1
|
Huang C, Qian C, Li Z, Qin Y, Mo W, Lin F. Rosa roxburghii juice alleviates DEHP-induced reproductive system damage in male mice via the PI3K/AKT signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2025; 347:119742. [PMID: 40185256 DOI: 10.1016/j.jep.2025.119742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2025] [Revised: 03/31/2025] [Accepted: 04/02/2025] [Indexed: 04/07/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Rosa roxburghii is an ethnic medicinal herb. Folk medicine collections have documented its nourishing and strengthen effects. It has been used to improve reproductive health, but scientific evidence supporting its efficacy and mechanisms remains limited. AIM OF THIS STUDY Endocrine-disrupting chemicals, such as di-(2-ethylhexyl) phthalate (DEHP), are known to impair male reproductive health. This study aims to investigate the protective effects of raw Rosa roxburghii juice (RRJ) on DEHP-induced reproductive toxicity in mice and elucidates its underlying mechanisms. MATERIALS AND METHODS Using a DEHP-induced murine model of reproductive damage, we evaluated the effects of RRJ on sperm quality, testicular histopathology, reproductive endocrine function, oxidative stress, inflammation, apoptosis, and DNA damage. Network pharmacology analysis was performed to identify the active components, targets, and mechanisms underlying the therapeutic effects of Rosaroxburghii. RESULTS Our data demonstrated that RRJ significantly improved sperm quality, alleviated testicular atrophy, restored endocrine disorders, and mitigated oxidative stress, inflammation, and apoptosis in testicular tissues. Additionally, RRJ reduced testicular and sperm DNA damage, as evidenced by decreased γ-H2AX expression and DNA fragmentation index. Network pharmacology analysis identified quercetin, apigenin, luteolin, kaempferol, eriodictyol, and ellagic acid as the key bioactive compounds in RRJ, with the PI3K/AKT signaling pathway playing a crucial role in its therapeutic effects. Western blotting confirmed that RRJ reversed DEHP-induced suppression of the PI3K/AKT pathway. CONCLUSIONS This study demonstrates that RRJ protects against DEHP-induced reproductive toxicity through antioxidant, anti-inflammatory, and anti-apoptotic mechanisms, mediated in part by the PI3K/AKT signaling pathway. This work provides the first comprehensive evidence of the protective effects of Rosa roxburghii against male reproductive system damage and its underlying mechanisms.
Collapse
Affiliation(s)
- Chaoyu Huang
- Department of Clinical Laboratory, The First Affiliated Hospital of Guangxi Medical University, Key Laboratory of Clinical Laboratory Medicine of Guangxi Department of Education, Nanning, 530021, Guangxi, China
| | - Chen Qian
- Department of Clinical Laboratory, The First Affiliated Hospital of Guangxi Medical University, Key Laboratory of Clinical Laboratory Medicine of Guangxi Department of Education, Nanning, 530021, Guangxi, China
| | - Zongxian Li
- Department of Clinical Laboratory, The First Affiliated Hospital of Guangxi Medical University, Key Laboratory of Clinical Laboratory Medicine of Guangxi Department of Education, Nanning, 530021, Guangxi, China
| | - Yuanyuan Qin
- Department of Clinical Laboratory, The First Affiliated Hospital of Guangxi Medical University, Key Laboratory of Clinical Laboratory Medicine of Guangxi Department of Education, Nanning, 530021, Guangxi, China
| | - Wuning Mo
- Department of Clinical Laboratory, The First Affiliated Hospital of Guangxi Medical University, Key Laboratory of Clinical Laboratory Medicine of Guangxi Department of Education, Nanning, 530021, Guangxi, China.
| | - Faquan Lin
- Department of Clinical Laboratory, The First Affiliated Hospital of Guangxi Medical University, Key Laboratory of Clinical Laboratory Medicine of Guangxi Department of Education, Nanning, 530021, Guangxi, China.
| |
Collapse
|
2
|
Song Y, Li Q, Liu Y, Ma Y, Lin C, Bai X, Nie N, Liu Y, Yi Z, Zheng H, Yu S. Discrepancy on the quality characteristics of soluble dietary fiber in wild Rosa roxburghii Tratt fruits from different regions. Sci Rep 2025; 15:8289. [PMID: 40064993 PMCID: PMC11894209 DOI: 10.1038/s41598-025-86002-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 01/07/2025] [Indexed: 03/14/2025] Open
Abstract
To minimize waste and maximize the utilization of wild Rosa roxburghii Tratt fruits, the quality characteristics of soluble dietary fiber (SDF) extracted from wild Rosa roxburghii Tratt fruits sourced from ten regions were assessed in this study through an in-depth analysis. This analysis included the evaluation of chemical composition, physicochemical properties, structural elucidation, antioxidant capacity, and functional properties in yogurt applications. Communally, these SDFs are acidic heteropolysaccharides mainly composed of glucose, galacturonic acid, galactose, arabinose, and rhamnose, and all of them showed the infrared spectrum and high molecular weight (Mw) characteristics of polysaccharides. Meanwhile, the results indicated significant regional variations in the quality of SDF. Specifically, the SDF sourced from region LP possessed the highest arabinose glucose ratio (75.63%), Mw (312.488 kDa) and diffraction intensity. While the SDF sourced from region AZ indicated the lowest sugar content (41.57%) and diffraction intensity, but highest the swelling capacity (1.02 mL/g) and emulsion stability (41.90%). Furthermore, the SDF sourced from region ZS revealed the lowest Mw (149.476 kDa), total protein ratio (8.61%) and oil-holding capacity (1.63 g/g), but highest the total sugar ratio (58.63%). Additionally, the foaming capacity and DPPH free radical scavenging ability of SDF sourced from region TR were significantly superior to those of other regions (p < 0.05), and SDF sourced from region BD was also similar in terms of ABTS free radical scavenging rate and total protein proportion. Meanwhile, these SDFs' differences in surface morphological features and application properties in yogurt were also observed. These findings provide essential data for the further exploration of wild Rosa roxburghii Tratt and the enhancement of the quality of its soluble dietary fiber.
Collapse
Affiliation(s)
- Ya Song
- Department of Food Science and Engineering, Moutai Institute, Renhuai, 564507, China
| | - Qingqing Li
- Department of Food Science and Engineering, Moutai Institute, Renhuai, 564507, China
| | - Yuting Liu
- Department of Food Science and Engineering, Moutai Institute, Renhuai, 564507, China
| | - Yue Ma
- Department of Food Science and Engineering, Moutai Institute, Renhuai, 564507, China
| | - Chenwenyi Lin
- Department of Food Science and Engineering, Moutai Institute, Renhuai, 564507, China
| | - Xin Bai
- Department of Food Science and Engineering, Moutai Institute, Renhuai, 564507, China
| | - Ninglang Nie
- Department of Food Science and Engineering, Moutai Institute, Renhuai, 564507, China
| | - Yafeng Liu
- Department of Food Science and Engineering, Moutai Institute, Renhuai, 564507, China
| | - Zexuan Yi
- Department of Food Science and Engineering, Moutai Institute, Renhuai, 564507, China
| | - Huayan Zheng
- Department of Wine Engineering, Moutai Institute, Renhuai, 564507, China.
- Talent Cultivation Center of Moutai Institute on Characteristic Food Resource Utilization, Renhuai, 564507, China.
| | - Shirui Yu
- Department of Food Science and Engineering, Moutai Institute, Renhuai, 564507, China.
- Talent Cultivation Center of Moutai Institute on Characteristic Food Resource Utilization, Renhuai, 564507, China.
- Engineering Technology Research Center of Health Wine Brewing, Renhuai, 564507, China.
| |
Collapse
|
3
|
Zeng J, Long YQ, Zhu JY, Fu XS, Zhang JY, He JW, Liu XR, Wang ZH, Tong QZ, Liu XD, Zhou RB. Accumulation differences of high-value ingredients in different phenotype Lonicera macranthoides: insights from integrative metabolome and transcriptome analyses. FRONTIERS IN PLANT SCIENCE 2025; 16:1533263. [PMID: 40104033 PMCID: PMC11913843 DOI: 10.3389/fpls.2025.1533263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Accepted: 02/13/2025] [Indexed: 03/20/2025]
Abstract
Background Lonicera macranthoides Hand.-Mazz., the primary sources of Lonicerae Flos(Shanyinhua), brings great medicinal and economic value as an invaluable source of natural bioactive compounds. Nutrient and metabolites accumulation generally changed accompany with its floral development and opening. While the specific accumulation pattern and the underlying molecular regulatory networks remain unclear. Methods The present study intergrated a comparative analysis upon UPLC-MS/MS-based metabolomics and RNA-seq-based transcriptomics to revealed the differences in accumulation of flavonoids, phenolic acids, and terpenoids between the xianglei-type (corolla-closed) and wild-type (corolla-unfolded) of L. macranthoides flowers. Results and conclusion 674 differentially accumulated metabolites(DAMs) were identified in WT and XL, with 5,776 common differentially expressed genes(DEGs), revealing a significant differences in accumulation of flavonoids, phenolic acids, and terpenoids during the late stage of flower development between the xianglei-type and wild-type of L. macranthoides flowers. Combined analysis further identified 36 hub genes, major transcription factors and hormone-related genes, which play key roles in the differential accumulation of the abovementioned metabolites. These lines of evidences provide a molecular basis for the metabolic changes occurring during growth and can be significantly implicated in further research on the biosynthetic pathways associated with high-value potent active components in woody plants.
