1
|
Sharma T, Das N, Mehta Kakkar P, Mohapatra RK, Pamidimarri S, Singh RK, Kumar M, Guldhe A, Nayak M. Microalgae as an emerging alternative raw material of docosahexaenoic acid and eicosapentaenoic acid - a review. Crit Rev Food Sci Nutr 2025:1-20. [PMID: 40188418 DOI: 10.1080/10408398.2025.2486267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2025]
Abstract
Long-chain omega-3 polyunsaturated fatty acids (n-3 PUFAs) have been widely applied due to their nutraceutical and healthcare benefits. With the rising rates of chronic diseases, there is a growing consumer interest and demand for sustainable dietary sources of n-3 PUFAs. Currently, microalgae have emerged as a sustainable source of n-3 PUFAs which are rich in docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA), regarded as promising alternatives to conventional sources (seafood) that cannot meet the growing demands of natural food supplements. This review provides a comprehensive overview of recent advancements in strategies such as genetic engineering, mutagenesis, improving photosynthetic efficiency, nutritional or environmental factors, and cultivation approaches to improve DHA and EPA production efficiency in microalgae cells. Additionally, it explains the application of DHA and EPA-rich microalgae in animal feed, human nutrition- snacks, and supplements to avoid malnutrition and non-communicable diseases.
Collapse
Affiliation(s)
- Tanishka Sharma
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, India
| | - Nisha Das
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, India
| | - Preeti Mehta Kakkar
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, India
| | - Ranjan Kumar Mohapatra
- Department of Environmental & IT Convergence Engineering, Chungnam National University, Daejeon, South Korea
| | - Sudheer Pamidimarri
- Department of Molecular Biology and Genetics, Gujarat Biotechnology University, Gandhinagar, India
| | - Ravi Kant Singh
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, India
| | - Manish Kumar
- Amity Institute of Environmental Sciences, Amity University Uttar Pradesh, Noida, India
| | - Abhishek Guldhe
- Amity Institute of Biotechnology, Amity University Maharashtra, Mumbai, India
| | - Manoranjan Nayak
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, India
| |
Collapse
|
2
|
Contreras P, Oviedo C, Soto-Ramírez R, Vásquez-Sandoval C, Navarrete J, Dantagnan P. Impacts of conventional and industrial wastewaters-based media on biomass production, nutrient dynamics, and fatty acid profile in a thraustochytrid culture. Prep Biochem Biotechnol 2025:1-14. [PMID: 40183144 DOI: 10.1080/10826068.2025.2484606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
The rising demand for polyunsaturated fatty acids, coupled with the decline of traditional fish-based sources, highlights Ulkenia visurgensis Lng2, a newly isolated thraustochytrid strain, as a promising alternative for sustainable polyunsaturated fatty acids production. Using Response Surface Methodology to optimize medium composition and culture conditions, biomass production was improved to 11.64 g/L-120% higher than previous studies-with 35% of the biomass consisting of total lipids. Of the total fatty acids, 40% corresponded to polyunsaturated fatty acids, including 27% of docosahexaenoic acid, 4% of eicosapentaenoic acid, and 7% of arachidonic acid. Alternative media, such as wastewaters from corn and fish meal processing, were also evaluated. Biomass yields in wastewaters-based media (30% v/v) were lower due to limited nutrient availability, achieving between 2.96 g/L and 2.28 g/L, with the strain showing mostly around 8% carbon and nitrogen assimilation. Morphological changes, including increased vegetative and multinucleated cells, were also observed. Lipid content decreased in wastewater-based cultures, yet PUFAs constituted 47% of total fatty acids, with EPA nearly doubling, DHA remaining stable and decreased ARA content. These results shed light on how U. visurgensis Lng2 adapts to nutrient-limited environments and offer valuable insights for developing sustainable PUFA production using industrial by-products as alternative media.
Collapse
Affiliation(s)
- Pedro Contreras
- Departamento de Ingeniería en Maderas, Facultad de Ingeniería, Universidad del Bio-Bio, Concepción, Chile
| | - Claudia Oviedo
- Departamento de Química, Facultad de Ciencias, Universidad del Bío-Bío, Concepción, Chile
| | | | - Cinthia Vásquez-Sandoval
- Departamento de Ingeniería en Maderas, Facultad de Ingeniería, Universidad del Bio-Bio, Concepción, Chile
| | - José Navarrete
- Departamento de Ingeniería en Maderas, Facultad de Ingeniería, Universidad del Bio-Bio, Concepción, Chile
| | - Patricio Dantagnan
- Departamento de Ciencias Agropecuarias y Acuícolas, Facultad de Recursos Naturales, Universidad Católica de Temuco, Temuco, Chile
| |
Collapse
|
3
|
Wu L, Li D, Bi F, Yu C, Zhang Y, Zheng M. Highly efficient enzymatic enrichment of n-3 polyunsaturated fatty acid glycerides via interfacial biocatalysis in Pickering emulsions. Food Chem 2025; 470:142683. [PMID: 39742604 DOI: 10.1016/j.foodchem.2024.142683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 12/16/2024] [Accepted: 12/25/2024] [Indexed: 01/03/2025]
Abstract
A novel Pickering interfacial biocatalysis (PIB) system has been, for the first time, successfully applied for the enzymatic selective hydrolysis of algae oils and fish oils to enrich n-3 PUFAs glycerides. Lipase AY 400SD was identified and adsorbed on hydrophobic hollow core-shell silica nanoparticles, resulting in the formation of the immobilized enzyme AY 400SD@HMSS-C18. The biocatalyst was employed as an emulsifier to stabilize the water-in-oil Pickering emulsion, resulting in the successful construction of the PIB system. The newly developed PIB system resulted in a notable enhancement of the n-3 PUFAs content of the six oils, with a mean increase ranging from 9.17 % to 23.09 %, and with the recovery rate of n-3 PUFAs exceeded 90 %. The platform demonstrated to be stable and recyclable. The present research illustrated that the PIB has the potential to be a viable alternative for the purpose of enhancing the content of n-3 PUFAs in glycerides.
Collapse
Affiliation(s)
- Liumei Wu
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Hubei Hongshan Laboratory, Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Wuhan 430062, China; College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Dongming Li
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Fuyang Bi
- Xinjiang Uygur Autonomous Region Saihu Fishery Science and Technology Development Company Limited, Bortala Mongol Autonomous Prefecture, 833500, China
| | - Chao Yu
- CABIO Biotech (Wuhan) Co., Ltd. Wuhan East Lake High-tech Development Zone, Wuhan 430073, China
| | - Yufei Zhang
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Hubei Hongshan Laboratory, Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Wuhan 430062, China; Xinjiang Uygur Autonomous Region Saihu Fishery Science and Technology Development Company Limited, Bortala Mongol Autonomous Prefecture, 833500, China.
| | - Mingming Zheng
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Hubei Hongshan Laboratory, Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Wuhan 430062, China; Xinjiang Uygur Autonomous Region Saihu Fishery Science and Technology Development Company Limited, Bortala Mongol Autonomous Prefecture, 833500, China.
| |
Collapse
|
4
|
Wang Y, Wu G, Wang Y, Rehman A, Yu L, Zhang H, Jin Q, Suleria HAR, Wang X. Recent developments, challenges, and prospects of dietary omega-3 PUFA-fortified foods: Focusing on their effects on cardiovascular diseases. Food Chem 2025; 470:142498. [PMID: 39736180 DOI: 10.1016/j.foodchem.2024.142498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 11/30/2024] [Accepted: 12/13/2024] [Indexed: 01/01/2025]
Abstract
Dietary omega-3 polyunsaturated fatty acids (Dω-3 PUFAs) have been extensively studied and have been proven to offer notable benefits for heart health. Scientific meta-analysis strongly endorses them as potent bioactive agents capable of preventing and managing cardiovascular diseases (CVDs). Fortification of foods with Dω-3 PUFAs is a potential strategy for enhancing Dω-3 PUFA intake in an effort to continue strengthening public health outcomes. This review analyzed recent trends in the fortification of foods with Dω-3 PUFAs in relation to technological developments, challenges linked to the method, and future scope. Additionally, recent clinical trials and research on the effect of Dω-3 PUFA-fortified food consumption on cardiovascular health are reviewed. Technological trends in fortification methods, namely microencapsulation- and nanoencapsulation, have made considerable progress to date, along with excellent stability in both processing and storage conditions and favorable bioaccessibility and sensory attributes of fortified foods. There is a tremendous deal of promise for cardiovascular health based on recent clinical trial findings that fortifying food with Dω-3 PUFAs decreased the incidence of heart disease, blood pressure, and lipid profiles. In summary, substantial progress has been made in addressing the challenges of Dω-3 PUFA fortification. However, further multidisciplinary research is needed to inculcate effectiveness toward achieving the maximum possible Dω-3 PUFAs to protect against the harmful effects of CVDs and continue global health progress.
