1
|
Zhao C, Wang J, Guo J, Gao W, Li B, Shang X, Zheng L, Wu B, Fu Y. Dried Apricot Polyphenols Suppress the Growth of A549 Human Lung Adenocarcinoma Cells by Inducing Apoptosis via a Mitochondrial-Dependent Pathway. Foods 2025; 14:108. [PMID: 39796398 PMCID: PMC11719503 DOI: 10.3390/foods14010108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 12/20/2024] [Accepted: 01/01/2025] [Indexed: 01/13/2025] Open
Abstract
Dried apricots are rich in a variety of polyphenols, which have anti-cancer activity. In this study, 949 phenolic substances were found by means of UPLC-MS/MS, mainly including 2',7-dihydroxy-3',4'-dimethoxyisoflavan, scopoletin, rutin, quercetin-3-O-robinobioside, and elaidolinolenic acid. The results indicated that dried apricot polyphenols (DAPs) could cause cell cycle arrest in the G0/G1 and G2/M phases by decreasing the cyclin D1, CDK4, cyclin B1, CDK1, and CDK6 levels in A549 human lung adenocarcinoma cells. Moreover, the ROS and Bax levels were increased, and the Bcl-2 and mitochondrial membrane potential were decreased in A549 cells treated with DAP, increasing caspase-9, caspase-3, and cleaved-PARP1 activities and leading to apoptosis of the A549 cells. Meanwhile, tumor growth was also inhibited by DAPs in an A549 tumor-bearing mouse model, Bax and caspase-3 were upregulated, and Bcl-2 was downregulated, inducing apoptosis of lung cancer cells. In conclusion, DAPs could inhibit lung cancer cell growth by inducing apoptosis due to cell cycle arrest and mitochondria-dependent pathways.
Collapse
Affiliation(s)
- Caiyun Zhao
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830017, China; (C.Z.); (J.W.); (J.G.); (W.G.); (B.L.); (X.S.); (L.Z.)
| | - Jingteng Wang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830017, China; (C.Z.); (J.W.); (J.G.); (W.G.); (B.L.); (X.S.); (L.Z.)
| | - Jintian Guo
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830017, China; (C.Z.); (J.W.); (J.G.); (W.G.); (B.L.); (X.S.); (L.Z.)
| | - Wenjing Gao
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830017, China; (C.Z.); (J.W.); (J.G.); (W.G.); (B.L.); (X.S.); (L.Z.)
| | - Bin Li
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830017, China; (C.Z.); (J.W.); (J.G.); (W.G.); (B.L.); (X.S.); (L.Z.)
| | - Xin Shang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830017, China; (C.Z.); (J.W.); (J.G.); (W.G.); (B.L.); (X.S.); (L.Z.)
| | - Li Zheng
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830017, China; (C.Z.); (J.W.); (J.G.); (W.G.); (B.L.); (X.S.); (L.Z.)
| | - Bin Wu
- Institute of Agro-Products Storage and Processing, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China
| | - Yinghua Fu
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830017, China; (C.Z.); (J.W.); (J.G.); (W.G.); (B.L.); (X.S.); (L.Z.)
| |
Collapse
|
2
|
Previtalli-Silva H, Hardoim DDJ, Banaggia RDL, Moragas-Tellis CJ, Chagas MDSDS, Behrens MD, Dias-Silva TDS, Calabrese KDS, Cardoso FDO. Antioxidant and anti-inflammatory activity of Euterpe oleracea Mart. (Açaí) seed bioproducts. Heliyon 2024; 10:e40510. [PMID: 39669170 PMCID: PMC11636112 DOI: 10.1016/j.heliyon.2024.e40510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 11/13/2024] [Accepted: 11/18/2024] [Indexed: 12/14/2024] Open
Abstract
Euterpe oleracea Mart. is a tropical palm tree native to the Amazon region. Its fruit, commonly known as açaí, has gained widespread recognition for its therapeutic potential, driving the expansion of pharmacological studies to validate its traditional uses. Leveraging açaí seeds in research not only mitigates environmental impacts but also enables the identification of bioactive compounds with potential pharmacological applications, including drug development. Thus, the present work aims to investigate the antioxidant and anti-inflammatory activities of the hydroalcoholic extract and the ethyl acetate, hexane, dichloromethane and aqueous fractions of açaí seeds in vitro. The extract/fractions from açaí contained a significant amount of flavonoids, such as catechins and procyanidins, according to LC-MS/MS. These bioproducts showed significant antioxidant activity, with emphasis on the ethyl acetate fraction (FRAP: 4516.00 ± 58.07 Eq Trolox/g compound; DPPH: IC50 3.93 ± 0.26 μg/. mL; ABTS• +: IC50 34.65 ± 0.35 μg/mL). In addition, the compounds exhibited an anti-inflammatory action on LPS-stimulated peritoneal macrophages, with the dichloromethane fraction showing the more comprehensive inhibitory effects on NO, IL-12 and IFN-γ production, especially in the concentration of 500 μg/mL. E. oleracea seeds extract/fractions had no cytotoxic effect on peritoneal macrophages (IC50 > 500 μg/mL). These findings suggest that E. oleracea seed-derived bioproducts hold significant promise as safe and effective agents for the development of novel antioxidant and anti-inflammatory therapies targeting a variety of inflammatory pathologies.
Collapse
Affiliation(s)
- Henrique Previtalli-Silva
- Laboratory of Protozoology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Av. Brasil, 4.365 – Manguinhos, CEP: 21040-360, Rio de Janeiro, RJ, Brazil
- Postgraduate Program in Tropical Medicine, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Av. Brasil, 4.365 – Manguinhos, CEP: 21040-360, Rio de Janeiro, RJ, Brazil
| | - Daiana de Jesus Hardoim
- Laboratory of Protozoology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Av. Brasil, 4.365 – Manguinhos, CEP: 21040-360, Rio de Janeiro, RJ, Brazil
| | - Raphael de Lucena Banaggia
- Laboratory of Protozoology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Av. Brasil, 4.365 – Manguinhos, CEP: 21040-360, Rio de Janeiro, RJ, Brazil
| | - Carla Junqueira Moragas-Tellis
- Laboratory of Natural Products for Public Health, Pharmaceutical Technology Institute (Farmanguinhos), Oswaldo Cruz Foundation, R. Sizenando Nabuco, 100 – Manguinhos, CEP 21041-250, Rio de Janeiro, Brazil
| | - Maria do Socorro dos Santos Chagas
- Laboratory of Natural Products for Public Health, Pharmaceutical Technology Institute (Farmanguinhos), Oswaldo Cruz Foundation, R. Sizenando Nabuco, 100 – Manguinhos, CEP 21041-250, Rio de Janeiro, Brazil
| | - Maria Dutra Behrens
- Laboratory of Natural Products for Public Health, Pharmaceutical Technology Institute (Farmanguinhos), Oswaldo Cruz Foundation, R. Sizenando Nabuco, 100 – Manguinhos, CEP 21041-250, Rio de Janeiro, Brazil
| | - Thiago de Souza Dias-Silva
- Laboratory of Medicinal Chemistry, Chemistry Institute, UFRRJ, BR-465, Km 47- Seropédica, CEP. 23.897-000, Rio de Janeiro, RJ, Brazil
| | - Kátia da Silva Calabrese
- Laboratory of Protozoology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Av. Brasil, 4.365 – Manguinhos, CEP: 21040-360, Rio de Janeiro, RJ, Brazil
| | - Flávia de Oliveira Cardoso
- Laboratory of Protozoology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Av. Brasil, 4.365 – Manguinhos, CEP: 21040-360, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
3
|
Filho WEM, Almeida-Souza F, Vale AAM, Victor EC, Rocha MCB, Silva GX, Teles AM, Nascimento FRF, Moragas-Tellis CJ, Chagas MDSDS, Behrens MD, Hardoim DDJ, Taniwaki NN, Lima JA, Abreu-Silva AL, Gil da Costa RM, Calabrese KDS, Azevedo-Santos APSD, Nascimento MDDSB. Antitumor Effect of Açaí ( Euterpe oleracea Mart.) Seed Extract in LNCaP Cells and in the Solid Ehrlich Carcinoma Model. Cancers (Basel) 2023; 15:cancers15092544. [PMID: 37174010 PMCID: PMC10177358 DOI: 10.3390/cancers15092544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/28/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023] Open
Abstract
Euterpe oleracea (açaí) fruit has approximately 15% pulp, which is partly edible and commercialized, and 85% seeds. Although açaí seeds are rich in catechins-polyphenolic compounds with antioxidant, anti-inflammatory, and antitumor effects-almost 935,000 tons/year of seeds are discarded as industrial waste. This work evaluated the antitumor properties of E. oleracea in vitro and in vivo in a solid Ehrlich tumor in mice. The seed extract presented 86.26 ± 0.189 mg of catechin/g of extract. The palm and pulp extracts did not exhibit in vitro antitumor activity, while the fruit and seed extracts showed cytotoxic effects on the LNCaP prostate cancer cell line, inducing mitochondrial and nuclear alterations. Oral treatments were performed daily at 100, 200, and 400 mg/kg of E. oleracea seed extract. The tumor development and histology were evaluated, along with immunological and toxicological parameters. Treatment at 400 mg/kg reduced the tumor size, nuclear pleomorphism, and mitosis figures, increasing tumor necrosis. Treated groups showed cellularity of lymphoid organs comparable to the untreated group, suggesting less infiltration in the lymph node and spleen and preservation of the bone marrow. The highest doses reduced IL-6 and induced IFN-γ, suggesting antitumor and immunomodulatory effects. Thus, açaí seeds can be an important source of compounds with antitumor and immunoprotective properties.