Collapse
Affiliation(s)
- Juan Zeng
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
- Key Laboratory of Germplasm Resources and Standardized Planting of Hunan Large-scale Genuine Medicinal Materials, Changsha, China
| | - Yu Qing Long
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
- Department of Pharmacy, Yiyang Medical College, Yiyang, China
| | - Jia Yuan Zhu
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
- Key Laboratory of Germplasm Resources and Standardized Planting of Hunan Large-scale Genuine Medicinal Materials, Changsha, China
| | - Xue Sen Fu
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
- Key Laboratory of Germplasm Resources and Standardized Planting of Hunan Large-scale Genuine Medicinal Materials, Changsha, China
| | - Jing Yu Zhang
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
- Key Laboratory of Germplasm Resources and Standardized Planting of Hunan Large-scale Genuine Medicinal Materials, Changsha, China
| | - Jia Wei He
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
- Key Laboratory of Germplasm Resources and Standardized Planting of Hunan Large-scale Genuine Medicinal Materials, Changsha, China
| | - Xiao Rong Liu
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
- Key Laboratory of Germplasm Resources and Standardized Planting of Hunan Large-scale Genuine Medicinal Materials, Changsha, China
| | - Zhi Hui Wang
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
- Key Laboratory of Germplasm Resources and Standardized Planting of Hunan Large-scale Genuine Medicinal Materials, Changsha, China
| | - Qiao Zhen Tong
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
- Key Laboratory of Germplasm Resources and Standardized Planting of Hunan Large-scale Genuine Medicinal Materials, Changsha, China
| | - Xiang Dan Liu
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
- Key Laboratory of Germplasm Resources and Standardized Planting of Hunan Large-scale Genuine Medicinal Materials, Changsha, China
- Key Laboratory of Modern Research of TCM, Education Department of Hunan Province, Changsha, China
| | - Ri Bao Zhou
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
- Key Laboratory of Germplasm Resources and Standardized Planting of Hunan Large-scale Genuine Medicinal Materials, Changsha, China
- Key Laboratory of Modern Research of TCM, Education Department of Hunan Province, Changsha, China
| |
Collapse
|
4
|
Zhou H, Zheng X, Huang S, Wang X, Zhou T, Zhang S, Ling Y, Wang W, Li X, Li S, Xie Y, Yin W. Rosa roxburghii Fermentation Broths Attenuate Bleomycin-Induced Pulmonary Fibrosis by Activating the Nrf2/HO-1/NQO1 Signaling Pathway and Modulating Gut Microbiota. Food Sci Nutr 2025; 13:e70105. [PMID: 40115251 PMCID: PMC11923242 DOI: 10.1002/fsn3.70105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 03/01/2025] [Accepted: 03/05/2025] [Indexed: 03/23/2025] Open
Abstract
Pulmonary fibrosis (PF) is a chronic and progressive lung disease, and oxidative stress plays a critical role in its pathogenesis. Rosa roxburghii Tratt, known for its anti-inflammatory and antioxidant properties, has been shown to alleviate fibrosis. This study aimed to explore whether two Rosa roxburghii fermentation broths (RRFBs) (with different proportions) could attenuate bleomycin (BLM)-induced PF in mice and to elucidate the molecular mechanisms. The results revealed that RRFBs reduced structural lung damage, collagen deposition, and lung inflammation. RRFBs also suppressed fibrotic markers (Collagen I, Vimentin, and α-SMA) while enhancing epithelial marker E-cadherin expression. Additionally, RRFBs alleviated BLM-induced oxidative stress and apoptosis by activating the Nrf2/HO-1/NQO1 signaling pathway and facilitating Nrf2 nuclear translocation. Furthermore, RRFBs attenuated the BLM-induced changes in the gut microbiota; in particular, they decreased the abundance of the pathogenic bacterium Proteus and increased the abundance of the probiotics Ileibacterium and Dubosiella. Spearman correlation analysis revealed a strong association between oxidative stress inhibition and gut microbiota composition. These results indicated that RRFBs could exert lung-protective effects by inhibiting oxidative stress and alleviating intestinal disturbances.
Collapse
Affiliation(s)
- Heting Zhou
- West China School of Public Health and West China Fourth Hospital, Sichuan University Chengdu China
| | - Xinyue Zheng
- State Key Laboratory of Biotherapy and Cancer Center West China Hospital, Sichuan University Chengdu China
| | - Shaolin Huang
- West China School of Public Health and West China Fourth Hospital, Sichuan University Chengdu China
| | - Xiaomeng Wang
- West China School of Public Health and West China Fourth Hospital, Sichuan University Chengdu China
| | - Ting Zhou
- West China School of Public Health and West China Fourth Hospital, Sichuan University Chengdu China
| | - Shuwen Zhang
- West China School of Public Health and West China Fourth Hospital, Sichuan University Chengdu China
| | - Yihan Ling
- West China School of Public Health and West China Fourth Hospital, Sichuan University Chengdu China
| | - Wenxi Wang
- West China School of Public Health and West China Fourth Hospital, Sichuan University Chengdu China
| | - Xingjie Li
- West China School of Public Health and West China Fourth Hospital, Sichuan University Chengdu China
- Department of Clinical Nutrition Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China Chengdu China
| | - Shouqian Li
- Guizhou Jinqianguo Biotechnology Co. Ltd. Bijie China
| | - Yongmei Xie
- State Key Laboratory of Biotherapy and Cancer Center West China Hospital, Sichuan University Chengdu China
| | - Wenya Yin
- West China School of Public Health and West China Fourth Hospital, Sichuan University Chengdu China
| |
Collapse
|
5
|
He F, Yan Y, Peng M, Gao M, Zhou L, Chen F, Yang L, Li L, Yang X. Therapeutic potential of Rosa roxburghii folium extract in insomnia treatment: a comprehensive evaluation of behavioral and neurochemical effects in a PCPA-induced mouse model. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025; 105:1044-1056. [PMID: 39286895 DOI: 10.1002/jsfa.13895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 06/21/2024] [Accepted: 07/15/2024] [Indexed: 09/19/2024]
Abstract
BACKGROUND Insomnia, a prevalent sleep disorder, detrimentally affects quality of life and is often challenging to manage with conventional treatments. This study delved into identifying and quantifying the main compounds by employing ultra-performance liquid chromatography-Q-Exactive-Orbitrap mass spectrometry, and further to evaluate the therapeutic potential of Rosa roxburghii folium (RRF) extract, with multiple pharmacological activities. Previous research had hinted at the efficacy of glycosides in influencing the γ-aminobutyric acid (GABAergic) system, which plays a pivotal role in sleep regulation. Utilizing a p-chlorophenylalanine-induced insomnia model in BALB/C mice, this investigation aimed to unravel the effects of various dosages of RRF extract on sleep quality and elucidated its mechanism of action. RESULTS A total of 66 compounds in the RRF extract were analyzed. Behavioral assessments demonstrated notable enhancements in sleep duration and latency. Biochemical analyses further corroborated these findings, revealing modulation in neurotransmitter levels indicative of a potential mechanism through the GABAergic and serotoninergic pathways. Additionally, histological evaluations suggested anti-inflammatory and antioxidant effects of the RRF extract. CONCLUSION The findings from this study underscored the therapeutic efficacy of RRF extract in combating insomnia, particularly highlighting its glycoside components' role. The extract's significant improvement in sleep duration and latency, alongside its modulation of neurotransmitter levels, showcases its potential as a natural remedy for insomnia. Through its action on the GABAergic and serotoninergic pathways, as well as its anti-inflammatory and antioxidant effects, RRF extract emerges as a promising candidate for insomnia treatment, offering a holistic approach to sleep disorder management. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Fengjin He
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China
- Natural Products Research Center of Guizhou Province, Guiyang, China
| | - Yanfang Yan
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China
- Natural Products Research Center of Guizhou Province, Guiyang, China
| | - Mei Peng
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China
- Natural Products Research Center of Guizhou Province, Guiyang, China
| | - Ming Gao
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China
- Natural Products Research Center of Guizhou Province, Guiyang, China
| | - Lang Zhou
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China
- Natural Products Research Center of Guizhou Province, Guiyang, China
| | - Faju Chen
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China
- Natural Products Research Center of Guizhou Province, Guiyang, China
| | - Lishou Yang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China
- Natural Products Research Center of Guizhou Province, Guiyang, China
| | - Liangqun Li
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China
- Natural Products Research Center of Guizhou Province, Guiyang, China
| | - Xiaosheng Yang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China
- Natural Products Research Center of Guizhou Province, Guiyang, China
| |
Collapse
|
6
|
Liu M, Yan K, Yu S, Tan F, Hu W, Dai Z, Tie H, Zeng X. Ganoderma lucidum driven fermentation of Rosa roxburghii pomace: Effects on noodle physicochemical properties, digestion, and gut microbiota. Food Chem X 2024; 24:102014. [PMID: 39641111 PMCID: PMC11617704 DOI: 10.1016/j.fochx.2024.102014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/13/2024] [Accepted: 11/14/2024] [Indexed: 12/07/2024] Open
Abstract
Rosa roxburghii pomace (RRP) is a high dietary fiber byproduct that is underutilized. This study investigated the effects of Ganoderma lucidum fermented Rosa roxburghii pomace (FRRP) on noodle cooking characteristics, texture, structure, in vitro digestion, and fermentation. The results showed that soluble dietary fiber, active components (polysaccharides, triterpenoids and dietary flavonoids), and the total cellulase (Filter paper enzymes, Carboxymethyl cellulase), β-glucosidase and laccase activity were significantly increased in FRRP (p < 0.05). FRRP improved the cooking and sensory properties of noodles and inhibited starch hydrolysis during in vitro digestion. The resistant starch content in noodles with 15 % FRRP increased by 12.63 %, and the predicted glycemic index decreased by 9.34 %. Moreover, the intestinal microbiota structure was significantly improved, promoting the growth of beneficial bacteria such as Bifidobacterium and Lactobacillus. This study contributed to the high-value and environmentally friendly utilization of RRP and provided new insights into the development of efficient noodles.
