1
|
Zhang H, Meng X, Liu R, Li R, Wang Y, Ma Z, Liu Z, Duan S, Li G, Guo X. Heat shock factor ZmHsf17 positively regulates phosphatidic acid phosphohydrolase ZmPAH1 and enhances maize thermotolerance. JOURNAL OF EXPERIMENTAL BOTANY 2025; 76:493-512. [PMID: 39324623 PMCID: PMC11714762 DOI: 10.1093/jxb/erae406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 09/25/2024] [Indexed: 09/27/2024]
Abstract
Heat stress adversely impacts plant growth, development, and grain yield. Heat shock factors (Hsf), especially the HsfA2 subclass, play a pivotal role in the transcriptional regulation of genes in response to heat stress. In this study, the coding sequence of maize ZmHsf17 was cloned. ZmHsf17 contained conserved domains including a DNA binding domain, oligomerization domain, and transcriptional activation domain. The protein was nuclear localized and had transcription activation activity. Yeast two-hybrid and split luciferase complementation assays confirmed the interaction of ZmHsf17 with members of the maize HsfA2 subclass. Overexpression of ZmHsf17 in maize significantly increased chlorophyll content and net photosynthetic rate, and enhanced the stability of cellular membranes. Through integrative analysis of ChIP-seq and RNA-seq datasets, ZmPAH1, encoding phosphatidic acid phosphohydrolase of lipid metabolic pathways, was identified as a target gene of ZmHsf17. The promoter fragment of ZmPAH1 was bound by ZmHsf17 in protein-DNA interaction experiments in vivo and in vitro. Lipidomic data also indicated that the overexpression of ZmHsf17 increased levels of some critical membrane lipid components of maize leaves under heat stress. This research provides new insights into the role of the ZmHsf17-ZmPAH1 module in regulating thermotolerance in maize.
Collapse
Affiliation(s)
- Huaning Zhang
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050051, P. R. China
| | - Xiangzhao Meng
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050051, P. R. China
| | - Ran Liu
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050051, P. R. China
| | - Ran Li
- College of Agriculture and Forestry Science and Technology, Hebei North University, Zhangjiakou 075000, P. R. China
| | - Yantao Wang
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050051, P. R. China
- School of Landscape and Ecological Engineering, Hebei University of Engineering, Handan 056000, P. R. China
| | - Zhenyu Ma
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050051, P. R. China
| | - Zihui Liu
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050051, P. R. China
| | - Shuonan Duan
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050051, P. R. China
| | - Guoliang Li
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050051, P. R. China
| | - Xiulin Guo
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050051, P. R. China
| |
Collapse
|
2
|
Lin Y, Cao G, Xu J, Zhu H, Tang L. Multi-Omics Analysis Provides Insights into Green Soybean in Response to Cold Stress. Metabolites 2024; 14:687. [PMID: 39728468 DOI: 10.3390/metabo14120687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/03/2024] [Accepted: 12/04/2024] [Indexed: 12/28/2024] Open
Abstract
Green soybean (Glycine max (L.) Merrill) is a highly nutritious food that is a good source of protein and fiber. However, it is sensitive to low temperatures during the growing season, and enhancing cold tolerance has become a research hotspot for breeding improvement. Background/Objectives: The underlying molecular mechanisms of cold tolerance in green soybean are not well understood. Methods: Here, a comprehensive analysis of transcriptome and metabolome was performed on a cold-tolerant cultivar treated at 10 °C for 24 h. Results: Compared to control groups, we identified 17,011 differentially expressed genes (DEGs) and 129 differentially expressed metabolites (DEMs). The DEGs and DEMs were further subjected to KEGG functional analysis. Finally, 11 metabolites (such as sucrose, lactose, melibiose, and dehydroascorbate) and 17 genes (such as GOLS, GLA, UGDH, and ALDH) were selected as candidates associated with cold tolerance. Notably, the identified metabolites and genes were enriched in two common pathways: 'galactose metabolism' and 'ascorbate and aldarate metabolism'. Conclusions: The findings suggest that green soybean modulates the galactose metabolism and ascorbate and aldarate metabolism pathways to cope with cold stress. This study contributes to a deeper understanding of the complex molecular mechanisms enabling green soybeans to better avoid low-temperature damage.
