1
|
Xiang W, Wei J, Huang J, Kuo CF, Mei X, Xu S, Lu N. Injectable Arctium lappa polysaccharide-based composite hydrogel enhances diabetic wound healing. Int J Biol Macromol 2025; 305:141285. [PMID: 39978498 DOI: 10.1016/j.ijbiomac.2025.141285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 01/19/2025] [Accepted: 02/17/2025] [Indexed: 02/22/2025]
Abstract
The slow healing of diabetic wounds remains a significant challenge. However, existing treatments often prove ineffective due to the complexity of diabetic wounds. The purpose of this study was to develop an injectable hydrogel loaded with natural polysaccharides to promote diabetic wound healing. Composite hydrogels containing different concentrations of Arctium lappa polysaccharides (ALP) were prepared. The differences in their microstructure, water content, degradation rate, rheological properties, biocompatibility, promotion of epidermal cell migration, and antibacterial properties were compared to determine the optimal ALP concentration. Additionally, a diabetic rat skin defect model was constructed to further validate the promoting effect of the ALP composite hydrogel. The results indicated that CMC/CBM/ALP hydrogels formed numerous dense and regular pores, and the addition of ALP improved the stability and water content of the gels. Among the various formulations, the composite hydrogel with 2 % ALP concentration exhibited superior biocompatibility, in vitro antibacterial properties, and effectively promoted the migration of HaCat epidermal cells. Compared to hydrogels without ALP, the ALP composite hydrogels accelerated the healing of skin wounds, promoted collagen deposition and vascularization, regulated M2 macrophage polarization, reduced inflammatory responses, and ultimately enhanced wound healing. Therefore, our study provided a feasible and effective polysaccharide-based hydrogel for treating diabetic wounds.
Collapse
Affiliation(s)
- Wen Xiang
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Jiangnan University, Wuxi 214122, Jiangsu, China; Wuxi Institute of Hepatobiliary Surgery, Wuxi 214122, Jiangsu, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Jiayi Wei
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Jinchuan Huang
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Chia-Feng Kuo
- Department of Food Science, Nutrition, and Nutraceutical Biotechnology, Shih Chien University, Taipei 222, Taiwan
| | - Xue Mei
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Shuhua Xu
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Naiyan Lu
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, China.
| |
Collapse
|
2
|
Zhong J, Xie H, Wang Y, Xiong H, Zhao Q. Nanofibrillated cellulose derived from rice bran, wheat bran, okara as novel dietary fibers: Structural, physicochemical, and functional properties. Int J Biol Macromol 2024; 273:132902. [PMID: 38852734 DOI: 10.1016/j.ijbiomac.2024.132902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 05/28/2024] [Accepted: 06/02/2024] [Indexed: 06/11/2024]
Affiliation(s)
- Junbai Zhong
- State Key Laboratory of Food Science and Resources, Nanchang University, Jiangxi 330047, China
| | - Hexiang Xie
- State Key Laboratory of Food Science and Resources, Nanchang University, Jiangxi 330047, China
| | - Yufeng Wang
- State Key Laboratory of Food Science and Resources, Nanchang University, Jiangxi 330047, China
| | - Hua Xiong
- State Key Laboratory of Food Science and Resources, Nanchang University, Jiangxi 330047, China
| | - Qiang Zhao
- State Key Laboratory of Food Science and Resources, Nanchang University, Jiangxi 330047, China.
