1
|
Jin S, Xiao C, Lu H, Deng X. Effects of extrusion temperature on structure and physicochemical properties of proso millet starch. Int J Biol Macromol 2025; 299:140011. [PMID: 39828172 DOI: 10.1016/j.ijbiomac.2025.140011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 12/12/2024] [Accepted: 01/16/2025] [Indexed: 01/22/2025]
Abstract
Due to its thermal stability, and high viscosity, proso millet starch has limited practical applications. Extrusion can alter the functional properties of starch by pre-gelatinization, but the specific effects of extrusion temperature on starch behavior are not clear. In this study, proso millet starch was modified using extrusion at varying temperatures (70 °C, 90 °C, 110 °C), and its structure as well as physicochemical properties were evaluated. As the extrusion temperature increased, the starch granules were gelatinized, and the particle size increased significantly. The relative crystallinity of extruded starch decreased and the short-range order was enhanced notably, but the starch still exhibited an A-type structure. Starch chains degraded, migrated, and aggregated, showing an increase in the double helix content, but there was no difference in the single helix structure with temperature. With the increase of extrusion temperature, the amorphous layer of extruded starch thickened. Moreover, the peak viscosity, breakdown viscosity and setback viscosity initially increased and then decreased, the peak temperature and enthalpy change increased. The water absorption index, water solubility and swelling power significantly decreased with increasing temperatures. The freeze-thaw stability and transparency of extruded starch decreased, and showed a downward trend with prolonged time. The above results indicate that extrusion treatment effectively modifies the thermal stability and viscosity of proso millet starch, laying a foundation for applying it different industrial applications.
Collapse
Affiliation(s)
- Shuxiu Jin
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, PR China
| | - Chunxia Xiao
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, PR China.
| | - Hao Lu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, PR China.
| | - Xiaoqi Deng
- Chongqing City Management College, Chongqing 401331, PR China
| |
Collapse
|
2
|
Valsalan A, Swaminathan I, Kadam A, Koksel F, Malalgoda M. Enhancing the breadmaking quality of ancient grains through synergistic emulsifier treatment and extrusion processing. J Food Sci 2025; 90:e70206. [PMID: 40260780 PMCID: PMC12012863 DOI: 10.1111/1750-3841.70206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 03/06/2025] [Accepted: 03/26/2025] [Indexed: 04/24/2025]
Abstract
The objective of this study was to improve the overall breadmaking characteristics of ancient wheat species through emulsifier treatment, extrusion processing, and by the synergistic effect of these two approaches. Ancient wheat flours were treated with four emulsifiers-distilled monoglycerides (DMG), diacetyl tartaric acid ester of monoglycerides (DATEM), sodium stearoyl lactylate (SSL), and defatted soy lecithin-at three different concentrations. Extrusion was conducted at three different screw speeds (100, 150, and 200 rpm) with a constant moisture content of 30%. Following these different treatments, pasting, mixing, and thermal properties of the flour samples were examined. Concomitantly, whole grain breadmaking was conducted by combining the treated flours with base flour. SSL at 0.45% increased pasting viscosities and enhanced dough handling properties in einkorn and spelt flour samples. Extrusion, in general, significantly (p < 0.05) increased water absorption value by inducing starch damage. Extrusion impacted the dough stability and dough development time negatively with increasing intensity. The increase in extrusion intensity also negatively affected the pasting parameters of extruded flour by complete gelatinization and loss of crystallinity. The water absorption value of extrudate-added bread dough increased significantly (p < 0.05). However, emulsifier treatment or extrudate-added flour did not improve breadmaking attributes of emmer bread. The overall volumes of emulsifier-treated (50%) einkorn and emmer breads were higher than that of base flour bread. Overall, our findings indicated that optimizing the combination of emulsifier treatment and extrusion can potentially improve dough handling and breadmaking properties of ancient wheat species.
Collapse
Affiliation(s)
- Anashwar Valsalan
- Department of Food and Human Nutritional SciencesUniversity of ManitobaWinnipegManitobaCanada
| | - Indhurathna Swaminathan
- Department of Food and Human Nutritional SciencesUniversity of ManitobaWinnipegManitobaCanada
| | - Aayushi Kadam
- Department of Food and Human Nutritional SciencesUniversity of ManitobaWinnipegManitobaCanada
| | - Filiz Koksel
- Department of Food and Human Nutritional SciencesUniversity of ManitobaWinnipegManitobaCanada
| | - Maneka Malalgoda
- Department of Food and Human Nutritional SciencesUniversity of ManitobaWinnipegManitobaCanada
| |
Collapse
|
3
|
Leiva-Castro B, Mamani-Benavente L, Elías-Peñafiel C, Comettant-Rabanal R, Silva-Paz R, Olivera-Montenegro L, Paredes-Concepción P. Andean Pseudocereal Flakes with Added Pea Protein Isolate and Banana Flour: Evaluation of Physical-Chemical, Microstructural, and Sensory Properties. Foods 2025; 14:620. [PMID: 40002068 PMCID: PMC11854138 DOI: 10.3390/foods14040620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/14/2024] [Accepted: 11/20/2024] [Indexed: 02/27/2025] Open
Abstract
In order to obtain a highly nutritious extrudate, a combination of pseudocereals, vegetable protein, and banana flour, a fruit with high sensory acceptability, was used. The objective of the research was to produce a multi-component extrudate (ME) based on cañihua and quinoa with the addition of pea protein isolate and banana flour. The response variables evaluated were composition, expansion, hydration, colour, and hardness properties, as well as the microscopy and sensory characteristics of the flakes produced. These flakes were compared with three commercial extrudates, commercial quinoa-based extrudate (QE), commercial corn-based extrudate (CE), and commercial wheat-based extrudate (WE), which had similar characteristics. The ME showed a higher protein content compared to commercial extrudates (13.60%), and it had significant amounts of lipids, fibre, and ash. The expansion of the ME was like commercial quinoa but significantly lower than the CE and the WE in terms of expansion (p < 0.05). Regarding the absorption and solubility indices of the ME, these indicated that it had lower starch fragmentation compared to the commercial CE and WE. In addition, the instrumental hardness of the ME was higher than the commercial ones due to the complex nature of the product. Through scanning electron microscopy (SEM), it was observed that the ME showed some remaining extrusion-resistant starch granules from quinoa and cañihua with the presence of protein bodies. Finally, the flash profile described the ME as having a pronounced flavour, higher hardness, and lower sweetness, and the free sorting task allowed it to be differentiated from commercial extrudates based on its natural appearance and chocolate flavour.
Collapse
Affiliation(s)
- Briggith Leiva-Castro
- Grupo de Investigación en Bioprocesos y Conversión de la Biomasa, Carrera de Ingeniería Agroindustrial y Agronegocios, Facultad de Ingeniería, Universidad San Ignacio de Loyola, Lima 15024, Peru; (B.L.-C.); (L.M.-B.); (L.O.-M.)
| | - Liliana Mamani-Benavente
- Grupo de Investigación en Bioprocesos y Conversión de la Biomasa, Carrera de Ingeniería Agroindustrial y Agronegocios, Facultad de Ingeniería, Universidad San Ignacio de Loyola, Lima 15024, Peru; (B.L.-C.); (L.M.-B.); (L.O.-M.)
| | - Carlos Elías-Peñafiel
- Departamento de Tecnología de Alimentos, Facultad de Industrias Alimentarias, Universidad Nacional Agraria La Molina, Av. La Molina s/n Lima 12, Lima 15024, Peru;
| | - Raúl Comettant-Rabanal
- Escuela Profesional de Ingeniería Agroindustrial, Grupo de Investigación en Ciencia, Tecnología e Ingeniería de Alimentos y Procesos (CTIAP), Facultad de Ingenierías, Universidad Privada San Juan Bautista, Carretera Panamericana Sur Ex km 300, Ica 11004, Peru;
| | - Reynaldo Silva-Paz
- Escuela Profesional de Ingeniería de Industrias Alimentarias, Departamento de Ingeniería, Universidad Nacional de Barranca, Barranca 15169, Peru;
| | - Luis Olivera-Montenegro
- Grupo de Investigación en Bioprocesos y Conversión de la Biomasa, Carrera de Ingeniería Agroindustrial y Agronegocios, Facultad de Ingeniería, Universidad San Ignacio de Loyola, Lima 15024, Peru; (B.L.-C.); (L.M.-B.); (L.O.-M.)
| | - Perla Paredes-Concepción
- Grupo de Investigación en Bioprocesos y Conversión de la Biomasa, Carrera de Ingeniería Agroindustrial y Agronegocios, Facultad de Ingeniería, Universidad San Ignacio de Loyola, Lima 15024, Peru; (B.L.-C.); (L.M.-B.); (L.O.-M.)
| |
Collapse
|
4
|
Martín-Diana AB, Jiménez-Pulido IJ, Aguiló-Aguayo I, Abadías M, Pérez-Jiménez J, Rico D. Peach Peel Extrusion for the Development of Sustainable Gluten-Free Plant-Based Flours. Molecules 2025; 30:573. [PMID: 39942677 PMCID: PMC11819671 DOI: 10.3390/molecules30030573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 01/20/2025] [Accepted: 01/23/2025] [Indexed: 02/16/2025] Open
Abstract
The food industry generates substantial waste, contributing to environmental challenges, such as pollution and greenhouse gas emissions. Utilizing by-products, particularly fruit peels that are rich in fiber, antioxidants, and vitamins, presents a sustainable approach to reducing waste, while enhancing the nutritional value of food products. Specifically, peach peel can be used to produce gluten-free flours, with increased fiber content and antioxidant properties. Extrusion technology is a highly effective method for developing these functional flours, as it improves digestibility, reduces anti-nutrients, and enhances nutrient bioavailability. This study investigates the potential of combining corn flour with peach peel flour, derived from Royal Summer peachs (RSF), at different concentrations (0%, 5%, and 15%). A factorial experimental design was utilized to evaluate the impact of RSF incorporation on the proximate composition, antioxidant capacity, and functional properties of the flour. The results indicate that flours containing 15% RSF demonstrated significant improvements in terms of the dietary fiber content (5.90 g per 100 g-1) and antioxidant capacity (ABTS•+ 745.33 µmol TE per 100 g-1), meeting the "source of fiber" labelling requirements. The glycemic index of the 15% RSF flour was reduced to 78.09 compared to non-enriched flours. The functional properties of the flour, such as swelling and gelation capacities, were also enhanced with RSF incorporation. These findings highlight the potential of RSF-enriched flours in regard to the development of sustainable, health-promoting, plant-based, and gluten-free flours.