Collapse
Affiliation(s)
- Walbert Edson Muniz Filho
- Postgraduate Program in Northeast Biotechnology Network (RENORBIO), Federal University of Maranhão, São Luís 65080-805, Brazil
| | - Fernando Almeida-Souza
- Postgraduate Program in Animal Science, State University of Maranhão, Sao Luis 65055-310, Brazil
- Laboratory of Protozoology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21041-250, Brazil
| | - André Alvares Marques Vale
- Laboratory for Applied Cancer Immunology, Biological and Health Sciences Center, Federal University of Maranhão, São Luís 65080-805, Brazil
| | - Elis Cabral Victor
- Laboratory for Applied Cancer Immunology, Biological and Health Sciences Center, Federal University of Maranhão, São Luís 65080-805, Brazil
| | - Mirtes Castelo Branco Rocha
- Laboratory for Applied Cancer Immunology, Biological and Health Sciences Center, Federal University of Maranhão, São Luís 65080-805, Brazil
| | - Gabriel Xavier Silva
- Postgraduate Program in Northeast Biotechnology Network (RENORBIO), Federal University of Maranhão, São Luís 65080-805, Brazil
| | - Amanda Mara Teles
- Postgraduate Program in Northeast Biotechnology Network (RENORBIO), Federal University of Maranhão, São Luís 65080-805, Brazil
| | | | - Carla Junqueira Moragas-Tellis
- Natural Products Department, Institute of Pharmaceutical Technology, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, Brazil
| | | | - Maria Dutra Behrens
- Natural Products Department, Institute of Pharmaceutical Technology, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, Brazil
| | - Daiana de Jesus Hardoim
- Laboratory of Protozoology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21041-250, Brazil
| | | | - Josélia Alencar Lima
- Postgraduate Program in Adult Health (PPGSAD), Federal University of Maranhão, São Luís 65080-805, Brazil
| | - Ana Lucia Abreu-Silva
- Postgraduate Program in Animal Science, State University of Maranhão, Sao Luis 65055-310, Brazil
| | - Rui M Gil da Costa
- Postgraduate Program in Adult Health (PPGSAD), Federal University of Maranhão, São Luís 65080-805, Brazil
- Health Research Network, Research Center of Portuguese Oncology, Institute of Porto (CI-IPOP/RISE@CI-IPOP), Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal
| | - Kátia da Silva Calabrese
- Laboratory of Protozoology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21041-250, Brazil
| | - Ana Paula Silva de Azevedo-Santos
- Laboratory for Applied Cancer Immunology, Biological and Health Sciences Center, Federal University of Maranhão, São Luís 65080-805, Brazil
| | - Maria do Desterro Soares Brandão Nascimento
- Postgraduate Program in Northeast Biotechnology Network (RENORBIO), Federal University of Maranhão, São Luís 65080-805, Brazil
- Postgraduate Program in Adult Health (PPGSAD), Federal University of Maranhão, São Luís 65080-805, Brazil
| |
Collapse
|
4
|
Silva Junior ZS, Dos Santos LAD, Gonçalves MLL, Gallo JMAS, da Silva T, Motta LJ, Santos EM, Horliana ACRT, Fernandes KPS, Mesquita-Ferrari RA, Bussadori SK. Photodynamic therapy with acai (Euterpe oleracea) and blue light in oral cells: A spectroscopic and cytotoxicity analysis. JOURNAL OF BIOPHOTONICS 2023; 16:e202200259. [PMID: 36349809 DOI: 10.1002/jbio.202200259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/26/2022] [Accepted: 11/06/2022] [Indexed: 06/16/2023]
Abstract
OBJECTIVE To evaluate the potential of photodynamic therapy (PDT) with blue light-emitting diode (LED) 460 nm at 25, 50 and 100 J/cm2 using three concentrations of acai extracts (100, 40, and 10 mg/ml), in the proliferation and viability of head and neck tumor lines (SCC9). METHODS Three groups of cells were analyzed for 3 days in an in vitro assay with MTT (3- (4,5-dimethylthiazol-2-yl) -2,5, -diphenyltetrazolium bromide) and crystal violet: cells in the absence of acai extract and PDT (control group); cells in the presence of acai extract and no light; and cells in the presence of acai extract and LED blue light (PDT groups). RESULTS When using acai as a PS combined with blue LED (460 nm, 0.7466 cm2 , 1000 mW/cm2 ) and irradiation at 25, 50, and 100 J/cm2 , after 72 h, cell viability (p < 0.0001 vs. control, p = 0.0027 vs. 100 mg/ml açai group, p = 0.0039 vs. 40 mg/ml açai group, p = 0.0135 vs. 10 mg/ml açai group; One-Way ANOVA/Tukey) and proliferation (p < 0.05, One-Way ANOVA/Tukey) decreased. CONCLUSION The acai in question is a potential photosensitizer (PS), with blue light absorbance and efficacy against head and neck tumor lines (SCC9).