Collapse
Affiliation(s)
- Mingzhu Liu
- School of Liquor and Food Engineering, College of Life Science, Guizhou Provincial Key Laboratory of Agricultural and Animal Products Storage and Processing, Guizhou University, Guiyang 550000, China
| | - Kai Yan
- Liupanshui Normal University, Liupanshui 553004, China
| | - Shan Yu
- School of Liquor and Food Engineering, College of Life Science, Guizhou Provincial Key Laboratory of Agricultural and Animal Products Storage and Processing, Guizhou University, Guiyang 550000, China
| | - Fuyao Tan
- School of Liquor and Food Engineering, College of Life Science, Guizhou Provincial Key Laboratory of Agricultural and Animal Products Storage and Processing, Guizhou University, Guiyang 550000, China
| | - Wenkang Hu
- School of Liquor and Food Engineering, College of Life Science, Guizhou Provincial Key Laboratory of Agricultural and Animal Products Storage and Processing, Guizhou University, Guiyang 550000, China
| | - Ziru Dai
- College of Food Engineering, Beibu Gulf University, Guangxi 535011, China
| | - Huaimao Tie
- School of Liquor and Food Engineering, College of Life Science, Guizhou Provincial Key Laboratory of Agricultural and Animal Products Storage and Processing, Guizhou University, Guiyang 550000, China
| | - Xuefeng Zeng
- School of Liquor and Food Engineering, College of Life Science, Guizhou Provincial Key Laboratory of Agricultural and Animal Products Storage and Processing, Guizhou University, Guiyang 550000, China
| |
Collapse
|
7
|
Zeng T, Zhu L, Su W, Gu L, Wang H, Du X, Zhu B, Wang C, Wu D. Comparative Analysis of Ca 2+/Cation Antiporter Gene Family in Rosa roxburghii and Enhanced Calcium Stress Tolerance via Heterologous Expression of RrCAX1a in Tobacco. PLANTS (BASEL, SWITZERLAND) 2024; 13:3582. [PMID: 39771280 PMCID: PMC11677073 DOI: 10.3390/plants13243582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/16/2024] [Accepted: 12/20/2024] [Indexed: 01/11/2025]
Abstract
Rosa roxburghii, a calciphilic species native to the mountainous regions of Southwest China, is renowned for its high vitamin C and bioactive components, making it valuable for culinary and medicinal uses. This species exhibits remarkable tolerance to the high-calcium conditions typical of karst terrains. However, the underlying mechanisms of this calcium resilience remain unclear. The Ca2+/cation antiporter (CaCA) superfamily plays a vital role in the transport of Ca2+ and other cations and is crucial for plant tolerance to metal stress. However, the roles and evolutionary significance of the CaCA superfamily members in R. roxburghii remain poorly understood. This study identified 22 CaCA superfamily genes in R. roxburghii, categorized into four subfamilies. The gene structures of these RrCaCAs show considerable conservation across related species. Selection pressure analysis revealed that all RrCaCAs are subject to purifying selection. The promoter regions of these genes contain numerous hormone-responsive and stress-related elements. qRT-PCR analyses demonstrated that H+/cation exchanger (CAX) RrCAX1a and RrCAX3a were highly responsive to Ca2+ stress, cation/Ca2+ exchanger (CCX) RrCCX4 to Mg2+ stress, and RrCCX11a to Na+ stress. Subcellular localization indicated that RrCAX1a is localized to the plant cell membrane, and its stable transformation in tobacco confirmed its ability to confer enhanced resistance to heavy Ca2+ stresses, highlighting its crucial role in the high-calcium tolerance mechanisms of R. roxburghii. This research establishes a foundation for further molecular-level functional analyses of the adaptation mechanisms of R. roxburghii to high-calcium environments.
Collapse
Affiliation(s)
- Tuo Zeng
- Guizhou Key Laboratory of Forest Cultivation in Plateau Mountain, School of Life Sciences, Guizhou Normal University, Guiyang 550025, China; (T.Z.); (L.G.); (H.W.); (X.D.); (B.Z.)
| | - Liyong Zhu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China; (L.Z.); (C.W.)
| | - Wenwen Su
- Guizhou Institute of Mountain Resources, Guiyang 550025, China;
| | - Lei Gu
- Guizhou Key Laboratory of Forest Cultivation in Plateau Mountain, School of Life Sciences, Guizhou Normal University, Guiyang 550025, China; (T.Z.); (L.G.); (H.W.); (X.D.); (B.Z.)
| | - Hongcheng Wang
- Guizhou Key Laboratory of Forest Cultivation in Plateau Mountain, School of Life Sciences, Guizhou Normal University, Guiyang 550025, China; (T.Z.); (L.G.); (H.W.); (X.D.); (B.Z.)
| | - Xuye Du
- Guizhou Key Laboratory of Forest Cultivation in Plateau Mountain, School of Life Sciences, Guizhou Normal University, Guiyang 550025, China; (T.Z.); (L.G.); (H.W.); (X.D.); (B.Z.)
| | - Bin Zhu
- Guizhou Key Laboratory of Forest Cultivation in Plateau Mountain, School of Life Sciences, Guizhou Normal University, Guiyang 550025, China; (T.Z.); (L.G.); (H.W.); (X.D.); (B.Z.)
| | - Caiyun Wang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China; (L.Z.); (C.W.)
| | - Di Wu
- Guizhou Institute of Mountain Resources, Guiyang 550025, China;
| |
Collapse
|
8
|
Lei W, Mao Y, Liu C, Pan F, Ma K, Li J. Contribution of polyvinylpolypyrrolidone (PVPP) treatment to the distribution of polyphenols and the evolution of esters and higher alcohols in Rosa roxburghii Tratt wine. Food Res Int 2024; 197:115245. [PMID: 39593327 DOI: 10.1016/j.foodres.2024.115245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/02/2024] [Accepted: 10/18/2024] [Indexed: 11/28/2024]
Abstract
Polyvinylpolypyrrolidone (PVPP) is commonly employed for fining in fruit wine brewing. This study aimed to investigate the impact of PVPP pretreatment on the formation of fermentation aroma and polyphenol distribution in Rosa roxburghii Tratt (RRT) wine. A significant effect of PVPP on polyphenol adsorption was observed, and polyphenol families or subfamilies such as flavanols and flavonols showed specific affinity for PVPP, decreasing by over 19 % and 30 %, respectively. Furthermore, it was the first time to demonstrate a significant enhancement in the ester content of the corresponding RRT wine after PVPP treatment, particularly in imparting sweet and fruity esters (increased by over 40 %). In contrast, the RRT wine treated with PVPP exhibited a significant reduction of over 20 % in the concentration of higher alcohols, particularly reflected in the green and chemical aromas. This indicates that PVPP treatment could promote the transformation of RRT wine aroma from green and chemical to sweet and fruity. Correlation analysis revealed a positive relationship between the concentration of higher alcohols and most phenolic compounds in RRT wine, while quercetin 3-glucoside, rutin, and polydatin were negatively correlated with esters that can impart fruit flavor and floral aroma to fruit wine. As a practical insight into fruit wine fermentation, PVPP fining before fermentation is more likely to alter the phenolic compositions of RRT wine, thereby influencing its aroma characteristics. Specifically, polyphenols associated with energy metabolism of yeast could have stimulated the formed fluxes of esters. The association between the formation of esters and higher alcohols with phenolic compounds will provide new information on the impact of clarification treatments on yeast-derived volatile metabolites in RRT wine and hold promise in improving the aroma of RRT wine by modulating polyphenol composition through pre-clarification.
Collapse
Affiliation(s)
- Wenping Lei
- College of Food Science & Nutritional Engineering, China Agricultural University, No. 17 Tsinghua Dong Road, Beijing 100083, China; CAU Sichuan Chengdu Advanced Agricultural Industrial Institute, No. 515 Xingyuan 8th Road, Chengdu 611430, China
| | - Yu Mao
- College of Food Science & Nutritional Engineering, China Agricultural University, No. 17 Tsinghua Dong Road, Beijing 100083, China; CAU Sichuan Chengdu Advanced Agricultural Industrial Institute, No. 515 Xingyuan 8th Road, Chengdu 611430, China
| | - Chang Liu
- College of Food Science & Nutritional Engineering, China Agricultural University, No. 17 Tsinghua Dong Road, Beijing 100083, China; CAU Sichuan Chengdu Advanced Agricultural Industrial Institute, No. 515 Xingyuan 8th Road, Chengdu 611430, China
| | - Fei Pan
- Guizhou Yunshang Cilihua Technology Co., Ltd, Yongning Town, Guanling Autonomous County, Anshun 561000, China
| | - Kexi Ma
- CAU Sichuan Chengdu Advanced Agricultural Industrial Institute, No. 515 Xingyuan 8th Road, Chengdu 611430, China
| | - Jingming Li
- College of Food Science & Nutritional Engineering, China Agricultural University, No. 17 Tsinghua Dong Road, Beijing 100083, China; CAU Sichuan Chengdu Advanced Agricultural Industrial Institute, No. 515 Xingyuan 8th Road, Chengdu 611430, China.
| |
Collapse
|
9
|
Mao Y, Sha R, Sun Y, Wang Z, Huang J. Antioxidative and Cytoprotective Effects of Rosa Roxburghii and Metabolite Changes in Oxidative Stress-Induced HepG2 Cells Following Rosa Roxburghii Intervention. Foods 2024; 13:3520. [PMID: 39517304 PMCID: PMC11545593 DOI: 10.3390/foods13213520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 10/29/2024] [Accepted: 11/02/2024] [Indexed: 11/16/2024] Open
Abstract
Rosa Roxburghii (RR), a traditional Chinese medicinal fruit, is rich in bioactive substances that make it a potential natural antioxidant resource. This research aimed to study the antioxidant properties of RR by in vitro experiments and through intracellular assessment in H2O2-induced HepG2 cells. A non-targeted metabolic analysis was conducted to indicate changes in intracellular and extracellular metabolites. Differential metabolites and metabolic pathways were explored using PCA, PLS-DA, and KEGG pathway analysis. The results showed that RR rich in bioactive substances exhibited a significant antioxidative property in vitro and intracellularly. This property may be achieved by scavenging free radicals, increasing the activity of catalase (CAT), glutathione peroxidase (GSH-Px), superoxide dismutase (SOD), and the levels of bicinchoninic acid (BCA) while reducing the reactive oxygen species (ROS) generation. This study identified 13 differential metabolites intracellularly and 7 extracellularly, among which the key differential metabolites included D-glucopyranose, D-mannose, fructose, citric acid, malic acid, cholesterol, and cholestenone. These key metabolites primarily regulated glucose-related metabolism, the citrate cycle, and the primary bile acid biosynthesis pathway in H2O2-induced HepG2 cells. These findings provide potential application evidence of RR in the development of natural resources for functional foods.
Collapse
Affiliation(s)
- Yangchen Mao
- Zhejiang Provincial Key Laboratory for Chemical & Biological Processing Technology of Farm Product, Hangzhou 310023, China; (Y.M.)
- Zhejiang Province Collaborative Innovation Center of Agricultural Biological Resources Biochemical Manufacturing, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Ruyi Sha
- Zhejiang Provincial Key Laboratory for Chemical & Biological Processing Technology of Farm Product, Hangzhou 310023, China; (Y.M.)