Collapse
Affiliation(s)
- Yanhui Lin
- Hainan Key Laboratory of Crop Genetics and Breeding, Institute of Food Crops, Hainan Academy of Agricultural Sciences, Haikou 571100, China
| | - Guangping Cao
- Hainan Key Laboratory of Crop Genetics and Breeding, Institute of Food Crops, Hainan Academy of Agricultural Sciences, Haikou 571100, China
| | - Jing Xu
- Hainan Key Laboratory of Crop Genetics and Breeding, Institute of Food Crops, Hainan Academy of Agricultural Sciences, Haikou 571100, China
| | - Honglin Zhu
- Hainan Key Laboratory of Crop Genetics and Breeding, Institute of Food Crops, Hainan Academy of Agricultural Sciences, Haikou 571100, China
| | - Liqiong Tang
- Hainan Key Laboratory of Crop Genetics and Breeding, Institute of Food Crops, Hainan Academy of Agricultural Sciences, Haikou 571100, China
| |
Collapse
|
3
|
Yu Z, Tang D, Zhang Z, Jiang Y, Yang J, Pan Y. Tert-Butylhydroquinone retards longan fruit deterioration by regulating membrane lipid and energy metabolisms. Food Chem 2024; 457:140041. [PMID: 38924916 DOI: 10.1016/j.foodchem.2024.140041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 05/17/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024]
Abstract
Longan fruit deteriorates rapidly after harvest, which limits its storability. This study aimed to investigate the effect of tert-butylhydroquinone (TBHQ) on quality maintenance, membrane lipid metabolism, and energy status of longan fruit during 25 °C storage. Compared with control fruit, TBHQ treatment maintained better marketable fruit rate and suppressed activities of phospholipase D (PLD), lipase, and lipoxygenase (LOX), and downregulated expressions of DlPLD, DlLOX, and Dllipase. TBHQ also increased the ratio of unsaturated fatty acids to saturated fatty acids (U/S) and the index of unsaturated fatty acids (IUFA). In addition, higher levels of ATP, ADP, energy charge, NADP+/ NADPH as well as higher activities of H+-ATPase, Ca2+-ATPase and NADK were also observed in TBHQ-treated fruit. These results suggested that TBHQ may maintain postharvest quality of longan fruit by regulating membrane lipid and energy metabolisms.
Collapse
Affiliation(s)
- Zhiqian Yu
- School of Food Science and Engineering, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Collaborative Innovation Center of Nanfan and High-Efficiency Tropical Agriculture, Hainan University, Haikou 570228, China
| | - Dingtao Tang
- School of Food Science and Engineering, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Collaborative Innovation Center of Nanfan and High-Efficiency Tropical Agriculture, Hainan University, Haikou 570228, China
| | - Zhengke Zhang
- School of Food Science and Engineering, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Collaborative Innovation Center of Nanfan and High-Efficiency Tropical Agriculture, Hainan University, Haikou 570228, China
| | - Yueming Jiang
- South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, PR China
| | - Jiali Yang
- School of Food Science and Engineering, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Collaborative Innovation Center of Nanfan and High-Efficiency Tropical Agriculture, Hainan University, Haikou 570228, China.
| | - Yonggui Pan
- School of Food Science and Engineering, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Collaborative Innovation Center of Nanfan and High-Efficiency Tropical Agriculture, Hainan University, Haikou 570228, China.
| |
Collapse
|
4
|
Gan Z, Zhang Y, Jin Z, Wang Y, Li J, Yang C, Cao Q, Chen J, Rong Z, Lu X, Guo S. Gum arabic coating alleviates chilling injury of cold-stored peach by regulating reactive oxygen species, phenolic, and sugar metabolism. Food Chem 2024; 455:139899. [PMID: 38823138 DOI: 10.1016/j.foodchem.2024.139899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/19/2024] [Accepted: 05/28/2024] [Indexed: 06/03/2024]
Abstract
In this study, gum arabic (GA) coating was employed to mitigate chilling injury in peach fruit, and it was observed that 10% GA coating exhibited the most favorable effect. GA coating significantly inhibited the decline of AsA content and enhanced antioxidant enzyme activity in peach fruit, thereby enhancing reactive oxygen species (ROS) scavenging rate while reducing its accumulation. Simultaneously, GA coating inhibited the activity of oxidative degradation enzymes for phenolics and enhanced synthase activity, thus maintaining higher levels of total phenolics and flavonoids in fruits. Additionally, compared to the control fruit, GA-coated fruits demonstrated higher concentrations of sucrose and sorbitol, accompanied more robust activity of sucrose synthase and sucrose phosphate synthase, as well as reduced activity of acid invertase and neutral invertase. Our study demonstrates that GA coating can effectively enhance the cold resistance of peach fruit by regulating ROS, phenolics, and sugar metabolism, maintaining high levels of phenolics and sucrose while enhancing antioxidant activity.
