1
|
Gómez-Baltazar A, Hernández-Pérez CF, Franco-Frias CU, Castañeda-Ruelas GM, Cabrera-Diaz E, Hernández-Iturriaga M. Genomic diversity and distribution of Listeria monocytogenes strains isolated from imported and national fresh produce in Mexico from 2014 to 2018. Food Res Int 2025; 208:116211. [PMID: 40263846 DOI: 10.1016/j.foodres.2025.116211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 02/18/2025] [Accepted: 03/11/2025] [Indexed: 04/24/2025]
Abstract
Listeria monocytogenes is a major foodborne pathogen associated with fresh produce contamination, posing a significant public health risk due to its adaptability and virulence. This study investigates the genomic diversity and distribution of L. monocytogenes strains isolated from imported and domestic fresh produce in Mexico between 2014 and 2018. A total of 113 L. monocytogenes strains were isolated from produce commodities and subjected to whole-genome sequencing. The analysis focused on identifying lineages, serogroups, clonal complexes (CCs), antimicrobial resistance genes, virulence factors, prophage-associated regions, and SNP clusters, while the pangenome was characterized to assess both core and accessory gene diversity. Two main lineages (I and II) were identified, with lineage I predominantly associated with imported produce. Thirty-two CCs were detected, with CC4, CC11, and CC20 being the most prevalent. The pangenome analysis revealed 2188 core genes and 3739 accessory genes. Antimicrobial resistance genes, including fosX, lin, norB, and sul, were present in all strains. Virulence analysis identified 78 virulence genes, with notable differences among serogroups. Prophage analysis revealed 189 prophage-associated regions, with common phages such as A118 and LP-101 detected predominantly in serogroup IIa. The SNP cluster analysis grouped the strains into 33 clusters, with 48 % of the strains from imported produce concentrated in only three major clusters, indicating potential common sources or similar environmental exposures. The significant genomic diversity and SNP clustering of L. monocytogenes strains underscore the pathogen's adaptability and widespread dissemination potential in the global food supply chain. The presence of virulent CCs and antimicrobial resistance genes highlights an ongoing public health risk, emphasizing the need for enhanced surveillance and targeted interventions to prevent listeriosis outbreaks.
Collapse
Affiliation(s)
- Adrián Gómez-Baltazar
- Departamento de Investigación y Posgrado de Alimentos, Facultad de Química, Universidad Autónoma de Querétaro, Cerro de las Campanas s/n, Colonia Las Campanas, Querétaro, Qro 76010. Mexico
| | - Cindy Fabiola Hernández-Pérez
- Centro Nacional de Referencia de Inocuidad y Bioseguridad Agroalimentaria, Servicio Nacional de Sanidad, Inocuidad y Calidad Agroalimentaria, Carretera Federal México-Pachuca km 37.5, Tecámac, Estado de México 55740. Mexico
| | - Christian Ulises Franco-Frias
- Centro Nacional de Referencia de Inocuidad y Bioseguridad Agroalimentaria, Servicio Nacional de Sanidad, Inocuidad y Calidad Agroalimentaria, Carretera Federal México-Pachuca km 37.5, Tecámac, Estado de México 55740. Mexico
| | - Gloria M Castañeda-Ruelas
- Laboratorio de Investigación y Diagnóstico Microbiológico, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Sinaloa. Ciudad Universitaria, Culiacán, Sinaloa 80013, Mexico
| | - Elisa Cabrera-Diaz
- Departamento de Salud Pública. Centro Universitario de Ciencias Biológicas y Agropecuarias. Universidad de Guadalajara, Av. Ramón Padilla Sánchez 2100, Zapopan, Jalisco 45200. Mexico.
| | - Montserrat Hernández-Iturriaga
- Departamento de Investigación y Posgrado de Alimentos, Facultad de Química, Universidad Autónoma de Querétaro, Cerro de las Campanas s/n, Colonia Las Campanas, Querétaro, Qro 76010. Mexico.
| |
Collapse
|
2
|
Bainotti MB, Colás-Medà P, Viñas I, Neggazi I, Alegre I. Impact of intrinsic factors and storage temperature on Escherichia coli O157:H7, Salmonella enterica subsp. enterica and Listeria monocytogenes survival in fruit juices. Int J Food Microbiol 2025; 432:111109. [PMID: 39951926 DOI: 10.1016/j.ijfoodmicro.2025.111109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 12/14/2024] [Accepted: 02/09/2025] [Indexed: 02/17/2025]
Abstract
There is a strong trend among consumers to prefer increasingly less processed fruit juices. This raises concerns in terms of food safety, as these products may not always be free from pathogen contamination. While the low pH and the presence of antimicrobial compounds in these juices are generally considered inhibitory to pathogens, there have been occasional reports of foodborne outbreaks associated with fruit juices. However, it is important to note that the frequency of outbreaks linked to fruit juices remains significantly lower compared to other fresh produce, reflecting both the inherent properties of juices and differences in consumption patterns. The present study evaluated the survival of three different pathogens (Escherichia coli O157:H7, Salmonella enterica subsp. enterica, and Listeria monocytogenes) in persimmon, apple, peach, orange, strawberry, and red grape juices stored at 4, 15, and 25 °C, aiming to establish relationships between the food matrix and pathogen survival. Red grape and strawberry juices exhibited a sharp decline in S. enterica and L. monocytogenes populations. Conversely, orange juice was the most conducive to pathogen survival. Based on the Weibull model, L. monocytogenes exhibited δ values ≤ 0.581± 0.173 days in strawberry juice, while in red grape juice, the population was below 1 log10 CFU/mL after inoculation. Regarding Salmonella strains, the δ values were <0.376 ± 0.244 days in strawberry juice and <0.895 ± 0.177 days in red grape juice. Of great concern is the serotype of E. coli O157:H7, as it demonstrated the highest survival trends in all fruit juices samples with the highest δ values in most cases. For instance, after 9 days, it maintained levels above 1.6 log10 CFU/mL in most juices stored at 4 °C (initial populations ranged from 4.8 ± 0.1 to 5.0 ± 0.1 log10 CFU/mL). In most of the analysis, physicochemical parameters, except the pH, exhibited negative correlations between pathogen populations. But in comparison, the correlations between the content of a specific polyphenol and bacterial populations were higher. For instance, after the inoculation, quercetin, kaempferol and epicatechin content presented the highest negative correlation against S. Enteritidis and both L. monocytogenes strains (between -0.936 and -0.946). The interesting finding is the strong negative correlation between the kaempferol content and all bacterial populations, not only after inoculation but also after 2 days at the three temperatures evaluated (the highest value was -0.961 against L. monocytogenes CECT 4032 at 25 °C). Pathogen levels after 2 days at 4 °C raise significant food safety concerns, given that these are typical conditions for untreated juices. Additionally, the consistent presence of E. coli O157:H7 in all juice samples throughout storage poses a significant food safety risk, as it is a leading cause of foodborne outbreaks associated with juices.
Collapse
Affiliation(s)
- Maria Belén Bainotti
- Postharvest Biology and Technology Unit, Department of Food Technology, Engineering and Science, University of Lleida - AGROTECNIO-CERCA Centre, Av. Rovira Roure 191, 25198 Lleida, Catalonia, Spain
| | - Pilar Colás-Medà
- Postharvest Biology and Technology Unit, Department of Food Technology, Engineering and Science, University of Lleida - AGROTECNIO-CERCA Centre, Av. Rovira Roure 191, 25198 Lleida, Catalonia, Spain
| | - Inmaculada Viñas
- Postharvest Biology and Technology Unit, Department of Food Technology, Engineering and Science, University of Lleida - AGROTECNIO-CERCA Centre, Av. Rovira Roure 191, 25198 Lleida, Catalonia, Spain
| | - Isma Neggazi
- Postharvest Biology and Technology Unit, Department of Food Technology, Engineering and Science, University of Lleida - AGROTECNIO-CERCA Centre, Av. Rovira Roure 191, 25198 Lleida, Catalonia, Spain
| | - Isabel Alegre
- Postharvest Biology and Technology Unit, Department of Food Technology, Engineering and Science, University of Lleida - AGROTECNIO-CERCA Centre, Av. Rovira Roure 191, 25198 Lleida, Catalonia, Spain.
| |
Collapse
|
3
|
Alam M, Islam MS, Jahan MI, Deb AS, Rahman A, Islam Z, Chowdhury AI, Islam KM, Hossain MZ, Ahmed D, Arifeen SE, Gurley ES, Rahman M. A novel virulent core genome multilocus sequence type CT 11424 of Listeria monocytogenes isolate causing stillbirth in Bangladesh. BMC Microbiol 2025; 25:61. [PMID: 39901076 PMCID: PMC11792674 DOI: 10.1186/s12866-024-03650-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 11/14/2024] [Indexed: 02/05/2025] Open
Abstract
BACKGROUND Listeria monocytogenes is a foodborne pathogen that can lead to severe pregnancy outcomes. This study reports the clinical and genomic characteristics of a Listeria-mediated stillbirth identified in January 2022 through the Child Health and Mortality Prevention Surveillance (CHAMPS) project in Bangladesh. The Lm-BD-CHAMPS-01 isolate was recovered from the blood and cerebrospinal fluid (CSF) of a male stillborn. Maternal history, clinical, and demographic data were collected by the CHAMPS surveillance platform. An expert panel evaluated all reports to determine the role of L. monocytogenes infection in the causal chain of stillbirth. Genomic characterization included multilocus sequence typing (MLST), core genome MLST (cgMLST), serotyping, and the presence or absence of virulence genes. Genetic divergence and phylogenetic analyses were conducted to determine the relationship with other reported isolates globally. RESULTS The isolate Lm-BD-CHAMPS-01 was identified as a novel cgMLST CT11424. It belonged to ST 308, Serotype 4b, Clonal Complex 1, and Phylogenetic Lineage 1. Key L. monocytogenes virulence genes facilitating the crossing of the placental barrier, including full-length inlA, LIPI-1, and LIPI-3, were detected. The isolate was closely related to clinical L. monocytogenes isolates, as determined by GrapeTree based on cgMLST. SNP-based phylogenetic analysis found Lm-BD-CHAMPS-01 to be the most distant from other CC1 isolates in the database. Possible sources of infection included the consumption of contaminated raw vegetables or exposure to pigeons. CONCLUSIONS This is the first genome sequence of clinical L. monocytogenes from Bangladesh, which also caused stillbirth. Rural healthcare professionals should be aware of L. monocytogenes infection risks during pregnancy. Pregnant women should be counseled on the dangers of exposure to animals or birds and consumption of potentially contaminated raw food to prevent adverse pregnancy outcomes due to L. monocytogenes infection.
Collapse
Affiliation(s)
- Muntasir Alam
- International Centre for Diarrhoeal Disease Research, Infectious Diseases Division, 68 Shaheed Tajuddin Ahmed Sarani, (icddr,b), Dhaka, Mohakhali, 1212, Bangladesh.
| | - Md Saiful Islam
- International Centre for Diarrhoeal Disease Research, Infectious Diseases Division, 68 Shaheed Tajuddin Ahmed Sarani, (icddr,b), Dhaka, Mohakhali, 1212, Bangladesh
- Division of Genomics & Transcriptomics, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - M Ishrat Jahan
- International Centre for Diarrhoeal Disease Research, Infectious Diseases Division, 68 Shaheed Tajuddin Ahmed Sarani, (icddr,b), Dhaka, Mohakhali, 1212, Bangladesh
- Division of Genomics & Transcriptomics, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - Arpita Shyama Deb
- International Centre for Diarrhoeal Disease Research, Infectious Diseases Division, 68 Shaheed Tajuddin Ahmed Sarani, (icddr,b), Dhaka, Mohakhali, 1212, Bangladesh
| | - Afruna Rahman
- International Centre for Diarrhoeal Disease Research, Infectious Diseases Division, 68 Shaheed Tajuddin Ahmed Sarani, (icddr,b), Dhaka, Mohakhali, 1212, Bangladesh
| | - Zahidul Islam
- International Centre for Diarrhoeal Disease Research, Infectious Diseases Division, 68 Shaheed Tajuddin Ahmed Sarani, (icddr,b), Dhaka, Mohakhali, 1212, Bangladesh
| | - Atique Iqbal Chowdhury
- International Centre for Diarrhoeal Disease Research, Infectious Diseases Division, 68 Shaheed Tajuddin Ahmed Sarani, (icddr,b), Dhaka, Mohakhali, 1212, Bangladesh
| | - Kazi Munisul Islam
- International Centre for Diarrhoeal Disease Research, Infectious Diseases Division, 68 Shaheed Tajuddin Ahmed Sarani, (icddr,b), Dhaka, Mohakhali, 1212, Bangladesh
| | - Mohammad Zahid Hossain
- International Centre for Diarrhoeal Disease Research, Infectious Diseases Division, 68 Shaheed Tajuddin Ahmed Sarani, (icddr,b), Dhaka, Mohakhali, 1212, Bangladesh
| | - Dilruba Ahmed
- International Centre for Diarrhoeal Disease Research, Infectious Diseases Division, 68 Shaheed Tajuddin Ahmed Sarani, (icddr,b), Dhaka, Mohakhali, 1212, Bangladesh
| | - Shams El Arifeen
- International Centre for Diarrhoeal Disease Research, Infectious Diseases Division, 68 Shaheed Tajuddin Ahmed Sarani, (icddr,b), Dhaka, Mohakhali, 1212, Bangladesh
| | - Emily S Gurley
- International Centre for Diarrhoeal Disease Research, Infectious Diseases Division, 68 Shaheed Tajuddin Ahmed Sarani, (icddr,b), Dhaka, Mohakhali, 1212, Bangladesh
- Infectious Disease Epidemiology, Johns Hopkins University, Baltimore, MD, USA
| | - Mustafizur Rahman
- International Centre for Diarrhoeal Disease Research, Infectious Diseases Division, 68 Shaheed Tajuddin Ahmed Sarani, (icddr,b), Dhaka, Mohakhali, 1212, Bangladesh
| |
Collapse
|
4
|
Tumuluri T, Inanoglu S, Schaffner DW, Karwe MV. Effect of surface roughness on the efficacy of Plasma Activated Mist (PAM) for inactivation of Listeria innocua and Klebsiella michiganensis. Int J Food Microbiol 2025; 431:111070. [PMID: 39862742 DOI: 10.1016/j.ijfoodmicro.2025.111070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 01/15/2025] [Accepted: 01/17/2025] [Indexed: 01/27/2025]
Abstract
Cold plasma generated by dielectric barrier discharge (DBD) and DBD combined with nebulized liquid microdroplets to generate plasma-activated mist (PAM) have shown the potential as a surface decontamination method for the food industry. The objective of this research was to measure the microbial inactivation caused by DBD and by PAM on tryptic soy agar (TSA) and on glass slides and to determine the efficacy of PAM on selected surfaces having different surface topographies. Tryptic soy agar in Petri dishes and on glass slides (surface roughness Pq = 0.28 ± 0.02 μm) was inoculated with either 0.1 mL of inoculum containing Listeria innocua (8.4 ± 0.1 log CFU/mL) or Klebsiella michiganensis (8.8 ± 0.2 log CFU/mL) and exposed to either DBD or PAM for 5 to 20 min. Glass slides, grape tomatoes (Pq = 5.17 μm ± 0.53 μm), limes (Pq = 18.76 μm ± 3.00 μm), and spiny gourds (Pq = 101.50 μm ± 10.95 μm) were also surface-inoculated with L. innocua or K. michiganensis and exposed to PAM for 5 to 20 min. No significant difference in microbial inactivation was observed between DBD plasma and PAM for all treatment times. The smoothest surface (glass) showed the highest reduction in L. innocua (3.4 ± 0.2 log CFU/item) and K. michiganensis (5.7 ± 0.0 log CFU/item) after PAM treatment. The roughest surface (spiny gourd) yielded a significantly lower reduction for L. innocua (1.0 ± 0.2 log CFU/item) and K. michiganensis (1.8 ± 0.1 log CFU/item). L. innocua was less susceptible to inactivation by PAM compared K. michiganensis. This study highlighted the importance of surface roughness on microbial inactivation of L. innocua and K. michiganensis by DBD and PAM on produce surfaces.