- Zhejiang Province Collaborative Innovation Center of Agricultural Biological Resources Biochemical Manufacturing, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Yuhao Sun
- Zhejiang Provincial Key Laboratory for Chemical & Biological Processing Technology of Farm Product, Hangzhou 310023, China; (Y.M.)
- Zhejiang Province Collaborative Innovation Center of Agricultural Biological Resources Biochemical Manufacturing, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Zhenzhen Wang
- Zhejiang Provincial Key Laboratory for Chemical & Biological Processing Technology of Farm Product, Hangzhou 310023, China; (Y.M.)
- Zhejiang Province Collaborative Innovation Center of Agricultural Biological Resources Biochemical Manufacturing, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Jun Huang
- Zhejiang Provincial Key Laboratory for Chemical & Biological Processing Technology of Farm Product, Hangzhou 310023, China; (Y.M.)
- Zhejiang Province Collaborative Innovation Center of Agricultural Biological Resources Biochemical Manufacturing, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China
| |
Collapse
|
10
|
Song X, Yang Y, Wang C, Zhu W, Zhou C, Wu W. Rosa roxburghii tratt residue: A novel feed resource for cattle indicated by the non-deleterious performance and blood metabolites. Trop Anim Health Prod 2024; 56:340. [PMID: 39394533 DOI: 10.1007/s11250-024-04115-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 09/11/2024] [Indexed: 10/13/2024]
Abstract
Rosa roxburghii tratt residue (RRTR) is a regional and uncommon byproduct in Guizhou. Little information is available on whether RRTR can be used as feed for ruminants. In this study, the feasibility of using RRTR as a new feed resource for cattle was investigated by chemical composition analysis, in vitro gas production (Trial 1) and animal feeding experiments (Trial 2). In trial 1, compared to the commonly used fruit residues, RRTR had a proximate nutrient level; the in vitro gas production curve and dynamics fell within the normal range. In trial 2, 16 cattle were allocated to the control and treatment groups, with 8 replicates of 1 cattle each. Cattle in the control group were fed a basal diet without RRTR, while those in the treatment group were fed a diet containing 30% RRTR to replace 30% whole corn silage in basal diet. Feeding RRTR had little effect on the growth performance of the control and treatment cattle (P > 0.05). The feed-to-gain ratio was greater in the treatment group than in the control group throughout the trial period (P < 0.05). The plasma urea levels in the treatment group were lower (P < 0.05) than that in control group, and the levels of other plasma biochemical metabolites were not different between the two groups of cattle (P > 0.05). The in vivo rumen fermentation parameters did not differ between the control and treatment groups (P > 0.05). Our findings indicate that RRTR has a nutritional profile (crude protein, neutral detergent fiber, acid detergent fiber, and crude fiber) similar to that of commonly used fruit residues (such as apple, pineapple, and citrus residue et al.); improves plasma protein utilization efficiency; and has no negative impact on growth performance, albeit with limited effects on feed conversion; blood metabolites, and rumen fermentation parameters in cattle. Accordingly, we conclude, based on the above-mentioned result, that RRTR can serve as a novel feed alternative resource when considering the affordability and as a practical choice for low-cost diets for cattle.
Collapse
Affiliation(s)
- Xinyu Song
- Institute of Animal Nutrition and Feed Science, Key Lab of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, 550025, China
| | - Yi Yang
- Institute of Animal Nutrition and Feed Science, Key Lab of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, 550025, China
| | - Chong Wang
- College of Animal Science and Technology and Veterinary Medicine, Zhejiang Agriculture and Forest University, Hangzhou, 311300, China
| | - Wen Zhu
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Chuanshe Zhou
- South-Central Experimental Station of Animal Nutrition and Feed Science in the Ministry of Agriculture, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, 410125, Hunan, China
| | - Wenxuan Wu
- Institute of Animal Nutrition and Feed Science, Key Lab of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, 550025, China.
| |
Collapse
|
11
|
Chen Z, Zhang S, Sun X, Meng D, Lai C, Zhang M, Wang P, Huang X, Gao X. Rosa roxburghii fermented juice mitigates LPS-induced acute lung injury by modulation of intestinal flora and metabolites. Front Microbiol 2024; 15:1447735. [PMID: 39355423 PMCID: PMC11442212 DOI: 10.3389/fmicb.2024.1447735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 08/27/2024] [Indexed: 10/03/2024] Open
Abstract
Acute lung injury (ALI) is a severe pulmonary condition with high mortality and morbidity, lacking effective pharmacotherapeutic options. Rosa roxburghii Tratt, a unique fruit from southwestern China, is valued for its rich nutritional content and functional properties. Fermentation is known to enhance the nutritional value, flavor, and shelf life of foods. In this study, we investigated the effects of fermented Rosa roxburghii juice (RRFJ) on gut microbiota, metabolites, and the levels of short-chain fatty acids in the intestines, as well as its impact on lung tissue and intestine tissue injury, inflammation, and oxidative stress in murine models. The results showed that RRFJ modulated gut microbiota and metabolites, increased short-chain fatty acid levels, and consequently reduced lung tissue injury, inflammation, and oxidative stress in mice with ALI. These findings suggest that RRFJ has the potential to serve as a functional dietary adjunct in the management of acute lung injury, providing a scientific basis for its therapeutic role.
Collapse
Affiliation(s)
- Zhiyu Chen
- State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Science, Guizhou Medical University, Guiyang, China
- Center of Microbiology and Biochemical Pharmaceutical Engineering, Guizhou Medical University, Guiyang, China
| | - Shuo Zhang
- State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Science, Guizhou Medical University, Guiyang, China
- Experimental Animal Center of Guizhou Medical University, Guiyang, China
| | - Xiaodong Sun
- State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Science, Guizhou Medical University, Guiyang, China
- Center of Microbiology and Biochemical Pharmaceutical Engineering, Guizhou Medical University, Guiyang, China
| | - Duo Meng
- State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Science, Guizhou Medical University, Guiyang, China
- Center of Microbiology and Biochemical Pharmaceutical Engineering, Guizhou Medical University, Guiyang, China
| | - Chencen Lai
- State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Science, Guizhou Medical University, Guiyang, China
- Center of Microbiology and Biochemical Pharmaceutical Engineering, Guizhou Medical University, Guiyang, China
| | - Min Zhang
- State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Science, Guizhou Medical University, Guiyang, China
- Center of Microbiology and Biochemical Pharmaceutical Engineering, Guizhou Medical University, Guiyang, China
| | - Pengjiao Wang
- State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Science, Guizhou Medical University, Guiyang, China
- Center of Microbiology and Biochemical Pharmaceutical Engineering, Guizhou Medical University, Guiyang, China
| | - Xuncai Huang
- State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Science, Guizhou Medical University, Guiyang, China
- Center of Microbiology and Biochemical Pharmaceutical Engineering, Guizhou Medical University, Guiyang, China
| | - Xiuli Gao
- State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Science, Guizhou Medical University, Guiyang, China
- Center of Microbiology and Biochemical Pharmaceutical Engineering, Guizhou Medical University, Guiyang, China
- Guizhou Provincial Engineering Research Center of Food Nutrition and Health, Guizhou Medical University, Guiyang, China
| |
Collapse
|
12
|
Yin C, Zhang Y, Zhang L, Tian Y, Zhong X, Fang X, Yang Y, Tao A. Exploring Rosa roxburghii Tratt polysaccharides: From extraction to application potential in functional products - An in-depth review. Int J Biol Macromol 2024; 280:135543. [PMID: 39278439 DOI: 10.1016/j.ijbiomac.2024.135543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 08/16/2024] [Accepted: 09/09/2024] [Indexed: 09/18/2024]
Abstract
Rosa roxburghii Tratt (R. roxburghii), a unique ethnic medicine native to southwest China, is classified as both medicinal and culinary, offering a multitude of health benefits. Traditionally, it is used to eliminate diet and relieve diarrhea, nourish Yin and invigorate the spleen, dispel wind and dampness, enhance immunity, and promote the healthy development of the body. Furthermore, it serves as a remedy for ailments such as scurvy, night blindness, cancer, hyperlipidemia, hyperglycemia, and hypertension. R. roxburghii contains many nutritious and active ingredients, including proteins, vitamin C, inorganic salts, essential amino acids, polysaccharides, phenols, triterpenes, organic acids, and superoxide dismutase (SOD). Among them, polysaccharides stand out as pivotal bioactive components, comprising mannose, ribose, rhamnose, glucosamine hydrochloride, glucuronic acid, galacturonic acid, glucose, galactose, arabinose, and fucose, among others. R. roxburghii polysaccharides (RTFPs) present diverse biological activities, including antioxidant, anti-fatigue, hypoglycemic, anti-tumor, immune modulation, relief from ulcerative colitis, protection of neural stem cells from glutamate damage, and improvement of intestinal micro-ecology. Due to its distinctive bioactivity, the research on RTFPs is booming. While numerous extraction and purification techniques have successfully isolated and characterized RTFPs, comprehensive understanding of their chemical structure, mechanisms, structure-activity relationships, safety profiles, and practical applications remains limited. This knowledge gap hampers their optimal utilization and development. In response, this research offers an overview of extraction, purification, structure characteristics, biological activities, structure-activity relationships, and pharmaceutical application of RTFPs. Additionally, this research not only lays a theoretical basis for the comprehensive exploration and exploitation of R. roxburghii and its polysaccharide resources but also offers extensive knowledge and insights into the development and application of RTFPs as a novel functional foods and drugs.