Collapse
Affiliation(s)
- Zenildo Santos Silva Junior
- Post Graduation Program in Biophotonics Applied to Health Sciences, Universidade Nove de Julho, São Paulo, SP, Brazil
| | - Lucas Andreo Dias Dos Santos
- Post Graduation Program in Biophotonics Applied to Health Sciences, Universidade Nove de Julho, São Paulo, SP, Brazil
| | | | | | - Tamiris da Silva
- Postgraduation Program in Rehabilitation Sciences, Universidade Nove de Julho, São Paulo, SP, Brazil
| | - Lara Jansiski Motta
- Post Graduation Program in Biophotonics Applied to Health Sciences, Universidade Nove de Julho, São Paulo, SP, Brazil
| | - Elaine Marcílio Santos
- Postgraduation Program in Health and Environment, Universidade Metropolitana de Santos, Santos, SP, Brazil
| | | | | | | | - Sandra Kalil Bussadori
- Post Graduation Program in Biophotonics Applied to Health Sciences, Universidade Nove de Julho, São Paulo, SP, Brazil
| |
Collapse
|
5
|
Laurindo LF, Barbalho SM, Araújo AC, Guiguer EL, Mondal A, Bachtel G, Bishayee A. Açaí ( Euterpe oleracea Mart.) in Health and Disease: A Critical Review. Nutrients 2023; 15:989. [PMID: 36839349 PMCID: PMC9965320 DOI: 10.3390/nu15040989] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/11/2023] [Accepted: 02/13/2023] [Indexed: 02/18/2023] Open
Abstract
The açaí palm (Euterpe oleracea Mart.), a species belonging to the Arecaceae family, has been cultivated for thousands of years in tropical Central and South America as a multipurpose dietary plant. The recent introduction of açaí fruit and its nutritional and healing qualities to regions outside its origin has rapidly expanded global demand for açaí berry. The health-promoting and disease-preventing properties of this plant are attributed to numerous bioactive phenolic compounds present in the leaf, pulp, fruit, skin, and seeds. The purpose of this review is to present an up-to-date, comprehensive, and critical evaluation of the health benefits of açaí and its phytochemicals with a special focus on cellular and molecular mechanisms of action. In vitro and in vivo studies showed that açaí possesses antioxidant and anti-inflammatory properties and exerts cardioprotective, gastroprotective, hepatoprotective, neuroprotective, renoprotective, antilipidemic, antidiabetic, and antineoplastic activities. Moreover, clinical trials have suggested that açaí can protect against metabolic stress induced by oxidation, inflammation, vascular abnormalities, and physical exertion. Due to its medicinal properties and the absence of undesirable effects, açaí shows a promising future in health promotion and disease prevention, in addition to a vast economic potential in the food and cosmetic industries.
Collapse
Affiliation(s)
- Lucas Fornari Laurindo
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília, Marília 17525-902, SP, Brazil
- Department of Biochemistry and Pharmacology, School of Medicine, Faculdade de Medicina de Marília, Marília 17519-030, SP, Brazil
| | - Sandra Maria Barbalho
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília, Marília 17525-902, SP, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília, Marília 17525-902, SP, Brazil
- Department of Biochemistry and Nutrition, School of Food and Technology of Marília, Marília 17500-000, SP, Brazil
| | - Adriano Cressoni Araújo
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília, Marília 17525-902, SP, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília, Marília 17525-902, SP, Brazil
| | - Elen Landgraf Guiguer
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília, Marília 17525-902, SP, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília, Marília 17525-902, SP, Brazil
- Department of Biochemistry and Nutrition, School of Food and Technology of Marília, Marília 17500-000, SP, Brazil
| | - Arijit Mondal
- Department of Pharmaceutical Chemistry, M.R. College of Pharmaceutical Sciences and Research, Balisha 743 234, India
| | - Gabrielle Bachtel
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA
| | - Anupam Bishayee
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA
| |
Collapse
|
6
|
Neto DFM, Nascimento JRS, Martins GR, Silva AS, Domont GB, Campos FAP, Nogueira FCS. Proteomic changes associated with the development of açaí (Euterpe oleracea Mart.) seeds. Proteomics 2023; 23:e2200251. [PMID: 35861729 DOI: 10.1002/pmic.202200251] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/06/2022] [Accepted: 07/11/2022] [Indexed: 01/05/2023]
Abstract
Açaí palm (Euterpe oleracea Mart.) seeds are a rich source of mannans, which can be used to generate bioethanol or be converted to high-value D-mannose, in addition to being a source of polyphenols with beneficial health properties. Here, we present a quantitative proteome dataset of açaí seeds at four stages of development (S1, S2, S3, and S4 stages), in which 2465 high confidence proteins were identified and 524 of them show statistically different abundance profiles during development. Several enzymes involved in the biosynthesis of nucleotide-sugars were quantified, especially those dedicated to the formation of GDP-mannose, which showed an increase in abundance between stages S1 and S3. Our data suggest that linear mannans found abundantly in endosperm cell walls are initially deposited as galactomannans, and during development lose the galactosyl groups. Two isoforms of alpha-galactosidase enzymes showed significantly increased abundances in the S3 and S4 stages. Additionally, we quantified the enzymes participating in the central pathway of flavonoid biosynthesis responsible for the formation of catechin and epicatechin, which are subunits of procyanidins, the main class of polyphenols in the açaí seeds. These proteins showed the same pattern of deposition, in which higher abundances were seen in the S1 and S2 stages.
Collapse
Affiliation(s)
- Domingos F M Neto
- Department of Plant Science, Federal University of Ceará, Fortaleza, CE, Brazil
| | | | - Gabriel R Martins
- National Institute of Technology, Rio de Janeiro, RJ, Brazil.,Department of Biochemistry, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Ayla S Silva
- National Institute of Technology, Rio de Janeiro, RJ, Brazil.,Department of Biochemistry, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Gilberto B Domont
- Proteomic Unit, Department of Biochemistry, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Francisco A P Campos
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Fábio C S Nogueira
- Proteomic Unit, Department of Biochemistry, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil.,Laboratory of Proteomics/LADETEC, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
7
|
Phenolic Profile and the Antioxidant, Anti-Inflammatory, and Antimicrobial Properties of Açaí ( Euterpe oleracea) Meal: A Prospective Study. Foods 2022; 12:foods12010086. [PMID: 36613302 PMCID: PMC9818655 DOI: 10.3390/foods12010086] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/12/2022] [Accepted: 12/21/2022] [Indexed: 12/29/2022] Open
Abstract
The mechanical extraction of oils from Brazilian açaí (Euterpe oleracea Mart) produces significant amounts of a byproduct known as "meal", which is frequently discarded in the environment as waste material. Nevertheless, plant byproducts, especially those from oil extraction, may contain residual polyphenols in their composition and be a rich source of natural bioactive compounds. In this study, the phenolic composition and in vitro biological properties of a hydroethanolic açaí meal extract were elucidated. The major compounds tentatively identified in the extract by high-resolution mass spectrometry were anthocyanins, flavones, and flavonoids. Furthermore, rhamnocitrin is reported in an açaí byproduct for the first time. The extract showed reducing power and was effective in scavenging the ABTS radical cation (820.0 µmol Trolox equivalent∙g-1) and peroxyl radical (975.7 µmol Trolox equivalent∙g-1). NF-κB activation was inhibited at 10 or 100 µg∙mL-1 and TNF-α levels were reduced at 100 µg∙mL-1. However, the antibacterial effects against ESKAPE pathogens was not promising due to the high concentration needed (1250 or 2500 µg∙mL-1). These findings can be related to the diverse polyphenol-rich extract composition. To conclude, the polyphenol-rich extract obtained from açaí meal showed relevant biological activities that may have great applicability in the food and nutraceutical industries.