| |
Collapse
|
3
|
Guo H, Xie W, Ji Z, Wang B, Ren W, Gao W, Yuan B. Oyster Peptides Ameliorate Dextran Sulfate Sodium-Induced Ulcerative Colitis via Modulating the Gut Microbiota and Inhibiting the TLR4/NF-κB Pathway. Nutrients 2024; 16:1591. [PMID: 38892524 PMCID: PMC11175164 DOI: 10.3390/nu16111591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/20/2024] [Accepted: 05/21/2024] [Indexed: 06/21/2024] Open
Abstract
Ulcerative colitis (UC) is an inflammatory bowel disease with an increasing prevalence year over year, and the medications used to treat patients with UC clinically have severe side effects. Oyster peptides (OPs) have anti-inflammatory and antioxidant properties as functional foods that can alleviate a wide range of inflammatory conditions. However, the application of oyster peptides in ulcerative colitis is not well studied. In this work, an animal model of acute colitis was established using 3% dextran sulfate sodium (DSS), and the impact of OP therapy on colitis in mice was examined. Supplementing with OPs prevented DSS-induced colitis from worsening, reduced the expression of oxidative stress and inflammatory markers, and restored the intestinal barrier damage caused by DSS-induced colitis in mice. The 16S rDNA results showed that the OP treatment improved the gut microbiota structure of the UC mice, including increasing microbial diversity, increasing beneficial bacteria, and decreasing harmful bacteria. In the UC mice, the OP therapy decreased the relative abundance of Family_XIII_AD3011_group and Prevotella_9 and increased the relative abundance of Alistipes. In conclusion, OP treatment can inhibit the TLR4/NF-κB pathway and improve the intestinal microbiota in UC mice, which in turn alleviates DSS-induced colitis, providing a reference for the treatment of clinical UC patients.
Collapse
Affiliation(s)
- Haixiang Guo
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun 130062, China; (H.G.); (W.X.); (Z.J.); (B.W.); (W.R.)
| | - Wenyin Xie
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun 130062, China; (H.G.); (W.X.); (Z.J.); (B.W.); (W.R.)
| | - Zhonghao Ji
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun 130062, China; (H.G.); (W.X.); (Z.J.); (B.W.); (W.R.)
- Department of Basic Medicine, Changzhi Medical College, Changzhi 046000, China
| | - Bingbing Wang
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun 130062, China; (H.G.); (W.X.); (Z.J.); (B.W.); (W.R.)
| | - Wenzhi Ren
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun 130062, China; (H.G.); (W.X.); (Z.J.); (B.W.); (W.R.)
| | - Wei Gao
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun 130062, China; (H.G.); (W.X.); (Z.J.); (B.W.); (W.R.)
| | - Bao Yuan
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun 130062, China; (H.G.); (W.X.); (Z.J.); (B.W.); (W.R.)
| |
Collapse
|
4
|
Du X, Chen J, Hu T, Xu Y, Wu J, Peng J, Cheng L, Yu Y, Li L. Identification and structural characterization of key prebiotic fraction of soluble dietary fiber from grapefruit peel sponge layer and its regulation effect on gut microbiota. Int J Biol Macromol 2024; 259:129274. [PMID: 38199546 DOI: 10.1016/j.ijbiomac.2024.129274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/10/2023] [Accepted: 01/04/2024] [Indexed: 01/12/2024]
Abstract
In this study, the key prebiotic fraction of grapefruit peel sponge layer soluble dietary fiber (GSLSDF) was identified, and its structure characteristics and modulatory effect on intestinal microorganisms were investigated. Firstly, two fractions (GSLSDF-1 and GSLSDF-2) were isolated from GSLSDF, and the GSLSDF-1 showed a better prebiotic activity. Subsequently, GSLSDF-1 was found to have a low molecular weight and crystallinity, a loose and porous microstructure, and a high glucose content. Meanwhile, GSLSDF-1 was a dextran with a main chain linked by β-1, 4 glycosidic bonds and branched by a β-1, 6 glycosidic bonds. These structural characteristics were responsible for the favorable prebiotic activity of GSLSDF-1. Finally, the regulation effect of GSLSDF-1 on gut microbiota was analyzed in vitro fecal fermentation. Compared with the blank and GSLSDF groups, GSLSDF-1 could increase the relative abundances of Lactobacillus, Bacteroides, Bifidobacterium and Faecalibacterium coupled with decrease the relative abundances of Clostridium and Clostridioides. Furthermore, GSLSDF-1 promoted the production of short-chain fatty acids (SCFAs) by modulating the SCFAs synthesis pathway of intestinal microorganisms, while the NH3-N synthesis of intestinal microorganisms was inhibited by GSLSDF-1. Above results indicated that GSLSDF-1 was the key prebiotic fraction of GSLSDF, which could effectively optimize the intestinal microorganism composition.