Collapse
Affiliation(s)
- Zengyu Gan
- Jiangxi Provincial Key Laboratory for Postharvest Storage and Preservation of Fruits & Vegetables, Jiangxi Agricultural University, Nanchang 330045, China
| | - Yupei Zhang
- Jiangxi Provincial Key Laboratory for Postharvest Storage and Preservation of Fruits & Vegetables, Jiangxi Agricultural University, Nanchang 330045, China
| | - Ziteng Jin
- Jiangxi Provincial Key Laboratory for Postharvest Storage and Preservation of Fruits & Vegetables, Jiangxi Agricultural University, Nanchang 330045, China
| | - Yongjie Wang
- Jiangxi Provincial Key Laboratory for Postharvest Storage and Preservation of Fruits & Vegetables, Jiangxi Agricultural University, Nanchang 330045, China
| | - Jiali Li
- Jiangxi Provincial Key Laboratory for Postharvest Storage and Preservation of Fruits & Vegetables, Jiangxi Agricultural University, Nanchang 330045, China
| | - Caining Yang
- Jiangxi Provincial Key Laboratory for Postharvest Storage and Preservation of Fruits & Vegetables, Jiangxi Agricultural University, Nanchang 330045, China
| | - Qing Cao
- Jiangxi Provincial Key Laboratory for Postharvest Storage and Preservation of Fruits & Vegetables, Jiangxi Agricultural University, Nanchang 330045, China
| | - Jinyin Chen
- Jiangxi Provincial Key Laboratory for Postharvest Storage and Preservation of Fruits & Vegetables, Jiangxi Agricultural University, Nanchang 330045, China
| | - Zhenbang Rong
- School of Electronics and Information Engineering, Wuyi University, Jiangmen 529020, China
| | - Xuming Lu
- School of Electronics and Information Engineering, Wuyi University, Jiangmen 529020, China.
| | - Suqin Guo
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, China.
| |
Collapse
|
5
|
Wang L, Liu L, Huang A, Zhang H, Zheng Y. The metabolism of amino acids, AsA and abscisic acid induced by strigolactone participates in chilling tolerance in postharvest zucchini fruit. FRONTIERS IN PLANT SCIENCE 2024; 15:1402521. [PMID: 38807778 PMCID: PMC11130489 DOI: 10.3389/fpls.2024.1402521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 04/26/2024] [Indexed: 05/30/2024]
Abstract
Zucchini fruit are notably susceptible to chilling injury when stored at low temperatures. The purpose of this experimental investigation was to assess the influence of strigolactone (ST) (5 μmol L-1) on mitigating chilling injury and the metabolic changes in amino acids, ascorbic acid, and abscisic acid in zucchini fruit stored at 4°C. Research findings demonstrated that ST-treated zucchini fruit displayed a significantly higher tolerance to chilling stress compared to the control group. Postharvest ST treatment led to a decrease in weight loss, accompanied by reduced levels of malondialdehyde and relative ion leakage compared to the untreated group. ST immersion significantly boosted the metabolic pathways associated with proline and arginine, affecting both the enzymatic reactions and gene expressions, thus cumulatively increasing the internal concentrations of these amino acids in zucchini fruit. Zucchini treated with ST exhibited an increased concentration of γ-aminobutyric acid (GABA) as a result of augmented activities and elevated transcriptional levels of glutamate decarboxylase (GAD), GABA transaminase (GAT), and succinate semialdehyde dehydrogenase (SSD). In the ST-treated sample, the elevated enzymatic activities and enhanced gene expressions within the ascorbic acid (AsA) biosynthesis pathway worked together to sustain AsA accumulation. The application of ST resulted in a rise in abscisic acid (ABA) concentration, which correspondingly correlated with the induction of both activities and gene expression levels of crucial enzymes involved in ABA metabolism. Our findings revealed that submerging zucchini fruit in ST could be a highly effective strategy for boosting their chilling tolerance. The alleviation in chilling injury induced by ST may be attributed to the modulation of proline, arginine, GABA, AsA and ABA metabolism.
