume Delaplace
- Laboratoire de Processus aux Interfaces et Hygiène des Matériaux, INRAE, 59009 Lille, France
| | | | | | - Federico Casanova
- Research Group for Food Production Engineering, National Food Institute, Technical University of Denmark, Søltofts Plads, 2800 Kongens Lyngby, Denmark
| |
Collapse
|
29
|
D’Andrea AE, Kinchla AJ, Nolden AA. A comparison of the nutritional profile and nutrient density of commercially available plant-based and dairy yogurts in the United States. Front Nutr 2023; 10:1195045. [PMID: 37305091 PMCID: PMC10248066 DOI: 10.3389/fnut.2023.1195045] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 05/09/2023] [Indexed: 06/13/2023] Open
Abstract
Introduction Plant-based yogurts are sustainable alternatives to dairy yogurts, but a nutritional comparison of plant-based yogurts within the context of dairy yogurts has not yet been applied to commercially available products in the United States. Dairy yogurts provide significant dietary nutrients, and substituting plant-based yogurts may have unintended nutritional consequences. The objective of this study was to compare the macronutrient and micronutrient values of commercially available plant-based and dairy yogurts launched between 2016 and 2021. Methods Nutritional information for yogurts were collected through Mintel Global New Products Database, and products were categorized according to their primary ingredient. Regular-style yogurts (n = 612) were included in this study: full-fat dairy (n = 159), low and nonfat dairy (n = 303), coconut (n = 61), almond (n = 44), cashew (n = 30), and oat (n = 15). We utilized the Nutrient Rich Foods (NRF) Index, a comprehensive food guidance system that assigns a score based on the nutrient density of individual foods. This allowed us to compare the nutritional density of the yogurts based on nutrients to encourage (protein, fiber, calcium, iron, potassium, vitamin D) and nutrients to limit (saturated fat, total sugar, sodium). Results Compared to dairy yogurts, plant-based yogurts contained significantly less total sugar, less sodium, and more fiber. However, plant-based yogurts contained significantly less protein, calcium, and potassium than dairy yogurts. The yogurts were ranked from the highest to lowest nutrient density based on the NRF Index as follows: almond, oat, low and nonfat dairy, full-fat dairy, cashew, and coconut. Almond yogurts scored significantly higher than all other yogurts, indicating the highest nutrient density. Discussion The highest NRF scores were awarded to almond and oat yogurts, likely a result of their low levels of total sugar, sodium, and saturated fat. By applying the NRF model to plant-based and dairy yogurts, we have identified opportunities for the food industry to improve the formulation and nutritional composition of plant-based yogurts. In particular, fortification is an opportunity to improve plant-based yogurt nutritional properties.
Collapse
|
30
|
Plamada D, Teleky BE, Nemes SA, Mitrea L, Szabo K, Călinoiu LF, Pascuta MS, Varvara RA, Ciont C, Martău GA, Simon E, Barta G, Dulf FV, Vodnar DC, Nitescu M. Plant-Based Dairy Alternatives-A Future Direction to the Milky Way. Foods 2023; 12:foods12091883. [PMID: 37174421 PMCID: PMC10178229 DOI: 10.3390/foods12091883] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 04/27/2023] [Accepted: 05/01/2023] [Indexed: 05/15/2023] Open
Abstract
One significant food group that is part of our daily diet is the dairy group, and both research and industry are actively involved to meet the increasing requirement for plant-based dairy alternatives (PBDAs). The production tendency of PBDAs is growing with a predictable rate of over 18.5% in 2023 from 7.4% at the moment. A multitude of sources can be used for development such as cereals, pseudocereals, legumes, nuts, and seeds to obtain food products such as vegetal milk, cheese, cream, yogurt, butter, and different sweets, such as ice cream, which have nearly similar nutritional profiles to those of animal-origin products. Increased interest in PBDAs is manifested in groups with special dietary needs (e.g., lactose intolerant individuals, pregnant women, newborns, and the elderly) or with pathologies such as metabolic syndromes, dermatological diseases, and arthritis. In spite of the vast range of production perspectives, certain industrial challenges arise during development, such as processing and preservation technologies. This paper aims at providing an overview of the currently available PBDAs based on recent studies selected from the electronic databases PubMed, Web of Science Core Collection, and Scopus. We found 148 publications regarding PBDAs in correlation with their nutritional and technological aspects, together with the implications in terms of health. Therefore, this review focuses on the relationship between plant-based alternatives for dairy products and the human diet, from the raw material to the final products, including the industrial processes and health-related concerns.