Collapse
Affiliation(s)
- Xiaoyi Du
- Sericultural & Argi-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, No. 133 Yiheng street., Dongguanzhuang road, Tianhe District, Guangzhou 510610, China
| | - Jiajia Chen
- Sericultural & Argi-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, No. 133 Yiheng street., Dongguanzhuang road, Tianhe District, Guangzhou 510610, China
| | - Tenggen Hu
- Sericultural & Argi-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, No. 133 Yiheng street., Dongguanzhuang road, Tianhe District, Guangzhou 510610, China
| | - Yujuan Xu
- Sericultural & Argi-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, No. 133 Yiheng street., Dongguanzhuang road, Tianhe District, Guangzhou 510610, China
| | - Jijun Wu
- Sericultural & Argi-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, No. 133 Yiheng street., Dongguanzhuang road, Tianhe District, Guangzhou 510610, China
| | - Jian Peng
- Sericultural & Argi-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, No. 133 Yiheng street., Dongguanzhuang road, Tianhe District, Guangzhou 510610, China
| | - Lina Cheng
- Sericultural & Argi-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, No. 133 Yiheng street., Dongguanzhuang road, Tianhe District, Guangzhou 510610, China
| | - Yuanshan Yu
- Sericultural & Argi-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, No. 133 Yiheng street., Dongguanzhuang road, Tianhe District, Guangzhou 510610, China.
| | - Lu Li
- Sericultural & Argi-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, No. 133 Yiheng street., Dongguanzhuang road, Tianhe District, Guangzhou 510610, China.
| |
Collapse
|
5
|
Liang Z, Li K, Huang W, Li Z, Xu X, Xu H, Li S. Production, structural and functional characteristics of soluble dietary fiber from fermented okara by Penicillium expansum. Int J Biol Macromol 2023; 253:126621. [PMID: 37657574 DOI: 10.1016/j.ijbiomac.2023.126621] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/14/2023] [Accepted: 08/28/2023] [Indexed: 09/03/2023]
Abstract
Soluble dietary fiber (SDF), an important prebiotic, has attracted growing attention, due to its great health effects and wide application. This study focused on the preparation of SDF from fermented okara. The yield of SDF obtained through Penicillium expansum fermentation (FSDF) reached 45.63 % (w/w) under the optimal conditions (pH 6.7, inoculum size 9.5 %, and time 29 h) by response surface methodology, which were 1.92 and 4.43 times higher than those of phosphate-citric acid treatment and untreated okara. Infrared spectra and X-ray diffraction indicated that three SDFs had similar spectral distribution and crystalline region. Moreover, FSDF displayed looser and more porous microstructures. Meanwhile, the composition ratio of monosaccharides has changed. FSDF exhibited higher water solubility (97.46 %), glucose adsorption capacity (203.73 mg/g), sodium cholate adsorption capacity (13.07 mg/g), cholesterol adsorption capacity (6.69- 7.62 mg/g) and radical (ABTS+, hydroxyl and DPPH) scavenging capacity. Additionally, three SDFs didn't degrade by upper gastrointestinal tract and could improve the proportion of beneficial intestinal flora in vitro, such as Lactobacillus and Bifidobacterium. Overall, the FSDF prepared in this study was a functional ingredient with great potential in foods.