Collapse
Affiliation(s)
- Lei Wang
- College of Agriculture and Agricultural Engineering, Liaocheng University, Liaocheng, China
| | - Li Liu
- College of Agriculture and Agricultural Engineering, Liaocheng University, Liaocheng, China
| | - Anqi Huang
- College of Agriculture and Agricultural Engineering, Liaocheng University, Liaocheng, China
| | - Hua Zhang
- College of Agriculture and Agricultural Engineering, Liaocheng University, Liaocheng, China
| | - Yonghua Zheng
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
6
|
Alam P, Albalawi T. Insights into cucumber ( Cucumis sativus) genetics: Genome-wide discovery and computational analysis of the Calreticulin Domain-Encoding gene (CDEG) family. Saudi J Biol Sci 2024; 31:103959. [PMID: 38404540 PMCID: PMC10883824 DOI: 10.1016/j.sjbs.2024.103959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/06/2024] [Accepted: 02/10/2024] [Indexed: 02/27/2024] Open
Abstract
Cucumber is an essential vegetable crop throughout the world. Cucumber development is vital for accomplishing both quality and productivity requirements. Meanwhile, numerous factors have resulted in substantial cucumber losses. However, the calreticulin domain-encoding genes (CDEGs) in cucumber were not well-characterized and had little function. In the genome-wide association study (GWAS), we recognized and characterized the CDEGs in Cucumis sativus (cucumber). Through a comprehensive study of C. sativus, our research has unveiled the presence of three unique genes, denoted as CsCRTb, CsCRT3, and CsCNX1, unevenly distributed on three chromosomes in the genome of C. sativus. In accordance to the phylogenetic investigation, these genes may be categorized into three subfamilies. Based on the resemblance with AtCDE genes, we reorganized the all CsCDE genes in accordance with international nomenclature. The expression analysis and cis-acting components revealed that each of CsCDE gene promoter region enclosed number of cis-elements connected with hormone and stress response. According to subcellular localization studies demonstrated that, they were found in deferent locations of the cell such as endoplasmic reticulum, plasma membrane, golgi apparatus, and vacuole, according to subcellular localization studies. Chromosomal distribution analysis and synteny analysis demonstrated the probability of segmental or tandem duplications within the cucumber CDEG gene family. Additionally, miRNAs displayed diverse modes of action, including mRNA cleavage and translational inhibition. We used the RNA seq data to analyze the expression of CDEG genes in response to cold stress and also improved cold tolerance, which was brought on by treating cucumber plants to an exogenous chitosan oligosaccharide spray. Our investigation revealed that these genes responded to this stress in a variety of ways, demonstrating that they may adapt quickly to environmental changes in cucumber plants. This study provides a base for further understanding in reference to CDE gene family and reveals that genes play significant functions in cucumber stress responses.
Collapse
Affiliation(s)
- Pravej Alam
- Department of Biology, College of Science and Humanities, Prince Sattam bin Abdulaziz University, Alkharj 11942, Saudi Arabia
| | - Thamer Albalawi
- Department of Biology, College of Science and Humanities, Prince Sattam bin Abdulaziz University, Alkharj 11942, Saudi Arabia
| |
Collapse
|
7
|
Liu Q, Wang L, He L, Lu Y, Wang L, Fu S, Luo X, Zhang Y. Metabolome and Transcriptome Reveal Chlorophyll, Carotenoid, and Anthocyanin Jointly Regulate the Color Formation of Triadica sebifera. PHYSIOLOGIA PLANTARUM 2024; 176:e14248. [PMID: 38488424 DOI: 10.1111/ppl.14248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 02/16/2024] [Indexed: 03/19/2024]
Abstract
The Chinese tallow tree (Triadica sebifera) is an economically important plant on account of its ornamental value and oil-producing seeds. Leaf colour is a key characteristic of T. sebifera, with yellow-, red- and purple-leaved varieties providing visually impressive displays during autumn. In this study, we performed metabolomic and transcriptomic analyses to gain a better understanding of the mechanisms underlying leaf colour development in purple-leaved T. sebifera at three stages during the autumnal colour transition, namely, green, hemi-purple, and purple leaves. We accordingly detected 370 flavonoid metabolites and 10 anthocyanins, among the latter of which, cyanidin-3-xyloside and peonidin-3-O-glucoside were identified as the predominant compounds in hemi-purple and purple leaves. Transcriptomic analysis revealed that structural genes associated with the anthocyanin biosynthetic pathway, chlorophyll synthesis pathway and carotenoid synthesis pathway were significantly differential expressed at the three assessed colour stages. Additionally, transcription factors associated with the MYB-bHLH-WD40 complex, including 22 R2R3-MYBs, 79 bHLHs and 44 WD40 genes, were identified as candidate regulators of the anthocyanin biosynthetic pathway. Moreover, on the basis of the identified differentially accumulated anthocyanins and key genes, we generated genetic and metabolic regulatory networks for anthocyanin biosynthesis in T. sebifera. These findings provide comprehensive information on the leaf transcriptome and three pigments of T. sebifera, thereby shedding new light on the mechanisms underlying the autumnal colouring of the leaves of this tree.