Collapse
|
8
|
Machado APDF, Alves MDR, Nascimento RDPD, Reguengo LM, Marostica Junior MR. Antiproliferative effects and main molecular mechanisms of Brazilian native fruits and their by-products on lung cancer. Food Res Int 2022; 162:111953. [DOI: 10.1016/j.foodres.2022.111953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 07/11/2022] [Accepted: 09/16/2022] [Indexed: 11/04/2022]
|
9
|
da Silva MACN, Soares CS, Borges KRA, Wolff LAS, Barbosa MDCL, Nascimento MDDSB, Carvalho JED. Ultrastructural changes induced by açaí (Euterpe oleracea Mart) in MCF-7 breast cancer cell line. Ultrastruct Pathol 2022; 46:511-518. [DOI: 10.1080/01913123.2022.2141404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Marcos Antonio Custódio Neto da Silva
- Faculty of Medical Science, Post-graduate Program in Internal Medicine, Universidade Estadual de Campi- nas. Rua Tessália Vieira de Camargo, Campinas, Brasil
| | - Camila Simões Soares
- Faculty of Pharmaceutical Sciences, Universidade Estadual de Campinas, Campinas, Brazil
| | - Kátia Regina Assunção Borges
- Department of Pathology, Federal University of Maranhão (UFMA), Nucleum of Basic and Applied Immunology, São Luís, Brazil
| | - Laís Araujo Souza Wolff
- Department of Pathology, Federal University of Maranhão (UFMA), Nucleum of Basic and Applied Immunology, São Luís, Brazil
| | - Maria Do Carmo Lacerda Barbosa
- Department of Pathology, Federal University of Maranhão (UFMA), Nucleum of Basic and Applied Immunology, São Luís, Brazil
| | | | | |
Collapse
|
10
|
Muto NA, Hamoy M, da Silva Ferreira CB, Hamoy AO, Lucas DCR, de Mello VJ, Rogez H. Extract of Euterpe oleracea Martius Stone Presents Anticonvulsive Activity via the GABAA Receptor. Front Cell Neurosci 2022; 16:872743. [PMID: 35634465 PMCID: PMC9130464 DOI: 10.3389/fncel.2022.872743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 04/12/2022] [Indexed: 11/13/2022] Open
Abstract
Epilepsy is one of the most common neurological diseases globally, resulting from a disorder in brain activity. This condition can be triggered by birth trauma, traumatic brain injury (TBI), infections of the brain and stroke. More than 70 million people suffer seizures caused by neurological abnormalities. Approximately 80% of all epileptic patients reside in low-income conditions or in developing countries, and over 75% of patients do not receive proper treatment. Our previous study found an anticonvulsant property of an extract of Euterpe oleracea stone (EEOS) that caused myorelaxation, sedation, and cardiac and respiratory depression after intraperitoneal administration. The present study investigated through electroencephalographic (EEG) profiling the anticonvulsant protective properties of EEOS in induced convulsing rats. Male Wistar rats were treated with EEOS (300 mg/kg), diazepam (DZP) (5 mg/kg), pentylenetetrazol (PTZ) (60 mg/kg) and flumazenil (FMZ) (0.1 mg/kg) by intraperitoneal (i.p.). Electrodes implanted on the dura mater provided EEG data in which EEOS suppressed seizure deflagration caused by PTZ. In addition, EEOS presented no significant difference in comparison to DZP, which has the same mechanism of action. After FMZ injection, a GABAA receptor antagonist blocked the anticonvulsive effect in both the DZP and EEOS groups, suggesting that EEOS exerts it action on the GABAA receptor at the benzodiazepine (BDZ) subunit.
Collapse
Affiliation(s)
- Nilton Akio Muto
- Centre for Valorization of Amazonian Bioactive Compounds (CVACBA), Federal University of Pará (UFPA), Belém, Brazil
| | - Moisés Hamoy
- Laboratory of Pharmacology and Toxicology of Natural Products, Institute of Biological Sciences of Federal University of Pará (ICB-UFPA), Belém, Brazil
| | - Chryslen Brenda da Silva Ferreira
- Laboratory of Pharmacology and Toxicology of Natural Products, Institute of Biological Sciences of Federal University of Pará (ICB-UFPA), Belém, Brazil
| | - Akira Otake Hamoy
- Laboratory of Pharmacology and Toxicology of Natural Products, Institute of Biological Sciences of Federal University of Pará (ICB-UFPA), Belém, Brazil
| | | | - Vanessa Jóia de Mello
- Laboratory of Pharmacology and Toxicology of Natural Products, Institute of Biological Sciences of Federal University of Pará (ICB-UFPA), Belém, Brazil
| | - Hervé Rogez
- Centre for Valorization of Amazonian Bioactive Compounds (CVACBA), Federal University of Pará (UFPA), Belém, Brazil
- *Correspondence: Hervé Rogez,
| |
Collapse
|
11
|
Martins GR, Monteiro AF, do Amaral FRL, da Silva AS. A validated Folin-Ciocalteu method for total phenolics quantification of condensed tannin-rich açaí ( Euterpe oleracea Mart.) seeds extract. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2021; 58:4693-4702. [PMID: 34629533 DOI: 10.1007/s13197-020-04959-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 12/08/2020] [Accepted: 12/21/2020] [Indexed: 12/29/2022]
Abstract
ABSTRACT The widely used methodology to quantify polyphenols-the Folin-Ciocalteu (FC) method-cannot be applied indiscriminately since different matrices may impair the assay's accuracy. Thus, this study aimed to adapt the FC method for the açaí seed extract, a tannin-rich extract with potential applications for various therapies. Firstly, a pre-method standardization was established to determine parameters such as reading wavelength (765 nm), reaction time (30 min), and the reference substance (pyrogallol). In the validation step, the adapted method responded linearly to the analyte (R2 = 0.9910), ensuring its selectivity (linearity and selectivity curves statistically parallel) and accuracy (99.18-101.43%). Furthermore, the method proved to be precise (RSD ≤ 2.63%) at the two levels assessed (repeatability and intermediate precision) and robust (RSD ≤ 4.45%) concerning variation on the Na2CO3 concentration and the reaction time. The limits of detection and quantification were also calculated (9.9 µg/mL and 33.1 µg/mL, respectively). An additional step for tannins quantification based on its reported selective precipitation by complexing agents was also evaluated; however, unspecific precipitation was observed, reducing the results' accuracy. Our work successfully adapted and validated a method for total phenolics quantification of açaí seed extract, resulting in 38 g of pyrogallol equivalent/100 g of extract. GRAPHIC ABSTRACT
Collapse
Affiliation(s)
- Gabriel Rocha Martins
- Laboratório de Biocatálise, Instituto Nacional de Tecnologia, Ministério da Ciência, Tecnologia e Inovações, Rio de Janeiro, 20081-312 RJ Brazil.,Programa de Pós-graduação em Bioquímica, Departamento de Bioquímica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-909 RJ Brazil
| | - Alvaro Ferreira Monteiro
- Laboratório de Biocatálise, Instituto Nacional de Tecnologia, Ministério da Ciência, Tecnologia e Inovações, Rio de Janeiro, 20081-312 RJ Brazil
| | - Felipe Rafael Lopes do Amaral
- Laboratório de Biocatálise, Instituto Nacional de Tecnologia, Ministério da Ciência, Tecnologia e Inovações, Rio de Janeiro, 20081-312 RJ Brazil.,Programa de Pós-graduação em Bioquímica, Departamento de Bioquímica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-909 RJ Brazil
| | - Ayla Sant'Ana da Silva
- Laboratório de Biocatálise, Instituto Nacional de Tecnologia, Ministério da Ciência, Tecnologia e Inovações, Rio de Janeiro, 20081-312 RJ Brazil.,Programa de Pós-graduação em Bioquímica, Departamento de Bioquímica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-909 RJ Brazil
| |
Collapse
|
12
|
Fernandes ACF, Santana ÁL, Vieira NC, Gandra RLP, Rubia C, Castro‐Gamboa I, Macedo JA, Macedo GA. In vitro effects of peanut skin polyphenolic extract on oxidative stress, adipogenesis, and lipid accumulation. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15815] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Annayara C. F. Fernandes
- School of Food Engineering, Food and Nutrition Department University of Campinas (UNICAMP) Campinas Brazil
| | - Ádina L. Santana
- School of Food Engineering, Food and Nutrition Department University of Campinas (UNICAMP) Campinas Brazil
- Food Science Institute Kansas State University Manhattan USA
| | - Natália C. Vieira