Collapse
Affiliation(s)
- Chenglong Yin
- College of Pharmacy, Dali University, Dali 671003, China
| | - Yue Zhang
- College of Pharmacy, Dali University, Dali 671003, China
| | - Lingsheng Zhang
- College of Medicine, Lijiang Culture and Tourism College, Lijiang 674100, China
| | - Yongjie Tian
- College of Medicine, Lijiang Culture and Tourism College, Lijiang 674100, China
| | - Xuehua Zhong
- College of Medicine, Lijiang Culture and Tourism College, Lijiang 674100, China
| | - Xiao Fang
- College of Medicine, Lijiang Culture and Tourism College, Lijiang 674100, China
| | - Yongcheng Yang
- College of Pharmacy, Dali University, Dali 671003, China.
| | - Aien Tao
- College of Medicine, Lijiang Culture and Tourism College, Lijiang 674100, China.
| |
Collapse
|
13
|
Wang W, Huang S, Li S, Li X, Ling Y, Wang X, Zhang S, Zhou D, Yin W. Rosa sterilis Juice Alleviated Breast Cancer by Triggering the Mitochondrial Apoptosis Pathway and Suppressing the Jak2/Stat3 Pathway. Nutrients 2024; 16:2784. [PMID: 39203920 PMCID: PMC11357216 DOI: 10.3390/nu16162784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/16/2024] [Accepted: 08/19/2024] [Indexed: 09/03/2024] Open
Abstract
Rosa sterilis (RS) is a characteristic fruit in southwestern China that has numerous health benefits; however, its pharmacological effect needs further clarification, especially with respect to the exploration of its potential anti-breast-cancer effect, as there are still knowledge gaps in this regard. This study was designed to investigate the protective effects of Rosa sterilis juice (RSJ) on breast cancer (BC) through in vitro cellular experiments and by establishing mouse 4T1 breast xenograft tumors. This study also had the aim of elucidating RSJ's underlying mechanisms. RSJ can inhibit cell proliferation, affect cell morphology, and impact the clone formation ability of BC; furthermore, it can promote apoptosis by triggering the mitochondrial apoptosis pathway. In mouse 4T1 breast xenograft tumors, RSJ markedly inhibited tumor growth, relieved the pathological lesions, lowered the expression of Ki67, and regulated the expression of the apoptosis-associated protein. Moreover, we observed that RSJ can inhibit the Jak2/Stat3 signaling pathway both in vivo and in vitro. Overall, our research reveals that RSJ can alleviate BC by triggering the mitochondrial apoptosis pathway and suppressing the Jak2/Stat3 pathway, providing new dietary intervention strategies for BC.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Dingzi Zhou
- West China School of Public Health and West China Fourth Hospital, Sichuan University, 17# 3rd Section, Ren Min South Road, Chengdu 610041, China; (W.W.); (S.H.); (S.L.); (X.L.); (Y.L.); (X.W.); (S.Z.)
| | - Wenya Yin
- West China School of Public Health and West China Fourth Hospital, Sichuan University, 17# 3rd Section, Ren Min South Road, Chengdu 610041, China; (W.W.); (S.H.); (S.L.); (X.L.); (Y.L.); (X.W.); (S.Z.)
| |
Collapse
|
14
|
Han L, Jiang Z, Zhang X, Wu X. Dissipation and residue of triadimefon in Rosa roxburghii. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2024; 41:914-922. [PMID: 38875459 DOI: 10.1080/19440049.2024.2357351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 05/12/2024] [Indexed: 06/16/2024]
Abstract
Rosa roxburghii (R. roxburghii) is a unique, edible, medicinal fruit rich in vitamin C found in Southwest China. Triadimefon (TDF) is a triazole fungicide that is widely used to control powdery mildew in R. roxburghii. To assess the safety of TDF in R. roxburghii, an LC-MS/MS method was developed for the simultaneous quantification of TDF and its major metabolite, triadimenol (TDN) in R. roxburghii. Both TDF and TDN showed high correlation coefficients (>0.999) for the solvent- and matrix-matched calibrations. The recovery rates of TDF and TDN in R. roxburghii ranged from 90.18% to 100.42%, with a relative standard deviation (RSD) of 1.25%-9.22%. The limit of quantification (LOQ) was 0.01 mg·kg-1. The half-life of TDF in R. roxburghii was between 2.74 and 3.07 days, with terminal residues ranging from < LOQ to 1.84 mg·kg-1. Recommended maximum residue limits (MRLs) and safe pre-harvest intervals (PHIs) for TDF in R. roxburghii were 0.5 mg·kg-1 and 21 days, respectively. This study provides essential data for TDF's safe and judicious use in R. roxburghii production.
Collapse
Affiliation(s)
- Lei Han
- Key Laboratory of Karst Georesources and Environment, College of Resource and Environmental Engineering, Guizhou University, Guiyang, P. R. China
| | - Zhaochun Jiang
- Plant Protection and Plant Inspection Station of Guizhou Province, Guiyang, Guizhou, P. R. China
| | - Xuefei Zhang
- Provincial Key Laboratory for Agricultural Pest Management in Mountainous Region, Guizhou University, Guiyang, P. R. China
| | - Xiaomao Wu
- Key Laboratory of Karst Georesources and Environment, College of Resource and Environmental Engineering, Guizhou University, Guiyang, P. R. China
- Provincial Key Laboratory for Agricultural Pest Management in Mountainous Region, Guizhou University, Guiyang, P. R. China
| |
Collapse
|
15
|
Jain A, Sarsaiya S, Gong Q, Wu Q, Shi J. Chemical diversity, traditional uses, and bioactivities of Rosa roxburghii Tratt: A comprehensive review. Pharmacol Ther 2024; 259:108657. [PMID: 38735487 DOI: 10.1016/j.pharmthera.2024.108657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 04/19/2024] [Accepted: 05/07/2024] [Indexed: 05/14/2024]
Abstract
Rosa roxburghii Tratt (RRT), known as chestnut rose, has been a subject of growing interest because of its diverse chemical composition and wide range of traditional uses. This comprehensive review aimed to thoroughly examine RRT, including its traditional applications, chemical diversity, and various bioactivities. The chemical profile of this plant is characterized by the presence of essential nutrients such as vitamin C (ascorbic acid), flavonoids, triterpenes, organic acids, tannins, phenolic compounds, polysaccharides, carotenoids, triterpenoids, volatile compounds, amino acids, and essential oils. These constituents contribute to the medicinal and nutritional value. Additionally, we explore the multifaceted bioactivities of RRT, including its potential as an anticancer agent, antioxidant, antiaging agent, antiatherogenic agent, hypoglycemic agent, immunoregulatory modulator, radioprotective agent, antimutagenic agent, digestive system regulator, anti-inflammatory agent, cardioprotective agent, and antibacterial agent, and its intriguing role in modulating the gut microbiota. Furthermore, we discuss the geographical distribution and genetic diversity of this plant species and shed light on its ecological significance. This comprehensive review provides a holistic understanding of RRT, bridges traditional knowledge with contemporary scientific research, and highlights its potential applications in medicine, nutrition, and pharmacology.
Collapse
Affiliation(s)
- Archana Jain
- Key Laboratory of Basic Pharmacology and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563003, China
| | - Surendra Sarsaiya
- Key Laboratory of Basic Pharmacology and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563003, China; Bioresource Institute for Healthy Utilization, Zunyi Medical University, Zunyi 563003, China
| | - Qihai Gong
- Key Laboratory of Basic Pharmacology and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563003, China
| | - Qin Wu
- Key Laboratory of Basic Pharmacology and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563003, China
| | - Jingshan Shi
- Key Laboratory of Basic Pharmacology and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563003, China; Bioresource Institute for Healthy Utilization, Zunyi Medical University, Zunyi 563003, China.
| |
Collapse
|
16
|
Li C, Li H, Fu X, Huang Q, Li Y. Purification, Characterization, and Anti-Inflammatory Potential of Free and Bound Polyphenols Extracted from Rosa roxburghii Tratt Pomace. Foods 2024; 13:2044. [PMID: 38998550 PMCID: PMC11240960 DOI: 10.3390/foods13132044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 07/14/2024] Open
Abstract
Rosa roxburghii Tratt pomace (RRTP), an underutilized byproduct, is rich in polyphenol compounds. This study aimed to further explore the purification, characterization, anti-inflammatory activities, and underlying molecular mechanisms of free polyphenols (RRTP-FP) and bound polyphenols (RRTP-BP) from RRTP. The results indicated that AB-8 macroporous resin emerged as the preferred choice for subsequent separation and purification. The purities of purified RRTP-FP (P-RRTP-FP) and purified RRTP-BP (P-RRTP-BP) increased by 103.34% and 66.01%, respectively. Quantitative analysis identified epigallocatechin, epicatechin, and ellagic acid as the main phenolic compounds in P-RRTP-FP. In P-RRTP-BP, the primary phenolic compounds were ellagic acid, epicatechin, and gallic acid. In vitro antioxidant assays demonstrated the superior DPPH and ABTS radical scavenging activities of P-RRTP-FP and P-RRTP-BP compared to vitamin C. Treatment with P-RRTP-FP and P-RRTP-BP reduced nitric oxide (NO) and reactive oxygen species (ROS) production, mitigated the decline in cellular membrane potential, and significantly downregulated the mRNA expression of pro-inflammatory cytokines and inducible nitric oxide synthase (iNOS) in lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages. Additionally, P-RRTP-FP and P-RRTP-BP inhibited the phosphorylation of pertinent proteins in the nuclear factor kappa-B (NF-κB) and mitogen-activated protein kinase (MAPK) signaling pathways. This finding suggests potential utility of RRTP-derived polyphenols as anti-inflammatory agents for managing severe inflammatory conditions.
Collapse
Affiliation(s)
- Chao Li
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; (C.L.); (H.L.); (X.F.)
| | - Hengyi Li
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; (C.L.); (H.L.); (X.F.)
| | - Xiong Fu
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; (C.L.); (H.L.); (X.F.)
| | - Qiang Huang
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; (C.L.); (H.L.); (X.F.)
| | - Yinghua Li
- Center Laboratory, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 510120, China
| |
Collapse
|
17
|
Li H, Song X, Wu W, Zhou C. Rosa roxburghii tratt residue as an alternative feed for improving growth, blood metabolites, rumen fermentation, and slaughter performance in Hu sheep. Front Vet Sci 2024; 11:1397051. [PMID: 38962702 PMCID: PMC11220278 DOI: 10.3389/fvets.2024.1397051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 05/28/2024] [Indexed: 07/05/2024] Open
Abstract
The utilization of agro-industrial by-products, such as fruit residues, presents a promising strategy for providing alternative feed to ruminants amidst rising prices and limited availability of traditional roughage. In this study, we investigated the effects of Rosa roxburghii tratt residue, a local fruit residue in Guizhou province of China, on the growth, blood metabolites, rumen fermentation, and slaughter performance of Hu sheep. Ninety-six sheep were randomly divided into four groups, namely control, treatment 1, treatment 2, and treatment 3, and fed diets containing 0, 10, 20, and 30% Rosa roxburghii Tratt residue, respectively. Feeding varying levels of Rosa roxburghii Tratt residue showed no significant differences in dry matter intake, average daily gain, or the ratio of dry matter intake to average daily gain. However, sheep in the group fed with 30% Rosa roxburghii Tratt residue showed the highest gross profit. Plasma albumin content was lower in groups fed with Rosa roxburghii Tratt residue-containing diets compared to the control group (p < 0.05). Additionally, diet treatment 3 decreased plasma creatinine levels compared to control and treatment 1 (p < 0.05). Sheep in treatment 2 and treatment 3 exhibited higher plasma high-density lipoprotein level than control and treatment 1 (p < 0.05), as well as increased total cholesterol levels compared to control (p < 0.05). There were no significant differences in other plasma metabolites. Rumen pH, N-NH3, volatile fatty acids, and methane levels did not differ significantly among the four groups. However, feeding diets treatment 2 and treatment 3 resulted in decreased water holding capacity and increased shear force compared to control and treatment 1 (p < 0.05). Furthermore, pH, red chromaticity (a*), yellowness index (b*), and luminance (L*) were unaffected among the four groups of sheep. In conclusion, the inclusion of up to 30% Rosa roxburghii Tratt residue had no adverse effects on growth performance, allowing for feed cost savings without impacting rumen fermentation parameters. Rosa roxburghii tratt residue also showed benefits in improving plasma protein efficiency and enhancing lipid metabolism, albeit with limited effects on meat quality. Considering its affordability, Rosa roxburghii Tratt residue presents a practical choice for low-cost diets, ensuring economic returns.