Collapse
Affiliation(s)
- Zhong Liang
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Kecheng Li
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Weiwei Huang
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, China; College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Zhaoxia Li
- College of Marine and Biological Engineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Xiaoqi Xu
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, China; College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Hong Xu
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, China; College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Sha Li
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, China; College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China.
| |
Collapse
|
6
|
Sharif Swallah M, Bondzie-Quaye P, Wang H, Shao CS, Hua P, Alrasheed Bashir M, Benjamin Holman J, Sossah FL, Huang Q. Potentialities of Ganoderma lucidum extracts as functional ingredients in food formulation. Food Res Int 2023; 172:113161. [PMID: 37689913 DOI: 10.1016/j.foodres.2023.113161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/13/2023] [Accepted: 06/16/2023] [Indexed: 09/11/2023]
Abstract
Owing to the recognized therapeutic characteristics of G. lucidum, it is one of the most extensively researched mushrooms as a chemopreventive agent and as a functional food. It is a known wood-degrading basidiomycete possessing numerous pharmacological functions and is termed a natural pharmacy store due to its rich number of active compounds which have proved to portray numerous therapeutic properties. This current review highlights studies on the potentialities of G. lucidum extracts as functional ingredients on organoleptic and nutritional properties of food products (e.g., dairy, wine, beverage, bakery, meat, and other products). In addition, the study delved into various aspects of encapsulated G. lucidum extracts, their morphological and rheological characteristics, prebiotic and immunomodulatory importance, the effects on apoptosis, autophagy, cancer therapy, inflammatory responses, oxidative stress, antioxidant activities, and safety concerns. These findings have significant implications for the development of new products in the food and pharmaceutical industries. On the other hand, the various active compounds extracted from G. lucidum exhibited no toxic or adverse effects, and the appeal for it as a dietary food, natural remedy, and health-fortifying food is drastically increasing as well as attracting the interest of both the industrial and scientific communities. Furthermore, the formation of functional foods based on G. lucidum appears to have actual promise and exciting prospects in nutrition, food, and pharmaceutical sciences.
Collapse
Affiliation(s)
- Mohammed Sharif Swallah
- CAS Key Laboratory of High Magnetic Field and Iron Beam Physical Biology, Institute of Intelligent Agriculture, Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China; Science Island Branch of Graduate School, University of Science and Technology of China, Hefei 230026, China
| | - Precious Bondzie-Quaye
- CAS Key Laboratory of High Magnetic Field and Iron Beam Physical Biology, Institute of Intelligent Agriculture, Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China; Science Island Branch of Graduate School, University of Science and Technology of China, Hefei 230026, China
| | - Han Wang
- CAS Key Laboratory of High Magnetic Field and Iron Beam Physical Biology, Institute of Intelligent Agriculture, Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China; Science Island Branch of Graduate School, University of Science and Technology of China, Hefei 230026, China
| | - Chang-Sheng Shao
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Pei Hua
- Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Mona Alrasheed Bashir
- CAS Key Laboratory of High Magnetic Field and Iron Beam Physical Biology, Institute of Intelligent Agriculture, Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China; Science Island Branch of Graduate School, University of Science and Technology of China, Hefei 230026, China
| | - Joseph Benjamin Holman
- School of Information Science and Technology, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Frederick Leo Sossah
- Council for Scientific and Industrial Research (CSIR), Oil Palm Research Institute, Coconut Research Programme, P.O. Box 245, Sekondi, Ghana
| | - Qing Huang
- CAS Key Laboratory of High Magnetic Field and Iron Beam Physical Biology, Institute of Intelligent Agriculture, Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China; Science Island Branch of Graduate School, University of Science and Technology of China, Hefei 230026, China.