Collapse
Affiliation(s)
- Yongjin Wang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, International Joint Research Laboratory for Lipid Nutrition and Safety, National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Gangcheng Wu
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, International Joint Research Laboratory for Lipid Nutrition and Safety, National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Yandan Wang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, International Joint Research Laboratory for Lipid Nutrition and Safety, National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Abdur Rehman
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Le Yu
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, International Joint Research Laboratory for Lipid Nutrition and Safety, National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China; National Center of Technology Innovation for Dairy, Hohhot 010000, China
| | - Hui Zhang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, International Joint Research Laboratory for Lipid Nutrition and Safety, National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Qingzhe Jin
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, International Joint Research Laboratory for Lipid Nutrition and Safety, National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Hafiz Ansar Rasul Suleria
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia
| | - Xingguo Wang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, International Joint Research Laboratory for Lipid Nutrition and Safety, National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
5
|
López-Puebla S, Arias-Santé MF, Romero J, Costa de Camargo A, Rincón-Cervera MÁ. Analysis of Fatty Acid Profile, α-Tocopherol, Squalene and Cholesterol Content in Edible Parts and By-Products of South Pacific Wild Fishes. Mar Drugs 2025; 23:104. [PMID: 40137290 PMCID: PMC11943669 DOI: 10.3390/md23030104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 02/24/2025] [Accepted: 02/25/2025] [Indexed: 03/27/2025] Open
Abstract
Fish are generally rich sources of n-3 polyunsaturated fatty acids such as EPA and DHA, and although the edible part (fillet) has been analyzed in many species, less is known about the composition of fish by-products. The analysis of these materials allows them to be evaluated as raw sources of EPA and DHA, thus contributing to sustainable practices to produce healthy oils for human consumption. This work provides information on the fatty acid profiles, lipid quality indices and α-tocopherol, squalene and cholesterol contents in fillets, heads, bones and viscera of three fish species (anchovy, chub mackerel and Chilean jack mackerel). Samples were lyophilized and lipids were extracted using either the Folch or Hara and Radin methods. FA profiles were obtained by gas chromatography coupled with flame ionization detection, and tocopherol, squalene and cholesterol analyses were performed by high performance liquid chromatography with UV-visible detection. The highest levels of EPA were found in anchovy fillet (18.9-20.6%) and bone (14.7%), while DHA was more abundant in anchovy fillet (16.9-22.0%) and Chilean jack mackerel fillet (15.4-16.6%) and bone (13.1-13.8%). α-Tocopherol, squalene and cholesterol contents ranged from 0.18 to 1.35 mg/100 g, 0.07 to 0.80 mg/100 g and 30.46 to 246.17 mg/100 g, respectively, in the different tissues analyzed from the three fish species.
Collapse
Affiliation(s)
- Sussi López-Puebla
- Institute of Nutrition and Food Technology, University of Chile, Macul, Santiago 7830490, Chile; (S.L.-P.); (M.F.A.-S.); (J.R.); (A.C.d.C.)
| | - María Fernanda Arias-Santé
- Institute of Nutrition and Food Technology, University of Chile, Macul, Santiago 7830490, Chile; (S.L.-P.); (M.F.A.-S.); (J.R.); (A.C.d.C.)
| | - Jaime Romero
- Institute of Nutrition and Food Technology, University of Chile, Macul, Santiago 7830490, Chile; (S.L.-P.); (M.F.A.-S.); (J.R.); (A.C.d.C.)
| | - Adriano Costa de Camargo
- Institute of Nutrition and Food Technology, University of Chile, Macul, Santiago 7830490, Chile; (S.L.-P.); (M.F.A.-S.); (J.R.); (A.C.d.C.)
| | - Miguel Ángel Rincón-Cervera
- Institute of Nutrition and Food Technology, University of Chile, Macul, Santiago 7830490, Chile; (S.L.-P.); (M.F.A.-S.); (J.R.); (A.C.d.C.)
- Food Technology Division, University of Almería, 04120 Almería, Spain
| |
Collapse
|
6
|
Baraldi L, Usai L, Torre S, Fais G, Casula M, Dessi D, Nieri P, Concas A, Lutzu GA. Dairy Wastewaters to Promote Mixotrophic Metabolism in Limnospira ( Spirulina) platensis: Effect on Biomass Composition, Phycocyanin Content, and Fatty Acid Methyl Ester Profile. Life (Basel) 2025; 15:184. [PMID: 40003594 PMCID: PMC11856459 DOI: 10.3390/life15020184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 01/20/2025] [Accepted: 01/21/2025] [Indexed: 02/27/2025] Open
Abstract
This study explores the mixotrophic cultivation of Limnospira platensis using dairy byproducts, specifically scotta whey (SW), buttermilk wastewater (BMW), and dairy wastewater (DWW), to promote biomass production and enhance the composition of bioactive compounds. By assessing various concentrations (1%, 2%, and 4% v v-1) of these byproducts in a modified growth medium, this study aims to evaluate their effect on L. platensis growth, phycocyanin (C-PC) content, and fatty acid methyl ester (FAME) profiles. The results show that the optimal biomass production was achieved with 2% scotta and dairy wastewater, reaching maximum concentrations of 3.30 g L-1 and 3.19 g L-1, respectively. Mixotrophic cultivation led to increased C-PC yields, especially in buttermilk and dairy wastewater treatments, highlighting the potential for producing valuable pigments. Additionally, the FAME profiles indicated minimal changes compared to the control, with oleic and γ-linolenic acids being dominant in mixotrophic conditions. These findings support the viability of utilizing dairy byproducts for sustainable L. platensis cultivation, contributing to a circular bioeconomy while producing bioactive compounds of nutritional and commercial interest.
Collapse
Affiliation(s)
- Luca Baraldi
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Giuseppe Campi 287, 41123 Modena, Italy;
| | - Luca Usai
- Teregroup Srl, Via David Livingstone 37, 41123 Modena, Italy;
| | - Serenella Torre
- Department of Pharmacy, University of Pisa, Via Bonanno Pisano 12, 56126 Pisa, Italy; (S.T.); (P.N.)
| | - Giacomo Fais
- Department of Mechanical, Chemical and Materials Engineering, University of Cagliari, Piazza d’Armi, 09123 Cagliari, Italy; (G.F.); (M.C.); (A.C.)
- Interdepartmental Center of Environmental Science and Engineering (CINSA), University of Cagliari, Via San Giorgio 12, 09124 Cagliari, Italy
| | - Mattia Casula
- Department of Mechanical, Chemical and Materials Engineering, University of Cagliari, Piazza d’Armi, 09123 Cagliari, Italy; (G.F.); (M.C.); (A.C.)
| | - Debora Dessi
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria, Blocco A, SP8 Km 0.700, 09042 Monserrato, Italy;
| | - Paola Nieri
- Department of Pharmacy, University of Pisa, Via Bonanno Pisano 12, 56126 Pisa, Italy; (S.T.); (P.N.)
| | - Alessandro Concas
- Department of Mechanical, Chemical and Materials Engineering, University of Cagliari, Piazza d’Armi, 09123 Cagliari, Italy; (G.F.); (M.C.); (A.C.)
- Interdepartmental Center of Environmental Science and Engineering (CINSA), University of Cagliari, Via San Giorgio 12, 09124 Cagliari, Italy
| | | |
Collapse
|
7
|
Zhang L, Jiang Y, Buzdar JA, Ahmed S, Sun X, Li F, Ma L, Wu PF, Li C. Microalgae: An Exciting Alternative Protein Source and Nutraceutical for the Poultry Sector. Food Sci Anim Resour 2025; 45:243-265. [PMID: 39840237 PMCID: PMC11743838 DOI: 10.5851/kosfa.2024.e130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/21/2024] [Accepted: 12/02/2024] [Indexed: 01/23/2025] Open
Abstract
Microalgae have garnered a considerable attention as a sustainable substitute as customary feed ingredients for poultry, predominantly due to their extraordinary nutritive profile and purposeful properties. These minuscule organisms are protein rich, retain an ample quantity of essential fatty acids, vitamins, minerals, and antioxidants, thus are capable of improving nutritive value of poultry diets. Microalgae comparatively delivers an outstanding source of protein containing substantial amount of innumerable bioactive complexes, omega-3 fatty acids in addition to the essential amino acids (methionine and lysine), crucial for optimal growth and development. Besides nutritional significance, microalgae have considerable immunomodulatory and antioxidant properties that help to reduce oxidative stress and enhance immune status, thereby improving the overall health and performance. Additionally, microalgae proved to induce antimicrobial and intestinal health benefits via upregulated gut eubiosis, promoting the colonization and growth of probiotic bacteria and offering protection against infections. These nutraceutical benefits are particularly important for sustainable poultry production and reducing the dependence on antibiotic growth promoters to produce antibiotic free food. This review aims to highlights multifaceted advantages of microalgae as a functional feed additive for poultry diet to support sustainable and efficient poultry production.