Collapse
Affiliation(s)
- Huijie Li
- Key Lab of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang, China
| | - Xinyu Song
- Key Lab of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang, China
| | - Wenxuan Wu
- Key Lab of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang, China
- Institute of New Rural Development, Guizhou University, Guiyang, China
| | - Chuanshe Zhou
- Key Lab of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| |
Collapse
|
18
|
Li L, Peng M, Yan Y, Deng T, Liang Q, Tao X, Li H, Yang J, He G, Yang S, Pu X, Yang X. Combined Metabolite and Transcriptomic Profiling Unveil a Potential Gene Network Involved in the Triterpenoid Metabolism of Rose roxburghii. Int J Mol Sci 2024; 25:5517. [PMID: 38791554 PMCID: PMC11121832 DOI: 10.3390/ijms25105517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 05/09/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024] Open
Abstract
Rose roxburghii, a horticulturally significant species within the Rosa genus of the Rosaceae family, is renowned for its abundance of secondary metabolites and ascorbate, earning it the title 'king of vitamin C'. Despite this recognition, the mechanisms underlying the biosynthesis and regulation of triterpenoid compounds in R. roxburghii remain largely unresolved. In this study, we conducted high-performance liquid chromatography profiling across various organs of R. roxburghii, including fruit, root, stem, and leaves, revealing distinct distributions of triterpenoid compounds among different plant parts. Notably, the fruit exhibited the highest total triterpenoid content, followed by root and stem, with leaf containing the lowest levels, with leaf containing the lowest levels. Transcriptomic analysis unveiled preferential expression of members from the cytochrome P450 (CYP) and glycosyltransferase (UGT) families, likely contributing to the higher accumulation of both ascorbate and triterpenoid compounds in the fruits of R. roxburghii compared to other tissues of R. roxburghii. Transcriptomic analysis unveiled a potential gene network implicated in the biosynthesis of both ascorbate and triterpenoid compounds in R. roxburghii. These findings not only deepen our understanding of the metabolic pathways in this species but also have implications for the design of functional foods enriched with ascorbate and triterpenoids in R. roxburghii.
Collapse
Affiliation(s)
- Liangqun Li
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; (L.L.); (Y.Y.); (T.D.); (Q.L.); (H.L.); (J.Y.)
- Natural Products Research Center of Guizhou Province, Guiyang 550014, China
| | - Mei Peng
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; (L.L.); (Y.Y.); (T.D.); (Q.L.); (H.L.); (J.Y.)
- Natural Products Research Center of Guizhou Province, Guiyang 550014, China
| | - Yanfang Yan
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; (L.L.); (Y.Y.); (T.D.); (Q.L.); (H.L.); (J.Y.)
- Natural Products Research Center of Guizhou Province, Guiyang 550014, China
| | - Tingfei Deng
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; (L.L.); (Y.Y.); (T.D.); (Q.L.); (H.L.); (J.Y.)
- Natural Products Research Center of Guizhou Province, Guiyang 550014, China
| | - Qiancheng Liang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; (L.L.); (Y.Y.); (T.D.); (Q.L.); (H.L.); (J.Y.)
- Natural Products Research Center of Guizhou Province, Guiyang 550014, China
| | - Xian Tao
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; (L.L.); (Y.Y.); (T.D.); (Q.L.); (H.L.); (J.Y.)
- Natural Products Research Center of Guizhou Province, Guiyang 550014, China
| | - Haodong Li
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; (L.L.); (Y.Y.); (T.D.); (Q.L.); (H.L.); (J.Y.)
- Natural Products Research Center of Guizhou Province, Guiyang 550014, China
| | - Juan Yang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; (L.L.); (Y.Y.); (T.D.); (Q.L.); (H.L.); (J.Y.)
- Natural Products Research Center of Guizhou Province, Guiyang 550014, China
| | - Guandi He
- College of Agriculture, Guizhou University, Guiyang 550025, China; (G.H.); (S.Y.)
| | - Sanwei Yang
- College of Agriculture, Guizhou University, Guiyang 550025, China; (G.H.); (S.Y.)
| | - Xiaojun Pu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650031, China
| | - Xiaosheng Yang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; (L.L.); (Y.Y.); (T.D.); (Q.L.); (H.L.); (J.Y.)
- Natural Products Research Center of Guizhou Province, Guiyang 550014, China
| |
Collapse
|
19
|
Yang J, Zhang J, Yan H, Yi X, Pan Q, Liu Y, Zhang M, Li J, Xiao Q. The chromosome-level genome and functional database accelerate research about biosynthesis of secondary metabolites in Rosa roxburghii. BMC PLANT BIOLOGY 2024; 24:410. [PMID: 38760710 PMCID: PMC11100184 DOI: 10.1186/s12870-024-05109-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 05/05/2024] [Indexed: 05/19/2024]
Abstract
Rosa roxburghii Tratt, a valuable plant in China with long history, is famous for its fruit. It possesses various secondary metabolites, such as L-ascorbic acid (vitamin C), alkaloids and poly saccharides, which make it a high nutritional and medicinal value. Here we characterized the chromosome-level genome sequence of R. roxburghii, comprising seven pseudo-chromosomes with a total size of 531 Mb and a heterozygosity of 0.25%. We also annotated 45,226 coding gene loci after masking repeat elements. Orthologs for 90.1% of the Complete Single-Copy BUSCOs were found in the R. roxburghii annotation. By aligning with protein sequences from public platform, we annotated 85.89% genes from R. roxburghii. Comparative genomic analysis revealed that R. roxburghii diverged from Rosa chinensis approximately 5.58 to 13.17 million years ago, and no whole-genome duplication event occurred after the divergence from eudicots. To fully utilize this genomic resource, we constructed a genomic database RroFGD with various analysis tools. Otherwise, 69 enzyme genes involved in L-ascorbate biosynthesis were identified and a key enzyme in the biosynthesis of vitamin C, GDH (L-Gal-1-dehydrogenase), is used as an example to introduce the functions of the database. This genome and database will facilitate the future investigations into gene function and molecular breeding in R. roxburghii.
Collapse
Affiliation(s)
- Jiaotong Yang
- Resource Institute for Chinese and Ethnic Materia Medica, Guizhou University of Traditional Chinese Medicine, Guizhou, 550025, China.
| | - Jingjie Zhang
- Resource Institute for Chinese and Ethnic Materia Medica, Guizhou University of Traditional Chinese Medicine, Guizhou, 550025, China
| | - Hengyu Yan
- College of Agronomy, Qingdao Agricultural University, Qingdao, 266109, China
| | - Xin Yi
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, The Chinese Academy of Sciences, Beijing, China
| | - Qi Pan
- Resource Institute for Chinese and Ethnic Materia Medica, Guizhou University of Traditional Chinese Medicine, Guizhou, 550025, China
| | - Yahua Liu
- Resource Institute for Chinese and Ethnic Materia Medica, Guizhou University of Traditional Chinese Medicine, Guizhou, 550025, China
| | - Mian Zhang
- Resource Institute for Chinese and Ethnic Materia Medica, Guizhou University of Traditional Chinese Medicine, Guizhou, 550025, China
| | - Jun Li
- Resource Institute for Chinese and Ethnic Materia Medica, Guizhou University of Traditional Chinese Medicine, Guizhou, 550025, China
| | - Qiaoqiao Xiao
- Resource Institute for Chinese and Ethnic Materia Medica, Guizhou University of Traditional Chinese Medicine, Guizhou, 550025, China.
| |
Collapse
|
20
|
Chen Z, Zhang S, Sun X, Meng D, Lai C, Zhang M, Wang P, Huang X, Gao X. Analysis of the Protective Effects of Rosa roxburghii-Fermented Juice on Lipopolysaccharide-Induced Acute Lung Injury in Mice through Network Pharmacology and Metabolomics. Nutrients 2024; 16:1376. [PMID: 38732622 PMCID: PMC11085916 DOI: 10.3390/nu16091376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/26/2024] [Accepted: 04/29/2024] [Indexed: 05/13/2024] Open
Abstract
Acute lung injury, a fatal condition characterized by a high mortality rate, necessitates urgent exploration of treatment modalities. Utilizing UHPLS-Q-Exactive Orbitrap/MS, our study scrutinized the active constituents present in Rosa roxburghii-fermented juice (RRFJ) while also assessing its protective efficacy against LPS-induced ALI in mice through lung histopathological analysis, cytokine profiling, and oxidative stress assessment. The protective mechanism of RRFJ against ALI in mice was elucidated utilizing metabolomics, network pharmacology, and molecular docking methodologies. Our experimental findings demonstrate that RRFJ markedly ameliorates pathological injuries in ALI-afflicted mice, mitigates systemic inflammation and oxidative stress, enhances energy metabolism, and restores dysregulated amino acid and arachidonic acid metabolic pathways. This study indicates that RRFJ can serve as a functional food for adjuvant treatment of ALI.