| |
Collapse
|
7
|
Lyu B, Wang F, Li Y, Quek SY, Yu H. Editorial: Innovative high value-added processing of soybean and its by-products. Front Nutr 2023; 10:1240249. [PMID: 37441518 PMCID: PMC10334418 DOI: 10.3389/fnut.2023.1240249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 06/16/2023] [Indexed: 07/15/2023] Open
Affiliation(s)
- Bo Lyu
- College of Food Science and Engineering, Jilin Agriculture University, Changchun, China
- Soybean Research & Development Center, Division of Soybean Processing, Chinese Agricultural Research System, Changchun, China
| | - Fengzhong Wang
- Soybean Research & Development Center, Division of Soybean Processing, Chinese Agricultural Research System, Changchun, China
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yang Li
- Soybean Research & Development Center, Division of Soybean Processing, Chinese Agricultural Research System, Changchun, China
- College of Food Science, Northeast Agricultural University, Harbin, China
| | - Siew Young Quek
- School of Chemical Sciences, University of Auckland, Auckland, New Zealand
| | - Hansong Yu
- College of Food Science and Engineering, Jilin Agriculture University, Changchun, China
- Soybean Research & Development Center, Division of Soybean Processing, Chinese Agricultural Research System, Changchun, China
| |
Collapse
|
8
|
Liu W, Jing H, Ma C, Liu C, Lv W, Wang H. Microstructure, physicochemical and functional properties of Dendrobium officinale pomace and its total dietary fiber. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2023. [DOI: 10.1007/s11694-023-01921-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
|
9
|
Qi X, Zhang Y, Yu H, Xie J. Research on the Properties of Polysaccharides, Starch, Protein, Pectin, and Fibre in Food Processing. Foods 2023; 12:249. [PMID: 36673341 PMCID: PMC9857836 DOI: 10.3390/foods12020249] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 12/27/2022] [Accepted: 01/03/2023] [Indexed: 01/06/2023] Open
Abstract
As food components, polysaccharides, starch, protein, pectin, and fibre are often used in the food industry due to their particular functional properties, as well as their efficient, safe, and green characteristics [...].
Collapse
Affiliation(s)
- Xin Qi
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Yanjun Zhang
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning 571533, China
| | - Hansong Yu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
| | - Jianhua Xie
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| |
Collapse
|
10
|
Chien YJ, Yen GC, Huang SC, Chen SC, Hsu CL. Anti-fatigue effects of enzyme-hydrolyzed okara in C2C12 myotubes and Sprague-Dawley rats. Food Funct 2022; 13:12777-12786. [PMID: 36420930 DOI: 10.1039/d2fo02244c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Okara is a by-product of tofu or soymilk production processes. The disposal of huge quantities of okara is a significant issue. Based on previous reports, protein hydrolysis can release excess free amino acids and small peptides from okara and exhibit anti-fatigue function. We aimed to investigate the anti-fatigue effect of okara protein hydrolysate (OPH) in vitro and in vivo. In the first phase, we treated C2C12 myotubes with different processed OPHs to detect mitochondrial functions. The results revealed that OPH hydrolyzed with alcalase containing 2% E/S for 2 h increased the mitochondrial mRNA level (cytochrome b and cytochrome c oxidase I) and enzyme activity (citrate synthase and cytochrome c oxidase) most efficiently. In the second phase, we conducted animal studies to assess the anti-fatigue function of OPH. After acclimatization, 8 week-old male Sprague-Dawley (SD) rats were randomly classified into four groups: (1) control group, (2) 1X-OPH, (3) 2X-OPH, and (4) 5X-OPH (8 rats per group, treated for 28 days). The results indicated that the intake of OPH for 28 days increased the exhaustive swimming time of rats and lowered the increment of the lactate ratio, as well as the activity of lactate dehydrogenase and creatine kinase. These results indicated that OPH improves exercise performance and anti-fatigue function in male SD rats. Therefore, OPH could be a potential health supplement for anti-fatigue function.
Collapse
Affiliation(s)
- Yu-Jou Chien
- Department of Nutrition, Chung Shan Medical University, Taichung, Taiwan
| | - Gow-Chin Yen
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung, Taiwan
| | - Shih-Chien Huang
- Department of Nutrition, Chung Shan Medical University, Taichung, Taiwan.,Department of Health Industry Technology Management, Chung Shan Medical University, Taichung, Taiwan
| | - Shiuan-Chih Chen
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan.,Department of Family and Community Medicine, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Chin-Lin Hsu
- Department of Nutrition, Chung Shan Medical University, Taichung, Taiwan.,Department of Nutrition, Chung Shan Medical University Hospital, Taichung, Taiwan.
| |
Collapse
|