Collapse
Affiliation(s)
- Ana Belen Martín-Diana
- Agrarian Technological Institute of Castilla and Leon (ITACyL), Ctra. Burgos Km 119, Finca Zamadueñas, 47071 Valladolid, Spain;
| | - Iván Jesús Jiménez-Pulido
- Agrarian Technological Institute of Castilla and Leon (ITACyL), Ctra. Burgos Km 119, Finca Zamadueñas, 47071 Valladolid, Spain;
| | | | - Maribel Abadías
- IRTA, Postharvest, Fruitcentre, 25003 Lleida, Spain; (I.A.-A.); (M.A.)
| | - Jara Pérez-Jiménez
- Department of Metabolism and Nutrition, Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), Jose Antonio Novais 10, 28040 Madrid, Spain;
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - Daniel Rico
- Endocrinology and Clinical Nutrition Research Center (CIENC/IENVA), Faculty of Medicine, University of Valladolid, Av. Ramón y Cajal, 7, 47005 Valladolid, Spain
| |
Collapse
|
5
|
Awaeloh N, Limsuwan S, Na-Phatthalung P, Kaewmanee T, Chusri S. Novel Development and Sensory Evaluation of Extruded Snacks from Unripe Banana (Musa ABB cv. Kluai 'Namwa') and Rice Flour Enriched with Antioxidant-Rich Curcuma longa Microcapsules. Foods 2025; 14:205. [PMID: 39856872 PMCID: PMC11764956 DOI: 10.3390/foods14020205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/06/2024] [Accepted: 12/25/2024] [Indexed: 01/27/2025] Open
Abstract
With the growing consumer demand for natural functional ingredients that promote health and well-being while preventing age-related diseases, this study aimed to develop extruded snacks enriched with Curcuma longa (turmeric) microcapsules, recognized for their significant antioxidant properties. Unripe banana flour (Musa ABB cv. Kluai 'Namwa') and rice (Oryza sativa) flour were employed as a gluten-free base to create this novel extruded snack. Curcuma longa extract microcapsules were prepared using a spray-drying technique with varying core-to-wall ratios. Antioxidant capacities were assessed through DPPH, ABTS, superoxide radical scavenging, metal chelating, and ferric-reducing assays. The CM6 microcapsules, prepared at 140 °C with a 1:10 core-to-wall ratio, exhibited potent antioxidant activity, with 58.93 ± 3.31% inhibition for DPPH radicals, 87.58 ± 1.33% for ABTS, and 78.41 ± 1.40% for superoxide radicals. Snacks enriched with 0.25% CM6 microcapsules received high consumer acceptance, with an average liking score of 7.5 out of 9. These findings suggest that snacks made with these gluten-free flours and Curcuma longa microcapsules could be novel, convenient, and appealing functional food products that offer an attractive way to deliver antioxidant benefits with high consumer acceptance. Further research on evaluating the active constituents in the snack, its long-term health benefits, and shelf-life stability is recommended for commercialization.
Collapse
Affiliation(s)
- Nurulhusna Awaeloh
- Biomedical Technology Research Group for Vulnerable Populations and School of Health Science, Mae Fah Luang University, Muang, Chiang Rai 57100, Thailand;
| | - Surasak Limsuwan
- Traditional Thai Medical Research and Innovation Center, Faculty of Traditional Thai Medicine, Prince of Songkla University, Hat Yai 90110, Thailand;
| | - Pinanong Na-Phatthalung
- Division of Hematology and Oncology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
| | - Thammarat Kaewmanee
- Department of Food Science and Nutrition, Faculty of Science and Technology, Prince of Songkla University, Muang, Pattani 94000, Thailand
| | - Sasitorn Chusri
- Biomedical Technology Research Group for Vulnerable Populations and School of Health Science, Mae Fah Luang University, Muang, Chiang Rai 57100, Thailand;
| |
Collapse
|
6
|
Liu F, Wan H, Fan H, Zhang Z, Dai H, He H. Complexation of starch and konjac glucomannan during screw extrusion exhibits obesity-reducing effects by modulating the intestinal microbiome and its metabolites. Food Funct 2025; 16:232-248. [PMID: 39651929 DOI: 10.1039/d4fo04275a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Dietary interventions have been shown to improve gut health by altering the gut flora, preventing obesity, and mitigating inflammatory disorders. This study investigated the benefits of a rice starch-konjac glucomannan (ERS-KGM) complex, produced via screw extrusion, for gut health and obesity prevention. Analyzed through in vitro starch digestion, scanning electron microscopy, and structural analysis, the ERS-KGM complex exhibited a notable increase in resistant starch content due to its well-ordered structure. When administered to mice on a high-fat diet for 8 weeks, the ERS-KGM complex significantly reduced body weight, white adipose tissue mass, adipocyte size, and food intake while increasing water consumption. It also improved glucose metabolism, insulin sensitivity, and lipid profiles by lowering serum triglycerides and total glycerol content. Enhanced metabolic biomarkers and enzyme activities were observed, specifically involving glycerophospholipid metabolism. It decreased the activities of aldehyde dehydrogenase, lactate dehydrogenase, and amino acid transaminase while increasing antioxidant enzymes like glutathione peroxidase and superoxide dismutase. Additionally, it elevated glycogen and positively altered gut microbiota by enriching Firmicutes, Desulfobacterota, and Bifidobacterium. This change enhanced the ability to degrade specific compounds and elevated the concentrations of short-chain fatty acids in feces. These findings suggest that the ERS-KGM complex could serve as a dietary supplement for obesity prevention.
Collapse
Affiliation(s)
- Fanrui Liu
- Heinz Mehlhorn Academician Workstation, Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Public Health, Hainan Medical University, Haikou 571199, Hainan Province, China
| | - Hao Wan
- Department of Laboratory, Qianjiang City Center Hospital, Qianjiang 433100, Hubei Province, China
| | - Honghao Fan
- NJUST-YX Artificial Intelligence Biomedical Technology Innovation Center, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu Province, China.
| | - Zhihong Zhang
- Heinz Mehlhorn Academician Workstation, Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Public Health, Hainan Medical University, Haikou 571199, Hainan Province, China
| | - Hua Dai
- Heinz Mehlhorn Academician Workstation, Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Public Health, Hainan Medical University, Haikou 571199, Hainan Province, China
| | - Hai He
- Heinz Mehlhorn Academician Workstation, Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Public Health, Hainan Medical University, Haikou 571199, Hainan Province, China
- Department of Endocrinology and Metabolism, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), Foshan 528300, Guangdong Province, China.
| |
Collapse
|
7
|
Shi M, Chen S, Liu Z, Ji X, Yan Y. Effects of soy protein isolate hydrolysate on the structural and functional properties of yam starch during extrusion. Int J Biol Macromol 2025; 287:138551. [PMID: 39662562 DOI: 10.1016/j.ijbiomac.2024.138551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 11/26/2024] [Accepted: 12/06/2024] [Indexed: 12/13/2024]
Abstract
This study investigated the interaction between yam starch (YS) and soy protein isolate hydrolysate (SPH), and their effects on in vitro digestibility of starch through extrusion treatment. Results indicated that SPH with 6 % hydrolysis degree had the lowest relative molecular mass. X-ray diffraction and Raman spectroscopy revealed an increase in the relative crystallinity of extruded yam starch (EYS) from 17.45 % to 22.45 % and a decrease in the half-peak width at 480 cm-1. Its short-range ordering improved with increased SPH addition. Differential scanning calorimetry results demonstrated that SPH enhanced the thermal properties of EYS. Additionally, the solubility, peak viscosity, and setback viscosity of EYS decreased with an increase in the SPH content. Particle size analysis revealed that SPH addition decreased the particle size of EYS. Scanning electron microscopy and confocal laser scanning microscopy showed that the surface of EYS roughened and SPH molecules attached to the surface. In vitro digestion results indicated that SPH hindered the contact between EYS molecules and digestive enzymes and increased the resistant starch content of EYS from 8.31 % to 23.39 %. This study presents a new method for modification of starch using protein hydrolysates during extrusion.