Collapse
Affiliation(s)
- Tejaswini Tumuluri
- Department of Food Science, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Sumeyye Inanoglu
- Department of Food Science, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA.
| | - Donald W Schaffner
- Department of Food Science, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Mukund V Karwe
- Department of Food Science, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| |
Collapse
|
5
|
Zawiasa A, Olejnik-Schmidt A. The Genetic Determinants of Listeria monocytogenes Resistance to Bacteriocins Produced by Lactic Acid Bacteria. Genes (Basel) 2025; 16:50. [PMID: 39858597 PMCID: PMC11765107 DOI: 10.3390/genes16010050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 12/24/2024] [Accepted: 12/29/2024] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND Listeria monocytogenes is a Gram-positive bacterium responsible for listeriosis, a serious foodborne disease that can lead to serious health complications. Pregnant women, newborns, the elderly, and patients with weakened immune systems are particularly susceptible to infection. Due to the ability of L. monocytogenes to survive in extreme environmental conditions, such as low temperatures, high salinity, and acidity, this bacterium poses a serious threat to food production plants and is particularly difficult to eliminate from these plants. One of the promising solutions to reduce the presence of this bacterium in food products is bacteriocins as natural control agents. These are substances with antibacterial activity produced by other bacteria, mainly lactic acid bacteria (LAB), which can effectively inhibit the development of pathogens such as L. monocytogenes. The use of bacteriocins in the food industry is beneficial due to their natural origin, specificity of action, and consumer safety. However, the problem of resistance to these substances exists. RESULTS This review focuses on the mechanisms of bacteriocin resistance, such as modifications of bacteriocin docking receptors, changes in the structure of the cell wall and membrane, and the occurrence of cross-resistance to different bacteriocins. Genetic factors determining these mechanisms and strategies to cope with the problem of resistance are also presented. CONCLUSIONS Research on this issue is crucial for developing effective preventive methods that will enable the safe and long-term use of bacteriocins in food production.
Collapse
Affiliation(s)
| | - Agnieszka Olejnik-Schmidt
- Department of Food Biotechnology and Microbiology, Poznan University of Life Sciences, Wojska Polskiego 48, 60-627 Poznan, Poland;
| |
Collapse
|
6
|
Lee SW, Park SR, Yoon SG, Cho HD, Lee MK, Lee SY, Yoon JH. Prevalence and characterization of Listeria monocytogenes isolated from online market-purchased enoki mushrooms (Flammulina velutipes) in the Republic of Korea. Lebensm Wiss Technol 2025; 215:117235. [DOI: 10.1016/j.lwt.2024.117235] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2025]
|
7
|
Wiśniewski P, Chajęcka-Wierzchowska W, Zadernowska A. High-Pressure Processing Influences Antibiotic Resistance Gene Transfer in Listeria monocytogenes Isolated from Food and Processing Environments. Int J Mol Sci 2024; 25:12964. [PMID: 39684674 DOI: 10.3390/ijms252312964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 11/27/2024] [Accepted: 11/29/2024] [Indexed: 12/18/2024] Open
Abstract
The study aimed to assess the high-pressure processing (HPP) impact on antibiotic resistance gene transfer in L. monocytogenes from food and food processing environments, both in vitro (in microbiological medium) and in situ (in carrot juice), using the membrane filter method. Survival, recovery, and frequency of antibiotic resistance gene transfer analyses were performed by treating samples with HPP at different pressures (200 MPa and 400 MPa). The results showed that the higher pressure (400 MPa) had a significant effect on increasing the transfer frequency of genes such as fosX, encoding fosfomycin resistance, and tet_A1, tet_A3, tetC, responsible for tetracycline resistance, both in vitro and in situ. In contrast, the Lde gene (the gene encoding ciprofloxacin resistance) was not transferred under any conditions. In the food matrix (carrot juice), greater variability in results was observed, suggesting that food matrices may have a protective effect on bacteria and modify HPP efficacy. In general, an increase in MIC values for antibiotics was noted in transconjugants compared to donors. Genotypic analysis of transconjugants showed differences in genetic structure, especially after exposure to 400 MPa pressure, indicating genotypic changes induced by pressure stress. The study confirms the possibility of antibiotic resistance genes transfer in the food environment, even from strains showing initial susceptibility to antibiotics carrying so-called silent antibiotic resistance genes, highlighting the public health risk of the potential spread of antibiotic-resistant strains through the food chain. The findings suggest that high-pressure processing can increase and decrease the frequency of resistance gene transfer depending on the strain, antibiotic combination, and processing conditions.
Collapse
Affiliation(s)
- Patryk Wiśniewski
- Department of Food Microbiology, Meat Technology and Chemistry, Faculty of Food Science, University of Warmia and Mazury, Plac Cieszyński 1, 10-726 Olsztyn, Poland
| | - Wioleta Chajęcka-Wierzchowska
- Department of Food Microbiology, Meat Technology and Chemistry, Faculty of Food Science, University of Warmia and Mazury, Plac Cieszyński 1, 10-726 Olsztyn, Poland
| | - Anna Zadernowska
- Department of Food Microbiology, Meat Technology and Chemistry, Faculty of Food Science, University of Warmia and Mazury, Plac Cieszyński 1, 10-726 Olsztyn, Poland
| |
Collapse
|
8
|
Toit SAD, Rip D. Exploring the genetic variability, virulence factors, and antibiotic resistance of Listeria monocytogenes from fresh produce, ready-to-eat hummus, and food-processing environments. J Food Sci 2024; 89:6916-6945. [PMID: 39327637 DOI: 10.1111/1750-3841.17399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 08/08/2024] [Accepted: 09/01/2024] [Indexed: 09/28/2024]
Abstract
Listeria monocytogenes is ubiquitous in nature and persistent in food-processing facilities, farms, retail stores, and home and restaurant kitchens. Current research suggests ready-to-eat (RTE) products (including RTE hummus and fresh produce) to be of increasing interest and concern. These foods are typically stored at refrigeration temperatures suited to the survival of L. monocytogenes and are consumed without further processing. Since L. monocytogenes is ubiquitous in agricultural environments, the cultivation of fresh produce predisposes it to contamination. The contamination of RTE foods originates either from raw ingredients or, more commonly, from cross-contamination within food-processing facilities. Research on the food-processing environment has been recommended to reduce the incidence of L. monocytogenes in foods. The consumption of contaminated foods by immunocompromised individuals causes invasive listeriosis, with a 20% to 30% fatality rate despite treatment. The emergence of antibiotic-resistant strains has reduced the effectiveness of modern medicine and may increase morbidity and mortality. Without epidemiological surveillance and identifying trends in disease determinants, no action can be taken to improve food safety and mitigate the risk of such outbreaks.
Collapse
Affiliation(s)
- Samantha Anne du Toit
- Department of Food Science, Stellenbosch University Matieland, Stellenbosch, South Africa
| | - Diane Rip
- Department of Food Science, Stellenbosch University Matieland, Stellenbosch, South Africa
| |
Collapse
|
9
|
Bermúdez-Puga S, Dias M, Lima Reis I, Freire de Oliveira T, Yokomizo de Almeida SR, Mendes MA, Moore SJ, Almeida JR, Proaño-Bolaños C, Pinheiro de Souza Oliveira R. Microscopic and metabolomics analysis of the anti-Listeria activity of natural and engineered cruzioseptins. Biochimie 2024; 225:168-175. [PMID: 38823620 DOI: 10.1016/j.biochi.2024.05.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/04/2024] [Accepted: 05/29/2024] [Indexed: 06/03/2024]
Abstract
Listeria monocytogenes is a human opportunistic foodborne pathogen that produces life-threatening infections with a high mortality rate. The control of Listeria in the food production environment and effective clinical management of human listeriosis are challenging due to the emergence of antibiotic resistance. Hence we evaluate the in vitro anti-Listeria activity of two synthetic cruzioseptins reproducing their natural sequences CZS-9, and CZS-12, and one engineered sequence based on CZS-1, named [K4K15]CZS-1. The assessment of the in vitro potential of cruzioseptins, highlighted the promising antibacterial effect of [K4K15]CZS-1 in very low concentrations (0.91 μM) and its thermal stability at high-temperature conditions, is compatible with the food industry. Microscopic and metabolomic analyses suggest cruzioseptin induces anti-Listeria bioactivity through membrane disruption and changes in the intracellular metabolome. We also report that [K4K15]CZS-1 is not resistant to peptidases/proteases emphasizing a key advantage for their use as a food preservative. However, there is a need for further structural and functional optimisations for the potential clinical application as an antibiotic. In conclusion, [K4K15]CZS-1 stand out as membrane-active peptides with the ability to induce shifts in the bacteria metabolome and inspire the development of strategies for the prevention of L. monocytogenes emergence and dissemination.
Collapse
Affiliation(s)
- Sebastián Bermúdez-Puga
- Microbial Biomolecules Laboratory, Faculty of Pharmaceutical Sciences, University of São Paulo, Rua do Lago 250, São Paulo, 05508-000, SP, Brazil
| | - Meriellen Dias
- Dempster MS Lab, Chemical Engineering Department of Polytechnic School of University of São Paulo, Rua do Lago 250, São Paulo, 05508-080, SP, Brazil
| | - Iara Lima Reis
- Microbial Biomolecules Laboratory, Faculty of Pharmaceutical Sciences, University of São Paulo, Rua do Lago 250, São Paulo, 05508-000, SP, Brazil
| | - Taciana Freire de Oliveira
- Microbial Biomolecules Laboratory, Faculty of Pharmaceutical Sciences, University of São Paulo, Rua do Lago 250, São Paulo, 05508-000, SP, Brazil
| | | | - Maria Anita Mendes
- Dempster MS Lab, Chemical Engineering Department of Polytechnic School of University of São Paulo, Rua do Lago 250, São Paulo, 05508-080, SP, Brazil
| | - Simon J Moore
- School of Biological and Behavioural Sciences, Queen Mary University of London, UK
| | - José R Almeida
- Biomolecules Discovery Group, Universidad Regional Amazónica Ikiam, Km 7 Via Muyuna, Tena, Napo, Ecuador; School of Pharmacy, University of Reading, Reading, RG6 6UB, UK
| | - Carolina Proaño-Bolaños
- Biomolecules Discovery Group, Universidad Regional Amazónica Ikiam, Km 7 Via Muyuna, Tena, Napo, Ecuador
| | - Ricardo Pinheiro de Souza Oliveira
- Microbial Biomolecules Laboratory, Faculty of Pharmaceutical Sciences, University of São Paulo, Rua do Lago 250, São Paulo, 05508-000, SP, Brazil.
| |
Collapse
|
10
|
Lambrechts K, Rip D. Listeria monocytogenes in the seafood industry: Exploring contamination sources, outbreaks, antibiotic susceptibility and genetic diversity. Microbiologyopen 2024; 13:e70003. [PMID: 39420711 PMCID: PMC11486915 DOI: 10.1002/mbo3.70003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 09/01/2024] [Accepted: 09/26/2024] [Indexed: 10/19/2024] Open
Abstract
Fish and seafood are rich sources of protein, vitamins, and minerals, significantly contributing to individual health. A global increase in consumption has been observed. Listeria monocytogenes is a known problem in food processing environments and is found in various seafood forms, including raw, smoked, salted, and ready-to-eat. Without heat treatment and given L. monocytogenes' ability to multiply under refrigerated conditions, consuming seafood poses a substantial health hazard, particularly to immunocompromised individuals. Numerous global outbreaks of listeriosis have been linked to various fish products, underscoring the importance of studying L. monocytogenes. Different strains exhibit varying disease-causing abilities, making it crucial to understand and monitor the organism's virulence and resistance aspects for food safety. This paper aims to highlight the genetic diversity of L. monocytogenes found in fish products globally and to enhance understanding of contamination routes from raw fish to the final product.