Collapse
Affiliation(s)
- LiXue Zhang
- School of Medicine, Northwest Minzu University, Lanzhou 730030, China
| | - YuNan Jiang
- Department of Human Anatomy, Medical College of Qinghai University, Xining 810016, China
| | - Jameel Ahmed Buzdar
- Faculty of Veterinary and Animal Sciences, Lasbela University of Agriculture, Water and Marine Sciences, Uthal 3800, Pakistan
| | - Shabbir Ahmed
- Faculty of Animal Husbandry & Veterinary Science, Sindh Agriculture University Tandojam, Tandojam 70050, Pakistan
| | - XinYu Sun
- Department of Human Anatomy, Medical College of Qinghai University, Xining 810016, China
| | - FengHui Li
- Department of Human Anatomy, Medical College of Qinghai University, Xining 810016, China
| | - LiNa Ma
- Department of Human Anatomy, Medical College of Qinghai University, Xining 810016, China
| | - Pei Feng Wu
- Department of Human Anatomy, Medical College of Qinghai University, Xining 810016, China
| | - ChangXing Li
- Department of Human Anatomy, Medical College of Qinghai University, Xining 810016, China
| |
Collapse
|
8
|
Yu BS, Pyo S, Lee J, Han K. Microalgae: a multifaceted catalyst for sustainable solutions in renewable energy, food security, and environmental management. Microb Cell Fact 2024; 23:308. [PMID: 39543605 PMCID: PMC11566087 DOI: 10.1186/s12934-024-02588-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 11/09/2024] [Indexed: 11/17/2024] Open
Abstract
This review comprehensively examines the various applications of microalgae, focusing on their significant potential in producing biodiesel and hydrogen, serving as sustainable food sources, and their efficacy in treating both municipal and food-related wastewater. While previous studies have mainly focused on specific applications of microalgae, such as biofuel production or wastewater treatment, this review covers these applications comprehensively. It examines the potential for microalgae to be applied in various industrial sectors such as energy, food security, and environmental management. By bridging these different application areas, this review differs from previous studies in providing an integrated and multifaceted view of the industrial applications of microalgae. Since it is essential to increase the productivity of the process to utilize microalgae for various industrial applications, research trends in different microalgae cultivation processes, including the culture system (e.g., open ponds, closed ponds) or environmental conditions (e.g., pH, temperature, light intensity) to improve the productivity of biomass and valuable substances was firstly analyzed. In addition, microalgae cultivation technologies that can maximize the biomass and valuable substances productivity while limiting the potential for contamination that can occur when utilizing these systems have been described to maximize CO2 reduction. In conclusion, this review has provided a detailed analysis of current research findings and technological innovations, highlighting the important role of microalgae in addressing global challenges related to energy, food supply, and waste management. It has also provided valuable insights into future research directions and potential commercial applications in several bio-related industries, and illustrated how important continued exploration and development in this area is to realize the full potential of microalgae.
Collapse
Affiliation(s)
- Byung Sun Yu
- Department of biomedical Sciences, College of Bio-convergence, Dankook University, 31116, Dandae-ro 119, Dongnam-gu, Cheonan, 31116, Republic of Korea
- Smart Animal Bio Institute, Dankook University, Cheonan, 31116, Republic of Korea
- Center for Bio Medical Engineering Core Facility, Dankook University, Cheonan, 31116, Republic of Korea
| | - Seonju Pyo
- Smart Animal Bio Institute, Dankook University, Cheonan, 31116, Republic of Korea
- Department of Bioconvergence Engineering, Dankook University, Yongin, 16890, Republic of Korea
| | - Jungnam Lee
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Kyudong Han
- Department of biomedical Sciences, College of Bio-convergence, Dankook University, 31116, Dandae-ro 119, Dongnam-gu, Cheonan, 31116, Republic of Korea.
- Smart Animal Bio Institute, Dankook University, Cheonan, 31116, Republic of Korea.
- Center for Bio Medical Engineering Core Facility, Dankook University, Cheonan, 31116, Republic of Korea.
- Department of Bioconvergence Engineering, Dankook University, Yongin, 16890, Republic of Korea.
| |
Collapse
|
9
|
Panchal SK, Heimann K, Brown L. Improving Undernutrition with Microalgae. Nutrients 2024; 16:3223. [PMID: 39339823 PMCID: PMC11435262 DOI: 10.3390/nu16183223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 09/15/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
Undernutrition is an important global health problem, especially in children and older adults. Both reversal of maternal and child undernutrition and heathy ageing have become United Nations-supported global initiatives, leading to increased attention to nutritional interventions targeting undernutrition. One feasible option is microalgae, the precursor of all terrestrial plants. Most commercially farmed microalgae are photosynthetic single-celled organisms producing organic carbon compounds and oxygen. This review will discuss commercial opportunities to grow microalgae. Microalgae produce lipids (including omega-3 fatty acids), proteins, carbohydrates, pigments and micronutrients and so can provide a suitable and underutilised alternative for addressing undernutrition. The health benefits of nutrients derived from microalgae have been identified, and thus they are suitable candidates for addressing nutritional issues globally. This review will discuss the potential benefits of microalgae-derived nutrients and opportunities for microalgae to be converted into food products. The advantages of microalgae cultivation include that it does not need arable land or pesticides. Additionally, most species of microalgae are still unexplored, presenting options for further development. Further, the usefulness of microalgae for other purposes such as bioremediation and biofuels will increase the knowledge of these microorganisms, allowing the development of more efficient production of these microalgae as nutritional interventions.
Collapse
Affiliation(s)
- Sunil K Panchal
- School of Science, Western Sydney University, Richmond, NSW 2753, Australia
| | - Kirsten Heimann
- College of Medicine and Public Health, Flinders University, Health Science Building, Building 4, Registry Road, Bedford Park, Adelaide, SA 5042, Australia
| | - Lindsay Brown
- School of Pharmacy and Medical Sciences, Griffith University, Gold Coast, QLD 4222, Australia
| |
Collapse
|
10
|
Li S, Ding M, Feng M, Fan X, Li Z. Polyunsaturated Fatty Acids in Quinoa Induce Ferroptosis of Colon Cancer by Suppressing Stemness. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:16152-16162. [PMID: 38991049 DOI: 10.1021/acs.jafc.4c00118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
Polyunsaturated fatty acids (PUFAs) are essential nutrients for the human body, playing crucial roles in reducing blood lipids, anti-inflammatory responses, and anticancer effect. Quinoa is a nutritionally sound food source, rich in PUFAs. This study investigates the role of quinoa polyunsaturated fatty acids (QPAs) on quelling drug resistance in colorectal cancer. The results reveal that QPA downregulates the expression of drug-resistant proteins P-gp, MRP1, and BCRP, thereby enhancing the sensitivity of colorectal cancer drug-resistant cells to the chemotherapy drug. QPA also inhibits the stemness of drug-resistant colorectal cancer cells by reducing the expression of the stemness marker CD44. Consequently, it suppresses the downstream protein SLC7A11 and leads to ferroptosis. Additionally, QPA makes the expression of ferritin lower and increases the concentration of free iron ions within cells, leading to ferroptosis. Overall, QPA has the dual-function reversing drug resistance in colorectal cancer by simultaneously inhibiting stemness and inducing ferroptosis. This study provides a new option for chemotherapy sensitizers and establishes a theoretical foundation for the development and utilization of quinoa.
Collapse
Affiliation(s)
- Songtao Li
- Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China
| | - Man Ding
- School of Life Science, Shanxi University, Taiyuan 030006, China
| | - Mangmang Feng
- Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China
| | - Xiaxia Fan
- Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China
| | - Zhuoyu Li
- Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China
| |
Collapse
|
11
|
Fan F, Yue C, Zhai Z, Liao H, Lian X, Xie H. Gelatin/dextran active films incorporated with cinnamaldehyde and α-tocopherol for scallop (Patinopecten yessoensis) adductor muscle preservation. J Food Sci 2024; 89:4047-4063. [PMID: 38778558 DOI: 10.1111/1750-3841.17120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 04/15/2024] [Accepted: 04/27/2024] [Indexed: 05/25/2024]
Abstract
Scallops are rich in eicosapentaenoic acid (EPA) and docosahexaenoic acid but perishable due to their microbial growth and lipid oxidation. In this study, gelatin/dextran films containing cinnamaldehyde and α-tocopherol (0% + 0%, 0.3% + 0.3%, 0.6% + 0.6%, 0.9% + 0.9%, and 1.2% + 1.2%, w/w) as active fillers were developed by solution casting method, and their preservation effects on scallop adductor muscle refrigerated at 4°C for 0, 3, 6, 9, and 12 days were evaluated. Inclusion of the two active fillers did not influence the thermal stability of the films but created heterogenous and discontinuous film microstructure and increased the film hydrophobicity. Increase in the concentrations of active fillers lowered the mechanical properties and water vapor permeability of the films but increased their crystallinity, thickness, water contact angle, opacity, antibacterial property, and antioxidant property. The longest release times for both cinnamaldehyde and α-tocopherol were found in 95% (v/v) ethanol solution. The gelatin/dextran films containing 1.2% (w/w) of active fillers (Gelatin [Ge]/Dextran [Dx]/1.2 film) improved the chemical stability of refrigerated scallop adductor muscle. The total viable count (TVC) of the unpackaged scallop adductor muscle exceeded the recommended limit of 7 lg CFU/g on day 6 (7.07 ± 0.50 lg CFU/g), whereas the TVC of the Ge/Dx/1.2 film-packaged scallop adductor muscle was still below the limit on day 9 (5.60 ± 0.50 lg CFU/g). Thus, the Ge/Dx/1.2 film can extend the shelf life of refrigerated scallop adductor muscle by at least 3 days. Overall, the developed gelatin/dextran active packaging films are promising for the preservation of aquatic food products.