Collapse
Affiliation(s)
- Miaomiao Shi
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, PR China; National & Local Joint Engineering Research Center of Cereal-Based Foods (Henan), Zhengzhou 450001, PR China.
| | - Shanghai Chen
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, PR China
| | - Ziyang Liu
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, PR China
| | - Xiaolong Ji
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, PR China
| | - Yizhe Yan
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, PR China; National & Local Joint Engineering Research Center of Cereal-Based Foods (Henan), Zhengzhou 450001, PR China.
| |
Collapse
|
8
|
Yang Y, Fu J, Duan Q, Xie H, Dong X, Yu L. Strategies and Methodologies for Improving Toughness of Starch Films. Foods 2024; 13:4036. [PMID: 39766978 PMCID: PMC11728288 DOI: 10.3390/foods13244036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/05/2024] [Accepted: 12/05/2024] [Indexed: 01/15/2025] Open
Abstract
Starch films have attracted increasing attention due to their biodegradability, edibility, and potential use as animal feed from post-products. Applications of starch-based films include food packaging, coating, and medicine capsules. However, a major drawback of starch-based films is their brittleness, particularly under dry conditions, caused by starch retrogradation and the instability of plasticizers. To address this challenge, various strategies and methodologies have been developed, including plasticization, chemical modification, and physical reinforcement. This review covers fundamental aspects, such as the microstructures, phase transitions, and compatibility of starch, as well as application-oriented techniques, including processing methods, plasticizer selection, and chemical modifications. Plasticizers play a crucial role in developing starch-based materials, as they mitigate brittleness and improve processability. Given the abundance of hydroxyl groups in starch, the plasticizers used must also contain hydroxyl or polar groups for compatibility. Chemical modification, such as esterification and etherification, effectively prevents starch recrystallization. Reinforcements, particularly with nanocellulose, significantly improved the mechanical properties of starch film. Drawing upon both the literature and our expertise, this review not only summarizes the advancements in this field but also identifies the limitations of current technologies and outlines promising research directions for future development.
Collapse
Affiliation(s)
- Yiwen Yang
- Institute of Chemistry, Henan Academy of Sciences, Zhengzhou 450002, China; (Y.Y.); (J.F.); (H.X.); (X.D.)
| | - Jun Fu
- Institute of Chemistry, Henan Academy of Sciences, Zhengzhou 450002, China; (Y.Y.); (J.F.); (H.X.); (X.D.)
- School of Material Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Qingfei Duan
- Institute of Chemistry, Henan Academy of Sciences, Zhengzhou 450002, China; (Y.Y.); (J.F.); (H.X.); (X.D.)
| | - Huifang Xie
- Institute of Chemistry, Henan Academy of Sciences, Zhengzhou 450002, China; (Y.Y.); (J.F.); (H.X.); (X.D.)
| | - Xinyi Dong
- Institute of Chemistry, Henan Academy of Sciences, Zhengzhou 450002, China; (Y.Y.); (J.F.); (H.X.); (X.D.)
| | - Long Yu
- Institute of Chemistry, Henan Academy of Sciences, Zhengzhou 450002, China; (Y.Y.); (J.F.); (H.X.); (X.D.)
- School of Material Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
9
|
Ma S, Zuo J, Chen B, Fu Z, Lin X, Wu J, Zheng B, Lu X. Structural, properties and digestion in vitro changes of starch subjected to high pressure homogenization: An update review. Int J Biol Macromol 2024; 282:137118. [PMID: 39489250 DOI: 10.1016/j.ijbiomac.2024.137118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 10/07/2024] [Accepted: 10/29/2024] [Indexed: 11/05/2024]
Abstract
High pressure homogenization (HPH) is considered as a promising method for improving the ideal metabolic reaction of starch-based foods in the body, but there is still no comprehensive understanding of the structure-property relationship of starch treated with HPH. This study reviews the advantages and limitations of HPH in starch-based foods processing in recent years. It also elaborates the bidirectional regulation of HPH on starch structure-property and its potential in improving nutritional quality, which includes the regular modification effects of HPH on the multi-scale structure, physicochemical properties, and digestion characteristics of starch. It was found that HPH could lead to the degradation of amylopectin, destruction of amorphous structure, and homogenization of fine particles, promoting gelatinization and ultimately endowing starch with good solubility and digestibility. Moreover, it could reorganize and reorder the internal starch chains, or cause the particles to disintegrate into an amorphous state, thereby enhancing the anti-digestibility of starch. The interaction of starch with different nutrients during the HPH process could be further investigated in future studies and explored with other techniques for structure-property modifications, which would help expand the development of personalized starch foods to meet growing consumer demands.
Collapse
Affiliation(s)
- Shuang Ma
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China; China-Ireland International Cooperation Centre for Food Material Science and Structure Design, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jiaxin Zuo
- Centre of Excellence in Agri-food Technologies, National Centre for Food Manufacturing, College of Health and Science, University of Lincoln, Holbeach, Spalding, UK
| | - Bingbing Chen
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhaoxia Fu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xu Lin
- College of Jinshan, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jiaqi Wu
- College of Jinshan, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Baodong Zheng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China; China-Ireland International Cooperation Centre for Food Material Science and Structure Design, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xu Lu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China; China-Ireland International Cooperation Centre for Food Material Science and Structure Design, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
10
|
Yan Y, Fang J, Zhu X, Ji X, Shi M, Niu B. Effect of extrusion using plasma-activated water on the structural, physicochemical, antioxidant and in vitro digestive properties of yam flour. Food Chem 2024; 460:140687. [PMID: 39106813 DOI: 10.1016/j.foodchem.2024.140687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 08/09/2024]
Abstract
The synergistic effects of plasma-activated water (PAW) and twin-screw extrusion (TSE) on the structural, physicochemical, antioxidant, and digestive properties of yam flour (YF) were studied. Compared to common TSE, PAW-TSE reduced the protein, starch, and polyphenol contents, swelling power, and gel property of YF, while PAW-TSE enhanced the flavonoid content, whiteness index, solubility, and antioxidant property of YF. Moreover, the results of structural characterization and differential scanning calorimetry indicated that the long-range or short-range ordering, and gelatinization enthalpy of starch in YF were reduced after PAW-TSE, while the structure ordering of proteins in YF increased. Furthermore, the in vitro digestibility results demonstrated a reduction in the rate of enzymatic hydrolysis, coupled with an increase in total contents of slowly digestible and resistant starch after PAW-TSE. It should be noted that TSE using PAW prepared by a longer plasma treatment resulted in a more significant improvement effect on YF.
Collapse
Affiliation(s)
- Yizhe Yan
- College of Food and Bioengineering, Zhengzhou R&D Center for High-Quality Innovation of Green Food (Green Premium Agricultural Products), Zhengzhou University of Light Industry, Zhengzhou 450001, PR China; National & Local Joint Engineering Research Center of Cereal-Based Foods (Henan), Zhengzhou 450001, PR China.
| | - Jiao Fang
- College of Food and Bioengineering, Zhengzhou R&D Center for High-Quality Innovation of Green Food (Green Premium Agricultural Products), Zhengzhou University of Light Industry, Zhengzhou 450001, PR China
| | - Xiaopei Zhu
- College of Food and Bioengineering, Zhengzhou R&D Center for High-Quality Innovation of Green Food (Green Premium Agricultural Products), Zhengzhou University of Light Industry, Zhengzhou 450001, PR China
| | - Xiaolong Ji
- College of Food and Bioengineering, Zhengzhou R&D Center for High-Quality Innovation of Green Food (Green Premium Agricultural Products), Zhengzhou University of Light Industry, Zhengzhou 450001, PR China
| | - Miaomiao Shi
- College of Food and Bioengineering, Zhengzhou R&D Center for High-Quality Innovation of Green Food (Green Premium Agricultural Products), Zhengzhou University of Light Industry, Zhengzhou 450001, PR China
| | - Bin Niu
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450000, PR China.
| |
Collapse
|
11
|
Jacuńska W, Biel W, Zych K. Evaluation of the Nutritional Value of Insect-Based Complete Pet Foods. APPLIED SCIENCES 2024; 14:10258. [DOI: 10.3390/app142210258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Since the legalization of insect protein in pet food, a variety of products incorporating this ingredient have emerged on the market. Although edible insects are acknowledged for high protein content, chitin can also elevate the quantity of indigestible carbohydrates. The objective of this study was to evaluate the nutritional adequacy of fourteen complete dog foods containing edible insects in accordance with the FEDIAF nutritional guidelines. Due to the use of insects as the predominant animal component in all diets, analyses of dietary fiber fractions were carried out to estimate the content of indigestible carbohydrates. The analyses included the assessment of chemical composition, calcium, and phosphorus levels and metabolizable energy. The findings were then compared with the data provided by the manufacturers. All diets were found to meet the minimum recommended levels from the FEDIAF nutritional guidelines for protein (18.0 g/100 g DM) and fat (5.5 g/100 g DM). However, discrepancies were noted between the label data and analysis results. The results for the dietary fiber fraction differed from the crude fiber content, which is consistent with the imprecision inherent to the crude fiber determination method. In one food, there was a discrepancy of up to 19.21 g between the NDF fraction and the crude fiber content. Calcium levels were inadequate in two foods, and furthermore, twelve foods exhibited an abnormal calcium/phosphorus ratio. These findings indicate that while edible insects can be a valuable protein source, their inclusion may lead to increased indigestible carbohydrates, potentially causing digestive issues and gastric discomfort in dogs.