- Center for Bioassays, Biosynthesis and Ecophysiology of Natural Products (NuBBE) Institute of Chemistry (ICAr) Sao Paulo State University (UNESP) Araraquara Brazil
| | - Renata L. P. Gandra
- School of Food Engineering, Food and Nutrition Department University of Campinas (UNICAMP) Campinas Brazil
| | - Camila Rubia
- School of Food Engineering, Food and Nutrition Department University of Campinas (UNICAMP) Campinas Brazil
| | - Ian Castro‐Gamboa
- Center for Bioassays, Biosynthesis and Ecophysiology of Natural Products (NuBBE) Institute of Chemistry (ICAr) Sao Paulo State University (UNESP) Araraquara Brazil
| | - Juliana A. Macedo
- School of Food Engineering, Food and Nutrition Department University of Campinas (UNICAMP) Campinas Brazil
| | - Gabriela A. Macedo
- School of Food Engineering, Food and Nutrition Department University of Campinas (UNICAMP) Campinas Brazil
| |
Collapse
|
13
|
Martins LS, Silva NGS, Claro AM, Amaral NC, Barud HS, Mulinari DR. Insight on açaí seed biomass economy and waste cooking oil: Eco-sorbent castor oil-based. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 293:112803. [PMID: 34089952 DOI: 10.1016/j.jenvman.2021.112803] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 04/22/2021] [Accepted: 05/14/2021] [Indexed: 06/12/2023]
Abstract
The reuse of açaí seeds is an organic approach for valorizing biomass, encouraging the public policies of circular economy, which reduces the human impact on the production chain processes. This research proposes an alternative for açaí seed as a filler in castor oil-based polyurethane, obtaining eco-sorbent to evaluate the sorption capacity for another impactful food industry by-product: waste cooking oil (WCO). Eco-sorbents were obtained with castor oil based-polyol and isocyanate (MDI) by mass mixing equal to 1:1 (OH:NCO), reinforced with açaí seed residue (5-20 wt%). The samples were characterized by techniques scanning electron microscopy (SEM), optical microscopy (OM), apparent density, contact angle, infrared spectroscopy (FTIR), and thermogravimetric analysis (TGA). Sorption capacity and efficiency were evaluated as a function of the fiber content, with tests performed in times of 30-180 s in two systems: oil and oil/water. The results showed that the eco-sorbents had a hydrophobic nature (θ > 98.3°) and macroporous morphology (pore size from 152 to 119 μm), which allowed the adsorption of residual cooking oil by the porous structure. The kinetics study showed that the sample with greater fiber content (15% wt.) reached the equilibrium in a short time compared to the neat PU for the oil system, with a sorption capacity of 9.50 g g-1 in the first 30 s. For the oil/water system, an opposite behavior could be observed, with a sorption capacity of 9.98 g g-1 in the 150 s equilibrium time. The Langmuir isotherm model presented a maximum adsorption capacity of 10.42 g g-1. However, the Freundlich isotherm model had a better fit to the experimental data with R2 (0.97) and lower chi-square (0.159), showing favorable adsorption (n = 1.496). Thus, it was proved that the weak interactions (connection H) and the binding energy of the predominant physisorption for the oil/water system. Thus, developed eco-sorbents are an excellent option for the sorption of WCO.
Collapse
Affiliation(s)
- Larissa S Martins
- Department of Chemistry and Environment, Universidade do Estado do Rio de Janeiro (UERJ), Resende, Brazil
| | - Nycolle G S Silva
- Department of Chemistry and Environment, Universidade do Estado do Rio de Janeiro (UERJ), Resende, Brazil
| | | | | | | | - Daniella R Mulinari
- Department of Mechanic and Energy, Universidade do Estado do Rio de Janeiro (UERJ), Resende, Brazil.
| |
Collapse
|
14
|
Sayago-Ayerdi S, García-Martínez DL, Ramírez-Castillo AC, Ramírez-Concepción HR, Viuda-Martos M. Tropical Fruits and Their Co-Products as Bioactive Compounds and Their Health Effects: A Review. Foods 2021; 10:foods10081952. [PMID: 34441729 PMCID: PMC8393595 DOI: 10.3390/foods10081952] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/13/2021] [Accepted: 08/19/2021] [Indexed: 12/11/2022] Open
Abstract
Tropical and subtropical fruits are recognized as a source of a high content of bioactive compounds and health promoting properties due to their nutritional composition. These beneficial health effects are related to the content of several of these bioactive compounds, mainly flavonoids and non-flavonoid phenolics. Many of these compounds are common in different tropical fruits, such as epicatechin in mango, pineapple, and banana, or catechin in pineapple, cocoa or avocado. Many studies of tropical fruits had been carried out, but in this work an examination is made in the current literature of the flavonoids and non-flavonoid phenolics content of some tropical fruits and their coproducts, comparing the content in the same units, as well as examining the role that these compounds play in health benefits.
Collapse
Affiliation(s)
- Sonia Sayago-Ayerdi
- Tecnologico Nacional de Mexico, Instituto Tecnologico de Tepic, Av Tecnológico 2595, Col Lagos del Country, Tepic 63175, Nayarit Mexico, Mexico; (S.S.-A.); (D.L.G.-M.); (A.C.R.-C.); (H.R.R.-C.)
| | - Diana Laura García-Martínez
- Tecnologico Nacional de Mexico, Instituto Tecnologico de Tepic, Av Tecnológico 2595, Col Lagos del Country, Tepic 63175, Nayarit Mexico, Mexico; (S.S.-A.); (D.L.G.-M.); (A.C.R.-C.); (H.R.R.-C.)
| | - Ailin Cecilia Ramírez-Castillo
- Tecnologico Nacional de Mexico, Instituto Tecnologico de Tepic, Av Tecnológico 2595, Col Lagos del Country, Tepic 63175, Nayarit Mexico, Mexico; (S.S.-A.); (D.L.G.-M.); (A.C.R.-C.); (H.R.R.-C.)
| | - Heidi Rubí Ramírez-Concepción
- Tecnologico Nacional de Mexico, Instituto Tecnologico de Tepic, Av Tecnológico 2595, Col Lagos del Country, Tepic 63175, Nayarit Mexico, Mexico; (S.S.-A.); (D.L.G.-M.); (A.C.R.-C.); (H.R.R.-C.)
| | - Manuel Viuda-Martos
- IPOA Research Group, Centro de Investigación e Innovación Agroalimentaria y Agroambiental (CIAGRO-UMH), Agro-Food Technology Department, Miguel Hernández University, Orihuela, 03312 Alicante, Spain
- Correspondence: ; Tel.: +34-966-749-661
| |
Collapse
|
15
|
da Silva MACN, Costa JH, Pacheco-Fill T, Ruiz ALTG, Vidal FCB, Borges KRA, Guimarães SJA, de Azevedo-Santos APS, Buglio KE, Foglio MA, Barbosa MDCL, Nascimento MDDSB, de Carvalho JE. Açai ( Euterpe oleracea Mart.) Seed Extract Induces ROS Production and Cell Death in MCF-7 Breast Cancer Cell Line. Molecules 2021; 26:molecules26123546. [PMID: 34200718 PMCID: PMC8230419 DOI: 10.3390/molecules26123546] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/06/2021] [Accepted: 06/07/2021] [Indexed: 01/11/2023] Open
Abstract
Euterpe oleracea Mart. (açai) is a native palm from the Amazon region. There are various chemical constituents of açai with bioactive properties. This study aimed to evaluate the chemical composition and cytotoxic effects of açai seed extract on breast cancer cell line (MCF-7). Global Natural Products Social Molecular Networking (GNPS) was applied to identify chemical compounds present in açai seed extract. LC-MS/MS and molecular networking were employed to detect the phenolic compounds of açai. The antioxidant activity of açai seed extract was measured by DPPH assay. MCF-7 breast cancer cell line viability was evaluated by MTT assay. Cell death was evaluated by flow cytometry and time-lapse microscopy. Autophagy was evaluated by orange acridin immunofluorescence assay. Reactive oxygen species (ROS) production was evaluated by DAF assay. From the molecular networking, fifteen compounds were identified, mainly phenolic compounds. The açai seed extract showed cytotoxic effects against MCF-7, induced morphologic changes in the cell line by autophagy and increased the ROS production pathway. The present study suggests that açai seed extract has a high cytotoxic capacity and may induce autophagy by increasing ROS production in breast cancer. Apart from its antioxidant activity, flavonoids with high radical scavenging activity present in açai also generated NO (nitric oxide), contributing to its cytotoxic effect and autophagy induction.