Collapse
Affiliation(s)
- Zhiyu Chen
- State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China; (Z.C.); (S.Z.); (X.S.); (D.M.); (C.L.); (M.Z.); (P.W.); (X.H.)
- Center of Microbiology and Biochemical Pharmaceutical Engineering, Guizhou Medical University, Guiyang 550025, China
| | - Shuo Zhang
- State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China; (Z.C.); (S.Z.); (X.S.); (D.M.); (C.L.); (M.Z.); (P.W.); (X.H.)
- Experimental Animal Center of Guizhou Medical University, Guiyang 550025, China
| | - Xiaodong Sun
- State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China; (Z.C.); (S.Z.); (X.S.); (D.M.); (C.L.); (M.Z.); (P.W.); (X.H.)
- Center of Microbiology and Biochemical Pharmaceutical Engineering, Guizhou Medical University, Guiyang 550025, China
| | - Duo Meng
- State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China; (Z.C.); (S.Z.); (X.S.); (D.M.); (C.L.); (M.Z.); (P.W.); (X.H.)
- Center of Microbiology and Biochemical Pharmaceutical Engineering, Guizhou Medical University, Guiyang 550025, China
| | - Chencen Lai
- State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China; (Z.C.); (S.Z.); (X.S.); (D.M.); (C.L.); (M.Z.); (P.W.); (X.H.)
- Center of Microbiology and Biochemical Pharmaceutical Engineering, Guizhou Medical University, Guiyang 550025, China
| | - Min Zhang
- State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China; (Z.C.); (S.Z.); (X.S.); (D.M.); (C.L.); (M.Z.); (P.W.); (X.H.)
- Center of Microbiology and Biochemical Pharmaceutical Engineering, Guizhou Medical University, Guiyang 550025, China
| | - Pengjiao Wang
- State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China; (Z.C.); (S.Z.); (X.S.); (D.M.); (C.L.); (M.Z.); (P.W.); (X.H.)
- Center of Microbiology and Biochemical Pharmaceutical Engineering, Guizhou Medical University, Guiyang 550025, China
| | - Xuncai Huang
- State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China; (Z.C.); (S.Z.); (X.S.); (D.M.); (C.L.); (M.Z.); (P.W.); (X.H.)
- Center of Microbiology and Biochemical Pharmaceutical Engineering, Guizhou Medical University, Guiyang 550025, China
| | - Xiuli Gao
- State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China; (Z.C.); (S.Z.); (X.S.); (D.M.); (C.L.); (M.Z.); (P.W.); (X.H.)
- Center of Microbiology and Biochemical Pharmaceutical Engineering, Guizhou Medical University, Guiyang 550025, China
- Guizhou Provincial Engineering Research Center of Food Nutrition and Health, Guizhou Medical University, Guiyang 550025, China
| |
Collapse
|
21
|
Yang Z, Chen G. Inhibition of Proliferation and Induction of Apoptosis in Prostatic Carcinoma DU145 Cells by Polysaccharides from Yunnan Rosa roxburghii Tratt. Molecules 2024; 29:1575. [PMID: 38611854 PMCID: PMC11013296 DOI: 10.3390/molecules29071575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 03/24/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024] Open
Abstract
OBJECTIVE This study aimed to investigate methodologies for the extraction and purification of polysaccharides from Rosa roxburghii Tratt fruits and their impact on various cellular processes in prostate cancer DU145 cells, including survival rate, migration, invasion, cell cycle, and apoptosis. RESULTS Compared to the control group, the polysaccharide exhibited a significant reduction in the viability, migration, and invasion rates of DU145 cells in a time- and dose-dependent manner within the polysaccharide-treated groups. Additionally, it effectively arrested the cell cycle of DU145 cells at the G0/G1 phase by downregulating the expressions of CDK-4, CDK-6, and Cyclin D1. Furthermore, it induced apoptosis by upregulating the expressions of Caspase 3, Caspase 8, Caspase 9, and BAX. METHODS Polysaccharides were extracted from Rosa roxburghii Tratt sourced from Yunnan, China. Extraction and decolorization methods were optimized using response surface methodology, based on a single-factor experiment. Polysaccharide purification was carried out using DEAE-52 cellulose and Sephadex G-100 column chromatography. The optimal dosage of R. roxburghii Tratt polysaccharide affecting DU145 cells was determined using the CCK-8 assay. Cell migration and invasion were assessed using transwell and scratch assays. Flow cytometry was employed to analyze the effects on the cell cycle and apoptosis. Western blotting and Quantitative real-time PCR were utilized to examine protein and mRNA expressions in DU145 cells, respectively. CONCLUSIONS Rosa roxburghii Tratt polysaccharides, consisting of D-mannose, L-rhamnose, N-acetyl-D-glucosamine, D-galacturonic acid, D-glucose, D-galactcose, D-xylose, L-arabinose, and L-fucose, possess the ability to hinder DU145 cell proliferation, migration, and invasion while inducing apoptosis through the modulation of relevant protein and gene expressions.
Collapse
Affiliation(s)
| | - Guiyuan Chen
- School of Basic Medicine, Dali University, Dali 671003, China;
| |
Collapse
|
22
|
Jiang G, Li B, Ding Z, Zhu J, Li S. Effect of cellulase on antioxidant activity and flavor of Rosa roxburghii Tratt. Food Chem X 2024; 21:101148. [PMID: 38304043 PMCID: PMC10831147 DOI: 10.1016/j.fochx.2024.101148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/24/2023] [Accepted: 01/16/2024] [Indexed: 02/03/2024] Open
Abstract
Cellulase can increase the soluble dietary fiber (SDF) content in Rosa roxburghii Tratt (RRT), but the effects on polyphenol content, bioactivity, and flavor are unknown. This study analyzed the changes in SDF content, total phenolic content, antioxidant activity and flavor before and after cellulase treatment. Cellulase treatment increased the SDF and total phenolic content of RRT by 13 % (P < 0.05) and 25.68 % (P < 0.05), respectively, and increased the antioxidant activity. HS-GC-IMS identified a total of 42 volatile compounds present, and ROAV analysis revealed that the characteristic aroma compounds of RRT were mainly aldehydes, alcohols, and ethers. The electronic nose and tongue results were consistent with the HS-GC-IMS analysis, indicating the positive effect of cellulase on the quality of RRT. Cellulase treatment significantly improved the oxidative activity and flavor performance of RRT. These results of RRT, providing practical guidance for improving the flavor and product quality.
Collapse
Affiliation(s)
- Guilan Jiang
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
| | - Binbin Li
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
| | - Zhuhong Ding
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
| | - Jingyi Zhu
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
| | - Silin Li
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
| |
Collapse
|
23
|
Deng Y, Kan H, Li Y, Liu Y, Qiu X. Analysis of Volatile Components in Rosa roxburghii Tratt. and Rosa sterilis Using Headspace-Solid-Phase Microextraction-Gas Chromatography-Mass Spectrometry. Molecules 2023; 28:7879. [PMID: 38067608 PMCID: PMC10708075 DOI: 10.3390/molecules28237879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/08/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
Volatile organic compounds (VOCs) and flavor characteristics of Rosa roxburghii Tratt. (RR) and Rosa sterilis (RS) were analyzed using headspace solid-phase microextraction coupled with gas chromatography-mass spectrometry (HS-SPME-GC-MS). The flavor network was constructed by combining relative odor activity values (ROAVs), and the signature differential flavor components were screened using orthogonal partial least squares discriminant analysis (OPLS-DA) and random forest (RF). The results showed that 61 VOCs were detected in both RR and RS: 48 in RR, and 26 in RS. There were six key flavor components (ROAVs ≥ 1) in RR, namely nonanal, ethyl butanoate, ethyl hexanoate, (3Z)-3-hexen-1-yl acetate, ethyl caprylate, and styrene, among which ethyl butanoate had the highest contribution, whereas there were eight key flavor components (ROAVs ≥ 1) in RS, namely 2-nonanol, (E)-2-hexenal, nonanal, methyl salicylate, β-ocimene, caryophyllene, α-ionone, and styrene, among which nonanal contributed the most to RS. The flavor of RR is primarily fruity, sweet, green banana, and waxy, while the flavor of RS is primarily sweet and floral. In addition, OPLS-DA and RF suggested that (E)-2-hexenal, ethyl caprylate, β-ocimene, and ethyl butanoate could be the signature differential flavor components for distinguishing between RR and RS. In this study, the differences in VOCs between RR and RS were analyzed to provide a basis for further development and utilization.
Collapse
Affiliation(s)
- Yuhang Deng
- Key Laboratory of Forest Resources Conservation and Utilization in the Southwest Mountains of China Ministry of Education, Southwest Forestry University, Kunming 650224, China
- Forest Resources Exploitation and Utilization Engineering Research Center for Grand Health of Yunnan Provincial Universities, Kunming 650224, China
| | - Huan Kan
- Key Laboratory of Forest Resources Conservation and Utilization in the Southwest Mountains of China Ministry of Education, Southwest Forestry University, Kunming 650224, China
- Forest Resources Exploitation and Utilization Engineering Research Center for Grand Health of Yunnan Provincial Universities, Kunming 650224, China
| | - Yonghe Li
- College of Plant Protection, Yunnan Agricultural University, Kunming 650201, China
| | - Yun Liu
- Key Laboratory of Forest Resources Conservation and Utilization in the Southwest Mountains of China Ministry of Education, Southwest Forestry University, Kunming 650224, China
| | - Xu Qiu
- Forest Resources Exploitation and Utilization Engineering Research Center for Grand Health of Yunnan Provincial Universities, Kunming 650224, China
| |
Collapse
|
24
|
Li X, Ling Y, Huang X, Zhou T, Wu S, Zhang S, Zhou H, Kang Y, Wang L, Wang X, Yin W. Rosa Roxburghii Tratt Fruit Extract Prevents Dss-Induced Ulcerative Colitis in Mice by Modulating the Gut Microbiota and the IL-17 Signaling Pathway. Nutrients 2023; 15:4560. [PMID: 37960213 PMCID: PMC10650662 DOI: 10.3390/nu15214560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/02/2023] [Accepted: 10/25/2023] [Indexed: 11/15/2023] Open
Abstract
Ulcerative colitis (UC) is a non-specific inflammatory bowel illness characterized by intestinal mucosal barrier degradation, inflammation, oxidative damage, and gut microbiota imbalances. Rosa roxburghii Tratt Fruit extract (RRTE) was extracted from Rosa roxburghii Tratt fruit, exhibiting an excellent prevention effect against UC; RRTE could prevent the damage of DSS-induced human normal colonic epithelial (NCM 460) cells, especially in cell viability and morphology, and oxidative damage. Additionally, in UC mice, RRTE could limit the intestinal mucosal barrier by increasing the expression of intestinal tight junction proteins and mucin, reducing inflammation and oxidative damage in colon tissue. More importantly, RRTE can increase the abundance of beneficial bacteria to regulate gut microbiota such as Ruminococcus, Turicibacter, and Parabacteroides, and reduce the abundance of harmful bacteria such as Staphylococcus and Shigella. Furthermore, transcriptomics of colonic mucosal findings point out that the beneficial effect of RRTE on UC could be attributed to the modulation of inflammatory responses such as the IL-17 and TNF signaling pathways. The qPCR results confirm that RRTE did involve the regulation of several genes in the IL-17 signaling pathway. In conclusion, RRTE could prevent DSS-induced damage both in vitro and in vivo.