Collapse
Affiliation(s)
- Diana Plamada
- Life Science Institute, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Calea Mănăștur 3-5, 400372 Cluj-Napoca, Romania
| | - Bernadette-Emőke Teleky
- Life Science Institute, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania
| | - Silvia Amalia Nemes
- Life Science Institute, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Calea Mănăștur 3-5, 400372 Cluj-Napoca, Romania
| | - Laura Mitrea
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Calea Mănăștur 3-5, 400372 Cluj-Napoca, Romania
| | - Katalin Szabo
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Calea Mănăștur 3-5, 400372 Cluj-Napoca, Romania
| | - Lavinia-Florina Călinoiu
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Calea Mănăștur 3-5, 400372 Cluj-Napoca, Romania
| | - Mihaela Stefana Pascuta
- Life Science Institute, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Calea Mănăștur 3-5, 400372 Cluj-Napoca, Romania
| | - Rodica-Anita Varvara
- Life Science Institute, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania
| | - Călina Ciont
- Life Science Institute, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania
| | - Gheorghe Adrian Martău
- Life Science Institute, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania
| | - Elemer Simon
- Life Science Institute, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Calea Mănăștur 3-5, 400372 Cluj-Napoca, Romania
| | - Gabriel Barta
- Life Science Institute, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Calea Mănăștur 3-5, 400372 Cluj-Napoca, Romania
| | - Francisc Vasile Dulf
- Faculty of Agriculture, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Calea Mănăștur 3-5, 400372 Cluj-Napoca, Romania
| | - Dan Cristian Vodnar
- Life Science Institute, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania
| | - Maria Nitescu
- Department of Preclinical-Complementary Sciences, University of Medicine and Pharmacy "Carol Davila", 050474 Bucharest, Romania
- National Institute for Infectious Diseases "Prof. Dr. Matei Bals", 021105 Bucharest, Romania
| |
Collapse
|
31
|
Moss R, LeBlanc J, Gorman M, Ritchie C, Duizer L, McSweeney MB. A Prospective Review of the Sensory Properties of Plant-Based Dairy and Meat Alternatives with a Focus on Texture. Foods 2023; 12:foods12081709. [PMID: 37107504 PMCID: PMC10137571 DOI: 10.3390/foods12081709] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 04/15/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
Consumers are interested in plant-based alternatives (PBAs) to dairy and meat products, and as such, the food industry is responding by developing a variety of different plant-based food items. For these products to be successful, their textural properties must be acceptable to consumers. These textural properties need to be thoroughly investigated using different sensory methodologies to ensure consumer satisfaction. This review paper aims to summarize the various textural properties of PBAs, as well as to discuss the sensory methodologies that can be used in future studies of PBAs. PBAs to meat have been formulated using a variety of production technologies, but these products still have textural properties that differ from animal-based products. Most dairy and meat alternatives attempt to mimic their conventional counterparts, yet sensory trials rarely compare the PBAs to their meat or dairy counterparts. While most studies rely on consumers to investigate the acceptability of their products' textural properties, future studies should include dynamic sensory methodologies, and attribute diagnostics questions to help product developers characterize the key sensory properties of their products. Studies should also indicate whether the product is meant to mimic a conventional product and should define the target consumer segment (ex. flexitarian, vegan) for the product. The importance of textural properties to PBAs is repeatedly mentioned in the literature and thus should be thoroughly investigated using robust sensory methodologies.
Collapse
Affiliation(s)
- Rachael Moss
- School of Nutrition and Dietetics, Acadia University, Wolfville, NS B4P 2K5, Canada
| | - Jeanne LeBlanc
- School of Nutrition and Dietetics, Acadia University, Wolfville, NS B4P 2K5, Canada
| | - Mackenzie Gorman
- School of Nutrition and Dietetics, Acadia University, Wolfville, NS B4P 2K5, Canada
| | - Christopher Ritchie
- School of Nutrition and Dietetics, Acadia University, Wolfville, NS B4P 2K5, Canada
| | - Lisa Duizer
- Department of Food Science, University of Guelph, Guelph, ON NQG 2W1, Canada
| | - Matthew B McSweeney
- School of Nutrition and Dietetics, Acadia University, Wolfville, NS B4P 2K5, Canada
| |
Collapse
|
32
|
Mehany T, Siddiqui SA, Olawoye B, Olabisi Popoola O, Hassoun A, Manzoor MF, Punia Bangar S. Recent innovations and emerging technological advances used to improve quality and process of plant-based milk analogs. Crit Rev Food Sci Nutr 2023; 64:7237-7267. [PMID: 36861223 DOI: 10.1080/10408398.2023.2183381] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
The worldwide challenges related to food sustainability are presently more critical than ever before due to the severe consequences of climate change, outbreak of epidemics, and wars. Many consumers are shifting their dietary habits toward consuming more plant-based foods, such as plant milk analogs (PMA) for health, sustainability, and well-being reasons. The PMA market is anticipated to reach US$38 billion within 2024, making them the largest segment in plant-based foods. Nevertheless, using plant matrices to produce PMA has numerous limitations, including, among others, low stability and short shelf life. This review addresses the main obstacles facing quality and safety of PMA formula. Moreover, this literature overview discusses the emerging approaches, e.g., pulsed electric field (PEF), cold atmospheric plasma (CAP), ultrasound (US), ultra-high-pressure homogenization (UHPH), ultraviolet C (UVC) irradiation, ozone (O3), and hurdle technology used in PMA formulations to overcome their common challenges. These emerging technologies have a vast potential at the lab scale to improve physicochemical characteristics, increase stability and extend the shelf-life, decrease food additives, increase nutritional and organoleptic qualities of the end product. Although the PMA fabrication on a large scale using these technologies can be expected in the near future to formulate novel food products that can offer green alternatives to conventional dairy products, further development is still needed for wider commercial applications.