Collapse
Affiliation(s)
- Marcos Antonio Custódio Neto da Silva
- Post-Graduate Program in Internal Medicine, Faculty of Medical Science, Universidade Estadual de Campinas, Rua Tessália Vieira de Camargo, 126, Cidade Universitária Zeferino Vaz. CEP, Campinas 13083-887, SP, Brazil;
| | - Jonas Henrique Costa
- Institute of Chemistry, Universidade Estadual de Campinas, CP 6154, Campinas 13083-970, SP, Brazil; (J.H.C.); (T.P.-F.)
| | - Taícia Pacheco-Fill
- Institute of Chemistry, Universidade Estadual de Campinas, CP 6154, Campinas 13083-970, SP, Brazil; (J.H.C.); (T.P.-F.)
| | - Ana Lúcia Tasca Gois Ruiz
- Faculty of Pharmaceutical Sciences, Universidade Estadual de Campinas, Campinas 13083-859, SP, Brazil; (A.L.T.G.R.); (K.E.B.); (M.A.F.)
| | - Flávia Castello Branco Vidal
- Post-Graduate Program in Adult Heath, Department of Patology, Federal University of Maranhão (UFMA), São Luís 65080-805, MA, Brazil; (F.C.B.V.); (K.R.A.B.)
| | - Kátia Regina Assunção Borges
- Post-Graduate Program in Adult Heath, Department of Patology, Federal University of Maranhão (UFMA), São Luís 65080-805, MA, Brazil; (F.C.B.V.); (K.R.A.B.)
| | - Sulayne Janaina Araújo Guimarães
- Post-Graduate Program in Health Sicencies, Federal University of Maranhão (UFMA), São Luís 65080-805, MA, Brazil; (S.J.A.G.); (A.P.S.d.A.-S.)
| | - Ana Paula Silva de Azevedo-Santos
- Post-Graduate Program in Health Sicencies, Federal University of Maranhão (UFMA), São Luís 65080-805, MA, Brazil; (S.J.A.G.); (A.P.S.d.A.-S.)
| | - Kaio Eduardo Buglio
- Faculty of Pharmaceutical Sciences, Universidade Estadual de Campinas, Campinas 13083-859, SP, Brazil; (A.L.T.G.R.); (K.E.B.); (M.A.F.)
| | - Mary Ann Foglio
- Faculty of Pharmaceutical Sciences, Universidade Estadual de Campinas, Campinas 13083-859, SP, Brazil; (A.L.T.G.R.); (K.E.B.); (M.A.F.)
| | - Maria do Carmo Lacerda Barbosa
- Post-Graduate Program in Family Health, Department of Medicine I, Federal University of Maranhão (UFMA), São Luís 65080-805, MA, Brazil;
| | - Maria do Desterro Soares Brandão Nascimento
- Post-Graduate Program in Adult Heath, Department of Patology, Federal University of Maranhão (UFMA), São Luís 65080-805, MA, Brazil; (F.C.B.V.); (K.R.A.B.)
- Correspondence: (M.d.D.S.B.N.); (J.E.d.C.)
| | - João Ernesto de Carvalho
- Faculty of Pharmaceutical Sciences, Universidade Estadual de Campinas, Campinas 13083-859, SP, Brazil; (A.L.T.G.R.); (K.E.B.); (M.A.F.)
- Correspondence: (M.d.D.S.B.N.); (J.E.d.C.)
| |
Collapse
|
16
|
Xiong J, Matta FV, Grace M, Lila MA, Ward NI, Felipe-Sotelo M, Esposito D. Phenolic content, anti-inflammatory properties, and dermal wound repair properties of industrially processed and non-processed acai from the Brazilian Amazon. Food Funct 2021; 11:4903-4914. [PMID: 32495808 DOI: 10.1039/c9fo03109j] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Acai fruit is recognized for its health promoting properties. However, there is still a need to address the effects of industrial processing on this fruit. In this study, phenolic content, anti-inflammatory properties and dermal wound repair properties of 20 acai samples, before and after industrial processing, from various Amazon regions were investigated. Acai pulp was rich in total phenolics (18.9-58.8 mg g-1) and proanthocyanins (9.8-43.1 mg g-1), but contained trace anthocyanins (up to 0.1 mg g-1). Industrially processed samples lost substantial amounts of proanthocyanidins (up to 83.2%), while the anthocyanins inherently present were greatly enriched after processing (20-fold higher). Non-processed acai pulp extracts protected against early inflammation response which was correlated with proanthocyanidins, by significantly inhibiting nitric oxide production and suppressing pro-inflammatory gene expression including interleukin-1β, cyclooxygenase-2, nitric oxide synthase, and interleukin-6. The promotion of dermal wound repair of acai seed and pulp extracts was mainly contributed by anthocyanins and other bioactive compounds. The anti-inflammatory effect was diminished but wound healing effect was retained after pulp processing, suggesting the processing technology needs to be improved to maintain biological properties of acai fruit.
Collapse
Affiliation(s)
- Jia Xiong
- Department of Animal Science, Plants for Human Health Institute, North Carolina State University, Kannapolis, NC, USA. and Department of Animal Science, North Carolina State University, Raleigh, NC, USA and Department of Food, Bioprocessing, and Nutrition Sciences, Plants for Human Health Institute, North Carolina State University, Kannapolis, NC, USA
| | - Fernanda V Matta
- Department of Chemistry, University of Surrey, Guildford, Surrey GU27XH, UK
| | - Mary Grace
- Department of Food, Bioprocessing, and Nutrition Sciences, Plants for Human Health Institute, North Carolina State University, Kannapolis, NC, USA
| | - Mary Ann Lila
- Department of Food, Bioprocessing, and Nutrition Sciences, Plants for Human Health Institute, North Carolina State University, Kannapolis, NC, USA
| | - Neil I Ward
- Department of Chemistry, University of Surrey, Guildford, Surrey GU27XH, UK
| | | | - Debora Esposito
- Department of Animal Science, Plants for Human Health Institute, North Carolina State University, Kannapolis, NC, USA. and Department of Animal Science, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
17
|
Pirozzi AVA, Imbimbo P, D’Agostino A, Tirino V, Finamore R, Monti DM, Piccoli R, Schiraldi C. Antioxidant and Hypolipidemic Activity of Açai Fruit Makes It a Valuable Functional Food. Antioxidants (Basel) 2020; 10:antiox10010040. [PMID: 33396456 PMCID: PMC7824079 DOI: 10.3390/antiox10010040] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/22/2020] [Accepted: 12/23/2020] [Indexed: 12/22/2022] Open
Abstract
Several plant extracts are acquiring increasing value because of their antioxidant activity and hypolipidemic properties. Among them, great interest has been recently paid to açai fruit as a functional food. The aim of this study was to test the ability of açai extract in reducing oxidative stress and modulating lipid metabolism in vitro using different cell models and different types of stress. In fact, lipid peroxidation as evaluated in a HepG2 model was reduced five-fold when using 0.25 µg/mL of extract, and it was further reduced (20-fold) with the concentration increase up to 2.5 µg/mL. With the non alcoholic fatty liver disease (NAFLD)in vitro model, all concentrations tested showed at least a two-fold reduced fat deposit. In addition, primary adipocytes challenged with TNF-α under hypoxic conditions to mimic the persistent subcutaneous fat, treated with açai extract showed an approximately 40% reduction of fat deposit. Overall, our results show that açai is able to counteract oxidative states in all the cell models analysed and to prevent the accumulation of lipid droplets. No toxic effects and high stability overtime were highlighted at the concentrations tested. Therefore, açai can be considered a suitable support in the prevention of different alterations of lipid and oxidative metabolism responsible for fat deposition and metabolic pathological conditions.