Collapse
Affiliation(s)
| | - Diane Rip
- Department of Food ScienceStellenbosch UniversityMatielandSouth Africa
| |
Collapse
|
11
|
Elbakush AM, Trunschke O, Shafeeq S, Römling U, Gomelsky M. Maple compounds prevent biofilm formation in Listeria monocytogenes via sortase inhibition. Front Microbiol 2024; 15:1436476. [PMID: 39351304 PMCID: PMC11439720 DOI: 10.3389/fmicb.2024.1436476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 09/03/2024] [Indexed: 10/04/2024] Open
Abstract
The Pss exopolysaccharide (EPS) enhances the ability of the foodborne pathogen Listeria monocytogenes to colonize and persist on surfaces of fresh fruits and vegetables. Eradicating listeria within EPS-rich biofilms is challenging due to their increased tolerance to disinfectants, desiccation, and other stressors. Recently, we discovered that extracts of maple wood, including maple sap, are a potent source of antibiofilm agents. Maple lignans, such as nortrachelogenin-8'-O-β-D-glucopyranoside and lariciresinol, were found to inhibit the formation of, and promote the dispersion of pre-formed L. monocytogenes EPS biofilms. However, the mechanism remained unknown. Here, we report that these lignans do not affect Pss EPS synthesis or degradation. Instead, they promote EPS detachment, likely by interfering with an unidentified lectin that keeps EPS attached to the cell surfaces. Furthermore, the maple lignans inhibit the activity of L. monocytogenes sortase A (SrtA) in vitro. SrtA is a transpeptidase that covalently anchors surface proteins, including the Pss-specific lectin, to the cell wall peptidoglycan. Consistent with this, deletion of the srtA gene results in Pss EPS detachment from listerial cells. We also identified several additional maple compounds, including epicatechin gallate, isoscopoletin, scopoletin, and abscisic acid, which inhibit L. monocytogenes SrtA activity in vitro and prevent biofilm formation. Molecular modelling indicates that, despite their structural diversity, these compounds preferentially bind to the SrtA active site. Since maple products are abundant and safe for consumption, our finding that they prevent biofilm formation in L. monocytogenes offers a viable source for protecting fresh produce from this foodborne pathogen.
Collapse
Affiliation(s)
- Ahmed M Elbakush
- Department of Molecular Biology, University of Wyoming, Laramie, WY, United States
| | - Oliver Trunschke
- Department of Molecular Biology, University of Wyoming, Laramie, WY, United States
| | - Sulman Shafeeq
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden
| | - Ute Römling
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden
| | - Mark Gomelsky
- Department of Molecular Biology, University of Wyoming, Laramie, WY, United States
| |
Collapse
|
12
|
Gomez-Galindo M, Serra-Castelló C, Bover-Cid S, Truchado P, Gil MI, Allende A. The Gamma concept approach as a tool to predict fresh produce supporting or not the growth of L. monocytogenes. Food Microbiol 2024; 122:104554. [PMID: 38839220 DOI: 10.1016/j.fm.2024.104554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 06/07/2024]
Abstract
Challenge tests are commonly employed to evaluate the growth behavior of L. monocytogenes in food matrices; they are known for being expensive and time-consuming. An alternative could be the use of predictive models to forecast microbial behavior under different conditions. In this study, the growth behavior of L. monocytogenes in different fresh produce was evaluated using a predictive model based on the Gamma concept considering pH, water activity (aw), and temperature as input factors. An extensive literature search resulted in a total of 105 research articles selected to collect growth/no growth behavior data of L. monocytogenes. Up to 808 L. monocytogenes behavior values and physicochemical characteristics were extracted for different fruits and vegetables. The predictive performance of the model as a tool for identifying the produce commodities supporting the growth of L. monocytogenes was proved by comparing with the experimental data collected from the literature. The model provided satisfactory predictions on the behavior of L. monocytogenes in vegetables (>80% agreement with experimental observations). For leafy greens, a 90% agreement was achieved. In contrast, the performance of the Gamma model was less satisfactory for fruits, as it tends to overestimate the potential of acid commodities to inhibit the growth of L. monocytogenes.
Collapse
Affiliation(s)
- Marisa Gomez-Galindo
- Research Group on Microbiology and Quality of Fruit and Vegetables, CEBAS-CSIC, Murcia, Spain
| | | | - Sara Bover-Cid
- IRTA, Food Safety and Functionality Program, Finca Camps i Armet s/n, 17121, Monells, Spain
| | - Pilar Truchado
- Research Group on Microbiology and Quality of Fruit and Vegetables, CEBAS-CSIC, Murcia, Spain
| | - Maria I Gil
- Research Group on Microbiology and Quality of Fruit and Vegetables, CEBAS-CSIC, Murcia, Spain
| | - Ana Allende
- Research Group on Microbiology and Quality of Fruit and Vegetables, CEBAS-CSIC, Murcia, Spain.
| |
Collapse
|
13
|
Hong H, Choi J, Kim HJ, Park SH. Stress resistance insights of 65 Listeria strains: Acidic, low temperature, and high salt environments. Microb Pathog 2024; 194:106793. [PMID: 39004154 DOI: 10.1016/j.micpath.2024.106793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/10/2024] [Accepted: 07/12/2024] [Indexed: 07/16/2024]
Abstract
Genetically, Listeria monocytogenes is closely related to non-L. monocytogenes (L. innocua, L. welshimeri, L. grayi, L. aquatica, and L. fleischimannii). This bacterium is well known for its resistance to harsh conditions including acidity, low temperatures, and high salt concentrations. This study explored the responses of 65 Listeria strains to stress conditions and characterized the prevalence of stress-related genes. The 65 Listeria strains were isolated from different environments and their viability was assessed in four different tests: independent tests for pH 3, 1 °C, and 5 % salt concentration and multiple resistance tests that combined pH 3, 1 °C, 5 % salt. From the data, the 65 strains were categorized into stress-resistant (56) or stress-sensitive groups (9), with approximately 4 log CFU/mL differences. The PCR assay analyzed the prevalence of two virulence genes prfA and inlA, and eight stress-related genes: three acid (gadB, gadC, and atpD), two low temperature (betL and opuCA) and three salt resistance genes (flaA, cysS, and fbp). Two low temperature (bet and opuCA) and salt resistance (fbp) genes were more prevalent in the stress-resistant strains than in the stress-sensitive Listeria group.
Collapse
Affiliation(s)
- Hyunhee Hong
- Department of Food Science and Technology, Oregon State University, Corvallis, OR, USA
| | - Jungmin Choi
- Department of Food Science and Technology, Oregon State University, Corvallis, OR, USA
| | - Hyun Jung Kim
- Korea Food Research Institute, Wanju-gun, Jeollabuk-do, Republic of Korea
| | - Si Hong Park
- Department of Food Science and Technology, Oregon State University, Corvallis, OR, USA.
| |
Collapse
|
14
|
Rajalingam N, Choi SY, Van Haute S. Ultra violet-C pretreatment enhances the antimicrobial efficacy of unpeeled carrots against subsequent contamination with Listeria monocytogenes. Int J Food Microbiol 2024; 421:110800. [PMID: 38878705 DOI: 10.1016/j.ijfoodmicro.2024.110800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 06/05/2024] [Accepted: 06/11/2024] [Indexed: 07/06/2024]
Abstract
To our knowledge, this study is the first to elucidate the bactericidal efficacy of unpeeled carrots (hereafter referred to as carrots) pretreated with Ultra Violet-C (UV-C) against subsequent contamination with Listeria monocytogenes. Carrots pretreated with UV-C (240 mJ/cm2) exhibited a significant antilisterial effect within 2 h. In fact, the population of UV-C-pretreated carrots decreased from 7.94 log CFU/cm2 to levels below the limit of detection (LOD; <1.65 log CFU/cm2) within 24 h. For carrots that were not pretreated with UV-C, 3-4 log reductions were found after 24 h. Carrots pretreated with UV-C exhibited antimicrobial activity against another gram-positive pathogen, Staphylococcus aureus, but not against the gram-negative pathogens, E. coli O157:H7 and Salmonella enterica. Pretreatment with UV-C created a lasting antimicrobial effect as introducing L. monocytogenes on carrots, 72 h post-UV-C treatment, still maintained the antilisterial effect. Notably, all UV-C doses in the range of 48-240 mJ/cm2 induced a lasting antilisterial effect. The bactericidal effects against L. monocytogenes were confirmed in three varieties of washed and unwashed carrots (Danvers, Nantes, and Chantenay). Fluorescence microscopy confirmed the bactericidal effect of UV-C-pretreated carrots on the survival of L. monocytogenes. Conclusively, pretreating carrots with UV-C can reduce the population of L. monocytogenes to levels below the LOD and may further prevent pathogen growth during cold storage. Additional studies are necessary to discern the mechanism underlying the bactericidal efficacy of UV-C-pretreated carrots.
Collapse
Affiliation(s)
- Nagendran Rajalingam
- Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium; Center for Food Biotechnology and Microbiology, Ghent University Global Campus, Incheon 21985, Republic of Korea; Microbial Safety Team, National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, Republic of Korea
| | - Song-Yi Choi
- Microbial Safety Team, National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, Republic of Korea.
| | - Sam Van Haute
- Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium; Center for Food Biotechnology and Microbiology, Ghent University Global Campus, Incheon 21985, Republic of Korea.
| |
Collapse
|
15
|
Kawacka I, Olejnik-Schmidt A. Gene emrC Associated with Resistance to Quaternary Ammonium Compounds Is Common among Listeria monocytogenes from Meat Products and Meat Processing Plants in Poland. Antibiotics (Basel) 2024; 13:749. [PMID: 39200049 PMCID: PMC11350778 DOI: 10.3390/antibiotics13080749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/06/2024] [Accepted: 08/08/2024] [Indexed: 09/01/2024] Open
Abstract
(1) Background: L. monocytogenes is a food pathogen of great importance, characterized by a high mortality rate. Quaternary ammonium compounds (QACs), such as benzalkonium chloride (BC), are often used as disinfectants in food processing facilities. The effectiveness of disinfection procedures is crucial to food safety. (2) Methods: A collection of 153 isolates of L. monocytogenes from meat processing industry was analyzed for their sensitivity to BC using the agar diffusion method. Genes of interest were detected with PCR. (3) Results: Genes emrC, bcrABC, and qacH were found in 64 (41.8%), 6 (3.9%), and 1 isolate (0.7%), respectively, and 79 isolates (51.6%) were classified as having reduced sensitivity to BC. A strong correlation between carrying QACs resistance-related genes and phenotype was found (p-value < 0.0001). Among 51 isolates originating from bacon (collected over 13 months), 48 had the emrC gene, which could explain their persistent presence in a processing facility. Isolates with the ilsA gene (from LIPI-3) were significantly (p-value 0.006) less likely to carry QACs resistance-related genes. (4) Conclusions: Reduced sensitivity to QACs is common among L. monocytogenes from the meat processing industry. Persistent presence of these bacteria in a processing facility is presumably caused by emrC-induced QACs resistance.
Collapse
Affiliation(s)
- Iwona Kawacka
- Department of Food Biotechnology and Microbiology, Poznan University of Life Sciences, Wojska Polskiego 48, 60-627 Poznan, Poland
| | - Agnieszka Olejnik-Schmidt
- Department of Food Biotechnology and Microbiology, Poznan University of Life Sciences, Wojska Polskiego 48, 60-627 Poznan, Poland
| |
Collapse
|
16
|
Wei J, Zhang X, Ismael M, Zhong Q. Anti-Biofilm Effects of Z102-E of Lactiplantibacillus plantarum against Listeria monocytogenes and the Mechanism Revealed by Transcriptomic Analysis. Foods 2024; 13:2495. [PMID: 39200422 PMCID: PMC11354177 DOI: 10.3390/foods13162495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/06/2024] [Accepted: 08/07/2024] [Indexed: 09/02/2024] Open
Abstract
Lactic acid bacteria (LAB) are the most common probiotics, and they present excellent inhibitory effects on pathogenic bacteria. This study aimed to explore the anti-biofilm potential of the purified active substance of Lactiplantibacillus plantarum, named Z102-E. The effects of Z102-E on Listeria monocytogenes were investigated in detail, and a transcriptomic analysis was conducted to reveal the anti-biofilm mechanism. The results indicated that the sub-MIC of Z102-E (3.2, 1.6, and 0.8 mg/mL) decreased the bacterial growth and effectively reduced the self-aggregation, surface hydrophobicity, sugar utilization, motility, biofilm formation, AI-2 signal molecule, contents of extracellular polysaccharides, and extracellular protein of L. monocytogenes. Moreover, the inverted fluorescence microscopy observation confirmed the anti-biofilm effect of Z102-E. The transcriptomic analysis indicated that 117 genes were up-regulated and 214 were down-regulated. Z102-E regulated the expressions of genes related to L. monocytogenes quorum sensing, biofilm formation, etc. These findings suggested that Z102-E has great application potential as a natural bacteriostatic agent.
Collapse
Affiliation(s)
| | | | | | - Qingping Zhong
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China; (J.W.); (X.Z.); (M.I.)
| |
Collapse
|
17
|
Gao B, Cai H, Xu B, Yang F, Dou X, Dong Q, Yan H, Bu X, Li Z. Growth, biofilm formation, and motility of Listeria monocytogenes strains isolated from food and clinical samples located in Shanghai (China). Food Res Int 2024; 184:114232. [PMID: 38609218 DOI: 10.1016/j.foodres.2024.114232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/09/2024] [Accepted: 03/12/2024] [Indexed: 04/14/2024]
Abstract
Listeria monocytogenes is a common foodborne pathogen that frequently causes global outbreaks. In this study, the growth characteristics, biofilm formation ability, motility ability and whole genome of 26 L. monocytogenes strains isolated from food and clinical samples in Shanghai (China) from 2020 to 2022 were analyzed. There are significant differences among isolates in terms of growth, biofilm formation, motility, and gene expression. Compared with other sequence type (ST) types, ST1930 type exhibited a significantly higher maximum growth rate, the ST8 type demonstrated a stronger biofilm formation ability, and the ST121 type displayed greater motility ability. Furthermore, ST121 exhibited significantly high mRNA expression levels compared with other ST types in virulence genes mpl, fbpA and fbpB, the quorum sensing gene luxS, starvation response regulation gene relA, and biofilm adhesion related gene bapL. Whole-genome sequencing (WGS) analyses indicated the isolates of lineage I were mostly derived from clinical, and the isolates of lineage II were mostly derived from food. The motility ability, along with the expression of genes associated with motility (motA and motB), exhibited a significantly higher level in lineage II compared with lineage I. The isolates from food exhibited significantly higher motility ability compared with isolates from clinical. By integrating growth, biofilm formation, motility phenotype with molecular and genotyping information, it is possible to enhance comprehension of the association between genes associated with these characteristics in L. monocytogenes.