Collapse
Affiliation(s)
- Weronika Jacuńska
- Department of Monogastric Animal Sciences, Division of Animal Nutrition and Food, West Pomeranian University of Technology in Szczecin, Klemensa Janickiego 29, 71-270 Szczecin, Poland
| | - Wioletta Biel
- Department of Monogastric Animal Sciences, Division of Animal Nutrition and Food, West Pomeranian University of Technology in Szczecin, Klemensa Janickiego 29, 71-270 Szczecin, Poland
| | - Krzysztof Zych
- Department of Monogastric Animal Sciences, Division of Animal Nutrition and Food, West Pomeranian University of Technology in Szczecin, Klemensa Janickiego 29, 71-270 Szczecin, Poland
| |
Collapse
|
12
|
Obadi M, Xu B. A review of the effects of physical processing techniques on the characteristics of legume starches and their application in low-glycemic index foods. Int J Biol Macromol 2024; 279:135124. [PMID: 39208910 DOI: 10.1016/j.ijbiomac.2024.135124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 08/06/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Physical processing techniques significantly influence the characteristics of legume starch, consequently affecting the potential applications of legume-based products. This review comprehensively examines the impact of various physical processing techniques on legume starch properties, including structure, granule morphology, gelatinization, pasting properties, solubility, and in vitro digestibility. Furthermore, it evaluates the implications of these processing methods for utilizing legumes in developing low-glycemic index (GI) foods. Notably, certain physical processing methods, such as heat-moisture treatment, ultrahigh-pressure processing, dry heat treatment, and gamma irradiation, under specific conditions, enhance the resistant starch or slowly digestible starch fractions in legume starches. This enhancement is particularly advantageous for producing low-GI foods. Conversely, techniques like annealing, extrusion, ultrasound, and germination increase starch digestibility, which is less favorable for low-GI food applications. This review also provides an up-to-date overview of the use of diverse preprocessed legume products in low-GI food production. The novelty of this review lies in its detailed comparative analysis of physical processing methods and their specific effects on legume starch digestibility, which has not been extensively covered in existing literature. The comprehensive insights presented herein will benefit the legume industry by informing effective strategies for converting legume starch into valuable low-GI products.
Collapse
Affiliation(s)
- Mohammed Obadi
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
| | - Bin Xu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
| |
Collapse
|
13
|
Wen L, Liu H, Zheng Y, Ou Y, Guo Z, Zeng H, Zheng B. Dietary fiber-rich Lentinula edodes stems influence the structure and in vitro digestibility of low-moisture extruded maize starches. Int J Biol Macromol 2024; 279:135115. [PMID: 39197607 DOI: 10.1016/j.ijbiomac.2024.135115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 08/18/2024] [Accepted: 08/26/2024] [Indexed: 09/01/2024]
Abstract
Low-moisture extrusion (LME) can be used to improve the utilization of dietary fiber-rich Lentinula edodes stems (LES). The incorporation of dietary fiber can affect heat-induced interactions of starch molecules, which are critical for modifying starch characteristics via LME. In this work, a blend of LES and maize starch was extruded into a product at low moisture (30 %, w/v). The structure, physicochemical properties, and in vitro digestibility of extruded maize starches were investigated at different LES levels. The results showed that low levels (<7 %) of LES increased the crystallinity of LME-produced starch, while high levels (>7 %) did not. Because of the LES's soluble to insoluble dietary fiber ratios, the increased crystallinity of LES-added starch led to greater molecular ordering and the formation of an elastic gel after LME. At a suitable LES level (~3 %), highly crystallized starches were resistant to enzymolysis and had a high proportion of resistant starch. The obtained findings would contribute to a better understanding of how dietary fiber-rich LES affects starch extrusion and provide an alternative use for boosting the value of LES by-products.
Collapse
Affiliation(s)
- Lihua Wen
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Integrated Scientific Research Base of Edible Fungi Processing and Comprehensive Utilization Technology, Ministry of Agriculture and Rural Affairs, Fuzhou 350002, China
| | - Huifang Liu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Integrated Scientific Research Base of Edible Fungi Processing and Comprehensive Utilization Technology, Ministry of Agriculture and Rural Affairs, Fuzhou 350002, China
| | - Yixin Zheng
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yujia Ou
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Integrated Scientific Research Base of Edible Fungi Processing and Comprehensive Utilization Technology, Ministry of Agriculture and Rural Affairs, Fuzhou 350002, China
| | - Zebin Guo
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Integrated Scientific Research Base of Edible Fungi Processing and Comprehensive Utilization Technology, Ministry of Agriculture and Rural Affairs, Fuzhou 350002, China
| | - Hongliang Zeng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Integrated Scientific Research Base of Edible Fungi Processing and Comprehensive Utilization Technology, Ministry of Agriculture and Rural Affairs, Fuzhou 350002, China
| | - Baodong Zheng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Integrated Scientific Research Base of Edible Fungi Processing and Comprehensive Utilization Technology, Ministry of Agriculture and Rural Affairs, Fuzhou 350002, China.
| |
Collapse
|
14
|
Kiran M, Haq F, Ullah M, Ullah N, Chinnam S, Ashique S, Mishra N, Wani AW, Farid A. Starch-based bio-membrane for water purification, biomedical waste, and environmental remediation. Int J Biol Macromol 2024; 282:137033. [PMID: 39488302 DOI: 10.1016/j.ijbiomac.2024.137033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 10/12/2024] [Accepted: 10/27/2024] [Indexed: 11/04/2024]
Abstract
This review article explores the utilization of starch-based materials as smart materials for the removal of dyes and heavy metals from wastewater, highlighting their cost-effectiveness, biodegradability, and biocompatibility. It addresses the critical need for clean water, emphasizing the contamination caused by industrial activities, such as printing, textile, cosmetic, and leather tanning industries. Starch and its derivatives demonstrate significant potential in water purification technology, effectively removing toxicants through hydrogen bonding, electrostatic interactions, and complexation. The review also discusses the application of starch-based materials in the biomedical field, particularly as drug carriers. Starch-based microspheres, hydrogels, nano-spheres, and nano-composites exhibit sustained drug-release properties and are effective in transporting various drugs, including DOX, quercetin, 5-Fluorouracil, glycyrrhizic acid, paclitaxel, tetracycline hydrochloride, amoxicillin, ciprofloxacin, and moxifloxacin. These materials show good antimicrobial activity against a range of pathogens, including C. albicans, E. coli, S. aureus, C. neoformance, B. subtilis, A. niger, A. fumigatus, and A. terreus. While highlighting the significant achievements of starch-based materials, the review also discusses current limitations and areas for future development. Key weaknesses include the need for enhanced adsorption capacities and the challenge of scaling up production for industrial applications. The review concludes by identifying development directions, such as improving functionalization techniques and exploring new applications in water purification and drug delivery systems. This article aims to assist researchers in advancing the field of starch-based materials for environmental and biomedical applications.
Collapse
Affiliation(s)
- Mehwish Kiran
- Faculty of Agriculture, Gomal University, D. I. Khan 29050, Pakistan
| | - Fazal Haq
- Institute of Chemical Sciences, Gomal University, D.I. Khan 29050, Pakistan
| | - Midrar Ullah
- Department of Biotechnology, Shaheed Benazir Bhutto University, Sheringal, Dir Upper, Khyber Pakhtunkhwa, Pakistan
| | - Naveed Ullah
- Faculty of Agriculture, Gomal University, D. I. Khan 29050, Pakistan
| | - Sampath Chinnam
- Department of Chemistry, M.S. Ramaiah Institute of Technology (Affiliated to Visvesvaraya Technological University, Belgaum), Bengaluru, Karnataka 560054, India
| | - Sumel Ashique
- Department of Pharmaceutical Sciences, Bengal College of Pharmaceutical Sciences & Research, Durgapur 713212, West Bengal, India
| | - Neeraj Mishra
- Amity Institute of Pharmacy, Amity University, Gwalior, Madhya Pradesh 474005, India
| | - Ab Waheed Wani
- Department of Horticulture, Lovely Professional University, Punjab 144411, India
| | - Arshad Farid
- Gomal Center of Biochemistry and Biotechnology, Gomal University, D.I.Khan 29050, Pakistan.
| |
Collapse
|
15
|
Song P, Huang Y, Li J, Shan S, Zhou Z, Cao H, Zhao C. The influence of processing technologies on the biological activity of carbohydrates in food. Food Chem X 2024; 23:101590. [PMID: 39036475 PMCID: PMC11260335 DOI: 10.1016/j.fochx.2024.101590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 06/09/2024] [Accepted: 06/21/2024] [Indexed: 07/23/2024] Open
Abstract
Food processing transforms raw materials into different food forms using physical or chemical techniques. Recently, carbohydrates have gained attention for their diverse biological activities like antioxidant, anticancer, and antimutagenic effects. Selecting suitable processing methods is crucial to preserve the beneficial properties of carbohydrates. This review discusses the impact of non-thermal and thermal processing on the physicochemical and biological traits of carbohydrates, highlighting the need for understanding the mechanisms underlying these changes. Future research will focus on enhancing and safeguarding the biological and functional aspects of carbohydrates through improved processing techniques. The goal is to optimize methods that maintain the beneficial properties of carbohydrates, maximizing their health benefits for consumers.