Collapse
Affiliation(s)
- Fengjiao Fan
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, China
| | - Chenlinrui Yue
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, China
| | - Zhenni Zhai
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, China
| | - Hailu Liao
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, China
| | - Xiaoni Lian
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, China
| | - Hongkai Xie
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, China
| |
Collapse
|
12
|
Lee JY, Wong CY, Koh RY, Lim CL, Kok YY, Chye SM. Natural Bioactive Compounds from Macroalgae and Microalgae for the Treatment of Alzheimer's Disease: A Review. THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2024; 97:205-224. [PMID: 38947104 PMCID: PMC11202106 DOI: 10.59249/jnkb9714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Neuroinflammation, toxic protein aggregation, oxidative stress, and mitochondrial dysfunction are key pathways in neurodegenerative diseases like Alzheimer's disease (AD). Targeting these mechanisms with antioxidants, anti-inflammatory compounds, and inhibitors of Aβ formation and aggregation is crucial for treatment. Marine algae are rich sources of bioactive compounds, including carbohydrates, phenolics, fatty acids, phycobiliproteins, carotenoids, fatty acids, and vitamins. In recent years, they have attracted interest from the pharmaceutical and nutraceutical industries due to their exceptional biological activities, which include anti-inflammation, antioxidant, anticancer, and anti-apoptosis properties. Multiple lines of evidence have unveiled the potential neuroprotective effects of these multifunctional algal compounds for application in treating and managing AD. This article will provide insight into the molecular mechanisms underlying the neuroprotective effects of bioactive compounds derived from algae based on in vitro and in vivo models of neuroinflammation and AD. We will also discuss their potential as disease-modifying and symptomatic treatment strategies for AD.
Collapse
Affiliation(s)
- Jia Yee Lee
- School of Health Sciences, International Medical
University, Kuala Lumpur, Malaysia
| | - Chiew Yen Wong
- Department of Applied Biomedical Science and
Biotechnology, School of Health Sciences, International Medical University,
Kuala Lumpur, Malaysia
| | - Rhun Yian Koh
- Department of Applied Biomedical Science and
Biotechnology, School of Health Sciences, International Medical University,
Kuala Lumpur, Malaysia
| | - Chooi Ling Lim
- Department of Applied Biomedical Science and
Biotechnology, School of Health Sciences, International Medical University,
Kuala Lumpur, Malaysia
| | - Yih Yih Kok
- Department of Applied Biomedical Science and
Biotechnology, School of Health Sciences, International Medical University,
Kuala Lumpur, Malaysia
| | - Soi Moi Chye
- Department of Applied Biomedical Science and
Biotechnology, School of Health Sciences, International Medical University,
Kuala Lumpur, Malaysia
| |
Collapse
|
13
|
Alagawany M, Lestingi A, Abdelzaher HA, Elnesr SS, Madkour M, El-Baz FK, Alfassam HE, Rudayni HA, Allam AA, Abd El Hack ME. Dietary supplementation with Dunaliella salina microalga promotes quail growth by altering lipid profile and immunity. Poult Sci 2024; 103:103591. [PMID: 38471224 PMCID: PMC11067772 DOI: 10.1016/j.psj.2024.103591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 02/19/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024] Open
Abstract
The goals of the current research are to ascertain the impacts of Dunaliella salina (DS) on quail growth, carcass criteria, liver and kidney functions, lipid profile, and immune response. Two hundred and forty 7-day-old quail chicks were divided equally into 4 separate groups with 6 replicates with 10 birds each. The groups were as follows: 1) control diet (the basal feed without DS), 2) control diet enriched with 0.25 g DS/kg, 3) control diet enriched with 0.50 g DS/kg, and 4) control diet enriched with 1.00 g DS/kg. Results elucidated that the birds which consumed 0.5 and 1 g DS/kg diet performed better than other birds in terms of live body weight (LBW), body weight gain (BWG), and feed conversion ratio (FCR). There were no significant changes in feed intake (FI) and carcass characteristics due to different dietary DS levels. Compared to the control group, DS-treated groups had better lipid profile (low total cholesterol and LDL values and high HDL values) and immune response (complement 3 values). The quails consumed feeds with different levels of DS had greater (P < 0.038) C3 compared to control. Adding 0.5 and 1 g DS/kg lowered blood concentrations of triglycerides and total protein (TP) values. The high level of DS (1 g/kg) had higher albumin values and lower AST values than other groups (P < 0.05). The creatinine values were at the lowest levels in the group consumed 0.50 g DS/kg feed. No changes (P > 0.05) were demonstrated among experimental groups in the ALT, urea, and lysozyme values. In conclusion, adding D. salina to growing quail diets enhanced growth, immune system, blood lipid profile, and kidney and liver function.
Collapse
Affiliation(s)
- Mahmoud Alagawany
- Poultry Department, Faculty of Agriculture, Zagazig University, Zagazig, Egypt.
| | - Antonia Lestingi
- Department of Veterinary Medicine, University of Bari Aldo Moro, Valenzano, Bari 70010, Italy
| | - Hagar A Abdelzaher
- Poultry Department, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Shaaban S Elnesr
- Poultry Production Department, Agriculture Faculty, Fayoum University, Fayoum, Egypt
| | - Mahmoud Madkour
- Animal Production Department, National Research Centre, Dokki, 12622 Giza, Egypt
| | - Farouk K El-Baz
- Plant Biochemistry Department, National Research Centre (NRC), Dokki, Cairo, Egypt
| | - Haifa E Alfassam
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Hassan A Rudayni
- Department of Biology, College of Science, Imam Muhammad Ibn Saud Islamic University, Riyadh 11623, Saudi Arabia
| | - Ahmed A Allam
- Department of Zoology, Faculty of Science, Beni-suef University, Beni-suef 65211, Egypt
| | | |
Collapse
|
14
|
Liu T, Zhou L, Li X, Song W, Liu Y, Wu S, Wang P, Dai X, Shi L. Polygonatum kingianum Polysaccharides Enhance the Preventive Efficacy of Heat-Inactivated Limosilactobacillus reuteri WX-94 against High-Fat-High-Sucrose-Induced Liver Injury and Gut Dysbacteriosis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:9880-9892. [PMID: 38646869 DOI: 10.1021/acs.jafc.4c00372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Limosilactobacillus reuteri (L. reuteri) is an efficacious probiotic that could reduce inflammation and prevent metabolic disorders. Here, we innovatively found that Polygonatum kingianum polysaccharides (PKP) promoted proliferation and increased stability of L. reuteri WX-94 (a probiotic strain showing anti-inflammation potentials) in simulated digestive fluids in vitro. PKP was composed of galactose, glucose, mannose, and arabinose. The cell-free supernatant extracted from L. reuteri cultured with PKP increased ABTS•+, DPPH•, and FRAP scavenging capacities compared with the supernatant of the medium without PKP and increased metabolites with health-promoting activities, e.g., 3-phenyllactic acid, indole-3-lactic acid, indole-3-carbinol, and propionic acid. Moreover, PKP enhanced alleviating effects of heat-inactivated L. reuteri on high-fat-high-sucrose-induced liver injury in rats via reducing inflammation and regulating expressions of protein and genes involved in fatty acid metabolism (such as HIF1-α, FAβO, CPT1, and AMPK) and fatty acid profiles in liver. Such benefits correlated with its prominent effects on enriching Lactobacillus and short-chain fatty acids while reducing Dubosiella, Fusicatenilacter, Helicobacter, and Oscillospira. Our work provides novel insights into the probiotic property of PKP and emphasizes the great potential of the inactivated L. reuteri cultured with PKP in contracting unhealthy diet-induced liver dysfunctions and gut dysbacteriosis.
Collapse
Affiliation(s)
- Tianqi Liu
- School of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Lanqi Zhou
- School of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Xiaoqiong Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Wei Song
- School of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Yuan Liu
- School of Physical Education, Shaanxi Normal University, Xi'an 710119, China
| | - Shan Wu
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan 450001, China
| | - Peng Wang
- School of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Xiaoshuang Dai
- BGI Institute of Applied Agriculture, BGI-Agro, Shenzhen, Guangdong 518083, China
| | - Lin Shi
- School of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| |
Collapse
|
15
|
Dubey S, Chen CW, Patel AK, Bhatia SK, Singhania RR, Dong CD. Development in health-promoting essential polyunsaturated fatty acids production by microalgae: a review. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2024; 61:847-860. [PMID: 38487279 PMCID: PMC10933236 DOI: 10.1007/s13197-023-05785-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 05/21/2023] [Accepted: 06/06/2023] [Indexed: 03/17/2024]
Abstract
Polyunsaturated fatty acids (PUFAs) found in microalgae, primarily omega-3 (ω-3) and omega-6 (ω-6) are essential nutrients with positive effects on diseases such as hyperlipidemia, atherosclerosis, and coronary risk. Researchers still seek improvement in PUFA yield at a large scale for better commercial prospects. This review summarizes advancements in microalgae PUFA research for their cost-effective production and potential applications. Moreover, it discusses the most promising cultivation modes using organic and inorganic sources. It also discusses biomass hydrolysates to increase PUFA production as an alternative and sustainable organic source. For cost-effective PUFA production, heterotrophic, mixotrophic, and photoheterotrophic cultivation modes are assessed with traditional photoautotrophic production modes. Also, mixotrophic cultivation has fascinating sustainable attributes over other trophic modes. Furthermore, it provides insight into growth phase (stage I) improvement strategies to accumulate biomass and the complementing effects of other stress-inducing strategies during the production phase (stage II) on PUFA enhancement under these cultivation modes. The role of an excessive or limiting range of salinity, nutrients, carbon source, and light intensity were the most effective parameter in stage II for accumulating higher PUFAs such as ω-3 and ω-6. This article outlines the commercial potential of microalgae for omega PUFA production. They reduce the risk of diabetes, cardiovascular diseases (CVDs), cancer, and hypertension and play an important role in their emerging role in healthy lifestyle management.