Collapse
Affiliation(s)
- BinRu Gao
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China.
| | - Hua Cai
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China.
| | - Biyao Xu
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China.
| | - Fan Yang
- Department of Pharmacy, Renji Hospital, School of Medicine Shanghai Jiao Tong University, Shanghai 200127, China.
| | - Xin Dou
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China.
| | - Qingli Dong
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China.
| | - Hui Yan
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China.
| | - Xiangfeng Bu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China.
| | - Zhuosi Li
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China.
| |
Collapse
|
18
|
Shin M, Na G, Kang JW, Kang DH. Application of combined treatment of peracetic acid and ultraviolet-C for inactivating pathogens in water and on surface of apples. Int J Food Microbiol 2024; 411:110519. [PMID: 38101190 DOI: 10.1016/j.ijfoodmicro.2023.110519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 11/06/2023] [Accepted: 12/05/2023] [Indexed: 12/17/2023]
Abstract
In this study, a combined treatment of peracetic acid (PAA) and 280 nm Ultraviolet-C (UVC) - Light emitting diode (LED) was applied for inactivating foodborne pathogens in water and apples. The combined treatment of PAA (50 ppm) and UVC-LED showed synergistic inactivation effects against Escherichia coli O157:H7 and Listeria monocytogenes in water. In mechanism analysis, PAA/UVC-LED treatment induced more lipid peroxidation, intracellular ROS, membrane, and DNA damage than a single treatment. Among them, membrane damage was the main synergistic inactivation mechanism of combination treatment. Cell rupture and shrink of both pathogens after PAA/UVC-LED treatment were also identified through scanning electron microscope (SEM) analysis. To examine inactivation of pathogens on the surface of apples by PAA, UVC-LED, and their combined treatment, a washing system (WS) was developed and used. Through applying the WS, PAA/UVC-LED treatment effectively inactivated two pathogens in washing solution and on the surface of apples below the detection limit (3.30 log CFU/2000 mL and 2.0 log CFU/apple) within 5 min. In addition, there was no significant difference in color or firmness of apples after PAA/UVC-LED treatment (p > 0.05).
Collapse
Affiliation(s)
- Minjung Shin
- Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, Center for Food and Bioconvergence, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea; Department of Food Science and Biotechnology, Dongguk University-Seoul, 32, Dongguk-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do 10326, Republic of Korea
| | - Gyumi Na
- Department of Food Science and Biotechnology, Dongguk University-Seoul, 32, Dongguk-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do 10326, Republic of Korea
| | - Jun-Won Kang
- Department of Food Science and Biotechnology, Dongguk University-Seoul, 32, Dongguk-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do 10326, Republic of Korea.
| | - Dong-Hyun Kang
- Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, Center for Food and Bioconvergence, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea; Institutes of Green Bio Science & Technology, Seoul National University, Pyeongchang-gun, Gangwon-do 25354, Republic of Korea.
| |
Collapse
|
19
|
Chaves RD, Kumazawa SH, Khaneghah AM, Alvarenga VO, Hungaro HM, Sant'Ana AS. Comparing the susceptibility to sanitizers, biofilm-forming ability, and biofilm resistance to quaternary ammonium and chlorine dioxide of 43 Salmonella enterica and Listeria monocytogenes strains. Food Microbiol 2024; 117:104380. [PMID: 37918997 DOI: 10.1016/j.fm.2023.104380] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 08/28/2023] [Accepted: 09/05/2023] [Indexed: 11/04/2023]
Abstract
This study determined the susceptibility to sanitizers and biofilm-forming ability on stainless steel of 43 Salmonella enterica and Listeria monocytogenes strains. Besides, the biofilm resistance to sanitizers of four bacterial pathogen strains was evaluated. Four sanitizers commonly used in the food industry were tested: peracetic acid (PAA), chlorine dioxide (ClO2), sodium hypochlorite (SH), and quaternary ammonium compound (QAC). The susceptibility to sanitizers varied widely among the strains of both pathogens. On the other hand, the number of biofilm-associated cells on the stainless-steel surface was >5 log CFU/cm2 for all of them. Only one Salmonella strain and two L. monocytogenes strains stood out as the least biofilm-forming. The resistance of biofilms to sanitizers also varied among strains of each pathogen. Biofilms of L. monocytogenes were more susceptible to the disinfection process with ClO2 and QAC than those of Salmonella. However, no correlation was observed between the ability to form denser biofilm and increased sanitizer resistance. In general, chlorine compounds were more effective than other sanitizers in inactivating planktonic cells and biofilms.
Collapse
Affiliation(s)
- Rafael D Chaves
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas, Campinas, SP, Brazil
| | - Samuel H Kumazawa
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas, Campinas, SP, Brazil
| | - Amin Mousavi Khaneghah
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas, Campinas, SP, Brazil
| | - Verônica O Alvarenga
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas, Campinas, SP, Brazil; Department of Food, Faculty of Pharmacy, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Humberto M Hungaro
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Federal University of Juiz de Fora, Juiz de Fora, MG, Brazil
| | - Anderson S Sant'Ana
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas, Campinas, SP, Brazil.
| |
Collapse
|
20
|
Amarasekara NR, Swamy AS, Paudel SK, Jiang W, Li K, Shen C, Zhang Y. Hypervirulent clonal complex (CC) of Listeria monocytogenes in fresh produce from urban communities. Front Microbiol 2024; 15:1307610. [PMID: 38348192 PMCID: PMC10859469 DOI: 10.3389/fmicb.2024.1307610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 01/08/2024] [Indexed: 02/15/2024] Open
Abstract
Introduction This study aimed to determine the prevalence and virulome of Listeria in fresh produce distributed in urban communities. Methods A total of 432 fresh produce samples were collected from farmer's markets in Michigan and West Virginia, USA, resulting in 109 pooled samples. Listeria spp. were isolated and L. monocytogenes was subjected to genoserogrouping by PCR and genotyping by pulsed-field gel electrophoresis (PFGE). Multi-locus sequence typing (MLST) and core-genome multi-locus sequence typing (cgMLST) were conducted for clonal identification. Results Forty-eight of 109 samples (44.0%) were contaminated with Listeria spp. L. monocytogenes serotype 1/2a and 4b were recovered from radishes, potatoes, and romaine lettuce. Four clonal complexes (CC) were identified and included hypervirulent CC1 (ST1) and CC4 (ST219) of lineage I as well as CC7 (ST7) and CC11 (ST451) of lineage II. Clones CC4 and CC7 were present in the same romaine lettuce sample. CC1 carried Listeria pathogenicity island LIPI-1 and LIPI-3 whereas CC4 contained LIPI-1, LIPI-3, and LIPI-4. CC7 and CC11 had LIPI-1 only. Discussion Due to previous implication in outbreaks, L. monocytogenes hypervirulent clones in fresh produce pose a public health concern in urban communities.
Collapse
Affiliation(s)
| | - Amrita Subramanya Swamy
- Department of Nutrition and Food Science, Wayne State University, Detroit, MI, United States
| | - Sumit Kumar Paudel
- Department of Nutrition and Food Science, Wayne State University, Detroit, MI, United States
| | - Wentao Jiang
- Davis College, Division of Animal and Nutritional Sciences, West Virginia University, Morgantown, WV, United States
| | - KaWang Li
- Davis College, Division of Animal and Nutritional Sciences, West Virginia University, Morgantown, WV, United States
| | - Cangliang Shen
- Davis College, Division of Animal and Nutritional Sciences, West Virginia University, Morgantown, WV, United States
| | - Yifan Zhang
- Department of Nutrition and Food Science, Wayne State University, Detroit, MI, United States
| |
Collapse
|
21
|
Hamilton AN, Mirmahdi RS, Ubeyitogullari A, Romana CK, Baum JI, Gibson KE. From bytes to bites: Advancing the food industry with three-dimensional food printing. Compr Rev Food Sci Food Saf 2024; 23:e13293. [PMID: 38284594 DOI: 10.1111/1541-4337.13293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/27/2023] [Accepted: 12/17/2023] [Indexed: 01/30/2024]
Abstract
The rapid advancement of three-dimensional (3D) printing (i.e., a type of additive manufacturing) technology has brought about significant advances in various industries, including the food industry. Among its many potential benefits, 3D food printing offers a promising solution to deliver products meeting the unique nutritional needs of diverse populations while also promoting sustainability within the food system. However, this is an emerging field, and there are several aspects to consider when planning for use of 3D food printing for large-scale food production. This comprehensive review explores the importance of food safety when using 3D printing to produce food products, including pathogens of concern, machine hygiene, and cleanability, as well as the role of macronutrients and storage conditions in microbial risks. Furthermore, postprocessing factors such as packaging, transportation, and dispensing of 3D-printed foods are discussed. Finally, this review delves into barriers of implementation of 3D food printers and presents both the limitations and opportunities of 3D food printing technology.
Collapse
Affiliation(s)
- Allyson N Hamilton
- Department of Food Science, University of Arkansas System Division of Agriculture, Fayetteville, Arkansas, USA
- Center for Food Safety, University of Arkansas System Division of Agriculture, Fayetteville, Arkansas, USA
| | - Razieh S Mirmahdi
- Department of Food Science, University of Arkansas System Division of Agriculture, Fayetteville, Arkansas, USA
| | - Ali Ubeyitogullari
- Department of Food Science, University of Arkansas System Division of Agriculture, Fayetteville, Arkansas, USA
- Department of Biological and Agricultural Engineering, University of Arkansas System Division of Agriculture, Fayetteville, Arkansas, USA
| | - Chetanjot K Romana
- Department of Food Science, University of Arkansas System Division of Agriculture, Fayetteville, Arkansas, USA
- Center for Human Nutrition, University of Arkansas System Division of Agriculture, Fayetteville, Arkansas, USA
| | - Jamie I Baum
- Department of Food Science, University of Arkansas System Division of Agriculture, Fayetteville, Arkansas, USA
- Center for Human Nutrition, University of Arkansas System Division of Agriculture, Fayetteville, Arkansas, USA
| | - Kristen E Gibson
- Department of Food Science, University of Arkansas System Division of Agriculture, Fayetteville, Arkansas, USA
- Center for Food Safety, University of Arkansas System Division of Agriculture, Fayetteville, Arkansas, USA
| |
Collapse
|
22
|
Kaur A, Yemmireddy V. Effect of Different Pre-Growth Temperatures on the Survival Kinetics of Salmonella enterica and Listeria monocytogenes in Fresh-Cut Salad during Refrigerated Storage. Foods 2023; 12:4287. [PMID: 38231743 DOI: 10.3390/foods12234287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/14/2023] [Accepted: 11/22/2023] [Indexed: 01/19/2024] Open
Abstract
The effect of the pre-growth temperature of bacterial cultures on their subsequent survival kinetics in fresh-cut produce during refrigerated storage was investigated in this study. Three-strain cocktails of Listeria monocytogenes and Salmonella enterica, cultured at different growth temperatures (4, 21, and 37 °C) were inoculated on fresh-cut mixed salad and on individual produce in the mixed salad. The inoculated samples were stored at 4 °C and 80 ± 2% relative humidity (RH) for up to 72 h and the growth, survival, or death kinetics were determined at regular intervals. The results indicate that depending upon the type of pathogen tested, the pre-growth temperature(s) and the type of produce showed a significant (p ≤ 0.05) effect on the survival kinetics. Among the tested produce, mixed salad showed the highest reduction in L. monocytogenes pre-grown at 37 °C (1.33 log CFU/g) followed by red cabbage (0.56 log CFU/g), iceberg lettuce (0.52 log CFU/g), and carrot (-0.62 log CFU/g), after 72 h, respectively. In the case of Salmonella, carrot showed the highest reduction (1.07 log CFU/g for 37 °C pre-grown culture) followed by mixed salad (0.78 log CFU/g for 37 °C pre-grown culture), cabbage (0.76 log CFU/g for 21 °C pre-grown culture), and lettuce (0.65 log CFU/g for 4 °C pre-grown culture), respectively. Among the tested ComBase predictive models, the Baranyi-Roberts model better fitted the experimental data. These findings indicate that the appropriate selection of pre-growth environmental conditions is critical to better understand the kinetics of foodborne pathogens.
Collapse
Affiliation(s)
- Avninder Kaur
- School of Integrative Biological and Chemical Sciences, The University of Texas Rio Grande Valley, 1201 W University Dr, Edinburg, TX 78539, USA
| | - Veerachandra Yemmireddy
- School of Integrative Biological and Chemical Sciences, The University of Texas Rio Grande Valley, 1201 W University Dr, Edinburg, TX 78539, USA
- School of Earth, Environmental and Marine Sciences, The University of Texas Rio Grande Valley, 1201 W University Dr, Edinburg, TX 78539, USA
| |
Collapse
|
23
|
Olszewska MA, Dev Kumar G, Hur M, Diez-Gonzalez F. Inactivation of dried cells and biofilms of Listeria monocytogenes by exposure to blue light at different wavelengths and the influence of surface materials. Appl Environ Microbiol 2023; 89:e0114723. [PMID: 37846990 PMCID: PMC10617584 DOI: 10.1128/aem.01147-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 08/31/2023] [Indexed: 10/18/2023] Open
Abstract
Antimicrobial blue light (aBL) in the 400-470 nm wavelength range has been reported to kill multiple bacteria. This study assessed its potential for mitigating an important foodborne pathogen, Listeria monocytogenes (Lm), focusing on surface decontamination. Three wavelengths were tested, with gallic acid as a photosensitizing agent (Ps), against dried cells obtained from bacterial suspensions, and biofilms on stainless-steel (SS) coupons. Following aBL exposure, standard microbiological analysis of inoculated coupons was conducted to measure viability. Statistical analysis of variance was performed. Confocal laser scanning microscopy was used to observe the biofilm structures. Within 16 h of exposure at 405 nm, viable Lm dried cells and biofilms were reduced by approx. 3 log CFU/cm2 with doses of 2,672 J/cm2. Application of Ps resulted in an additional 1 log CFU/cm2 at 668 J/cm2, but its effect was not consistent. The highest dose (960 J/cm2) at 420 nm reduced viable counts on the biofilms by 1.9 log CFU/cm2. At 460 nm, after 800 J/cm2, biofilm counts were reduced by 1.6 log CFU/cm2. The effect of material composition on Lm viability was also investigated. Irradiation at 405 nm (668 J/cm2) of cells dried on polystyrene resulted in one of the largest viability reductions (4.0 log CFU/cm2), followed by high-density polyethylene (3.5 log CFU/cm2). Increasing the dose to 4,008 J/cm2 from 405 nm (24 h), improved its efficacy only on SS and polyvinyl chloride. Biofilm micrographs displayed a decrease in biofilm biomass due to the removal of biofilm portions from the surface and a shift from live to dead cells suggesting damage to biofilm cell membranes. These results suggest that aBL is a potential intervention to treat Lm contamination on typical material surfaces used in food production.IMPORTANCECurrent cleaning and sanitation programs are often not capable of controlling pathogen biofilms on equipment surfaces, which transmit the bacteria to ready-to-eat foods. The presence of native plant microbiota and organic matter can protect pathogenic bacteria by reducing the efficacy of sanitizers as well as promoting biofilm formation. Post-operation washing and sanitizing of produce contact surfaces might not be adequate in eliminating the presence of pathogens and commensal bacteria. The use of a dynamic and harmless light technology during downtime and close of operation could serve as a useful tool in preventing biofilm formation and persistence. Antimicrobial blue light (aBL) technology has been explored for hospital disinfection with very promising results, but its application to control foodborne pathogens remains relatively limited. The use of aBL could be a complementary strategy to inactivate surfaces in restaurant or supermarket deli settings.