Collapse
Affiliation(s)
- Peng Song
- College of Life Sciences, Liaocheng University, Liaocheng 252000, China
| | - Yajun Huang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jingru Li
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shuo Shan
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Universidade de Vigo, Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Sciences, 32004 Ourense, Spain
| | - Zhengsong Zhou
- College of Life Sciences, Liaocheng University, Liaocheng 252000, China
- Shandong Aocter Biotechnology Co., Ltd, Liaocheng 252000, China
| | - Hui Cao
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Zhanjiang 524088, China
- Universidade de Vigo, Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Sciences, 32004 Ourense, Spain
| | - Chao Zhao
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
16
|
Igual M, Cámara RM, Fortuna F, García-Herrera P, Pedrosa MM, García-Segovia P, Martínez-Monzó J, Cámara M. Enhancement of Corn Flour with Carob Bean for Innovative Gluten-Free Extruded Products. Foods 2024; 13:3352. [PMID: 39517136 PMCID: PMC11544764 DOI: 10.3390/foods13213352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/12/2024] [Accepted: 10/17/2024] [Indexed: 11/16/2024] Open
Abstract
The aim of this work is to study new, extruded products based on corn flour enriched with carob bean and the evaluation of its functional quality to develop novel gluten-free food products. Five samples based on corn flour with added carob bean flour (5 to 12.5%) were formulated. Extrusion was performed using a single-screw laboratory extruder at pilot plant scale. Extrusion parameters such as color and carbohydrate content (fiber, sucrose, and starch) were evaluated. Carob bean addition led to an increase in starch, soluble fiber, and insoluble fiber. Texture parameters related to hardness (crunchiness) were significantly reduced with the addition of CB (p < 0.05), detectable from a 5% addition of CB and not significant with more CB content. Samples became browner with the addition of CB; however, when the concentrations of CB are high (>5%) no major differences in color were observed. The extrusion process reduced the content of soluble and insoluble fiber, and sucrose in all formulated samples. Extruded samples with 5-7.5% CB seem to be the best formulation in terms of fiber content, color, and texture parameters. These innovative gluten-free foods could be considered as a source of fiber, and a healthier alternative to some commercially available snacks.
Collapse
Affiliation(s)
- Marta Igual
- i-Food Group, Instituto Universitario de Ingeniería de Alimentos-Food UPV, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain; (M.I.); (P.G.-S.); (J.M.-M.)
| | - Rosa M. Cámara
- Nutrition and Food Science Department, Pharmacy Faculty, Universidad Complutense de Madrid, Pza. Ramón y Cajal s/n, 28040 Madrid, Spain; (R.M.C.); (F.F.); (P.G.-H.)
| | - Francesca Fortuna
- Nutrition and Food Science Department, Pharmacy Faculty, Universidad Complutense de Madrid, Pza. Ramón y Cajal s/n, 28040 Madrid, Spain; (R.M.C.); (F.F.); (P.G.-H.)
- Dipartimento di Scienze degli Alimenti e del Farmaco, University of Parma, 43126 Parma, Italy
| | - Patricia García-Herrera
- Nutrition and Food Science Department, Pharmacy Faculty, Universidad Complutense de Madrid, Pza. Ramón y Cajal s/n, 28040 Madrid, Spain; (R.M.C.); (F.F.); (P.G.-H.)
| | - Mercedes M. Pedrosa
- Departamento Tecnología de Alimentos, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria INIA-CSIC, Ctra. de La Coruña km 7.5, 28040 Madrid, Spain;
| | - Purificación García-Segovia
- i-Food Group, Instituto Universitario de Ingeniería de Alimentos-Food UPV, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain; (M.I.); (P.G.-S.); (J.M.-M.)
| | - Javier Martínez-Monzó
- i-Food Group, Instituto Universitario de Ingeniería de Alimentos-Food UPV, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain; (M.I.); (P.G.-S.); (J.M.-M.)
| | - Montaña Cámara
- Nutrition and Food Science Department, Pharmacy Faculty, Universidad Complutense de Madrid, Pza. Ramón y Cajal s/n, 28040 Madrid, Spain; (R.M.C.); (F.F.); (P.G.-H.)
| |
Collapse
|
17
|
Magalhães TLS, Machado AM, da Silva LA, José VPBDS, Lúcio HG, Fortini TVL, Carvalho CWP, da Silva BP, Martino HSD. Effects of acute consumption of a beverage based on extruded whole-grain pearl millet flour on glycemic and insulinemic control, food intake, and appetite sensation in eutrophic adults: A randomized cross-over clinical trial. Nutrition 2024; 126:112506. [PMID: 39033704 DOI: 10.1016/j.nut.2024.112506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/17/2024] [Accepted: 05/30/2024] [Indexed: 07/23/2024]
Abstract
OBJECTIVES Whole-grain pearl millet is a nutritious cereal source of dietary fiber, vitamins, minerals, and bioactive compounds. It offers health benefits such as glycemic control and satiety. Extrusion cooking for diverse formulations, including beverages, can alter its chemical composition, impacting the nutritional value. This study aimed to evaluate the sensory acceptability of an extruded millet flour beverage and its acute effects on glycemic index (GI), glycemic and insulinemic response, food intake, and subjective appetite sensations in euglycemic and eutrophic adults. METHODS This is an acute, single-blind, randomized, controlled, cross-over clinical study comprising 14 euglycemic and eutrophic adults. Initially, beverages based on whole extruded millet flour were developed, and sensorially and chemically analyzed. Next, a clinical trial was conducted with participants undergoing four sessions and consuming one of the following options: extruded millet beverage, a maltodextrin control beverage, or a glucose solution administered in two separate sessions. Blood glucose, insulin, and appetite responses were assessed over a 2-h period, in addition to determining the GI of the beverages and analyzing food intake in the 24 h following each session. RESULTS The extruded millet flour strawberry-flavored beverage had the best sensory acceptance and was classified as having as high GI. Consumption of the extruded millet beverage showed similar glycemic and insulinemic responses, as well as appetite control and food intake of the subjects, when compared with consumption of the maltodextrin control beverage. CONCLUSIONS Intake of the extruded millet beverage maintained glycemic and insulinemic responses, appetite control, and food intake in euglycemic and eutrophic subjects.
Collapse
Affiliation(s)
- Thauana Lorena Silva Magalhães
- Department of Nutrition and Health. Universidade Federal de Viçosa. Av. Purdue, s/n, Campus Universitário, Viçosa MG, 36.570-900, Brazil
| | - Adriane Moreira Machado
- Department of Nutrition and Health. Universidade Federal de Viçosa. Av. Purdue, s/n, Campus Universitário, Viçosa MG, 36.570-900, Brazil
| | - Lucimar Aguiar da Silva
- Department of Nutrition and Health. Universidade Federal de Viçosa. Av. Purdue, s/n, Campus Universitário, Viçosa MG, 36.570-900, Brazil
| | | | - Haira Guedes Lúcio
- Department of Nutrition and Health. Universidade Federal de Viçosa. Av. Purdue, s/n, Campus Universitário, Viçosa MG, 36.570-900, Brazil
| | - Thais Victória Lopes Fortini
- Department of Nutrition and Health. Universidade Federal de Viçosa. Av. Purdue, s/n, Campus Universitário, Viçosa MG, 36.570-900, Brazil
| | | | - Bárbara Pereira da Silva
- Department of Nutrition and Health. Universidade Federal de Viçosa. Av. Purdue, s/n, Campus Universitário, Viçosa MG, 36.570-900, Brazil
| | - Hércia Stampini Duarte Martino
- Department of Nutrition and Health. Universidade Federal de Viçosa. Av. Purdue, s/n, Campus Universitário, Viçosa MG, 36.570-900, Brazil.
| |
Collapse
|
18
|
Abotsi EE, Panagodage Y, English M. Plant-based seafood alternatives: Current insights on the nutrition, protein-flavour interactions, and the processing of these foods. Curr Res Food Sci 2024; 9:100860. [PMID: 39381133 PMCID: PMC11460494 DOI: 10.1016/j.crfs.2024.100860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 09/09/2024] [Accepted: 09/15/2024] [Indexed: 10/10/2024] Open
Abstract
Fish are an important food source; however, the sustainability of current seafood supplies is a major concern for key stakeholders. The development of plant-based seafood alternatives may be suitable products to alleviate some of the pressures on aquatic ecosystems and help support environmental sustainability. However, the wide-spread adoption of these products weighs heavily on the ingredients used in the formulations which should not only satisfy nutritional and sustainability targets but must also meet consumer approval and functionality. In this review, we highlight recent advances in our understanding of the nutritional quality and sensory challenges in particular flavour (which includes taste and aroma), that have so far proven difficult to overcome in the development of plant-based seafood alternatives. Protein interactions that contribute to flavour development in plant-based seafood alternatives and the factors that impact these interactions are also discussed. We also review the recent advances in the innovative technologies used to improve the texture of products in this emerging food category. Finally, we highlight key areas for targeted research to advance the development of this growing segment of food products.