Collapse
Affiliation(s)
- Siddhant Dubey
- College of Hydrosphere, Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157 Taiwan
| | - Chiu-Wen Chen
- College of Hydrosphere, Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157 Taiwan
- College of Hydrosphere, Sustainable Environment Research Centre, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157 Taiwan
- Department of Marine Environmental Engineering, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157 Taiwan
| | - Anil Kumar Patel
- College of Hydrosphere, Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157 Taiwan
- Centre for Energy and Environmental Sustainability, Lucknow, Uttar Pradesh 226 029 India
| | - Shashi Kant Bhatia
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, 05029 Republic of Korea
| | - Reeta Rani Singhania
- College of Hydrosphere, Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157 Taiwan
- Centre for Energy and Environmental Sustainability, Lucknow, Uttar Pradesh 226 029 India
| | - Cheng-Di Dong
- College of Hydrosphere, Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157 Taiwan
- College of Hydrosphere, Sustainable Environment Research Centre, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157 Taiwan
- Department of Marine Environmental Engineering, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157 Taiwan
| |
Collapse
|
16
|
Alibrandi A, Zirilli A, Le Donne M, Giannetto C, Lanfranchi M, De Pascale A, Politi C, Incognito GG, Ercoli A, Granese R. Association between Fish Consumption during Pregnancy and Maternal and Neonatal Outcomes: A Statistical Study in Southern Italy. J Clin Med 2024; 13:2131. [PMID: 38610896 PMCID: PMC11012849 DOI: 10.3390/jcm13072131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/21/2024] [Accepted: 03/24/2024] [Indexed: 04/14/2024] Open
Abstract
Background: This research aimed to evaluate the association between the monthly consumption of fish (differentiated by type) and both gestational and neonatal outcomes. Methods: Women who were admitted for delivery in the last 6 months of 2023 were prospectively included and divided according to type of fish consumed (based on DHA and mercury content) and frequency of consumption. Neonatal outcomes included weight, length, head circumference, and 1st and 5th minute Apgar scores. Maternal outcomes were threats of abortion, preterm birth, gestational diabetes and hypertension, cesarean section, and differential body mass index (BMI). Results: Small-size oily fish with high DHA and low mercury content (type B fish) consumption was positively associated with neonatal weight and head circumference, and less weight gain in pregnancy. It was also significantly associated with lower incidences of gestational diabetes and hypertension, and cesarean section. Correlation between differential BMI and monthly consumption of fish resulted in statistical significance, especially in type B fish consumers. Conclusions: The consumption of type B fish was significantly associated with increased neonatal weight and head circumference and better maternal outcomes.
Collapse
Affiliation(s)
- Angela Alibrandi
- Department of Economics, University of Messina, 98100 Messina, Italy; (A.A.); (A.Z.); (C.G.); (M.L.); (A.D.P.)
| | - Agata Zirilli
- Department of Economics, University of Messina, 98100 Messina, Italy; (A.A.); (A.Z.); (C.G.); (M.L.); (A.D.P.)
| | - Maria Le Donne
- Unit of Gynecology and Obstetrics, Department of Human Pathology of Adults and Developmental Age, “G. Martino” University Hospital, 98100 Messina, Italy; (M.L.D.); (C.P.); (A.E.)
| | - Carlo Giannetto
- Department of Economics, University of Messina, 98100 Messina, Italy; (A.A.); (A.Z.); (C.G.); (M.L.); (A.D.P.)
| | - Maurizio Lanfranchi
- Department of Economics, University of Messina, 98100 Messina, Italy; (A.A.); (A.Z.); (C.G.); (M.L.); (A.D.P.)
| | - Angelina De Pascale
- Department of Economics, University of Messina, 98100 Messina, Italy; (A.A.); (A.Z.); (C.G.); (M.L.); (A.D.P.)
| | - Chiara Politi
- Unit of Gynecology and Obstetrics, Department of Human Pathology of Adults and Developmental Age, “G. Martino” University Hospital, 98100 Messina, Italy; (M.L.D.); (C.P.); (A.E.)
| | - Giosuè Giordano Incognito
- Department of General Surgery and Medical Surgical Specialties, University of Catania, 95123 Catania, Italy;
| | - Alfredo Ercoli
- Unit of Gynecology and Obstetrics, Department of Human Pathology of Adults and Developmental Age, “G. Martino” University Hospital, 98100 Messina, Italy; (M.L.D.); (C.P.); (A.E.)
| | - Roberta Granese
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, “G. Martino” University Hospital, 98100 Messina, Italy
| |
Collapse
|
17
|
Song W, Wen R, Liu T, Zhou L, Wang G, Dai X, Shi L. Oat-based postbiotics ameliorate high-sucrose induced liver injury and colitis susceptibility by modulating fatty acids metabolism and gut microbiota. J Nutr Biochem 2024; 125:109553. [PMID: 38147914 DOI: 10.1016/j.jnutbio.2023.109553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/19/2023] [Accepted: 12/19/2023] [Indexed: 12/28/2023]
Abstract
High-sucrose (HS) consumption leads to metabolic disorders and increases susceptibility to colitis. Postbiotics hold great potentials in combating metabolic diseases and offer advantages in safety and processability, compared with living probiotics. We developed innovative oat-based postbiotics and extensively explored how they could benefit in rats with long-term high-sucrose consumption. The postbiotics fermented with Lactiplantibacillus plantarum (OF-1) and OF-5, the one fermented with the optimal selection of five probiotics (i.e., L. plantarum, Limosilactobacillus reuteri, Lacticaseibacillus rhamnosus, Lactobacillus acidophilus, and Bifidobacterium lactis) alleviated HS induced liver injury, impaired fatty acid metabolism and inflammation through activating AMPK/SREBP-1c pathways. Moreover, oat-based postbiotics restored detrimental effects of HS on fatty acid profiles in liver, as evidenced by the increases in polyunsaturated fatty acids and decreases in saturated fatty acids, with OF-5 showing most pronounced effects. Furthermore, oat-based postbiotics prevented HS exacerbated susceptibility to dextran sodium sulfate caused colitis and reconstructed epithelial tight junction proteins in colons. Oat-based postbiotics, in particular OF-5 notably remodeled gut microbiota composition, e.g., enriching the relative abundances of Akkermansia, Bifidobacterium, Alloprevotella and Prevotella, which may play an important role in the liver-colon axis responsible for improvements of liver functions and reduction of colitis susceptibility. The heat-inactivated probiotics protected against HS-induced liver and colon damage, but such effects were less pronounced compared with oat-based postbiotics. Our findings emphasize the great value of oat-based postbiotics as nutritional therapeutics to combat unhealthy diet induced metabolic dysfunctions.
Collapse
Affiliation(s)
- Wei Song
- School of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Ruixue Wen
- School of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Tianqi Liu
- School of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Lanqi Zhou
- School of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Guoze Wang
- School of Public Health, Guizhou Medical University, Guiyang, Guizhou, China.
| | - Xiaoshuang Dai
- BGI Institute of Applied Agriculture, BGI-Agro, Shenzhen, Guangdong, China
| | - Lin Shi
- School of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi, China.
| |
Collapse
|
18
|
Wang W, Li S, Zhu Y, Zhu R, Du X, Cui X, Wang H, Cheng Z. Effect of Different Edible Trichosanthes Germplasm on Its Seed Oil to Enhance Antioxidant and Anti-Aging Activity in Caenorhabditis elegans. Foods 2024; 13:503. [PMID: 38338638 PMCID: PMC10855050 DOI: 10.3390/foods13030503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/01/2024] [Accepted: 02/03/2024] [Indexed: 02/12/2024] Open
Abstract
The seeds of various Trichosanthes L. plants have been frequently used as snacks instead of for traditional medicinal purposes in China. However, there is still a need to identify the species based on seeds from Trichosanthes germplasm for the potential biological activities of their seed oil. In this study, 18 edible Trichosanthes germplasm from three species were identified and distinguished at a species level using a combination of seed morphological and microscopic characteristics and nrDNA-ITS sequences. Seed oil from the edible Trichosanthes germplasm significantly enhanced oxidative stress tolerance, extended lifespan, delayed aging, and improved healthspan in Caenorhabditis elegans. The antioxidant activity of the seed oil exhibits a significant positive correlation with its total unsaturated fatty acid content among the 18 edible Trichosanthes germplasm, suggesting a genetic basis for this trait. The biological activities of seed oil varied among species, with T. kirilowii Maxim. and T. rosthornii Harms showing stronger effects than T. laceribractea Hayata.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Zhou Cheng
- School of Life Sciences and Technology, Tongji University, Shanghai 200092, China; (W.W.); (S.L.); (Y.Z.); (R.Z.); (X.D.); (X.C.); (H.W.)