Collapse
Affiliation(s)
- Magdalena A. Olszewska
- Center for Food Safety, University of Georgia, Griffin, Georgia, USA
- Department of Industrial and Food Microbiology, The Faculty of Food Science, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | | | - Minji Hur
- Center for Food Safety, University of Georgia, Griffin, Georgia, USA
| | | |
Collapse
|
24
|
Elbakush AM, Fulano AM, Gomelsky M. Lignan-containing maple products inhibit Listeria monocytogenes biofilms on fresh produce. Front Microbiol 2023; 14:1258394. [PMID: 37928682 PMCID: PMC10620520 DOI: 10.3389/fmicb.2023.1258394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 10/05/2023] [Indexed: 11/07/2023] Open
Abstract
Major listeriosis outbreaks have been associated with fresh produce contaminated with Listeria monocytogenes. Strains that synthesize the Pss exopolysaccharide (EPS) have an estimated 102 to 104-fold advantage over nonsynthesizing strains in causing listeriosis. They more readily attach to the surfaces of fruit and vegetables forming EPS-biofilms that better withstand stresses associated with produce storage and consumption. Here, we show that the threat to fresh produce safety posed by the listerial EPS-biofilms may be countered by broadly available maple products. We serendipitously discovered that aqueous extracts of wood from several Acer (maple) and Carya (pecan, hickory) species inhibit the formation of listerial EPS-biofilms without affecting bacterial viability. One active ingredient in maple wood was identified as nortrachelogenin-8'-O-β-D-glucopyranoside (NTG). At 120 μM, this lignan decreased colonization of the EPS-synthesizing L. monocytogenes on cantaloupe pieces by approximately 150-fold, and on cut celery and lettuce by 10 to 11-fold. Another lignan, lariciresinol, which is abundant in a common food sweetener, maple syrup, had antibiofilm activity comparable to that of NTG. Diluted in the range of 1:200 to 1:800 maple syrup from two random manufacturers prevented formation of listeiral EPS-biofilms. Importantly, not only did maple products drastically decrease colonization of fresh produce by the EPS-synthesizing strains, they also decreased, by 6 to 30-fold, colonization by the L. monocytogenes strains that do not synthesize measurable EPS, including strains from the infamous 2011 cantaloupe listeriosis outbreak. Inhibition of surface colonization by various listerial strains, broad availability of maple sap and syrup as well as maple lumber processing waste position maple products as potential antibiofilm agents for protecting fresh produce from L. monocytogenes.
Collapse
Affiliation(s)
- Ahmed M. Elbakush
- Department of Molecular Biology, University of Wyoming, Laramie, WY, United States
- Faculty of Veterinary Medicine, University of Tripoli, Tripoli, Libya
| | - Alex M. Fulano
- Department of Molecular Biology, University of Wyoming, Laramie, WY, United States
| | - Mark Gomelsky
- Department of Molecular Biology, University of Wyoming, Laramie, WY, United States
| |
Collapse
|
25
|
Sloniker N, Raftopoulou O, Chen Y, Ryser ET, Beaudry R. Fate of Planktonic and Biofilm-Derived Listeria monocytogenes on Unwaxed Apples during Air and Controlled Atmosphere Storage. Foods 2023; 12:3673. [PMID: 37835326 PMCID: PMC10573035 DOI: 10.3390/foods12193673] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 09/26/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023] Open
Abstract
Multiple recalls and outbreaks involving Listeria monocytogenes-contaminated apples have been linked to the post-harvest packing environment where this pathogen can persist in biofilms. Therefore, this study assessed L. monocytogenes survival on apples as affected by harvest year, apple cultivar, storage atmosphere, and growth conditions. Unwaxed Gala, Granny Smith, and Honeycrisp apples were dip-inoculated in an 8-strain L. monocytogenes cocktail of planktonic- or biofilm-grown cells (~6.5 log CFU/mL), dried, and then examined for numbers of L. monocytogenes during air or controlled atmosphere (CA) (1.5% O2, 1.5% CO2) storage at 2 °C. After 90 days, air or CA storage yielded similar L. monocytogenes survival (p > 0.05), regardless of harvest year. Populations gradually decreased with L. monocytogenes quantifiable in most samples after 7 months. Apple cultivar significantly impacted L. monocytogenes survival (p < 0.05) during both harvest years with greater reductions (p < 0.05) seen on Gala compared to Granny Smith and Honeycrisp. Biofilm-derived cells survived longer (p < 0.05) on L. monocytogenes-inoculated Gala and Honeycrisp apples compared to cells grown planktonically. These findings should aid in the development of improved L. monocytogenes intervention strategies for apple growers and packers.
Collapse
Affiliation(s)
- Natasha Sloniker
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824, USA
| | - Ourania Raftopoulou
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC 27606, USA
| | - Yi Chen
- Office of Regulatory Science, Center for Food Safety and Applied Nutrition, Food and Drug Administration, College Park, MD 20740, USA
| | - Elliot T. Ryser
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824, USA
| | - Randy Beaudry
- Department of Horticulture, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
26
|
Khan FM, Chen JH, Zhang R, Liu B. A comprehensive review of the applications of bacteriophage-derived endolysins for foodborne bacterial pathogens and food safety: recent advances, challenges, and future perspective. Front Microbiol 2023; 14:1259210. [PMID: 37869651 PMCID: PMC10588457 DOI: 10.3389/fmicb.2023.1259210] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 09/20/2023] [Indexed: 10/24/2023] Open
Abstract
Foodborne diseases are caused by food contaminated by pathogenic bacteria such as Escherichia coli, Salmonella, Staphylococcus aureus, Listeria monocytogenes, Campylobacter, and Clostridium, a critical threat to human health. As a novel antibacterial agent against foodborne pathogens, endolysins are peptidoglycan hydrolases encoded by bacteriophages that lyse bacterial cells by targeting their cell wall, notably in Gram-positive bacteria due to their naturally exposed peptidoglycan layer. These lytic enzymes have gained scientists' interest in recent years due to their selectivity, mode of action, engineering potential, and lack of resistance mechanisms. The use of endolysins for food safety has undergone significant improvements, which are summarized and discussed in this review. Endolysins can remove bacterial biofilms of foodborne pathogens and their cell wall-binding domain can be employed as a tool for quick detection of foodborne pathogens. We explained the applications of endolysin for eliminating pathogenic bacteria in livestock and various food matrices, as well as the limitations and challenges in use as a dietary supplement. We also highlight the novel techniques of the development of engineering endolysin for targeting Gram-negative bacterial pathogens. In conclusion, endolysin is safe and effective against foodborne pathogens and has no adverse effect on human cells and beneficial microbiota. As a result, endolysin could be employed as a functional bio-preservative agent to improve food stability and safety and maintain the natural taste of food quality.
Collapse
Affiliation(s)
- Fazal Mehmood Khan
- College of Civil and Transportation Engineering, Shenzhen University, Shenzhen, China
- Institute for Advanced Study, Shenzhen University, Shenzhen, China
- Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen, China
| | - Jie-Hua Chen
- Institute for Advanced Study, Shenzhen University, Shenzhen, China
- Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen, China
| | - Rui Zhang
- Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Bin Liu
- Institute for Advanced Study, Shenzhen University, Shenzhen, China
- Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen, China
| |
Collapse
|
27
|
Figueroa Y, Gentiluomo J, Grisaro A, Buffoni M, Zipenco N, Sucari A, Buonfiglio P, Costa M. [Epidemiological study and serotyping by multiple PCR of Listeria monocytogenes isolated from food matrices in Argentina]. Rev Argent Microbiol 2023; 55:387-394. [PMID: 37479608 DOI: 10.1016/j.ram.2023.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 03/17/2023] [Accepted: 05/21/2023] [Indexed: 07/23/2023] Open
Abstract
Listeria monocytogenes is an opportunistic foodborne pathogen. It can resist stress conditions by adapting through the production of biofilms, which represents a serious problem for the food industry. It is classified into 14 serotypes, although only four (1/2a, 1/2b, 1/2c, and 4b) account for 89.0-98.0% of listeriosis cases worldwide. The objective of this study was to detect and serotype L.monocytogenes isolated from different food matrices from processing plants in Argentina. In the period 2016-2021, 1832 samples (meat, ready-to-eat foods, ice cream, dairy foods, and frozen vegetables) were analyzed, of which 226 (12.34%) isolates compatible with L.monocytogenes were detected. At the same time, environmental and surface samplings were performed in processing plants for ready-to-eat foods, sausages and dairy products, where environmental contamination with L.monocytogenes was detected in numerous critical points of the process, yielding a positivity rate of 22.7%. The molecular analysis of serogroups was performed, where it was observed that serogroup IIb was the most frequent with 66.5% (n=107), and in descending order IIc with 22.3% (n=36), and IIa (n=9) and IVb (n=9) with 5.6%. The serogroup mostly isolated in environmental monitoring was IIb. This work highlights the importance of the detection and serotyping of L.monocytogenes for taking actionable measures and identifying outbreaks, and is the first study in Argentina to describe an extensive study in food matrices.
Collapse
Affiliation(s)
- Yamila Figueroa
- División Higiene y Seguridad Alimentaria y Ambiental, Stamboulian Servicios de Salud, Buenos Aires, Argentina.
| | - Jimena Gentiluomo
- División Higiene y Seguridad Alimentaria y Ambiental, Stamboulian Servicios de Salud, Buenos Aires, Argentina
| | - Agustina Grisaro
- División Higiene y Seguridad Alimentaria y Ambiental, Stamboulian Servicios de Salud, Buenos Aires, Argentina
| | - Mariana Buffoni
- División Higiene y Seguridad Alimentaria y Ambiental, Stamboulian Servicios de Salud, Buenos Aires, Argentina
| | - Nadia Zipenco
- División Higiene y Seguridad Alimentaria y Ambiental, Stamboulian Servicios de Salud, Buenos Aires, Argentina
| | - Adriana Sucari
- División Higiene y Seguridad Alimentaria y Ambiental, Stamboulian Servicios de Salud, Buenos Aires, Argentina
| | - Paula Buonfiglio
- Laboratorio de Fisiología y Genética de la Audición, Instituto de Investigaciones en Ingeniería Genética y Biología Molecular Dr. Hector N. Torres (INGEBI-CONICET), Ciudad Autónoma de Buenos Aires, Argentina
| | - Magdalena Costa
- IGEVET - Instituto de Genética Veterinaria Ing. Fernando N. Dulout (UNLP-CONICET LA PLATA), Facultad de Ciencias Veterinarias, La Plata, Buenos Aires, Argentina
| |
Collapse
|
28
|
Monteith W, Pascoe B, Mourkas E, Clark J, Hakim M, Hitchings MD, McCarthy N, Yahara K, Asakura H, Sheppard SK. Contrasting genes conferring short- and long-term biofilm adaptation in Listeria. Microb Genom 2023; 9:001114. [PMID: 37850975 PMCID: PMC10634452 DOI: 10.1099/mgen.0.001114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 09/28/2023] [Indexed: 10/19/2023] Open
Abstract
Listeria monocytogenes is an opportunistic food-borne bacterium that is capable of infecting humans with high rates of hospitalization and mortality. Natural populations are genotypically and phenotypically variable, with some lineages being responsible for most human infections. The success of L. monocytogenes is linked to its capacity to persist on food and in the environment. Biofilms are an important feature that allow these bacteria to persist and infect humans, so understanding the genetic basis of biofilm formation is key to understanding transmission. We sought to investigate the biofilm-forming ability of L. monocytogenes by identifying genetic variation that underlies biofilm formation in natural populations using genome-wide association studies (GWAS). Changes in gene expression of specific strains during biofilm formation were then investigated using RNA sequencing (RNA-seq). Genetic variation associated with enhanced biofilm formation was identified in 273 genes by GWAS and differential expression in 220 genes by RNA-seq. Statistical analyses show that the number of overlapping genes flagged by either type of experiment is less than expected by random sampling. This novel finding is consistent with an evolutionary scenario where rapid adaptation is driven by variation in gene expression of pioneer genes, and this is followed by slower adaptation driven by nucleotide changes within the core genome.
Collapse
Affiliation(s)
- William Monteith
- Department of Biology, University of Oxford, Oxford, UK
- Department of Biology, University of Bath, Claverton Down, Bath, UK
| | - Ben Pascoe
- Department of Biology, University of Oxford, Oxford, UK
- Big Data Institute, University of Oxford, Oxford, UK
| | | | - Jack Clark
- Department of Genetics, University of Leicester, University Road, Leicester, UK
| | - Maliha Hakim
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge, UK
| | - Matthew D. Hitchings
- Swasnsea University Medical School, Swansea University, Singleton Campus, Swansea, UK
| | - Noel McCarthy
- School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - Koji Yahara
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Hiroshi Asakura
- Division of Biomedical Food Research, National Institute of Health Sciences, Tonomachi 3-25-26, Kawasaki-ku, Kawasaki, Kanagawa 210-9501, Japan
| | | |
Collapse
|
29
|
Byun KH, Kim HJ. Survival strategies of Listeria monocytogenes to environmental hostile stress: biofilm formation and stress responses. Food Sci Biotechnol 2023; 32:1631-1651. [PMID: 37780599 PMCID: PMC10533466 DOI: 10.1007/s10068-023-01427-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/29/2023] [Accepted: 08/31/2023] [Indexed: 10/03/2023] Open
Abstract
Listeria monocytogenes is a critical foodborne pathogen that causes listeriosis and threatens public health. This pathogenic microorganism forms a transmission cycle in nature, food industry, and humans, expanding the areas of contamination among them and influencing food safety. L. monocytogenes forms biofilms to protect itself and promotes survival through stress responses to the various stresses (e.g., temperature, pH, and antimicrobial agents) that may be inflicted during food processing. Biofilms and mechanisms of resistance to hostile external or general stresses allow L. monocytogenes to survive despite a variety of efforts to ensure food safety. The current review article focuses on biofilm formation, resistance mechanisms through biofilms, and external specific or general stress responses of L. monocytogenes to help understand the unexpected survival rates of this bacterium; it also proposes the use of obstacle technology to effectively cope with it in the food industry.