Collapse
Affiliation(s)
- Taha Mehany
- Food Technology Department, Arid Lands Cultivation Research Institute, City of Scientific Research and Technological Applications, Alexandria, Egypt
| | - Shahida Anusha Siddiqui
- Technical University of Munich Campus Straubing for Biotechnology and Sustainability, Straubing, Germany
- German Institute of Food Technologies (DIL e.V.), Quakenbrück, Germany
| | - Babatunde Olawoye
- Department of Food Science and Technology, Faculty of Engineering and Technology, First Technical University, Ibadan, Nigeria
| | - Oyekemi Olabisi Popoola
- Department of Food Science and Technology, Faculty of Engineering and Technology, First Technical University, Ibadan, Nigeria
| | - Abdo Hassoun
- Sustainable AgriFoodtech Innovation and Research (SAFIR), Arras, France
- Syrian Academic Expertise (SAE), Gaziantep, Turkey
| | - Muhammad Faisal Manzoor
- Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan, China
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Sneh Punia Bangar
- Department of Food, Nutrition, and Packaging Sciences, Clemson University, Clemson, South Carolina, USA
| |
Collapse
|
33
|
Fermentation for Designing Innovative Plant-Based Meat and Dairy Alternatives. Foods 2023; 12:foods12051005. [PMID: 36900522 PMCID: PMC10000644 DOI: 10.3390/foods12051005] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 02/13/2023] [Accepted: 02/17/2023] [Indexed: 03/02/2023] Open
Abstract
Fermentation was traditionally used all over the world, having the preservation of plant and animal foods as a primary role. Owing to the rise of dairy and meat alternatives, fermentation is booming as an effective technology to improve the sensory, nutritional, and functional profiles of the new generation of plant-based products. This article intends to review the market landscape of fermented plant-based products with a focus on dairy and meat alternatives. Fermentation contributes to improving the organoleptic properties and nutritional profile of dairy and meat alternatives. Precision fermentation provides more opportunities for plant-based meat and dairy manufacturers to deliver a meat/dairy-like experience. Seizing the opportunities that the progress of digitalization is offering would boost the production of high-value ingredients such as enzymes, fats, proteins, and vitamins. Innovative technologies such as 3D printing could be an effective post-processing solution following fermentation in order to mimic the structure and texture of conventional products.
Collapse
|
34
|
Lim SJ, Kwon HC, Shin DM, Choi YJ, Han SG, Kim YJ, Han SG. Apoptosis-Inducing Effects of Short-Chain Fatty Acids-Rich Fermented Pistachio Milk in Human Colon Carcinoma Cells. Foods 2023; 12:foods12010189. [PMID: 36613403 PMCID: PMC9818824 DOI: 10.3390/foods12010189] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/22/2022] [Accepted: 12/01/2022] [Indexed: 01/03/2023] Open
Abstract
Pistachio milk (PM), an extraction product of pistachio, is protein- and fat-dense food. Short-chain fatty acids (SCFAs) are known for inducing cytotoxicity and apoptosis in colon carcinoma cells. This study aimed to find an optimal combination of probiotics that can produce a higher amount of SCFAs in PM. In addition, the anti-cancer effect of fermented PM on human colon carcinoma cells (Caco-2) was determined. The combinations of probiotics were as follows: Streptococcus thermophilus + Lactobacillus bulgaricus (C); C + Lactobacillus acidophilus (C-La); C + Lactobacillus gasseri (C-Lg); C + Bifidobacterium bifidum (C-Bb). The results indicated that fermented PM was produced after a short fermentation time in all the probiotics combinations. C-Bb produced up to 1.5-fold more acetate than the other probiotics combinations did. A significant amount of cytotoxicity, i.e., 78, 56, and 29% cell viability was observed in Caco-2 cells by C-Bb-fermented PM at 1, 2.5 and 5%, respectively. C-Bb-fermented PM (5%) induced early and late apoptosis up to 6-fold. Additionally, Caco-2 cells treated with C-Bb-fermented PM significantly induced the downregulation of α-tubulin and the upregulation of cleaved caspase-3, as well as nuclear condensation and fragmentation. Our data suggest that fermented PM, which is rich in acetate, may have the potential as a functional food possessing anti-colon cancer properties.