| |
Collapse
|
19
|
Alghamdi MA, Elbaz MI, Ismail IE, Reda FM, Alagawany M, El-Tarabily KA, Abdelgeliel AS. Dietary supplementation with a mixture of Dunaliella salina and Spirulina enhances broiler performance by improving growth, immunity, digestive enzymes and gut microbiota. Poult Sci 2024; 103:103337. [PMID: 38215503 PMCID: PMC10825683 DOI: 10.1016/j.psj.2023.103337] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 11/27/2023] [Accepted: 11/28/2023] [Indexed: 01/14/2024] Open
Abstract
The aim of this study is to evaluate the effect of Dunaliella salina and Spirulina (D + S) mixture on performance, carcass yield, kidney and liver markers, lipid profile, and immune responses of fattening chicks. Two hundred broiler chicks at 7 days old were distributed into 5 experimental groups, 5 replicates each with 8 chicks each. Group 1 was fed on only basal diet; group 2 was fed with basal diet and 0.50 g/kg (D + S); group 3 was fed with basal diet and 1.00 g/kg (D + S); group 4 was fed with basal diet and 1.50 g/kg (D + S); and group 5 was fed with basal diet supplemented with 2.00 g/kg (D + S). The additive mixture (D + S) consisted of (1 D. salina: 1 Spirulina). The experiment lasted for 6 wk. The results demonstrated significantly improved better live body weight, body weight gain, and feed conversion ratio (P<0.01) for groups that received (D + S) at levels of 1.0 and 1.5 g/kg diet compared to other groups at 6 wk of age. There was no significant influence of different levels of dietary feed additives on feed intake or carcass traits. The lipid profile was improved through a reduction of total cholesterol and low-density lipoprotein (LDL) values and increasing high-density lipoprotein (HDL) values, as well as the immune response, which was improved through increasing values of complement 3, immunoglobulin M (IgM), and immunoglobulin G (IgG) in the birds treated with (D + S) compared to the control group. The inclusion of all levels of (D + S)/kg decreased triglyceride, while total protein, albumen, and globulin values (P<0.05 or P<0.01) were higher compared to other groups. The inclusion of the different levels of (D + S)/kg improved liver function, whereas aspartate aminotransferase (AST) and alanine aminotransferase (ALT) values were lower than in other groups (P<0.001). The lowest values of creatinine, urea, and uric acid were noted in birds fed a diet supplemented with 1.50 g (D + S)/kg. Antioxidant levels were improved through increasing values of catalase (CAT) and reduced glutathione (GSH) enzymes in the treated birds with (D + S) compared with the control chicks. Furthermore, digestive enzymes and microbial content were improved in broiler checks fed on diet supplemented with (D + S) compared to the control group. In conclusion, supplementing broiler chicks with a dietary D. salina and Spirulina combination increased their productive performance, immunity, kidney and liver function, lipid profile, and digestive enzymes.
Collapse
Affiliation(s)
- Mashail A Alghamdi
- Biology Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mahmoud I Elbaz
- Poultry Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Ismail E Ismail
- Poultry Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Fayiz M Reda
- Poultry Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Mahmoud Alagawany
- Poultry Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Khaled A El-Tarabily
- Department of Biology, College of Science, United Arab Emirates University, Al Ain 15551, United Arab Emirates.
| | - Asmaa Sayed Abdelgeliel
- Department of Botany and Microbiology, Faculty of Science, South Valley University, Qena 83523, Egypt
| |
Collapse
|
20
|
Homroy S, Chopra R, Singh PK, Dhiman A, Chand M, Talwar B. Role of encapsulation on the bioavailability of omega-3 fatty acids. Compr Rev Food Sci Food Saf 2024; 23:e13272. [PMID: 38284597 DOI: 10.1111/1541-4337.13272] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/21/2023] [Accepted: 10/29/2023] [Indexed: 01/30/2024]
Abstract
Omega-3 fatty acids (omega-3 FAs) have been widely recognized for their therapeutic advantages, including anti-inflammatory and cardioprotective properties. They have shown promise in enhancing regulatory function, promotingdevelopment and mitigating the progression of diabetes and cancer. The scientific communities, along with industries, are actively endorsing initiatives aimed at increasing the daily intake of lipids rich in omega-3 FAs. Nevertheless, incorporating polyunsaturated FAs (PUFAs) into food products poses several challenges due to their susceptibility to oxidation when exposed to oxygen, high temperatures, and moisture. This oxidative deterioration results in undesirable flavours and a loss of nutritional value. Various methods, including physical blending, interesterification, and encapsulation, have been utilized as ways to enhance the stability of edible oils rich in PUFA against oxidation. Encapsulation has emerged as a proven strategy for enhancing the oxidative stability and functional properties of omega-3 FA-rich oils. Multiple encapsulation methods have been developed to stabilize and improve the delivery of omega-3 FAs in food products. The selection of an appropriate encapsulation method depends on the desired application of the encapsulated oil. In addition, encapsulation enhances the bioavailability of omega-3 FAs by promoting increased absorption of the encapsulated form in the intestinal epithelium. This review discusses the techniques and principles of omega-3 FA-rich oil encapsulation and its role in improving stability and bioavailability. Furthermore, it also investigates the potential health benefits of these encapsulated oils. This review explores the variations in bioavailability based on encapsulation techniques and processing, offering vital insights for nutrition and product development.
Collapse
Affiliation(s)
- Snigdha Homroy
- Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship and Management, Kundli, Haryana, India
| | - Rajni Chopra
- Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship and Management, Kundli, Haryana, India
| | - Priyanka Kumari Singh
- Department of Food and Nutrition & Food Technology, Institute of Home Economics, University of Delhi, Delhi, India
| | - Aishwarya Dhiman
- Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship and Management, Kundli, Haryana, India
| | - Monika Chand
- Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship and Management, Kundli, Haryana, India
| | - Binanshu Talwar
- Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship and Management, Kundli, Haryana, India
| |
Collapse
|
21
|
Wang Y, Yang S, Liu J, Wang J, Xiao M, Liang Q, Ren X, Wang Y, Mou H, Sun H. Realization process of microalgal biorefinery: The optional approach toward carbon net-zero emission. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 901:165546. [PMID: 37454852 DOI: 10.1016/j.scitotenv.2023.165546] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/12/2023] [Accepted: 07/12/2023] [Indexed: 07/18/2023]
Abstract
Increasing carbon dioxide (CO2) emission has already become a dire threat to the human race and Earth's ecology. Microalgae are recommended to be engineered as CO2 fixers in biorefinery, which play crucial roles in responding climate change and accelerating the transition to a sustainable future. This review sorted through each segment of microalgal biorefinery to explore the potential for its practical implementation and commercialization, offering valuable insights into research trends and identifies challenges that needed to be addressed in the development process. Firstly, the known mechanisms of microalgal photosynthetic CO2 fixation and the approaches for strain improvement were summarized. The significance of process regulation for strengthening fixation efficiency and augmenting competitiveness was emphasized, with a specific focus on CO2 and light optimization strategies. Thereafter, the massive potential of microalgal refineries for various bioresource production was discussed in detail, and the integration with contaminant reclamation was mentioned for economic and ecological benefits. Subsequently, economic and environmental impacts of microalgal biorefinery were evaluated via life cycle assessment (LCA) and techno-economic analysis (TEA) to lit up commercial feasibility. Finally, the current obstacles and future perspectives were discussed objectively to offer an impartial reference for future researchers and investors.
Collapse
Affiliation(s)
- Yuxin Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Shufang Yang
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Jin Liu
- Laboratory for Algae Biotechnology and Innovation, College of Engineering, Peking University, Beijing 100871, China
| | - Jia Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Mengshi Xiao
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Qingping Liang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Xinmiao Ren
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Ying Wang
- Marine Science research Institute of Shandong Province, Qingdao 266003, China.
| | - Haijin Mou
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China.
| | - Han Sun
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
22
|
Lopes PA, Alfaia CM, Pestana JM, Prates JAM. Structured Lipids Engineering for Health: Novel Formulations Enriched in n-3 Long-Chain Polyunsaturated Fatty Acids with Potential Nutritional Benefits. Metabolites 2023; 13:1060. [PMID: 37887385 PMCID: PMC10608893 DOI: 10.3390/metabo13101060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 09/28/2023] [Accepted: 10/06/2023] [Indexed: 10/28/2023] Open
Abstract
Structured lipids (SLs) offer a promising avenue for designing novel formulations enriched in n-3 long-chain polyunsaturated fatty acids (LCPUFAs) with potential health benefits. Triacylglycerols (TAGs), the most common fats in the human diet, are both non-toxic and chemically stable. The metabolic efficiency and digestibility of TAGs are significantly influenced by the position of fatty acids (FAs) within the glycerol backbone, with FAs at the sn-2 position being readily absorbed. Over the past two decades, advancements in SL research have led to the development of modified TAGs, achieved either through chemical or enzymatic processes, resulting in SLs. The ideal structure of SLs involves medium-chain FAs at the sn-1,3 positions and long-chain n-3 LCPUFAs at the sn-2 position of the glycerol backbone, conferring specific physicochemical and nutritional attributes. These tailored SL formulations find wide-ranging applications in the food and nutraceutical industries, showing promise for dietary support in promoting health and mitigating various diseases. In particular, SLs can be harnessed as functional oils to augment TAG metabolism, thereby impeding the development of fatty liver, countering the onset of obesity, and preventing atherosclerosis and age-related chronic diseases. In scrutinising prevailing research trajectories, this review endeavours to provide an in-depth analysis of the multifaceted advantages and repercussions associated with the synthesis of SLs. It elucidates their burgeoning potential in enhancing health and well-being across a range of demographic cohorts. Specifically, the implications of SL utilisation are discussed in the context of healthcare environments and early childhood developmental support.