Collapse
Affiliation(s)
- Anna Virginia Adriana Pirozzi
- Department of Experimental Medicine, Section of Biotechnology, Medical Histology and Molecular Biology, University of Campania “Luigi Vanvitelli”, via De Crecchio 7, 80138 Naples, Italy; (A.V.A.P.); (A.D.); (V.T.); (R.F.)
| | - Paola Imbimbo
- Department of Chemical Sciences, University of Naples Federico II, via Cinthia 21, 80126 Naples, Italy; (P.I.); (D.M.M.); (R.P.)
| | - Antonella D’Agostino
- Department of Experimental Medicine, Section of Biotechnology, Medical Histology and Molecular Biology, University of Campania “Luigi Vanvitelli”, via De Crecchio 7, 80138 Naples, Italy; (A.V.A.P.); (A.D.); (V.T.); (R.F.)
| | - Virginia Tirino
- Department of Experimental Medicine, Section of Biotechnology, Medical Histology and Molecular Biology, University of Campania “Luigi Vanvitelli”, via De Crecchio 7, 80138 Naples, Italy; (A.V.A.P.); (A.D.); (V.T.); (R.F.)
| | - Rosario Finamore
- Department of Experimental Medicine, Section of Biotechnology, Medical Histology and Molecular Biology, University of Campania “Luigi Vanvitelli”, via De Crecchio 7, 80138 Naples, Italy; (A.V.A.P.); (A.D.); (V.T.); (R.F.)
| | - Daria Maria Monti
- Department of Chemical Sciences, University of Naples Federico II, via Cinthia 21, 80126 Naples, Italy; (P.I.); (D.M.M.); (R.P.)
| | - Renata Piccoli
- Department of Chemical Sciences, University of Naples Federico II, via Cinthia 21, 80126 Naples, Italy; (P.I.); (D.M.M.); (R.P.)
| | - Chiara Schiraldi
- Department of Experimental Medicine, Section of Biotechnology, Medical Histology and Molecular Biology, University of Campania “Luigi Vanvitelli”, via De Crecchio 7, 80138 Naples, Italy; (A.V.A.P.); (A.D.); (V.T.); (R.F.)
- Correspondence:
| |
Collapse
|
18
|
Bhumireddy A, Nellore K, Alapati KS. Anticancer activity of Neptunia oleracea methanolic extracts. Nat Prod Res 2020; 36:1053-1057. [PMID: 33213226 DOI: 10.1080/14786419.2020.1844693] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Neptunia oleracea Lour (water mimosa) is an edible medicinal plant used in treating various diseases. According to Phytochemical and Ethnobotanical Databases, Neptunia oleracea Lour is used in curing earaches, dysentery, syphilis, and tumour. The present study was aimed at demonstrating the anticancer activity of the Neptunia oleracea Lour methanolic extract. The methanolic extract was isolated and its anti-proliferative activity was studied on haematological cancer cell lines. The activity of the extract was further evaluated using cell cycle analysis and apoptosis assays. In addition to this, effect of the extract on c-Myc and PErk1/2 modulation was also evaluated. Neptunia oleracea Lour extract induced cell death in cancer cells while sparing normal cells. An increase in cleaved PARP and reduction in BCL-2 levels observed upon treatment. Neptunia oleracea causes reduction in c-Myc levels and pERK1/2 protein levels. Thus, our work highlights the methanolic extract of Neptunia oleracea Lour as a promising anti-cancer agent.
Collapse
Affiliation(s)
- Archana Bhumireddy
- Phase II Electronic City, Aurigene Discovery Technologies Limited, Bangalore, Karnataka, India.,Department of Biotechnology, Acharya Nagarjuna University, Guntur, India
| | - Kavitha Nellore
- Phase II Electronic City, Aurigene Discovery Technologies Limited, Bangalore, Karnataka, India
| | | |
Collapse
|
19
|
de Almeida Magalhães TSS, de Oliveira Macedo PC, Converti A, Neves de Lima ÁA. The Use of Euterpe oleracea Mart. As a New Perspective for Disease Treatment and Prevention. Biomolecules 2020; 10:biom10060813. [PMID: 32466439 PMCID: PMC7356995 DOI: 10.3390/biom10060813] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 04/23/2020] [Accepted: 04/25/2020] [Indexed: 02/07/2023] Open
Abstract
Euterpe oleracea Mart. (EO), popularly known as açaí, belongs to the Arecaceae family and grows abundantly in Brazil. The fruit of this palm tree is widely used because of its anti-inflammatory and antioxidant properties. In this review, a search for literature and patent technological prospecting has been performed on the use of EO to treat and prevent diseases as well as to prepare pharmaceutical formulations. EO leaves, fruits, and oil stand out for their large number of pharmacological activities such as anti-inflammatory, antioxidant, antimicrobial, antinociceptive, anticancer, anti-atherogenic, and healing activities, protection against metabolic syndromes such as diabetes, hypertension, and hyperlipidemia, and protection of organs such as lung, kidney, liver, heart, and nervous system. While the phytochemical composition is intrinsically linked to identified biological activities, discoveries of the past decade concerning the use of this species have shown pharmacological alternatives mainly in the treatment and prevention of breast cancer and metabolic syndromes. Although studies and inventions on the use of EO though are believed to have been important in light of the pharmacological activities found, few clinical and toxicity tests have been performed. Nevertheless, with the increase of interest in EO, this species is believed to be only at the beginning of the breakthroughs in the development of promising products for the pharmaceutical industry.
Collapse
Affiliation(s)
- Thalita Sévia Soares de Almeida Magalhães
- Department of Pharmacy, Laboratório Escola de Farmácia Industrial, Federal University of Rio Grande do Norte, Natal RN 59012-570, Brazil; (T.S.S.d.A.M.); (P.C.d.O.M.)
| | - Pollyana Cristina de Oliveira Macedo
- Department of Pharmacy, Laboratório Escola de Farmácia Industrial, Federal University of Rio Grande do Norte, Natal RN 59012-570, Brazil; (T.S.S.d.A.M.); (P.C.d.O.M.)
| | - Attilio Converti
- Department of Civil, Chemical and Environmental Engineering, Pole of Chemical Engineering, Genoa University, I-16145 Genoa, Italy;
| | - Ádley Antonini Neves de Lima
- Department of Pharmacy, Laboratório Escola de Farmácia Industrial, Federal University of Rio Grande do Norte, Natal RN 59012-570, Brazil; (T.S.S.d.A.M.); (P.C.d.O.M.)
- Correspondence: ; Tel.: +55-(84)-99928-8864
| |
Collapse
|
20
|
Extraction of Anthocyanins and Total Phenolic Compounds from Açai (Euterpe oleracea Mart.) Using an Experimental Design Methodology. Part 1: Pressurized Liquid Extraction. AGRONOMY-BASEL 2020. [DOI: 10.3390/agronomy10020183] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Currently, açai is one of the most important fruits present in the world. Several studies have demonstrated its high content in phenolic compounds and anthocyanins. Both of them are responsible of interesting properties of the fruit such as anti-inflammatory, antioxidant or anticancer. In the present study, two optimized pressurized liquid extraction (PLE) methods have been developed for the extraction of anthocyanins and total phenolic compounds from açai. A full factorial design (Box–Behnken design) with six variables (solvent composition (25–75% methanol-in-water), temperature (50–100 °C), pressure (100–200 atm), purge time (30–90 s), pH (2–7) and flushing (50–150%)) were employed. The percentage of methanol in the extraction solvent was proven to be the most significant variable for the extraction of anthocyanins. In the case of total phenolic compounds, the extraction temperature was the most influential variable. The developed methods showed high precision, with relative standard deviations (RSD) of less than 5%. The applicability of the methods was successfully evaluated in real samples. In conclusion, two rapid and reliable PLE extraction methods to be used for laboratories and industries to determine anthocyanins and total phenolic compounds in açai and its derived products were developed in this work.