Collapse
Affiliation(s)
- Enoch Enorkplim Abotsi
- Boreal Ecosystems, Grenfell Campus, Memorial University of Newfoundland, Newfoundland, Canada
| | - Yashodha Panagodage
- Department of Human Nutrition, St. Francis Xavier University, Antigonish, Nova Scotia, Canada
| | - Marcia English
- Department of Human Nutrition, St. Francis Xavier University, Antigonish, Nova Scotia, Canada
| |
Collapse
|
19
|
Yan X, McClements DJ, Luo S, Liu C, Ye J. Recent advances in the impact of gelatinization degree on starch: Structure, properties and applications. Carbohydr Polym 2024; 340:122273. [PMID: 38858001 DOI: 10.1016/j.carbpol.2024.122273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/26/2024] [Accepted: 05/13/2024] [Indexed: 06/12/2024]
Abstract
During home cooking or industrial food processing operations, starch granules usually undergo a process known as gelatinization. The starch gelatinization degree (DG) influences the structural organization and properties of starch, which in turn alters the physicochemical, organoleptic, and gastrointestinal properties of starchy foods. This review summarizes methods for measuring DG, as well as the impact of DG on the starch structure, properties, and applications. Enzymatic digestion, iodine colorimetry, and differential scanning calorimetry are the most common methods for evaluating the DG. As the DG increases, the structural organization of the molecules within starch granules is progressively disrupted, the particle size of the granules is altered due to swelling and then disruption, the crystallinity is decreased, the molecular weight is reduced, and the starch-lipid complexes are formed. The impact of DG on the starch structure and properties depends on the processing method, operating conditions, and starch source. The starch DG affects the quality of many foods, including baked goods, fried foods, alcoholic beverages, emulsified foods, and edible inks. Thus, a better understanding of the changes in starch structure and function caused by gelatinization could facilitate the development of foods with novel or improved properties.
Collapse
Affiliation(s)
- Xudong Yan
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - David Julian McClements
- Biopolymers and Colloids Research Laboratory, Department of Food Science, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Shunjing Luo
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Chengmei Liu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China.
| | - Jiangping Ye
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China.
| |
Collapse
|
20
|
Akhila PP, Sunooj KV, Bangar SP, Aaliya B, Navaf M, Indumathy B, Yugeswaran S, Sinha SK, Mir SA, Mounir S, George J, Nemțanu MR. Assessing the impact of plasma-activated water-assisted heat-moisture treatment on the extrusion-recrystallization process of hausa potato starch. Carbohydr Polym 2024; 335:122081. [PMID: 38616099 DOI: 10.1016/j.carbpol.2024.122081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/16/2024] [Accepted: 03/20/2024] [Indexed: 04/16/2024]
Abstract
The study explored the plasma-activated water (PAW)-assisted heat-moisture treatment (HMT) on the structural, physico-chemical properties, and in vitro digestibility of extrusion-recrystallized starch. Native starch of hausa potatoes underwent modification through a dual process involving PAW-assisted HMT (PHMT) followed by extrusion-recrystallization (PERH) using a twin-screw extruder. The PHMT sample showed surface roughness and etching with a significantly greater (p ≤ 0.05) RC (20.12 %) and ΔH (5.86 J/g) compared to DHMT. In contrast, PERH-induced structural damage, resulting in an irregular block structure, and altered the crystalline pattern from A to B + V-type characterized by peaks at 17.04°, 19.74°, 22°, and 23.94°. DSC analysis showed two endothermic peaks in all the extrusion-recrystallized samples, having the initial peak attributed to the melting of structured amylopectin chains and the second one linked to the melting of complexes formed during retrogradation. Dual-modified samples displayed notably increased transition temperatures (To1 74.54 and 74.17 °C, To2 122.65 and 121.49 °C), along with increased RS content (43.76 %-45.30 %). This study envisages a novel approach for RS preparation and broadens the utilization of PAW in starch modification synergistically with environmentally friendly techniques.
Collapse
Affiliation(s)
| | | | - Sneh Punia Bangar
- Department of Food, Nutrition and Packaging Sciences, Clemson University, 29634, USA
| | - Basheer Aaliya
- Department of Food Science and Technology, Pondicherry University, Puducherry 605014, India
| | - Muhammed Navaf
- Department of Food Science and Technology, Pondicherry University, Puducherry 605014, India
| | | | | | - Suraj Kumar Sinha
- Department of Physics, Pondicherry University, Puducherry 605014, India
| | - Shabir Ahmad Mir
- Department of Food Science and Technology, Government College for Women, MA Road, 14 Srinagar, Jammu, and Kashmir, India
| | - Sabah Mounir
- Department of Food Science, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Johnsy George
- Food Engineering and Packaging Division, Defence Food Research Laboratory, Siddartha Nagar, Mysore 570011, India
| | - Monica-Roxana Nemțanu
- Electron Accelerators Laboratory, National Institute for Laser, Plasma and Radiation Physics, 409 Atomiştilor St., P.O. Box MG-36, 077125 Bucharest-Măgurele, Romania
| |
Collapse
|
21
|
Liu R, Geng Z, Li T, Zhang M, Zhang C, Ma T, Xu Z, Xu S, Liu H, Zhang X, Wang L. Effects of different extrusion temperatures on the physicochemical properties, edible quality and digestive attributes of multigrain reconstituted rice. Food Funct 2024; 15:6000-6014. [PMID: 38743003 DOI: 10.1039/d4fo00044g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Multigrain reconstituted rice, as a nutritious and convenient staple, holds considerable promise for the food industry. Furthermore, highland barley, corn, and other coarse cereals are distinguished by their low glycemic index (GI), rendering them effective in mitigating postprandial blood glucose levels, thereby underscoring their beneficial physiological impact. This study investigated the impact of extrusion temperature on the physicochemical properties, edible quality, and digestibility of multigrain reconstituted rice. The morphology revealed that starch particles that are not fully gelatinized in multigrain reconstituted rice are observed at an extrusion temperature range of 60 °C-90 °C. As the extrusion temperature increased, the degree of gelatinization (DG) increased, while the contents of water, protein, total starch, and amylopectin decreased substantially. Concurrently, the relative crystallinity, orderliness of starch, and heat absorption enthalpy (ΔH) decreased significantly, and water absorption (WAI) and water solubility (WSI) increased markedly. Regarding edible quality, sensory evaluation displayed an initial increase followed by a decrease. In terms of digestibility, the estimated glycemic index (eGI) increased from 61.10 to 70.81, and the GI increased from 60.41 to 75.33. In addition, the DG was significantly correlated with both eGI (r = 0.886**) and GI (r = 0.947**). The results indicated that the ideal extrusion temperature for multigrain reconstituted rice was 90 °C. The findings underscored the pivotal role of optimal extrusion temperatures in the production of multigrain reconstituted rice, which features low GI and high nutritional quality.
Collapse
Affiliation(s)
- Ruohai Liu
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Lihu Road 1800, Wuxi 214122, China.
- School of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi 214122, China
| | - Zhanhui Geng
- Systems Engineering Institute, Academy of Military Sciences, Beijing 100141, China
| | - Ting Li
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Lihu Road 1800, Wuxi 214122, China.
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Lihu Road 1800, Wuxi 214122, China
| | - Ming Zhang
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Lihu Road 1800, Wuxi 214122, China.
- School of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi 214122, China
| | - Congnan Zhang
- Jiangsu Nongken Agricultural Development Co., Ltd, Hengshan Road 136, Nanjing 210019, China
| | - Tianjiao Ma
- Systems Engineering Institute, Academy of Military Sciences, Beijing 100141, China
| | - Zhicun Xu
- Jiangsu Nongken Agricultural Development Co., Ltd, Hengshan Road 136, Nanjing 210019, China
| | - Shunqian Xu
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Lihu Road 1800, Wuxi 214122, China.
- School of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi 214122, China
| | - He Liu
- Systems Engineering Institute, Academy of Military Sciences, Beijing 100141, China
| | - Xinxia Zhang
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Lihu Road 1800, Wuxi 214122, China.
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Lihu Road 1800, Wuxi 214122, China
| | - Li Wang
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Lihu Road 1800, Wuxi 214122, China.
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Lihu Road 1800, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi 214122, China
- State Key Laboratory of Food Science and Resources, Jiangnan University, Lihu Road 1800, Wuxi 214122, China
| |
Collapse
|
22
|
Zhu J, Han L, Wang M, Yang J, Fang Y, Zheng Q, Zhang X, Cao J, Hu B. Formation, influencing factors, and applications of internal channels in starch: A review. Food Chem X 2024; 21:101196. [PMID: 38370305 PMCID: PMC10869744 DOI: 10.1016/j.fochx.2024.101196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/28/2024] [Accepted: 02/03/2024] [Indexed: 02/20/2024] Open
Abstract
Starch, a natural polymer, has a complex internal structure. Some starches, such as corn and wheat starches, have well-developed surface pores and internal channels. These channel structures are considered crucial in connecting surface stomata and internal cavities and have adequate space for loading guest molecules. After processing or modification, the starch-containing channel structures can be used for food and drug encapsulation and delivery. This article reviews the formation and determination of starch internal channels, and the influence of different factors (such as starch species and processing conditions) on the channel structure. It also discusses relevant starch preparation methods (physical, chemical, enzymatic, and synergistic), and the encapsulation effect of starch containing internal channels on different substances. In addition, the role of internal channels in regulating the starch digestion rate and other aspects is also discussed here. This review highlights the significant multifunctional applications of starch with a channel structure.