Collapse
Affiliation(s)
- Qing Liu
- Anhui Province Key Laboratory of Forest Resources and Silviculture, School of Forestry and Landscape Architecture, AnHui Agricultural University, People's Republic of China
| | - Leijia Wang
- Anhui Province Key Laboratory of Forest Resources and Silviculture, School of Forestry and Landscape Architecture, AnHui Agricultural University, People's Republic of China
| | - Lina He
- Anhui Province Key Laboratory of Forest Resources and Silviculture, School of Forestry and Landscape Architecture, AnHui Agricultural University, People's Republic of China
| | - Yongkang Lu
- Anhui Province Key Laboratory of Forest Resources and Silviculture, School of Forestry and Landscape Architecture, AnHui Agricultural University, People's Republic of China
| | - Lin Wang
- Anhui Province Key Laboratory of Forest Resources and Silviculture, School of Forestry and Landscape Architecture, AnHui Agricultural University, People's Republic of China
| | - Songling Fu
- Anhui Province Key Laboratory of Forest Resources and Silviculture, School of Forestry and Landscape Architecture, AnHui Agricultural University, People's Republic of China
| | - Xumei Luo
- Anhui Academy of Forestry, People's Republic of China
| | - Yanping Zhang
- Anhui Province Key Laboratory of Forest Resources and Silviculture, School of Forestry and Landscape Architecture, AnHui Agricultural University, People's Republic of China
| |
Collapse
|
8
|
Xia Z, Wang R, Ma C, Li J, Lei J, Ji N, Pan X, Chen T. Effect of Controlled Atmosphere Packaging on the Physiology and Quality of Fresh-Cut Dictyophora rubrovolvata. Foods 2023; 12:foods12081665. [PMID: 37107460 PMCID: PMC10138049 DOI: 10.3390/foods12081665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/13/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
Dictyophora rubrovolvata is a typical edible fungus of Guizhou Province and is very popular due to its unique taste and texture. In this study, the effect of a controlled atmosphere (CA) on fresh-cut D. rubrovolvata shelf life was investigated. Firstly, this study addresses the influence of different O2 concentrations (5%, 20%, 35%, 50%, 65%, 80%, or 95%) with N2 balance on fresh-cut D. rubrovolvata quality while stored at 4 ± 1 °C for 7 d. Then, on the basis of the determined O2 concentration (5%), CO2 (0%, 5%, 10%, 15%, or 20%) was involved and stored for 8 d at 4 ± 1 °C. Evaluations of physiology parameters, texture, browning degree, nutritional, umami, volatile components, and total colony numbers were determined in fresh-cut D. rubrovolvata. From the results of water migration, the sample of 5% O2/5% CO2/90% N2 was closer to 0 d than other groups at 8 days. Meanwhile, the polyphenol oxidase (2.26 ± 0.07 U/(g·min)), and catalase activity (4.66 ± 0.08 U/(g·min·FW)) were superior to the samples of other treatment groups on the eighth day (3.04 ± 0.06 to 3.84 ± 0.10 U/(g·min), 4.02 ± 0.07 to 4.07 ± 0.07 U/(g·min·FW)). Therefore, we found that a gas environment with 5% O2/5% CO2/90% N2 could ensure the membrane integrity, oxidation, and prevent the browning of fresh-cut D. rubrovolvata, thus better maintaining the physiological parameters. Meanwhile, it also maintained the samples' texture, color, nutritional value, and umami taste. Furthermore, it inhibited the increase in total colony numbers. The volatile components were closer to the initial level compared with other groups. The results indicate that fresh-cut D. rubrovolvata could maintain its shelf life and quality when stored in 5% O2/5% CO2/90% N2 at 4 ± 1 °C.
Collapse
Affiliation(s)
- Ziqian Xia
- College of Food and Pharmaceutical Engineering, Guiyang University, Guiyang 550000, China
| | - Rui Wang
- College of Food and Pharmaceutical Engineering, Guiyang University, Guiyang 550000, China
| | - Chao Ma
- College of Food and Pharmaceutical Engineering, Guiyang University, Guiyang 550000, China
| | - Jiangkuo Li
- Tianjin Key Laboratory of Postharvest Physiology and Storage of Agricultural Products, National Engineering and Technology Research Center for Preservation of Agricultural Produce, Tianjin 301699, China
| | - Jiqing Lei
- College of Food and Pharmaceutical Engineering, Guiyang University, Guiyang 550000, China
| | - Ning Ji
- College of Food and Pharmaceutical Engineering, Guiyang University, Guiyang 550000, China
| | - Xianxing Pan
- College of Food and Pharmaceutical Engineering, Guiyang University, Guiyang 550000, China
| | - Tongjie Chen
- Gui Zhou Mei Wei Xian Dictyophora Industry Company Limited, Zhijin 552100, China
| |
Collapse
|