Collapse
Affiliation(s)
- Paula A. Lopes
- CIISA—Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Pólo Universitário do Alto da Ajuda, Universidade de Lisboa, Avenida da Universidade Técnica, 1300-477 Lisbon, Portugal; (C.M.A.); (J.M.P.); (J.A.M.P.)
- Laboratório Associado para Ciência Animal e Veterinária (AL4AnimalS), Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisbon, Portugal
| | - Cristina M. Alfaia
- CIISA—Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Pólo Universitário do Alto da Ajuda, Universidade de Lisboa, Avenida da Universidade Técnica, 1300-477 Lisbon, Portugal; (C.M.A.); (J.M.P.); (J.A.M.P.)
- Laboratório Associado para Ciência Animal e Veterinária (AL4AnimalS), Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisbon, Portugal
| | - José M. Pestana
- CIISA—Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Pólo Universitário do Alto da Ajuda, Universidade de Lisboa, Avenida da Universidade Técnica, 1300-477 Lisbon, Portugal; (C.M.A.); (J.M.P.); (J.A.M.P.)
- Laboratório Associado para Ciência Animal e Veterinária (AL4AnimalS), Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisbon, Portugal
| | - José A. M. Prates
- CIISA—Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Pólo Universitário do Alto da Ajuda, Universidade de Lisboa, Avenida da Universidade Técnica, 1300-477 Lisbon, Portugal; (C.M.A.); (J.M.P.); (J.A.M.P.)
- Laboratório Associado para Ciência Animal e Veterinária (AL4AnimalS), Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisbon, Portugal
| |
Collapse
|
23
|
Abbas N, Riaz S, Mazhar S, Essa R, Maryam M, Saleem Y, Syed Q, Perveen I, Bukhari B, Ashfaq S, Abidi SHI. Microbial production of docosahexaenoic acid (DHA): biosynthetic pathways, physical parameter optimization, and health benefits. Arch Microbiol 2023; 205:321. [PMID: 37642791 DOI: 10.1007/s00203-023-03666-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/06/2023] [Accepted: 08/18/2023] [Indexed: 08/31/2023]
Abstract
Omega-3 fatty acids, including docosahexaenoic acid (DHA), eicosapentaenoic acid (EPA), and α-linolenic acid (ALA), are essential polyunsaturated fatty acids with diverse health benefits. The limited conversion of dietary DHA necessitates its consumption as food supplements. Omega-3 fatty acids possess anti-arrhythmic and anti-inflammatory capabilities, contributing to cardiovascular health. Additionally, DHA consumption is linked to improved vision, brain, and memory development. Furthermore, omega-3 fatty acids offer protection against various health conditions, such as celiac disease, Alzheimer's, hypertension, thrombosis, heart diseases, depression, diabetes, and certain cancers. Fish oil from pelagic cold-water fish remains the primary source of omega-3 fatty acids, but the global population burden creates a demand-supply gap. Thus, researchers have explored alternative sources, including microbial systems, for omega-3 production. Microbial sources, particularly oleaginous actinomycetes, microalgae like Nannochloropsis and among microbial systems, Thraustochytrids stand out as they can store up to 50% of their dry weight in lipids. The microbial production of omega-3 fatty acids is a potential solution to meet the global demand, as these microorganisms can utilize various carbon sources, including organic waste. The biosynthesis of omega-3 fatty acids involves both aerobic and anaerobic pathways, with bacterial polyketide and PKS-like PUFA synthase as essential enzymatic complexes. Optimization of physicochemical parameters, such as carbon and nitrogen sources, pH, temperature, and salinity, plays a crucial role in maximizing DHA production in microbial systems. Overall, microbial sources hold significant promise in meeting the global demand for omega-3 fatty acids, offering an efficient and sustainable solution for enhancing human health.
Collapse
Affiliation(s)
- Naaz Abbas
- Pakistan Council of Scientific and Industrial Research (PCSIR) Laboratories Complex Ferozepur Road, Lahore, Pakistan
| | - Sana Riaz
- Pakistan Council of Scientific and Industrial Research (PCSIR) Laboratories Complex Ferozepur Road, Lahore, Pakistan.
| | - Sania Mazhar
- Pakistan Council of Scientific and Industrial Research (PCSIR) Laboratories Complex Ferozepur Road, Lahore, Pakistan
| | - Ramsha Essa
- Pakistan Council of Scientific and Industrial Research (PCSIR) Laboratories Complex Ferozepur Road, Lahore, Pakistan
| | - Maria Maryam
- Pakistan Council of Scientific and Industrial Research (PCSIR) Laboratories Complex Ferozepur Road, Lahore, Pakistan
| | - Yasar Saleem
- Pakistan Council of Scientific and Industrial Research (PCSIR) Laboratories Complex Ferozepur Road, Lahore, Pakistan
| | - Quratulain Syed
- Pakistan Council of Scientific and Industrial Research (PCSIR) Laboratories Complex Ferozepur Road, Lahore, Pakistan
| | - Ishrat Perveen
- Pakistan Council of Scientific and Industrial Research (PCSIR) Laboratories Complex Ferozepur Road, Lahore, Pakistan
| | - Bakhtawar Bukhari
- Pakistan Council of Scientific and Industrial Research (PCSIR) Laboratories Complex Ferozepur Road, Lahore, Pakistan
| | - Saira Ashfaq
- Pakistan Council of Scientific and Industrial Research (PCSIR) Laboratories Complex Ferozepur Road, Lahore, Pakistan
| | - Syed Hussain Imam Abidi
- Pakistan Council of Scientific and Industrial Research (PCSIR) Laboratories Complex Ferozepur Road, Lahore, Pakistan
| |
Collapse
|
24
|
Chen ZL, Yang LH, He SJ, Du YH, Guo DS. Development of a green fermentation strategy with resource cycle for the docosahexaenoic acid production by Schizochytrium sp. BIORESOURCE TECHNOLOGY 2023:129434. [PMID: 37399951 DOI: 10.1016/j.biortech.2023.129434] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/28/2023] [Accepted: 06/29/2023] [Indexed: 07/05/2023]
Abstract
The fermentation production of docosahexaenoic acid (DHA) is an industrial process with huge consumption of freshwater resource and nutrient, such as carbon sources and nitrogen sources. In this study, seawater and fermentation wastewater were introduced into the fermentation production of DHA, which could solve the problem of fermentation industry competing with humans for freshwater. In addition, a green fermentation strategy with pH control using waste ammonia, NaOH and citric acid as well as FW recycling was proposed. It could provide a stable external environment for cell growth and lipid synthesis while alleviating the dependence on organic nitrogen sources of Schizochytrium sp. It was proved that this strategy has good industrialization potential for DHA production, and the biomass, lipid and DHA yield reached to 195.8 g/L, 74.4 g/L and 46.4 g/L in 50 L bioreactor, respectively. This study provides a green and economic bioprocess technology for DHA production by Schizochytrium sp.
Collapse
Affiliation(s)
- Zi-Lei Chen
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, No. 1 Wenyuan Road, Nanjing 210023, People's Republic of China
| | - Lin-Hui Yang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, No. 1 Wenyuan Road, Nanjing 210023, People's Republic of China
| | - Shao-Jie He
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, No. 1 Wenyuan Road, Nanjing 210023, People's Republic of China
| | - Yuan-Hang Du
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, No. 1 Wenyuan Road, Nanjing 210023, People's Republic of China
| | - Dong-Sheng Guo
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, No. 1 Wenyuan Road, Nanjing 210023, People's Republic of China.
| |
Collapse
|
25
|
Kumari A, Pabbi S, Tyagi A. Recent advances in enhancing the production of long chain omega-3 fatty acids in microalgae. Crit Rev Food Sci Nutr 2023; 64:10564-10582. [PMID: 37357914 DOI: 10.1080/10408398.2023.2226720] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2023]
Abstract
Omega-3 fatty acids have gained attention due to numerous health benefits. Eicosapentaenoic (EPA) and docosahexaenoic acid (DHA) are long chain omega-3 fatty acids produced from precursor ALA (α-linolenic acid) in humans but their rate of biosynthesis is low, therefore, these must be present in diet or should be taken as supplements. The commercial sources of omega-3 fatty acids are limited to vegetable oils and marine sources. The rising concern about vegan source, fish aquaculture conservation and heavy metal contamination in fish has led to the search for their alternative source. Microalgae have gained importance due to the production of high-value EPA and DHA and can thus serve as a sustainable and promising source of long chain omega-3 fatty acids. Although the bottleneck lies in the optimization for enhanced production that involves strategies viz. strain selection, optimization of cultivation conditions, media, metabolic and genetic engineering approaches; while co-cultivation, use of nanoparticles and strategic blending have emerged as innovative approaches that have made microalgae as potential candidates for EPA and DHA production. This review highlights the possible strategies for the enhancement of EPA and DHA production in microalgae. This will pave the way for their large-scale production for human health benefits.