Collapse
Affiliation(s)
- Junzhe Zhu
- College of Life Sciences, Key Laboratory of Biotechnology and Bioresources Utilization, Dalian Minzu University, Ministry of Education, Dalian 116600, China
| | - Lingyu Han
- College of Life Sciences, Key Laboratory of Biotechnology and Bioresources Utilization, Dalian Minzu University, Ministry of Education, Dalian 116600, China
| | - Meini Wang
- School of Life Science, College of Liberal Arts and Sciences, University of Westminster, United Kingdom
| | - Jixin Yang
- Faculty of Arts, Science and Technology, Wrexham Glyndwr University, Wrexham, United Kingdom
| | - Yapeng Fang
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qiuyue Zheng
- College of Life Sciences, Key Laboratory of Biotechnology and Bioresources Utilization, Dalian Minzu University, Ministry of Education, Dalian 116600, China
| | - Xiaobo Zhang
- College of Life Sciences, Key Laboratory of Biotechnology and Bioresources Utilization, Dalian Minzu University, Ministry of Education, Dalian 116600, China
| | - Jijuan Cao
- College of Life Sciences, Key Laboratory of Biotechnology and Bioresources Utilization, Dalian Minzu University, Ministry of Education, Dalian 116600, China
| | - Bing Hu
- College of Life Sciences, Key Laboratory of Biotechnology and Bioresources Utilization, Dalian Minzu University, Ministry of Education, Dalian 116600, China
| |
Collapse
|
23
|
Hao M, Zhu X, Ji X, Shi M, Yan Y. Effect of Konjac Glucomannan on Structure, Physicochemical Properties, and In Vitro Digestibility of Yam Starch during Extrusion. Foods 2024; 13:463. [PMID: 38338597 PMCID: PMC10855837 DOI: 10.3390/foods13030463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 01/24/2024] [Accepted: 01/30/2024] [Indexed: 02/12/2024] Open
Abstract
In this study, the effect of konjac glucomannan (KGM, 0-5%) on the structure, physicochemical properties, and in vitro digestibility of extruded yam starch (EYS) was investigated. The EYS became rougher on the surface and the particle size increased as observed using scanning electron microscopy and particle size analysis. X-ray diffraction and Raman results revealed that the relative crystallinity (18.30% to 22.30%) of EYS increased, and the full width at half maxima at 480 cm-1 decreased with increasing KGM content, indicating the increment of long-range and short-range ordered structure. Differential scanning calorimetry and rheological results demonstrated that KGM enhanced thermal stability and the gel strength of EYS due to enhanced interaction between KGM and YS molecules. Additionally, a decrease in the swelling power and viscosity of EYS was observed with increased KGM content. The inclusion of KGM in the EYS increased the resistant starch content from 11.89% to 43.51%. This study provides a dual-modified method using extrusion and KGM for modified YS with high thermal stability, gel strength, and resistance to digestion.
Collapse
Affiliation(s)
- Mengshuang Hao
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China; (M.H.); (X.Z.); (M.S.)
| | - Xiaopei Zhu
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China; (M.H.); (X.Z.); (M.S.)
| | - Xiaolong Ji
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China; (M.H.); (X.Z.); (M.S.)
| | - Miaomiao Shi
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China; (M.H.); (X.Z.); (M.S.)
| | - Yizhe Yan
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China; (M.H.); (X.Z.); (M.S.)
- Key Laboratory of Cold Chain Food Processing and Safety Control, Ministry of Education, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| |
Collapse
|
24
|
Yan Y, Zhu X, Hao M, Ji X, Shi M, Niu B. Understanding the multi-scale structure, physicochemical and digestive properties of extruded yam starch with plasma-activated water. Int J Biol Macromol 2024; 254:128054. [PMID: 37956800 DOI: 10.1016/j.ijbiomac.2023.128054] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/08/2023] [Accepted: 11/10/2023] [Indexed: 11/15/2023]
Abstract
In this study, the synergistic effect of plasma-activated water (PAW) combined with twin-screw extrusion (TSE) on multi-scale structure, physicochemical and digestive properties of yam starch (YS) was studied. PAW-TSE resulted in higher amylose content in YS than TSE alone. Compared with single TSE, the relative crystallinity, short-range ordered degree, and gelatinization enthalpy of YS were increased by PAW-TSE according to the results of X-ray diffraction, Fourier transform infrared, Raman spectroscopy, and differential scanning calorimetry. Furthermore, rapid viscosity and dynamic rheological analysis showed that the peak and breakdown viscosity of PAW-TSE treated YS paste were considerably reduced, and the storage modulus and loss modulus were significantly increased, indicating that the gel strength and thermal stability were improved. In addition, the resistant starch (RS) content of YS treated by PAW-TSE increased from 6.04 % to 21.21 %. Notably, the effect of PAW-TSE on YS enhanced with the preparation time of PAW increased. Finally, correlation analysis indicated that the characteristic indexes of PAW had a significant impact on the long or short-range ordered structure, thermal properties, and in vitro digestibility of YS during extrusion. Therefore, PAW-TSE, as an emerging dual modification technology, will greatly expand the application of extrusion technology.
Collapse
Affiliation(s)
- Yizhe Yan
- College of Food and Bioengineering, Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Food Laboratory of Zhongyuan, Zhengzhou University of Light Industry, Zhengzhou 450000, PR China; Key Laboratory of Cold Chain Food Processing and Safety Control (Zhengzhou University of Light Industry), Ministry of Education, PR China.
| | - Xiaopei Zhu
- College of Food and Bioengineering, Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Food Laboratory of Zhongyuan, Zhengzhou University of Light Industry, Zhengzhou 450000, PR China
| | - Mengshuang Hao
- College of Food and Bioengineering, Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Food Laboratory of Zhongyuan, Zhengzhou University of Light Industry, Zhengzhou 450000, PR China
| | - Xiaolong Ji
- College of Food and Bioengineering, Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Food Laboratory of Zhongyuan, Zhengzhou University of Light Industry, Zhengzhou 450000, PR China
| | - Miaomiao Shi
- College of Food and Bioengineering, Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Food Laboratory of Zhongyuan, Zhengzhou University of Light Industry, Zhengzhou 450000, PR China
| | - Bin Niu
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450000, PR China.
| |
Collapse
|
25
|
Xia R, Fu M, Wang Z, Cheng W, Wu D, Tang X, Yang P. Effects of frozen storage on the quality characteristics of frozen whole buckwheat extruded noodles. Food Chem 2023; 429:136856. [PMID: 37459711 DOI: 10.1016/j.foodchem.2023.136856] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 07/06/2023] [Accepted: 07/09/2023] [Indexed: 08/24/2023]
Abstract
The effects of frozen storage (-18 °C, 180 days) on the quality of frozen whole buckwheat extruded noodles (FWBEN) were investigated. The water content of FWBEN decreased, while the reheating time, water absorption, and dry consumption rate increased with prolonged storage time. Cooking loss increased from 3.20% to 4.31%. Texture analysis indicated that the hardness initially increased, then decreased. Microstructure results showed that the starch gel structure was damaged to a certain extent after storage for a longer period of time, whereas the porous structure became non-uniform with the appearance of cracks. The relative crystallinity gradually increased, and the freezable water content decreased with prolonged storage. These results demonstrated that FWBEN quality was affected by starch retrogradation and ice recrystallization. In general, FWBEN quality was relatively stable during 180 days of frozen storage at -18 °C.
Collapse
Affiliation(s)
- Ruhui Xia
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Meixia Fu
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Zhenjiong Wang
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Weiwei Cheng
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Di Wu
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China.
| | - Xiaozhi Tang
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China.
| | - Peiqiang Yang
- Suzhou Niumag Analytical Instrument Corporation, Suzhou 215151, China
| |
Collapse
|
26
|
Yu J, Wang L, Zhang Z. Plant-Based Meat Proteins: Processing, Nutrition Composition, and Future Prospects. Foods 2023; 12:4180. [PMID: 38002236 PMCID: PMC10670130 DOI: 10.3390/foods12224180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 11/05/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
The growing need for plant-based meat alternatives promotes the rapid progress of the food industry. Processing methods employed in plant-based meat production are critical to preserving and enhancing their nutritional content and health benefits, directly impacting consumer acceptance. Unlike animal-based food processing, the efficiency of protein extraction and processing methods plays a crucial role in preserving and enriching the nutritional content and properties. To better understand the factors and mechanisms affecting nutrient composition during plant-based meat processing and identify key processing steps and control points, this work describes methods for extracting proteins from plants and processing techniques for plant-based products. We investigate the role of nutrients and changes in the nutrients during plant protein product processing. This article discusses current challenges and prospects.
Collapse
Affiliation(s)
- Jialing Yu
- College of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, UK;
| | - Liyuan Wang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan 430062, China;
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Zhaowei Zhang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan 430062, China;
- Hubei Hongshan Laboratory, Wuhan 430070, China
| |
Collapse
|
27
|
Wang C, Chen Z, Brennan MA, Wang J, Sun J, Fang H, Kang M, Brennan CS, Mu J. The effect of extruded multigrain powder on metabolism and intestinal flora of high-fat-diet induced C57BL/6J mice. Food Res Int 2023; 169:112878. [PMID: 37254326 DOI: 10.1016/j.foodres.2023.112878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 04/19/2023] [Accepted: 04/21/2023] [Indexed: 06/01/2023]
Abstract
The aim of this study was to investigate the effects of extruded multigrain (Tartary buckwheat, oat and black bean) powder product (MG) fed with a high-fat-diet (HFD) on metabolism and gut microbiota modulation of mice. Thirty C57BL/6J mice were fed a normal diet (n = 10), HFD (n = 10) or HFD replacing 40% MG (HFMG, n = 10) for six weeks. The results showed that MG reduced the weight gain of HFD-induced mice, alleviated the accumulation of epididymal- and perirenal fat, improved the glucose tolerance, and reduced the serum total cholesterol, triglyceride and low-density lipoprotein cholesterol levels. Histopathological observation showed that the number and size of fat vacuoles in liver cytoplasm were significantly reduced, the thickness of colon muscle was increased, and the cells were closely arranged after the intervention of HFMG. Moreover, the intervention of HFMG could promote the release of butyric acid in short chain fatty acids, improve the disorder of intestinal flora in HFD-induced mice, increase the relative abundance of Bacteroidetes, while reduce the relative abundance of Firmicutes, which may have a positive effect on inhibiting obesity induced by HFD. This study could provide a theoretical basis for improving the economic added value of extruded MG powder-based products and preventing chronic diseases such as obesity.