Collapse
Affiliation(s)
- Kye-Hwan Byun
- Food Safety and Distribution Research Group, Korea Food Research Institute, Jeollabuk-Do, Wanju, 55365 Republic of Korea
| | - Hyun Jung Kim
- Food Safety and Distribution Research Group, Korea Food Research Institute, Jeollabuk-Do, Wanju, 55365 Republic of Korea
- Department of Food Biotechnology, University of Science and Technology, Daejeon, 34113 Republic of Korea
| |
Collapse
|
30
|
Gómez-Galindo M, Truchado P, Allende A, Gil MI. Optimization of the Use of a Commercial Phage-Based Product as a Control Strategy of Listeria monocytogenes in the Fresh-Cut Industry. Foods 2023; 12:3171. [PMID: 37685104 PMCID: PMC10487045 DOI: 10.3390/foods12173171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/16/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
A commercial phage biocontrol for reducing Listeria monocytogenes has been described as an effective tool for improving fresh produce safety. Critical challenges in the phage application must be overcome for the industrial application. The validation studies were performed in two processing lines of two industry collaborators in Spain and Denmark, using shredded iceberg lettuce as the ready-to-eat (RTE), high process volume product. The biocontrol treatment optimized in lab-scale trials for the application of PhageGuard ListexTM was confirmed in industrial settings by four tests, two in Spain and two in Denmark. Results showed that the method of application that included the device and the processing operation step was appropriate for the proper application. The proper dose of Phage Guard ListexTM was reached in shredded iceberg lettuce and the surface was adequately covered for the successful application of phages. There was no impact on the headspace gas composition (CO2 and O2 levels), nor on the color when untreated and treated samples were compared. The post-process treatment with PhageGuard ListexTM did not cause any detrimental impact on the sensory quality, including flavor, texture, browning, spoilage, and visual appearance over the shelf-life as the phage solution was applied as a fine, mist solution.
Collapse
Affiliation(s)
| | | | | | - Maria I. Gil
- Research Group on Microbiology and Quality of Fruits and Vegetables, Food Science & Technology Department, CEBAS-CSIC, 30100 Murcia, Spain; (M.G.-G.); (P.T.); (A.A.)
| |
Collapse
|
31
|
Gędas A, Draszanowska A, den Bakker H, Diez-Gonzalez F, Simões M, Olszewska MA. Prevention of surface colonization and anti-biofilm effect of selected phytochemicals against Listeria innocua strain. Colloids Surf B Biointerfaces 2023; 228:113391. [PMID: 37290199 DOI: 10.1016/j.colsurfb.2023.113391] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 05/28/2023] [Accepted: 05/31/2023] [Indexed: 06/10/2023]
Abstract
This work aimed to determine the ability of Listeria innocua (L.i.) to colonize eight materials found in food-processing and packaging settings and to evaluate the viability of the sessile cells. We also selected four commonly used phytochemicals (trans-cinnamaldehyde, eugenol, citronellol, and terpineol) to examine and compare their efficacies against L.i. on each surface. Biofilms were also deciphered in chamber slides using confocal laser scanning microscopy to learn more about how phytochemicals affect L.i. The materials tested were silicone rubber (Si), polyurethane (PU), polypropylene (PP), polytetrafluoroethylene (PTFE), stainless steel 316 L (SS), copper (Cu), polyethylene terephthalate (PET), and borosilicate glass (GL). L.i. colonized Si and SS abundantly, followed by PU, PP, Cu, PET, GL, and PTFE surfaces. The live/dead status ranged from 65/35% for Si to 20/80% for Cu, and the estimates of cells unable to grow on Cu were the highest, reaching even 43%. Cu was also characterized by the highest degree of hydrophobicity (ΔGTOT = -81.5 mJ/m2). Eventually, it was less prone to attachment, as we could not recover L.i. after treatments with control or phytochemical solutions. The PTFE surface demonstrated the least total cell densities and fewer live cells (31%) as compared to Si (65%) or SS (nearly 60%). It also scored high in hydrophobicity degree (ΔGTOT = -68.9 mJ/m2) and efficacy of phytochemical treatments (on average, biofilms were reduced by 2.1 log10 CFU/cm2). Thus, the hydrophobicity of surface materials plays a role in cell viability, biofilm formation, and then biofilm control and could be the prevailing parameter when designing preventive measures and interventions. As for phytochemical comparison, trans-cinnamaldehyde displayed greater efficacies, with the highest reductions seen on PET and Si (4.6 and 4.0 log10 CFU/cm2). The biofilms in chamber slides exposed to trans-cinnamaldehyde revealed the disrupted organization to a greater extent than other molecules. This may help establish better interventions via proper phytochemical selection for incorporation in environment-friendly disinfection approaches.
Collapse
Affiliation(s)
- Astrid Gędas
- Department of Industrial and Food Microbiology, The Faculty of Food Science, University of Warmia and Mazury in Olsztyn, Plac Cieszyński 1, 10-726 Olsztyn, Poland
| | - Anna Draszanowska
- Department of Human Nutrition, The Faculty of Food Science, University of Warmia and Mazury in Olsztyn, Słoneczna 45 f, 10-709 Olsztyn, Poland
| | - Henk den Bakker
- Center for Food Safety, College of Agriculture and Environmental Sciences, University of Georgia, 1109 Experiment Street, Griffin, GA 30223, USA
| | - Francisco Diez-Gonzalez
- Center for Food Safety, College of Agriculture and Environmental Sciences, University of Georgia, 1109 Experiment Street, Griffin, GA 30223, USA
| | - Manuel Simões
- ALiCE, Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; LEPABE, Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Magdalena A Olszewska
- Department of Industrial and Food Microbiology, The Faculty of Food Science, University of Warmia and Mazury in Olsztyn, Plac Cieszyński 1, 10-726 Olsztyn, Poland.
| |
Collapse
|
32
|
Servarayan K, Krishnamoorthy G, Sundaram E, Karuppusamy M, Murugan M, Piraman S, Vasantha VS. Optical Immunosensor for the Detection of Listeria monocytogenes in Food Matrixes. ACS OMEGA 2023; 8:15979-15989. [PMID: 37179640 PMCID: PMC10173425 DOI: 10.1021/acsomega.2c07848] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 04/10/2023] [Indexed: 05/15/2023]
Abstract
In this paper, simple imine-based organic fluorophore 4-amino-3-(anthracene-9 yl methyleneamino) phenyl (phenyl) methanone (APM) has been synthesized via a greener approach and the same was used to construct a fluorescent immunoassay for the detection of Listeria monocytogenes (LM). A monoclonal antibody of LM was tagged with APM via the conjugation of the amine group in APM and the acid group of anti-LM through EDC/NHS coupling. The designed immunoassay was optimized for the specific detection of LM in the presence of other interfering pathogens based on the aggregation-induced emission mechanism and the formation of aggregates and their morphology was confirmed with the help of scanning electron microscopy. Density functional theory studies were done to further support the sensing mechanism-based changes in the energy level distribution. All photophysical parameters were measured by using fluorescence spectroscopy techniques. Specific and competitive recognition of LM was done in the presence of other relevant pathogens. The immunoassay shows a linear appreciable range from 1.6 × 106-2.7024 × 108 cfu/mL using the standard plate count method. The LOD has been calculated from the linear equation and the value is found as 3.2 cfu/mL, and this is the lowest LOD value reported for the detection of LM so far. The practical applications of the immunoassay were demonstrated in various food samples, and their accuracy obtained was highly comparable with the standard existing ELISA method.
Collapse
Affiliation(s)
- Karthika
Lakshmi Servarayan
- Department
of Natural Products Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai 625021, Tamil Nadu, India
| | - Govindan Krishnamoorthy
- Translational
Research Platform for Veterinary Biologicals, Central University Laboratory, TANUVAS, Chennai 600051, Tamil Nadu, India
| | - Ellairaja Sundaram
- Department
of Chemistry, Vivekananda College, Tiruvedakam-West, Madurai 625234, India
| | - Masiyappan Karuppusamy
- Centre
for High Computing, CSIR-Central Leather
Research Institute, Adyar, Chennai 600020, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Marudhamuthu Murugan
- Department
of Microbial Technology, Madurai Kamaraj
University, Madurai 625021, India
| | - Shakkthivel Piraman
- Department
of Nanoscience and Technology, Alagappa
University, Karaikudi-630003, India
| | - Vairathevar Sivasamy Vasantha
- Department
of Natural Products Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai 625021, Tamil Nadu, India
| |
Collapse
|
33
|
Kawacka I, Pietrzak B, Schmidt M, Olejnik-Schmidt A. Listeria monocytogenes Isolates from Meat Products and Processing Environment in Poland Are Sensitive to Commonly Used Antibiotics, with Rare Cases of Reduced Sensitivity to Ciprofloxacin. Life (Basel) 2023; 13:821. [PMID: 36983976 PMCID: PMC10051045 DOI: 10.3390/life13030821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/14/2023] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
Antibiotic resistance is a global health problem, causing not only an increased mortality rate of bacterial infections but also economic losses due to, among other reasons, the need for longer hospital stays. Listeria monocytogenes is one of the foodborne pathogens with the ability to induce a serious illness called listeriosis, with approximately 20-30% fatal outcomes. The treatment regimen of listeriosis in humans includes the administration of antibiotics (in most cases, ampicillin or trimethoprim with sulfamethoxazole in case of allergies to β-lactams), so the resistance of this pathogen to antibiotics can potentially lead to increased mortality. The antibiotic sensitivity status of n = 153 L. monocytogenes isolates originating from meat food samples (raw and processed) and meat-processing environment (both contacting and non-contacting with food) collected between October 2020 and November 2021 in Poland was examined in this study. Susceptibility to antibiotics was determined using the disc diffusion method on Mueller-Hinton agar plates. All collected samples were susceptible to 9 antibiotics: ampicillin (10 µg), chloramphenicol (30 µg), erythromycin (15 µg), gentamicin (10 µg), penicillin (10 IU), streptomycin (10 µg), sulfamethoxazole/trimethoprim (1.25/23.75 µg), tetracycline (30 µg) and vancomycin (30 µg). Some of the isolates (n = 10; 6.5%) showed reduced susceptibility to ciprofloxacin (5 µg), which was classified as an intermediate response. All these ten isolates were collected from surfaces contacting with food in food-processing facilities.
Collapse
Affiliation(s)
- Iwona Kawacka
- Department of Food Biotechnology and Microbiology, Poznan University of Life Sciences, Wojska Polskiego 48, 60-627 Poznan, Poland
| | | | | | - Agnieszka Olejnik-Schmidt
- Department of Food Biotechnology and Microbiology, Poznan University of Life Sciences, Wojska Polskiego 48, 60-627 Poznan, Poland
| |
Collapse
|
34
|
Biofilm Formation and Control of Foodborne Pathogenic Bacteria. Molecules 2023; 28:molecules28062432. [PMID: 36985403 PMCID: PMC10058477 DOI: 10.3390/molecules28062432] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/17/2023] [Accepted: 03/02/2023] [Indexed: 03/11/2023] Open
Abstract
Biofilms are microbial aggregation membranes that are formed when microorganisms attach to the surfaces of living or nonliving things. Importantly, biofilm properties provide microorganisms with protection against environmental pressures and enhance their resistance to antimicrobial agents, contributing to microbial persistence and toxicity. Thus, bacterial biofilm formation is part of the bacterial survival mechanism. However, if foodborne pathogens form biofilms, the risk of foodborne disease infections can be greatly exacerbated, which can cause major public health risks and lead to adverse economic consequences. Therefore, research on biofilms and their removal strategies are very important in the food industry. Food waste due to spoilage within the food industry remains a global challenge to environmental sustainability and the security of food supplies. This review describes bacterial biofilm formation, elaborates on the problem associated with biofilms in the food industry, enumerates several kinds of common foodborne pathogens in biofilms, summarizes the current strategies used to eliminate or control harmful bacterial biofilm formation, introduces the current and emerging control strategies, and emphasizes future development prospects with respect to bacterial biofilms.
Collapse
|
35
|
Jyung S, Kang JW, Kang DH. Inactivation of Listeria monocytogenes through the synergistic interaction between plasma-activated water and organic acid. Food Res Int 2023; 167:112687. [PMID: 37087257 DOI: 10.1016/j.foodres.2023.112687] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 02/24/2023] [Accepted: 03/09/2023] [Indexed: 03/17/2023]
Abstract
This study observed that when plasma-activated water (PAW) was combined with organic acid, it showed a synergistic inactivation effect on Listeria monocytogenes, which is highly resistant to PAW. When comparing various organic acids, lactic acid (LA) showed the greatest synergistic effect, followed by malic acid (MA), citric acid (CA), and acetic acid (AA), whereas propionic acid (PA) did not show a synergistic effect. Organic acid lowered the activity of ROS defense enzymes (catalase, superoxide dismutase) by reducing intracellular pH (pHi), which induced the increase in the accumulation of ROS of PAW within the cell. In the end, the synergistic inactivation effect appeared as the increased occurrence of oxidative damage when organic acid was combined as a series of preceding causes. In this case, LA with the greatest ability to lower the pH induced the greatest synergistic effect, suggesting that LA is the best candidate to be combined with PAW. As a result of observing changes in inactivation activity for L. monocytogenes of PAW combined with 1.0% LA while storing at - 80, -20, 4, 25, & 37 °C for 30 days, respectively, it was confirmed that the lower the temperature, the lower the activity loss during the storage period, and that it had an activity of 3.72 log reduction based on 10 min treatment when stored at - 80 °C for 30 days. Application of PAW combined with 1.0% LA stored at - 80 °C for 30 days to mackerel inoculated with L. monocytogenes in ice form resulted in a decrease of 4.53 log after 120 min treatment, without changing the quality of mackerel. These results suggest that combining LA with PAW can be an effective control strategy for L. monocytogenes with high resistance to PAW, and can be effectively utilized, even in ice form.