Collapse
Affiliation(s)
- Su-Jin Lim
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Republic of Korea
| | - Hyuk-Cheol Kwon
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Republic of Korea
| | - Dong-Min Shin
- Research Group of Food Processing, Korea Food Research Institute, Wanju 55365, Republic of Korea
| | - Yong-Jun Choi
- Department of Animal Science and Technology, Konkuk University, Seoul 05029, Republic of Korea
| | - Seo-Gu Han
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Republic of Korea
| | - Yea-Ji Kim
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Republic of Korea
| | - Sung-Gu Han
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Republic of Korea
- Correspondence:
| |
Collapse
|
35
|
Lensch A, Duwenig E, Dederer HG, Kärenlampi SO, Custers R, Borg A, Wyss M. Recombinant DNA in fermentation products is of no regulatory relevance. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
36
|
The Biotransformation of Lupine Seeds by Lactic Acid Bacteria and Penicillium camemberti into a Plant-Based Camembert Alternative, and Its Physicochemical Changes during 7 Weeks of Ripening. FERMENTATION 2022. [DOI: 10.3390/fermentation8090447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
In recent years, there has been increasing consumer interest and research into plant-based dairy alternatives, due to the increasingly negative impact of animal products on human health, animal welfare, and the environment. The purpose of this study was to investigate the physicochemical and microbiological changes in a Camembert alternative based on the seeds of sweet lupine (Lupinus angustifolius L cv. ‘Boregine’). After heat treatment and homogenization, the seeds were incubated with lactic acid bacteria (LAB) and Penicillium camemberti mold. After fermentation at room temperature, the samples were stored at 12 °C for 14 days, and then ripened until day 49 at 6 °C. Changes in microbial population, acidity, texture, content of polyphenols, flavonoids, reducing sugars, and free amino acids were monitored. In addition, the antioxidant capacity of the samples during ripening was determined. The results showed that LAB and fungi were able to grow well in the lupine matrix. Initially, a decrease in pH was observed, while in the further stages of ripening, alkalization of the product linked with progressive proteolysis associated with an increase in free amino acid content was noted. Hydrolysis of polysaccharides and an increase in antioxidant activity were observed. This indicates the potential of lupine seeds as a raw material for the development of a new group of plant-based ripened cheese alternatives.
Collapse
|
37
|
Sugahara H, Kato S, Nagayama K, Sashihara K, Nagatomi Y. Heterofermentative lactic acid bacteria such as Limosilactobacillus as a strong inhibitor of aldehyde compounds in plant-based milk alternatives. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2022. [DOI: 10.3389/fsufs.2022.965986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Reduction of greenhouse gas emissions is important to limit climate change. Because ruminant animals emit greenhouse gases, the worldwide plant-based alternative market is an emerging trend for eating less meat and dairy products. To produce plant-based dairy products such as yogurt alternatives, certain lactic acid bacterial species, which are used for cow's milk fermentation, are often used. Substrate changes from cow's milk to plant-based milk caused nutritional changes, and unsaturated fatty acids are more enriched in plant-based milk alternatives than in cow's milk. Unsaturated fatty acids can lead to the formation of aldehydes, some of which are off-flavors; therefore, substrate changes have the potential to alter the suitable lactic acid bacterial species used for fermentation to control flavor formation, such as aldehyde compounds. However, differences in the effect of the fermentation processes on aldehyde compounds have not been evaluated among lactic acid bacterial species. In this study, we comprehensively evaluated the effect of lactic acid bacterial fermentation on aldehyde compounds in synthetic medium and plant-based milk alternatives using 20 species of lactic acid bacteria. Heterofermentative lactic acid bacteria such as strains belonging to Limosilactobacillus had a strong aldehyde-reducing ability, likely from differences in alcohol dehydrogenase function. Because the odor detection threshold of ethanol compounds was lower than that of their equivalent aldehyde compounds, our findings are valuable for the fermentation of plant-based milk alternatives with lactic acid bacteria with the goal of decreasing off-flavors derived from aldehyde compounds.
Collapse
|