Collapse
Affiliation(s)
- Chunxiao Wang
- College of Food Science, Hebei Agricultural University, Baoding 071001, China
| | - Zhizhou Chen
- College of Mechanical and Electrical Engineering, Hebei Agricultural University, Hebei, Baoding 071000, China
| | - Margaret A Brennan
- Department of Wine, Food and Molecular Biosciences, Lincoln University, P.O. Box 84, Lincoln, Christchurch 7647, New Zealand
| | - Jie Wang
- College of Food Science, Hebei Agricultural University, Baoding 071001, China
| | - Jianfeng Sun
- College of Food Science, Hebei Agricultural University, Baoding 071001, China
| | - Haibin Fang
- Jinmailang Food Co., LTD., Xingtai, Hebei 100001, China
| | - Min Kang
- College of Food Science, Hebei Agricultural University, Baoding 071001, China
| | | | - Jianlou Mu
- College of Food Science, Hebei Agricultural University, Baoding 071001, China.
| |
Collapse
|
28
|
Moreno-Araiza O, Boukid F, Suo X, Wang S, Vittadini E. Pretreated Green Pea Flour as Wheat Flour Substitutes in Composite Bread Making. Foods 2023; 12:2284. [PMID: 37372495 DOI: 10.3390/foods12122284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 06/02/2023] [Accepted: 06/03/2023] [Indexed: 06/29/2023] Open
Abstract
The present study aimed to assess the impact of substituting wheat flour with three different pretreated green pea flour at different addition levels (10-50%) on fresh bread quality during a 7-day storage period. Dough and bread enriched with conventionally milled (C), pre-cooked (P), and soaked under-pressure-steamed (N) green pea flour were evaluated for their rheological, nutritional, and technological features. Compared to wheat flour, legumes had lower viscosity but higher water absorption, development time, and lower retrogradation. Bread made with C10 and P10 showed similar specific volume, cohesiveness, and firmness to the control, whereas addition levels beyond 10% decreased specific volume and increased firmness. During storage, incorporating legume flour (10%) delayed staling. Composite bread increased proteins and fiber. C30 had the lowest rate of starch digestibility, while pre-heated flour increased starch digestibility. In conclusion, P and N can be considered valuable ingredients for making soft and stable bread.
Collapse
Affiliation(s)
- Oscar Moreno-Araiza
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III da Varano, 62032 Macerata, Italy
| | | | - Xinying Suo
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III da Varano, 62032 Macerata, Italy
| | - Shihao Wang
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III da Varano, 62032 Macerata, Italy
| | - Elena Vittadini
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III da Varano, 62032 Macerata, Italy
| |
Collapse
|
29
|
Unnawong N, Suriyapha C, Khonkhaeng B, Chankaew S, Rakvong T, Polyorach S, Cherdthong A. Comparison of Cassava Chips and Winged Bean Tubers with Various Starch Modifications on Chemical Composition, the Kinetics of Gas, Ruminal Degradation, and Ruminal Fermentation Characteristics Using an In Situ Nylon Bag and an In Vitro Gas Production Technique. Animals (Basel) 2023; 13:ani13101640. [PMID: 37238070 DOI: 10.3390/ani13101640] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/04/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
This research assessed the impact of cassava chips (CSC) and winged bean tubers (WBT) with various starch modification methods on the chemical composition, ruminal degradation, gas production, in vitro degradability, and ruminal fermentation of feed using an in situ and in vitro gas production technique. Experimental treatments were arranged for a 2 × 5 factorial, a completely randomized design with two sources of starch and five levels of modification treatments. Two sources of starch were CSC and WBT, while five modification treatments of starch were: no modification treatment, steam treatment, sodium hydroxide (NaOH) treatment, calcium hydroxide (CaOH2) treatment, and lactic acid (LA) treatment. The starch modification methods with NaOH and CaOH2 increased the ash content (p <0.05), whereas the crude protein (CP) content was lower after treatment with NaOH (p < 0.05). Steam reduced the soluble fraction (a) and effective dry matter degradability of WBT in situ (p <0.05). In addition, the WBT steaming methods result in a lower degradation rate constant in situ (p <0.05). The degradation rate constants for the insoluble fraction (c) in the untreated CSC were higher than those of the other groups. Starch modification with LA reduced in vitro dry matter degradability at 12 and 24 h of incubation (p <0.05). The starch modification method of the raw material showed the lowest pH value at 4 h (p <0.05). The source of starch and starch modification methods did not influence the in vitro ammonia nitrogen concentrations, or in vitro volatile fatty acids. In conclusion, compared to the CSC group and untreated treatment, treating WBT with steam might be a more effective strategy for enhancing feed efficiency by decreasing or retarding ruminal starch degradability and maintaining ruminal pH.
Collapse
Affiliation(s)
- Narirat Unnawong
- Department of Animal Science, Tropical Feed Resources Research and Development Center (TROFREC), Faculty of Agriculture, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Chaichana Suriyapha
- Department of Animal Science, Tropical Feed Resources Research and Development Center (TROFREC), Faculty of Agriculture, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Benjamad Khonkhaeng
- Department of Animal Science, Faculty of Agricultural Innovation and Technology, Rajamangala University of Technology Isan, Nakhon Ratchasima Campus, Nakhon Ratchasima 30000, Thailand
| | - Sompong Chankaew
- Department of Agronomy, Faculty of Agriculture, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Teppratan Rakvong
- Department of Agronomy, Faculty of Agriculture, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Sineenart Polyorach
- Department of Animal Production Technology and Fisheries, Faculty of Agricultural Technology, King Mongkut's Institute of Technology Ladkrabang, Bangkok 10520, Thailand
| | - Anusorn Cherdthong
- Department of Animal Science, Tropical Feed Resources Research and Development Center (TROFREC), Faculty of Agriculture, Khon Kaen University, Khon Kaen 40002, Thailand
| |
Collapse
|
30
|
Venkatachalam K, Rakkapao N, Lekjing S. Physicochemical and Antimicrobial Characterization of Chitosan and Native Glutinous Rice Starch-Based Composite Edible Films: Influence of Different Essential Oils Incorporation. MEMBRANES 2023; 13:membranes13020161. [PMID: 36837664 PMCID: PMC9967404 DOI: 10.3390/membranes13020161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/19/2023] [Accepted: 01/24/2023] [Indexed: 05/12/2023]
Abstract
Biopolymer-based edible packaging is an effective way of preserving food while protecting the environment. This study developed an edible composite film using chitosan and native glutinous rice starch (NGRS) and incorporated essential oils (EOs) such as garlic, galangal, turmeric, and kaffir lime at fixed concentrations (0.312 mg/mL) to test its physicochemical and antimicrobial properties. The EO-added films were found to significantly improve the overall color characteristics (lightness, redness, and yellowness) as compared to the control film. The control films had higher opacity, while the EO-added films had slightly reduced levels of opacity and produced clearer films. The tensile strength and elongation at break values of the films varied among the samples. The control samples had the highest tensile strength, followed by the turmeric EO-added samples. However, the highest elongation at break value was found in the galangal and garlic EO-added films. The Young's modulus results showed that garlic EO and kaffir lime EO had the lowest stiffness values. The total moisture content and water vapor permeability were very low in the garlic EO-added films. Despite the differences in EOs, the Fourier-transform infrared spectroscopy (FTIR) patterns of the tested films were similar among each other. Microstructural observation of the surface and cross-section of the tested edible film exhibited smooth and fissureless patterns, especially in the EO-added films, particularly in the galangal and kaffir lime EO-added films. The antimicrobial activity of the EO-added films was highly efficient against various gram-positive and gram-negative pathogens. Among the EO-added films, the garlic and galangal EO-added films exhibited superior inhibitory activity against Escherichia coli, Salmonella Typhimurium, Listeria monocytogenes, Staphylococcus aureus, and Pseudomonas fluorescence, and turmeric and kaffir lime EO-added films showed potential antimicrobial activity against Lactobacillus plantarum and L. monocytogenes. Overall, this study concludes that the addition of EOs significantly improved the physicochemical and antimicrobial properties of the CH-NGRS-based edible films, making them highly suitable for food applications.
Collapse
Affiliation(s)
- Karthikeyan Venkatachalam
- Faculty of Innovative Agriculture and Fishery Establishment Project, Prince of Songkla University, Surat Thani Campus, Makham Tia, Mueang, Surat Thani 84000, Thailand
| | - Natthida Rakkapao
- Department of Applied Chemistry, Faculty of Science and Industrial Technology, Prince of Songkla University, Surat Thani Campus, Makham Tia, Mueang, Surat Thani 84000, Thailand
- Center of Excellence in Membrane Science and Technology, Faculty of Science, Prince of Songkla University, Hat Yai Campus, Hat Yai, Songkhla 90110, Thailand
| | - Somwang Lekjing
- Faculty of Innovative Agriculture and Fishery Establishment Project, Prince of Songkla University, Surat Thani Campus, Makham Tia, Mueang, Surat Thani 84000, Thailand
- Correspondence:
| |
Collapse
|