Collapse
|
36
|
A trans disciplinary and multi actor approach to develop high impact food safety messages to consumers: Time for a revision of the WHO - Five keys to safer food? Trends Food Sci Technol 2023. [DOI: 10.1016/j.tifs.2023.01.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
37
|
GOMEZ CARLYB, MITCHELL JADE, RYSER ELLIOTT, MARKS BRADLEYP. Listeriosis Risk Model for Cancer Patients Who Consume Ready-to-Eat Salad. J Food Prot 2023; 86:100087. [PMID: 37004807 DOI: 10.1016/j.jfp.2023.100087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 03/20/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023]
Abstract
The foodborne pathogen Listeria monocytogenes generally infects immunocompromised individuals, such as cancer patients, more frequently and with higher morbidity and mortality than the general population. Because of the anticipated risk associated with L. monocytogenes and other pathogens in produce, immunocompromised individuals are often placed on neutropenic diets that exclude fresh produce, though these risks have not been quantified. Therefore, this study developed a data-driven risk model for listeriosis in cancer patients who consume ready-to-eat (RTE) salads, consisting of leafy greens, cucumbers, and tomatoes, as influenced by kitchen-scale treatments and storage practices. Monte Carlo simulations were used to model the risk of invasive listeriosis during one chemotherapy cycle. Refrigerating all salad components decreased median risk by approximately one-half log. For refrigerated salads with no treatment, the predicted median risk was ≤ 4.3 × 10-08. When salad ingredients were surface blanched with greens rinsed, the predicted risk decreased to 5.4 × 10-10. Predicted risk was lowest (1.4 × 10-13) for a blanched "salad" consisting of solely cucumbers and tomatoes. Interestingly, rinsing, as recommended by FDA only decreased median risk by 1 log. A sensitivity analysis revealed that the highly variable dose-response parameter k strongly influenced risk, indicating that reducing uncertainty in this variable may improve model accuracy. Overall, this study demonstrates that kitchen-scale pathogen reduction approaches have high risk-reduction efficacy and could be considered as an alternative to diets that exclude produce when making risk management decisions.
Collapse
|
38
|
Antimicrobial Susceptibility Profile of Pathogenic and Commensal Bacteria Recovered from Cattle and Goat Farms. Antibiotics (Basel) 2023; 12:antibiotics12020420. [PMID: 36830330 PMCID: PMC9952079 DOI: 10.3390/antibiotics12020420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/05/2023] [Accepted: 02/08/2023] [Indexed: 02/22/2023] Open
Abstract
The use of antibiotics in food animals results to antimicrobial resistant bacteria that complicates the ability to treat infections. The purpose of this study was to investigate the prevalence of pathogenic and commensal bacteria in soil, water, manure, and milk from cattle and goat farms. A total of 285 environmental and 81 milk samples were analyzed for Enterobacteriaceae by using biochemical and PCR techniques. Susceptibility to antibiotics was determined by the Kirby-Bauer disk diffusion technique. A total of 15 different Enterobacteriaceae species were identified from goat and cattle farms. Manure had significantly higher (p < 0.05) Enterobacteriaceae (52.0%) than soil (37.2%), trough water (5.4%), and runoff water (5.4%). There was a significant difference (p < 0.05) in Enterobacteriaceae in goat milk (53.9%) and cow milk (46.2%). Enterobacteriaceae from environment showed 100% resistance to novobiocin, erythromycin, and vancomycin E. coli O157:H7, Salmonella spp., Enterococcus spp., and Listeria monocytogenes displayed three, five, six, and ten. AMR patterns, respectively. NOV-TET-ERY-VAN was the most common phenotype observed in all isolates. Our study suggest that cattle and goat farms are reservoirs of multidrug-resistant bacteria. Food animal producers should be informed on the prudent use of antimicrobials, good agricultural practices, and biosecurity measures.
Collapse
|
39
|
The Anti-Listeria Activity of Pseudomonas fluorescens Isolated from the Horticultural Environment in New Zealand. Pathogens 2023; 12:pathogens12020349. [PMID: 36839621 PMCID: PMC9960311 DOI: 10.3390/pathogens12020349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/12/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
Beneficial bacteria with antibacterial properties are attractive alternatives to chemical-based antibacterial or bactericidal agents. Our study sourced such bacteria from horticultural produce and environments to explore the mechanisms of their antimicrobial properties. Five strains of Pseudomonas fluorescens were studied that possessed antibacterial activity against the pathogen Listeria monocytogenes. The vegetative culture of these strains (Pseudomonas fluorescens-PFR46I06, Pseudomonas fluorescens-PFR46H06, Pseudomonas fluorescens-PFR46H07, Pseudomonas fluorescens-PFR46H08 and Pseudomonas fluorescens-PFR46H09) were tested against Listeria monocytogenes (n = 31), Listeria seeligeri (n = 1) and Listeria innocua (n = 1) isolated from seafood and horticultural sources and from clinical cases (n = 2) using solid media coculture and liquid media coculture. All Listeria strains were inhibited by all strains of P. fluorescens; however, P. fluorescens-PFR46H07, P. fluorescens-PFR46H08 and P. fluorescens-PFR46H09 on solid media showed good inhibition, with average zones of inhibition of 14.8 mm, 15.1 mm and 18.2 mm, respectively, and the other two strains and P. fluorescens-PFR46H09 had a significantly greater zone of inhibition than the others (p < 0.05). There was no inhibition observed in liquid media coculture or in P. fluorescens culture supernatants against Listeria spp. by any of the P. fluorescens strains. Therefore, we hypothesized that the structural apparatus that causes cell-to-cell contact may play a role in the ejection of ant-listeria molecules on solid media to inhibit Listeria isolates, and we investigated the structural protein differences using whole-cell lysate proteomics. We paid special attention to the type VI secretion system (TSS-T6SS) for the transfer of effector proteins or bacteriocins. We found significant differences in the peptide profiles and protein summaries between these isolates' lysates, and PFR46H06 and PFR46H07 possessed the fewest secretion system structural proteins (12 and 11, respectively), while PFR46H08 and PFR46H09 had 18 each. P. fluorescens-PFR46H09, which showed the highest antimicrobial effect, had nine tss-T6SS structural proteins compared to only four in the other three strains.
Collapse
|
40
|
Liu X, Pang X, Wu Y, Wu Y, Xu L, Chen Q, Niu J, Zhang X. New Insights into the Lactic Acid Resistance Determinants of Listeria monocytogenes Based on Transposon Sequencing and Transcriptome Sequencing Analyses. Microbiol Spectr 2023; 11:e0275022. [PMID: 36541787 PMCID: PMC9927151 DOI: 10.1128/spectrum.02750-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Listeria monocytogenes is a foodborne pathogen that can tolerate a variety of extreme environments. In particular, its acid resistance (AR) capability is considered one of the key factors threating food safety. Here, we employed a microbial functional genomic technology termed transposon sequencing (Tn-seq), leading to the identification of two genes involved in cell wall peptidoglycan biosynthesis (murF) and phosphate transport (lmo2248) that play key roles in lactic acid resistance (LAR) of L. monocytogenes. Deletion of lmo2248 significantly impaired the ability of LAR in L. monocytogenes, demonstrating the accuracy of the Tn-seq results. Transcriptome analysis revealed that 31.7% of the L. monocytogenes genes on the genome were differentially expressed under lactic acid (LA) treatment, in which genes involved in phosphate transport were influenced most significantly. These findings shed light on the LAR mechanisms of L. monocytogenes, which may contribute to the development of novel strategies against foodborne pathogens. IMPORTANCE Listeria monocytogenes is a Gram-positive foodborne pathogen with high lethality and strong stress resistance, and its strong acid tolerance leads to many foodborne illnesses occurring in low-pH foods. Lactic acid is a generally recognized as safe (GRAS) food additive approved for use by the FDA. However, the genetic determinants of lactic acid resistance in L. monocytogenes have not been fully identified. In this study, the lactic acid resistance determinants of L. monocytogenes were comprehensively identified by Tn-seq on a genome-wide scale. Two genes, murF (cell wall peptidoglycan biosynthesis) and lmo2248 (phosphate transport), were identified to play an important role in the lactic acid resistance. Moreover, genome-wide transcriptomic analysis showed that phosphotransferase system (PTS)-related genes play a key role at the transcriptional level. These findings contribute to a better understanding of the lactic acid resistance mechanism of L. monocytogenes and may provide unique targets for the development of other novel antimicrobial agents.
Collapse
Affiliation(s)
- Xiayu Liu
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, China
| | - Xinxin Pang
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, China
| | - Yansha Wu
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, China
| | - Yajing Wu
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, China
| | - Linan Xu
- College of Agriculture and Forestry, Linyi University, Linyi, China
| | - Qihe Chen
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, China
| | - Jianrui Niu
- College of Agriculture and Forestry, Linyi University, Linyi, China
| | - Xinglin Zhang
- College of Agriculture and Forestry, Linyi University, Linyi, China
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, China
| |
Collapse
|
41
|
A review of potential antibacterial activities of nisin against Listeria monocytogenes: the combined use of nisin shows more advantages than single use. Food Res Int 2023; 164:112363. [PMID: 36737951 DOI: 10.1016/j.foodres.2022.112363] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 12/10/2022] [Accepted: 12/24/2022] [Indexed: 12/29/2022]
Abstract
Listeria monocytogenes is a foodborne pathogen causing serious public health problems. Nisin is a natural antimicrobial agent produced by Lactococcus lactis and widely used in the food industry. However, the anti-L. monocytogenes efficiency of nisin might be decreased due to natural or acquired resistance of L. monocytogenes to nisin, or complexity of the food environment. The limitation of nisin as a bacteriostatic agent in food could be improved using a combination of methods. In this review, the physiochemical characteristics, species, bioengineered mutants, and antimicrobial mechanism of nisin are reviewed. Strategies of nisin combined with other antibacterial methods, including physical, chemical, and natural substances, and nanotechnology to enhance antibacterial effect are highlighted and discussed. Additionally, the antibacterial efficiency of nisin applied in real meat, dairy, and aquatic products is evaluated and analyzed. Among the various binding treatments, the combination with natural substances is more effective than the combination with physical and chemical methods. However, the combination of nisin and nanotechnology has more potential in terms of the impact on food quality.
Collapse
|
42
|
Trzcińska-Wencel J, Wypij M, Rai M, Golińska P. Biogenic nanosilver bearing antimicrobial and antibiofilm activities and its potential for application in agriculture and industry. Front Microbiol 2023; 14:1125685. [PMID: 36891391 PMCID: PMC9986290 DOI: 10.3389/fmicb.2023.1125685] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 01/30/2023] [Indexed: 02/22/2023] Open
Abstract
Introduction Due to the increasing resistance of bacteria and fungi to antimicrobials, it is necessary to search for effective alternatives to prevent and treat pathogens causing diseases in humans, animals, and plants. In this context, the mycosynthesized silver nanoparticles (AgNPs) are considered as a potential tool to combat such pathogenic microorganisms. Methods AgNPs were synthesized from Fusarium culmorum strain JTW1 and characterized by Transmission Electron Microscopy (TEM), X-ray diffraction (XRD), Fourier Transform Infrared (FTIR) spectroscopy, Nanoparticle Tracking Analysis (NTA), Dynamic Light Scattering (DLS) and Zeta potential measurement. The minimum inhibitory (MIC) and biocidal concentrations (MBC) were determined against 13 bacterial strains. Moreover, the combined effect of AgNPs with antibiotics (streptomycin, kanamycin, ampicillin, tetracycline) was also studied by determining the Fractional Inhibitory Concentration (FIC) index. The anti-biofilm activity was examined by crystal violet and fluorescein diacetate (FDA) assays. Furthermore, antifungal activity of AgNPs was evaluated against a panel of phytopathogenic fungi viz., Botrytis, Colletotrichum, Fusarium, Phoma, Sclerotinia, and an oomycete pathogen Phytophthora by agar well-diffusion and micro-broth dilution method to evaluate the minimal AgNPs concentrations that inhibit fungal spore germination. Results Fungi-mediated synthesis resulted in the formation of small (15.56 ± 9.22 nm), spherical and stable (zeta potential of - 38.43 mV) AgNPs with good crystallinity. The results of FTIR spectroscopy indicated the presence of various functional groups, namely hydroxyl, amino, and carboxyl ones, from the biomolecules on the surface of AgNPs. The AgNPs showed antimicrobial and antibiofilm formation activities against Gram-positive and Gram-negative bacteria. The values of MIC and MBC ranged between 16-64 and 32-512 μg mL-1, respectively. The enhanced effect of AgNPs in combination with antibiotics was confirmed against human pathogens. The highest synergistic effect (FIC = 0.0625) was demonstrated by the combination of AgNPs with streptomycin against two strains of Escherichia coli (ATCC 25922 and ATCC 8739), followed by Klebsiella pneumoniae and Pseudomonas aeruginosa (FIC = 0.125). Enhanced effects of AgNPs with ampicillin were also shown against Staphylococcus aureus ATCC 25923 (FIC = 0.125) and P. aeruginosa (FIC = 0.25), as well as kanamycin against S. aureus ATCC 6538 (FIC = 0.25). The crystal violet assay revealed that the lowest concentration of AgNPs (0.125 μg mL-1) reduced the development of biofilms of Listeria monocytogenes and Salmonella enterica, while the maximum resistance was shown by Salmonella infantis, its biofilm was reduced after exposure to a concentration of 512 μg mL-1. A high inhibitory effect on the activity of bacterial hydrolases was observed by the FDA assay. AgNPs at a concentration of 0.125 μg mL-1 reduced the hydrolytic activity of all biofilms formed by the tested pathogens, except E. coli ATCC 25922, P. aeruginosa, and Pectobacterium carotovorum (efficient concentration was 2-fold higher, at 0.25 μg mL-1), while the hydrolytic activity of E. coli ATCC 8739, Salmonella infantis and S. aureus ATCC 6538 was suppressed after treatment with AgNPs at concentrations of 0.5, 2 and 8 μg mL-1, respectively. Moreover, AgNPs inhibited fungal growth and spore germination of Botrytis cinerea, Phoma lingam, and Sclerotinia sclerotiorum. MIC and MFC values of AgNPs against spores of these fungal strains were determined at 64, 256, and 32 μg mL-1, and zones of growth inhibition were 4.93, 9.54, and 3.41 mm, respectively. Discussion Fusarium culmorum strain JTW1 was found to be an eco-friendly biological system for an easy, efficient and inexpensive synthesis of AgNPs. In our study, the mycosynthesised AgNPs demonstrated remarkable antimicrobial (antibacterial and antifungal) and antibiofilm activities against a wide range of human and plant pathogenic bacteria and fungi singly and in combination with antibiotics. These AgNPs could be applied in medicine, agriculture, and food industry to control such pathogens that cause numerous human diseases and crop losses. However, before using them extensive animal studies are required to evaluate the toxicity, if any.