Collapse
|
21
|
Le TN, Luong HQ, Li HP, Chiu CH, Hsieh PC. Broccoli ( Brassica oleracea L. var. italica) Sprouts as the Potential Food Source for Bioactive Properties: A Comprehensive Study on In Vitro Disease Models. Foods 2019; 8:foods8110532. [PMID: 31671614 PMCID: PMC6915343 DOI: 10.3390/foods8110532] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 10/23/2019] [Accepted: 10/23/2019] [Indexed: 02/06/2023] Open
Abstract
Broccoli sprouts are an excellent source of health-promoting phytochemicals such as vitamins, glucosinolates, and phenolics. The study aimed to investigate in vitro antioxidant, antiproliferative, apoptotic, and antibacterial activities of broccoli sprouts. Five-day-old sprouts extracted by 70% ethanol showed significant antioxidant activities, analyzed to be 68.8 μmol Trolox equivalent (TE)/g dry weight by 2,2′-azino-bis-3-ethylbenzothiazoline-6-sulphonic (ABTS) assay, 91% scavenging by 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay, 1.81 absorbance by reducing power assay, and high phenolic contents by high-performance liquid chromatography (HPLC). Thereafter, sprout extract indicated considerable antiproliferative activities towards A549 (lung carcinoma cells), HepG2 (hepatocellular carcinoma cells), and Caco-2 (colorectal adenocarcinoma cells) using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, with IC50 values of 0.117, 0.168 and 0.189 mg/mL for 48 h, respectively. Furthermore, flow cytometry confirmed that Caco-2 cells underwent apoptosis by an increase of cell percentage in subG1 phase to 31.3%, and a loss of mitochondrial membrane potential to 19.3% after 48 h of treatment. Afterward, the extract exhibited notable antibacterial capacities against Bacillus subtilis and Salmonella Typhimurium with minimum inhibition concentration (MIC) values of 0.39 and 0.78 mg/mL, appropriately, along with abilities against Staphylococcus aureus and Escherichia coli with an MIC value of 1.56 mg/mL. Thus, broccoli sprouts were confirmed as a potential food source for consumers’ selection and functional food industry.
Collapse
Affiliation(s)
- Thanh Ninh Le
- Department of Food Science, National Pingtung University of Science and Technology, Pingtung 91207, Taiwan.
| | - Hong Quang Luong
- Department of Food Science, National Pingtung University of Science and Technology, Pingtung 91207, Taiwan.
| | - Hsin-Ping Li
- Department of Food Science, National Pingtung University of Science and Technology, Pingtung 91207, Taiwan.
| | - Chiu-Hsia Chiu
- Department of Food Science, National Pingtung University of Science and Technology, Pingtung 91207, Taiwan.
| | - Pao-Chuan Hsieh
- Department of Food Science, National Pingtung University of Science and Technology, Pingtung 91207, Taiwan.
| |
Collapse
|
22
|
Han Y, Hao H, Yang L, Chen G, Wen Y, Huang R. Nutritional characteristics of marine fish Sardinella zunasi Bleeker and immunostimulatory activities of its glycoprotein. RSC Adv 2019; 9:30144-30153. [PMID: 35530240 PMCID: PMC9072115 DOI: 10.1039/c9ra04913d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Accepted: 09/18/2019] [Indexed: 11/21/2022] Open
Abstract
Sardinella zunasi Bleeker, an edible and medicinal marine fish, is largely distributed in tropical oceans. However, the chemical composition and nutritional properties of this species have not yet been investigated. In the present study, proximate composition, fatty acids, amino acids, taurine, and minerals of S. zunasi Bleeker were characterized, and the immunostimulatory properties of its glycoprotein were evaluated. The results indicated the presence of crude protein (19.66%), crude lipid (6.29%) and carbohydrate (0.74%) in S. zunasi Bleeker; monounsaturated fatty acids and polyunsaturated fatty acids in the fatty acid composition of S. zunasi Bleeker were 25.00% and 31.01%, respectively; S. zunasi Bleeker was rich in taurine (219 mg/100 g) and essential amino acids (5.57 g/100 g). In addition, the glycoprotein of S. zunasi consisted of protein and sugars, with a total content of 34.25% and 16.27%, respectively. The glycoprotein showed significant effects on promoting NO, TNF-α and IL-6 in a dose-dependent manner in RAW264.7 macrophage cells. Thus, these findings provide a scientific basis for the further utilization of glycoprotein from S. zunasi Bleeker.
Collapse
Affiliation(s)
- Yu Han
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University Guangzhou 510642 China +86 20 8528 3448
| | - Huili Hao
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University Guangzhou 510642 China +86 20 8528 3448
| | - Lihong Yang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University Guangzhou 510642 China +86 20 8528 3448
- Shenzhen Shajing People's Hospital, Guangzhou University of Chinese Medicine Shenzhen China
| | - Guolian Chen
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University Guangzhou 510642 China +86 20 8528 3448
| | - Yucong Wen
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University Guangzhou 510642 China +86 20 8528 3448
| | - Riming Huang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University Guangzhou 510642 China +86 20 8528 3448
| |
Collapse
|
23
|
Monteiro AF, Miguez IS, Silva JPRB, Silva ASD. High concentration and yield production of mannose from açaí (Euterpe oleracea Mart.) seeds via mannanase-catalyzed hydrolysis. Sci Rep 2019; 9:10939. [PMID: 31358799 PMCID: PMC6662815 DOI: 10.1038/s41598-019-47401-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 07/12/2019] [Indexed: 11/09/2022] Open
Abstract
The açaí seed corresponds to approximately 85% of the fruit's weight and represents ~1.1 million metric tons of residue yearly accumulated in the Amazon region, resulting in an acute environmental and urban problem. To extract the highest value from this residue, this study aimed to evaluate its chemical composition to determine the appropriate applications and to develop conversion methods. First, mannan was confirmed as the major component of mature seeds, corresponding to 80% of the seed's total carbohydrates and about 50% of its dry weight. To convert this high mannan content into mannose, a sequential process of dilute-acid and enzymatic hydrolysis was evaluated. Among different dilute-H2SO4 hydrolysis conditions, 3%-acid for 60-min at 121 °C resulted in a 30% mannan hydrolysis yield and 41.7 g/L of mannose. Because ~70% mannan remained in the seed, a mannanase-catalyzed hydrolysis was sequentially performed with 2-20% seed concentration, reaching 146.3 g/L of mannose and a 96.8% yield with 20% solids. As far as we know, this is the highest reported concentration of mannose produced from a residue. Thus, this work provides fundamental data for achieving high concentrations and yields of mannose from açaí seeds, which could add commercial value to the seeds and improve the whole açaí productive chain.
Collapse
Affiliation(s)
- Alvaro Ferreira Monteiro
- Biocatalysis Laboratory, National Institute of Technology, Ministry of Science, Technology, Innovation and Communication, Rio de Janeiro, 20081-312, RJ, Brazil
| | - Ingrid Santos Miguez
- Biocatalysis Laboratory, National Institute of Technology, Ministry of Science, Technology, Innovation and Communication, Rio de Janeiro, 20081-312, RJ, Brazil
- Federal University of Rio de Janeiro, Department of Biochemistry, Rio de Janeiro, 21941-909, RJ, Brazil
| | - João Pedro R Barros Silva
- Biocatalysis Laboratory, National Institute of Technology, Ministry of Science, Technology, Innovation and Communication, Rio de Janeiro, 20081-312, RJ, Brazil
| | - Ayla Sant'Ana da Silva
- Biocatalysis Laboratory, National Institute of Technology, Ministry of Science, Technology, Innovation and Communication, Rio de Janeiro, 20081-312, RJ, Brazil.
- Federal University of Rio de Janeiro, Department of Biochemistry, Rio de Janeiro, 21941-909, RJ, Brazil.
| |
Collapse
|