Collapse
Affiliation(s)
- Arti Kumari
- Division of Biochemistry, ICAR - Indian Agricultural Research Institute, New Delhi, India
| | - Sunil Pabbi
- Division of Microbiology, ICAR - Indian Agricultural Research Institute, New Delhi, India
| | - Aruna Tyagi
- Division of Biochemistry, ICAR - Indian Agricultural Research Institute, New Delhi, India
| |
Collapse
|
26
|
Leonard M, Maury J, Dickerson B, Gonzalez DE, Kendra J, Jenkins V, Nottingham K, Yoo C, Xing D, Ko J, Pradelles R, Faries M, Kephart W, Sowinski R, Rasmussen CJ, Kreider RB. Effects of Dietary Supplementation of a Microalgae Extract Containing Fucoxanthin Combined with Guarana on Cognitive Function and Gaming Performance. Nutrients 2023; 15:nu15081918. [PMID: 37111136 PMCID: PMC10142384 DOI: 10.3390/nu15081918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/10/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
BACKGROUND Esports competitive gaming requires selective visual attention, memory, quick judgment, and an ability to sustain psychomotor performance over time. Fucoxanthin is a carotenoid, found in specific microalgae varieties such as Phaeodactylum tricornutum (PT), that has been purported to possess nootropic and neuroprotective effects through its anti-inflammatory and antioxidant properties. This study evaluated whether acute and 30-day supplementation of an extract of PT from microalgae combined with guarana (a natural source of caffeine) affects cognitive function in gamers. MATERIALS AND METHODS In a double-blind, placebo-controlled manner, 61 experienced gamers (21.7 ± 4.1 years, 73 ± 13 kg) were randomly assigned to ingest a placebo (PL), a low-dose (LD) supplement containing 440 mg of PT extract including 1% fucoxanthin +500 mg of guarana containing 40-44 mg caffeine (MicroPhyt™, Microphyt, Baillargues, FR), or a high-dose (HD) supplement containing 880 mg of PT extract +500 mg of guarana for 30 days. At baseline, cognitive function tests were administered before supplementation, 15 min post-supplementation, and after 60 min of competitive gameplay with participants' most played video game. Participants continued supplementation for 30 days and then repeated pre-supplementation and post-gaming cognitive function tests. General linear model univariate analyses with repeated measures and changes from baseline with 95% confidence intervals were used to analyze data. RESULTS There was some evidence that acute and 30-day ingestion of the PT extract from microalgae with guarana improved reaction times, reasoning, learning, executive control, attention shifting (cognitive flexibility), and impulsiveness. While some effects were seen after acute ingestion, the greatest impact appeared after 30 days of supplementation, with some benefits seen in the LD and HD groups. Moreover, there was evidence that both doses of the PT extract from microalgae with guarana may support mood state after acute and 30-day supplementation. Registered clinical trial #NCT04851899.
Collapse
Affiliation(s)
- Megan Leonard
- Exercise & Sport Nutrition Lab, Department of Kinesiology and Sports Management, Texas A&M University, College Station, TX 77843, USA
| | - Jonathan Maury
- Microphyt, Research & Development Department, 34670 Baillargues, France
| | - Broderick Dickerson
- Exercise & Sport Nutrition Lab, Department of Kinesiology and Sports Management, Texas A&M University, College Station, TX 77843, USA
| | - Drew E Gonzalez
- Exercise & Sport Nutrition Lab, Department of Kinesiology and Sports Management, Texas A&M University, College Station, TX 77843, USA
| | - Jacob Kendra
- Exercise & Sport Nutrition Lab, Department of Kinesiology and Sports Management, Texas A&M University, College Station, TX 77843, USA
| | - Victoria Jenkins
- Exercise & Sport Nutrition Lab, Department of Kinesiology and Sports Management, Texas A&M University, College Station, TX 77843, USA
| | - Kay Nottingham
- Exercise & Sport Nutrition Lab, Department of Kinesiology and Sports Management, Texas A&M University, College Station, TX 77843, USA
| | - Choongsung Yoo
- Exercise & Sport Nutrition Lab, Department of Kinesiology and Sports Management, Texas A&M University, College Station, TX 77843, USA
| | - Dante Xing
- Exercise & Sport Nutrition Lab, Department of Kinesiology and Sports Management, Texas A&M University, College Station, TX 77843, USA
| | - Joungbo Ko
- Exercise & Sport Nutrition Lab, Department of Kinesiology and Sports Management, Texas A&M University, College Station, TX 77843, USA
| | - Rémi Pradelles
- Microphyt, Research & Development Department, 34670 Baillargues, France
| | - Mark Faries
- Exercise & Sport Nutrition Lab, Department of Kinesiology and Sports Management, Texas A&M University, College Station, TX 77843, USA
- Texas A&M AgriLife Extension, Texas A&M University, College Station, TX 77843, USA
| | - Wesley Kephart
- Department of Kinesiology, University of Wisconsin, Whitewater, WI 53190, USA
| | - Ryan Sowinski
- Exercise & Sport Nutrition Lab, Department of Kinesiology and Sports Management, Texas A&M University, College Station, TX 77843, USA
| | - Christopher J Rasmussen
- Exercise & Sport Nutrition Lab, Department of Kinesiology and Sports Management, Texas A&M University, College Station, TX 77843, USA
| | - Richard B Kreider
- Exercise & Sport Nutrition Lab, Department of Kinesiology and Sports Management, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
27
|
Oleogels-Innovative Technological Solution for the Nutritional Improvement of Meat Products. Foods 2022; 12:foods12010131. [PMID: 36613347 PMCID: PMC9818335 DOI: 10.3390/foods12010131] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/12/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
Food products contain important quantities of fats, which include saturated and/or unsaturated fatty acids. Because of a proven relationship between saturated fat consumption and the appearance of several diseases, an actual trend is to eliminate them from foodstuffs by finding solutions for integrating other healthier fats with high stability and solid-like structure. Polyunsaturated vegetable oils are healthier for the human diet, but their liquid consistency can lead to a weak texture or oil drain if directly introduced into foods during technological processes. Lately, the use of oleogels that are obtained through the solidification of liquid oils by using edible oleogelators, showed encouraging results as fat replacers in several types of foods. In particular, for meat products, studies regarding successful oleogel integration in burgers, meat batters, pâtés, frankfurters, fermented and bologna sausages have been noted, in order to improve their nutritional profile and make them healthier by substituting for animal fats. The present review aims to summarize the newest trends regarding the use of oleogels in meat products. However, further research on the compatibility between different oil-oleogelator formulations and meat product components is needed, as it is extremely important to obtain appropriate compositions with adequate behavior under the processing conditions.
Collapse
|
28
|
Goveas LC, Nayak S, Vinayagam R, Loke Show P, Selvaraj R. Microalgal remediation and valorisation of polluted wastewaters for zero-carbon circular bioeconomy. BIORESOURCE TECHNOLOGY 2022; 365:128169. [PMID: 36283661 DOI: 10.1016/j.biortech.2022.128169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 10/15/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
Overexploitation of natural resources to meet human needs has considerably impacted CO2 emissions, contributing to global warming and severe climatic change. This review furnishes an understanding of the sources, brutality, and effects of CO2 emissions and compelling requirements for metamorphosis from a linear to a circular bioeconomy. A detailed emphasis on microalgae, its types, properties, and cultivation are explained with significance in attaining a zero-carbon circular bioeconomy. Microalgal treatment of a variety of wastewaters with the conversion of generated biomass into value-added products such as bio-energy and pharmaceuticals, along with agricultural products is elaborated. Challenges encountered in large-scale implementation of microalgal technologies for low-carbon circular bioeconomy are discussed along with solutions and future perceptions. Emphasis on the suitability of microalgae in wastewater treatment and its conversion into alternate low-carbon footprint bio-energies and value-added products enforcing a zero-carbon circular bioeconomy is the major focus of this review.
Collapse
Affiliation(s)
- Louella Concepta Goveas
- Nitte (Deemed to be University), NMAM Institute of Technology (NMAMIT), Department of Biotechnology Engineering, Nitte, Karnataka 574110, India
| | - Sneha Nayak
- Nitte (Deemed to be University), NMAM Institute of Technology (NMAMIT), Department of Biotechnology Engineering, Nitte, Karnataka 574110, India
| | - Ramesh Vinayagam
- Department of Chemical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Pau Loke Show
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500, Semenyih, Selangor Darul Ehsan, Malaysia; Zhejiang Provincial Key Laboratory for Subtropical Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325035, China; Department of Sustainable Engineering, Saveetha School of Engineering, SIMATS, Chennai 602105, India
| | - Raja Selvaraj
- Department of Chemical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India.
| |
Collapse
|