Collapse
Affiliation(s)
| | - Magdalena Wypij
- Department of Microbiology, Nicolaus Copernicus University in Toruń, Toruń, Poland
| | - Mahendra Rai
- Department of Microbiology, Nicolaus Copernicus University in Toruń, Toruń, Poland.,Nanobiotechnology Laboratory, Department of Biotechnology, SGB Amravati University, Amravati, Maharashtra, India
| | - Patrycja Golińska
- Department of Microbiology, Nicolaus Copernicus University in Toruń, Toruń, Poland
| |
Collapse
|
43
|
Fulano AM, Elbakush AM, Chen LH, Gomelsky M. The Listeria monocytogenes exopolysaccharide significantly enhances colonization and survival on fresh produce. Front Microbiol 2023; 14:1126940. [PMID: 37180237 PMCID: PMC10172500 DOI: 10.3389/fmicb.2023.1126940] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 04/11/2023] [Indexed: 05/16/2023] Open
Abstract
Fresh produce contaminated with Listeria monocytogenes has caused major listeriosis outbreaks in the last decades. Our knowledge about components of the listerial biofilms formed on fresh produce and their roles in causing foodborne illness remains incomplete. Here, we investigated, for the first time, the role of the listerial Pss exopolysaccharide (EPS) in plant surface colonization and stress tolerance. Pss is the main component of L. monocytogenes biofilms synthesized at elevated levels of the second messenger c-di-GMP. We developed a new biofilm model, whereby L. monocytogenes EGD-e and its derivatives are grown in the liquid minimal medium in the presence of pieces of wood or fresh produce. After 48-h incubation, the numbers of colony forming units of the Pss-synthesizing strain on pieces of wood, cantaloupe, celery and mixed salads were 2-12-fold higher, compared to the wild-type strain. Colonization of manmade materials, metals and plastics, was largely unaffected by the presence of Pss. The biofilms formed by the EPS-synthesizing strain on cantaloupe rind were 6-16-fold more tolerant of desiccation, which resembles conditions of whole cantaloupe storage and transportation. Further, listeria in the EPS-biofilms survived exposure to low pH, a condition encountered by bacteria on the contaminated produce during passage through the stomach, by 11-116-fold better than the wild-type strain. We surmise that L. monocytogenes strains synthesizing Pss EPS have an enormous, 102-104-fold, advantage over the non-synthesizing strains in colonizing fresh produce, surviving during storage and reaching small intestines of consumers where they may cause disease. The magnitude of the EPS effect calls for better understanding of factors inducing Pss synthesis and suggests that prevention of listerial EPS-biofilms may significantly enhance fresh produce safety.
Collapse
Affiliation(s)
- Alex M. Fulano
- Department of Molecular Biology, University of Wyoming, Laramie, WY, United States
| | | | - Li-Hong Chen
- Department of Molecular Biology, University of Wyoming, Laramie, WY, United States
| | - Mark Gomelsky
- Department of Molecular Biology, University of Wyoming, Laramie, WY, United States
- *Correspondence: Mark Gomelsky,
| |
Collapse
|
44
|
Aryal J, Chhetri VS, Adhikari A. Survival and attachment of Listeria monocytogenes on bell peppers and influence of attachment time on efficacy of chlorine. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2022.114278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
45
|
Şentürk E, Buzrul S, Şanlıbaba P. Prevalence of Listeria monocytogenes in ready-to-eat foods, and growth boundary modeling of the selected strains in broth as a function of temperature, salt and nisin. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2022. [DOI: 10.1080/10942912.2022.2130942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2022]
Affiliation(s)
- Esra Şentürk
- Department of Food Engineering, Faculty of Engineering, Ankara University, Turkey
| | - Sencer Buzrul
- Department of Food Engineering, Faculty of Engineering and Architecture, Konya Food and Agriculture University, Konya, Turkey
| | - Pınar Şanlıbaba
- Department of Food Engineering, Faculty of Engineering, Ankara University, Turkey
| |
Collapse
|
46
|
Gomez M, Szewczyk A, Szamosi J, Leung V, Filipe C, Hosseinidoust Z. Stress Exposure of Evolved Bacteriophages under Laboratory versus Food Processing Conditions Highlights Challenges in Translatability. Viruses 2022; 15:113. [PMID: 36680153 PMCID: PMC9865000 DOI: 10.3390/v15010113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/15/2022] [Accepted: 12/29/2022] [Indexed: 01/04/2023] Open
Abstract
Bacterial viruses, or bacteriophages, are highly potent, target-specific antimicrobials. Bacteriophages can be safely applied along the food production chain to aid control of foodborne pathogens. However, bacteriophages are often sensitive to the environments encountered in food matrices and under processing conditions, thus limiting their applicability. We sought to address this challenge by exposing commercially available Listeria monocytogenes bacteriophage, P100, to three stress conditions: desiccation, elevated temperature, and low pH, to select for stress-resistant bacteriophages. The stressed bacteriophage populations lost up to 5.1 log10 in infectivity; however, the surviving subpopulation retained their stress-resistant phenotype through five passages with a maximum of 2.0 log10 loss in infectivity when exposed to the same stressor. Sequencing identified key mutation regions but did not reveal a clear mechanism of resistance. The stress-selected bacteriophage populations effectively suppressed L. monocytogenes growth at a modest multiplicity of infection of 0.35-0.43, indicating no trade-off in lytic ability in return for improved survivability. The stressed subpopulations were tested for survival on food grade stainless steel, during milk pasteurization, and within acidic beverages. Interestingly, air drying on stainless steel and pasteurization in milk led to significantly less stress and titer loss in bacteriophage compared to similar stress under model lab conditions. This led to a diminished benefit for stress-selection, thus highlighting a major challenge in real-life translatability of bacteriophage adaptational evolution.
Collapse
Affiliation(s)
- Mellissa Gomez
- Department of Chemical Engineering, McMaster University, Hamilton, ON L8S 4L7, Canada
| | - Alexandra Szewczyk
- Department of Chemical Engineering, McMaster University, Hamilton, ON L8S 4L7, Canada
| | - Jake Szamosi
- Department of Medicine, McMaster University, Hamilton, ON L8P 1H6, Canada
| | - Vincent Leung
- Department of Chemical Engineering, McMaster University, Hamilton, ON L8S 4L7, Canada
| | - Carlos Filipe
- Department of Chemical Engineering, McMaster University, Hamilton, ON L8S 4L7, Canada
| | - Zeinab Hosseinidoust
- Department of Chemical Engineering, McMaster University, Hamilton, ON L8S 4L7, Canada
- School of Biomedical Engineering, McMaster University, Hamilton, ON L8S 4K1, Canada
- Michael DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON L8S 4K1, Canada
| |
Collapse
|
47
|
Xu H, Liu J, Yuan M, Tian C, Lin T, Liu J, Osaris Caridad OC, Pan Y, Zhao Y, Zhang Z. Risk Reduction Assessment of Vibrio parahaemolyticus on Shrimp by a Chinese Eating Habit. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 20:317. [PMID: 36612642 PMCID: PMC9819167 DOI: 10.3390/ijerph20010317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/20/2022] [Accepted: 12/22/2022] [Indexed: 06/17/2023]
Abstract
In China, a traditional perspective recommended that consuming seafood should be mixed or matched with vinegar, because people thought this traditional Chinese eating habit could reduce the risk of pathogenic microorganism infection, such as Vibrio parahaemolyticus induced diarrhea. However, this empirical viewpoint has not yet been evaluated scientifically. This study conducted a simplified quantitative microbiological risk assessment (QMRA) model, which was employed to estimate the risk reduction of V. parahaemolyticus on ready-to-eat (RTE) shrimp by consuming with vinegars (white vinegar, aromatic vinegar, or mature vinegar). Results showed the reduction of V. parahaemolyticus density on RTE shrimp after consuming with white vinegar, aromatic vinegar and mature vinegar was respectively 0.9953 log CFU/g (90% confidence interval 0.23 to 1.76), 0.7018 log CFU/g (90% confidence interval 0.3430 to 1.060) and 0.6538 log CFU/g (90% confidence interval 0.346 to 0.9620). The infection risk of V. parahaemolyticus per meal in this QMRA model was quantified by a mean of 0.1250 with the standard deviation of 0.2437. After consuming with white vinegar, aromatic vinegar, and mature vinegar, the mean infection risk of V. parahaemolyticus on shrimp decreased to 0.0478, 0.0652, and 0.0686. The QMRA scenarios indicated significant reductions in infection risk when eating RTE shrimp by the Chinese eating habit (consuming with vinegar). This good eating habit should be recommended to promote the spread of around the world.
Collapse
Affiliation(s)
- Huan Xu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (H.X.); (J.L.); (M.Y.); (C.T.); (J.L.); (O.C.O.C.); (Y.P.)
| | - Jing Liu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (H.X.); (J.L.); (M.Y.); (C.T.); (J.L.); (O.C.O.C.); (Y.P.)
| | - Mengqi Yuan
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (H.X.); (J.L.); (M.Y.); (C.T.); (J.L.); (O.C.O.C.); (Y.P.)
| | - Cuifang Tian
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (H.X.); (J.L.); (M.Y.); (C.T.); (J.L.); (O.C.O.C.); (Y.P.)
| | - Ting Lin
- Greentown Agricultural Testing Technology Co., Ltd., Hangzhou 310051, China;
| | - Jiawen Liu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (H.X.); (J.L.); (M.Y.); (C.T.); (J.L.); (O.C.O.C.); (Y.P.)
| | - Olivera Castro Osaris Caridad
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (H.X.); (J.L.); (M.Y.); (C.T.); (J.L.); (O.C.O.C.); (Y.P.)
| | - Yingjie Pan
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (H.X.); (J.L.); (M.Y.); (C.T.); (J.L.); (O.C.O.C.); (Y.P.)
- Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture and Rural Affairs, Shanghai 201306, China
- Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, Shanghai 201306, China
| | - Yong Zhao
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (H.X.); (J.L.); (M.Y.); (C.T.); (J.L.); (O.C.O.C.); (Y.P.)
- Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture and Rural Affairs, Shanghai 201306, China
- Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, Shanghai 201306, China
| | - Zhaohuan Zhang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (H.X.); (J.L.); (M.Y.); (C.T.); (J.L.); (O.C.O.C.); (Y.P.)
| |
Collapse
|
48
|
AGBOOLA TD, BISI-JOHNSON MA. OCCURRENCE OF Listeria monocytogenes IN IRRIGATION WATER AND IRRIGATED VEGETABLES IN SELECTED AREAS OF OSUN STATE, NIGERIA. SCIENTIFIC AFRICAN 2022. [DOI: 10.1016/j.sciaf.2022.e01503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
49
|
Chen P, Eifert J, Jung S, Strawn LK, Li H. Microbubbles Remove Listeria monocytogenes from the Surface of Stainless Steel, Cucumber, and Avocado. MATERIALS (BASEL, SWITZERLAND) 2022; 15:8203. [PMID: 36431688 PMCID: PMC9697132 DOI: 10.3390/ma15228203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/11/2022] [Accepted: 11/15/2022] [Indexed: 06/16/2023]
Abstract
Fresh produce may be contaminated by bacterial pathogens, including Listeria monocytogenes, during harvesting, packaging, or transporting. A low-intensity cavitation process with air being injected into water was studied to determine the microbubbles' efficiency when detaching L. monocytogenes from stainless steel and the surface of fresh cucumber and avocado. Stainless steel coupons (1″ × 2″), cucumber, and avocado surfaces were inoculated with L. monocytogenes (LCDC strain). After 1, 24 or 48 h, loosely attached cells were washed off, and inoculated areas were targeted by microbubbles (~0.1-0.5 mm dia.) through a bubble diffuser (1.0 L air/min) for 1, 2, 5, or 10 min. For steel, L. monocytogenes (48 h drying) detachment peaked at 2.95 mean log reduction after 10 min of microbubbles when compared to a no-bubble treatment. After 48 h pathogen drying, cucumbers treated for 10 min showed a 1.78 mean log reduction of L. monocytogenes. For avocados, L. monocytogenes (24 h drying) detachment peaked at 1.65 log reduction after 10 min of microbubbles. Microbubble applications may be an effective, economical, and environmentally friendly way to remove L. monocytogenes, and possibly other bacterial pathogens, from food contact surfaces and the surfaces of whole, intact fresh produce.
Collapse
Affiliation(s)
- Pengyu Chen
- Department of Food Science and Technology, Virginia Tech, Blacksburg, VA 24061, USA
| | - Joseph Eifert
- Department of Food Science and Technology, Virginia Tech, Blacksburg, VA 24061, USA
| | - Sunghwan Jung
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Laura K. Strawn
- Department of Food Science and Technology, Virginia Tech, Blacksburg, VA 24061, USA
| | - Haofu Li
- Department of Food Science and Technology, Virginia Tech, Blacksburg, VA 24061, USA
| |
Collapse
|
50
|
Selection of Listeria monocytogenes InlA-Binding Peptides Using Phage Display—Novel Compounds for Diagnostic Applications? Appl Microbiol 2022. [DOI: 10.3390/applmicrobiol2040070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Listeria monocytogenes is a pathogenic, gram-positive bacterium causing foodborne infections and listeriosis, an infection responsible for serious medical conditions, especially for pregnant women, newborns, or people with a weak immune system. Even after antibiotic treatment, 30% of clinical infections result in death. L. monocytogenes is able to enter and multiply in mammalian cells. Invasion into epithelial cells in the human intestine is mediated by the interaction of the bacterial surface protein internalin A (InlA) with the host cell receptor E-cadherin (E-cad). We have used phage display to select InlA-specific peptides consisting of 12 amino acids using a randomized, recombinant peptide library. We could demonstrate that the selected peptides bound to recombinant InlA protein as well as to L. monocytogenes cells. In vitro, some of the peptides inhibited the interaction between recombinant InlA and human E-cad. As far as we know, this is the first publication on the development of InlA-specific peptide ligands. In the future, our peptides might be used for the development of innovative diagnostic tools or even therapeutic approaches.
Collapse
|