Collapse
Affiliation(s)
- Xingjie Li
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China; (X.L.); (Y.L.); (T.Z.); (S.W.); (S.Z.); (H.Z.); (Y.K.); (L.W.); (X.W.)
| | - Yihan Ling
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China; (X.L.); (Y.L.); (T.Z.); (S.W.); (S.Z.); (H.Z.); (Y.K.); (L.W.); (X.W.)
| | - Xiaoyi Huang
- Department of Clinical Nutrition, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China;
| | - Ting Zhou
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China; (X.L.); (Y.L.); (T.Z.); (S.W.); (S.Z.); (H.Z.); (Y.K.); (L.W.); (X.W.)
| | - Shouxun Wu
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China; (X.L.); (Y.L.); (T.Z.); (S.W.); (S.Z.); (H.Z.); (Y.K.); (L.W.); (X.W.)
| | - Shuwen Zhang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China; (X.L.); (Y.L.); (T.Z.); (S.W.); (S.Z.); (H.Z.); (Y.K.); (L.W.); (X.W.)
| | - Heting Zhou
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China; (X.L.); (Y.L.); (T.Z.); (S.W.); (S.Z.); (H.Z.); (Y.K.); (L.W.); (X.W.)
| | - Yuhong Kang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China; (X.L.); (Y.L.); (T.Z.); (S.W.); (S.Z.); (H.Z.); (Y.K.); (L.W.); (X.W.)
| | - Liqun Wang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China; (X.L.); (Y.L.); (T.Z.); (S.W.); (S.Z.); (H.Z.); (Y.K.); (L.W.); (X.W.)
| | - Xiaomeng Wang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China; (X.L.); (Y.L.); (T.Z.); (S.W.); (S.Z.); (H.Z.); (Y.K.); (L.W.); (X.W.)
| | - Wenya Yin
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China; (X.L.); (Y.L.); (T.Z.); (S.W.); (S.Z.); (H.Z.); (Y.K.); (L.W.); (X.W.)
| |
Collapse
|
25
|
Feng Q, Han L, Wu Q, Wu X. Dissipation, residue and dietary risk assessment of difenoconazole in Rosa roxburghii. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2023; 58:651-658. [PMID: 37800694 DOI: 10.1080/03601234.2023.2263325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
Rosa roxburghii is a medicinal and edible plant, which is favored by consumers due to its rich vitamin C content. Residues and potential health risks of difenoconazole in the R. roxburghii ecosystem has aroused a concern considering its extensive use for controlling the powdery mildew of R. roxburghii. In this study, the residue of difenoconazole in R. roxburghii and soil was extracted by acetonitrile, purified by primary secondary amine and detected by liquid chromatography-tandem triple quadrupole mass spectrometry. The average recoveries in R. roxburghii and soil matrix varied from 82.59% to 99.63%, with relative standard deviations (RSD) of 1.14%-8.23%. The limit of quantification (LOQ) and detection (LOD) of difenoconazole in R. roxburghii and soil samples were 0.01 mg/kg. The dissipation of difenoconazole followed well the first-order kinetic, with a half-life of 3.99-5.57 d in R. roxburghii and 4.94-6.23 d in soil, respectively. And the terminal residues were <0.01-2.181 mg/kg and 0.014-2.406 mg/kg, respectively. The chronic and acute risk quotient values of difenoconazole were respectively 0.42% and 4.1%, which suggests that the risk was acceptable and safe to consumers. This study provides a reference for the safe and reasonable use of difenoconazole in R. roxburghii production.
Collapse
Affiliation(s)
- Qingshan Feng
- Institute of Crop Protection, Guizhou University, Guiyang, China
- Provincial Key Laboratory for Agricultural Pest Management in Mountainous Region, Guizhou University, Guiyang, China
| | - Lei Han
- Institute of Crop Protection, Guizhou University, Guiyang, China
- Provincial Key Laboratory for Agricultural Pest Management in Mountainous Region, Guizhou University, Guiyang, China
| | - Qiong Wu
- Plant Protection Station of Guizhou Province, Guiyang, China
| | - Xiaomao Wu
- Institute of Crop Protection, Guizhou University, Guiyang, China
- Provincial Key Laboratory for Agricultural Pest Management in Mountainous Region, Guizhou University, Guiyang, China
| |
Collapse
|
26
|
Zheng H, Wu Q, Wu X. The Dissipation Kinetics, Residue Level and Dietary Risk of Kresoxim-Methyl in Rosa roxburghii and Soil Based on the QuEChERS Method Coupled with LC-MS/MS. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2023; 111:49. [PMID: 37752322 DOI: 10.1007/s00128-023-03771-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 07/01/2023] [Indexed: 09/28/2023]
Abstract
This study aimed to investigate the dissipation, residues and dietary assessment of kresoxim-methyl in the application of Rosa Roxburghii and soil field using liquid chromatography-tandem mass spectrometry (LC-MS/MS). The results show that kresoxim-methyl in R. roxburghii samples was extracted by acetonitrile and purified by ethyl enediamine-N-propylsilane (PSA), while kresoxim-methyl in soil samples was extracted by acetonitrile and purified by octadecylsilyl solid phase dispersant (C18). 0.1% formic acid (v/v)-water-methanol solution was used as the mobile phase, LC-MS/MS exhibited a good linearity in the range of 0.001-10 mg L-1. The recoveries of R. roxburghii and soil matrix were 82.48%-102.55%, and the relative standard deviation (RSD) were 1.13%-4.21%. The limit of detection (LOD) and quantification (LOQ) of kresoxim-methyl in R. roxburghii and soil samples was 0.50 and 0.60 µg kg-1, respectively. The dissipation dynamics of kresoxim-methyl in R. roxburghii and soil followed the first-order kinetics, with the half-life of 4.28 and 4.41 days, respectively. The terminal residual amount of kresoxim-methyl in R. roxburghii and soil samples was 0.003-1.764 and 0.007-2.091 mg kg-1, respectively. The dietary intake risk assessment indicates that a risk quotient (RQ) for kresoxim-methyl based on the national estimated daily intake (NEDI) of 0.1995 mg was 0.79%, suggesting that the use of kresoxim-methyl on R. roxburghii at recommended dosage was safe to consumers. This study provides the theoretical basis for guiding the rational use of kresoxim-methyl in the production of R. roxburghii.
Collapse
Affiliation(s)
- Handinghong Zheng
- Institute of Crop Protection, Guizhou University, Guiyang, 550025, Guizhou, People's Republic of China
| | - Qiong Wu
- Plant Protection and Plant Inspection Station of Guizhou Province, Guiyang, 550001, Guizhou, People's Republic of China
| | - Xiaomao Wu
- Institute of Crop Protection, Guizhou University, Guiyang, 550025, Guizhou, People's Republic of China.
- Provincial Key Laboratory for Agricultural Pest Management in Mountainous Region, Guizhou University, Guiyang, 550025, China.
| |
Collapse
|
27
|
Luo K, Li J, Lu M, An H, Wu X. Genome-Wide Identification and Expression Analysis of Rosa roxburghii Autophagy-Related Genes in Response to Top-Rot Disease. Biomolecules 2023; 13:556. [PMID: 36979491 PMCID: PMC10046283 DOI: 10.3390/biom13030556] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 03/07/2023] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
Autophagy is a highly conserved process in eukaryotes that degrades and recycles damaged cells in plants and is involved in plant growth, development, senescence, and resistance to external stress. Top-rot disease (TRD) in Rosa roxburghii fruits caused by Colletotrichum fructicola often leads to huge yield losses. However, little information is available about the autophagy underlying the defense response to TRD. Here, we identified a total of 40 R. roxburghii autophagy-related genes (RrATGs), which were highly homologous to Arabidopsis thaliana ATGs. Transcriptomic data show that RrATGs were involved in the development and ripening processes of R. roxburghii fruits. Gene expression patterns in fruits with different degrees of TRD occurrence suggest that several members of the RrATGs family responded to TRD, of which RrATG18e was significantly up-regulated at the initial infection stage of C. fructicola. Furthermore, exogenous calcium (Ca2+) significantly promoted the mRNA accumulation of RrATG18e and fruit resistance to TRD, suggesting that this gene might be involved in the calcium-mediated TRD defense response. This study provided a better understanding of R. roxburghii autophagy-related genes and their potential roles in disease resistance.
Collapse
Affiliation(s)
- Kaisha Luo
- Guizhou Engineering Research Center for Fruit Crops, College of Agriculture, Guizhou University, Guiyang 550025, China
| | - Jiaohong Li
- Institute of Crop Protection, College of Agriculture, Guizhou University, Guiyang 550025, China
| | - Min Lu
- Guizhou Engineering Research Center for Fruit Crops, College of Agriculture, Guizhou University, Guiyang 550025, China
| | - Huaming An
- Guizhou Engineering Research Center for Fruit Crops, College of Agriculture, Guizhou University, Guiyang 550025, China
| | - Xiaomao Wu
- Institute of Crop Protection, College of Agriculture, Guizhou University, Guiyang 550025, China
- The Provincial Key Laboratory for Agricultural Pest Management of Mountainous Region, Guiyang 550025, China
| |
Collapse
|