1
|
Zhou Y, Tan Z. Application of green waste polyphenols in natural antimicrobial materials for the environmental fields: A review. WASTE MANAGEMENT (NEW YORK, N.Y.) 2025; 202:114800. [PMID: 40294565 DOI: 10.1016/j.wasman.2025.114800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Revised: 03/25/2025] [Accepted: 04/08/2025] [Indexed: 04/30/2025]
Abstract
In recent years, green waste polyphenols (GWPs) have attracted global attention due to their abundant renewable resources and excellent antibacterial properties. We analyzed the research progress on the antimicrobial properties of natural polyphenol composites (including polyphenol-metal nanoparticles, polyphenol nanofiber membranes, polyphenol-polymer membranes, and polyphenol hydrogels) in environmental applications. The waste sources of polyphenols and the latest extraction technologies were systematically summarized, and a universal hydrodynamic cavitation-integrated membrane technology combined with polyphenol extraction and purification process was initially constructed. The inhibitory effects of GWPs on pathogenic bacteria and the antibacterial properties of polyphenol composites in the environmental field were systematically analyzed. These composites exhibited outstanding antimicrobial performance, effectively inhibiting E. coli and S. aureus by up to 100%, especially in water treatment and air filtration. In addition, the advantages, challenges, and prospects for the application of green waste polyphenol antibacterial materials (GWPAMs) in the environmental field are discussed. With high efficiency, low toxicity, antimicrobial resistance, and sustainable antimicrobial properties, GWPs exhibit significant application potential in the "resource recycling-pollution control-ecological restoration" synergistic system within the environmental field. Future work should focus on the green synthesis of polyphenol composites, conducting systematic and thorough investigations on their antibacterial mechanisms, and enhancing their antibacterial properties in agriculture, waste treatment, and soil remediation, to improve their environmental adaptability and sustainable application value.
Collapse
Affiliation(s)
- Yuqian Zhou
- Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Huazhong Agricultural University, No. 1, ShizishanStreet, Hongshan District, Wuhan 430070, People's Republic of China
| | - Zhongxin Tan
- Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Huazhong Agricultural University, No. 1, ShizishanStreet, Hongshan District, Wuhan 430070, People's Republic of China.
| |
Collapse
|
2
|
Urquiza-Martínez MV, Fabián-Avilés IM, Torner L, Servín-Campuzano H, González-Avilés M. Integrative Approach of Treating Early Undernutrition with an Enriched Black Corn Chip, Study on a Murine Model. Nutrients 2024; 16:2001. [PMID: 38999749 PMCID: PMC11243394 DOI: 10.3390/nu16132001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 06/12/2024] [Accepted: 06/15/2024] [Indexed: 07/14/2024] Open
Abstract
Undernutrition (UN) increases child vulnerability to illness and mortality. Caused by a low amount and/or poor quality of food intake, it impacts physical, cognitive, and social development. Modern types of food consumption have given highly processed food a higher cultural value compared to minimally processed food. OBJECTIVE The objective of this study was to evaluate the effect on growth, metabolism, physical activity (PA), memory, inflammation, and toxicity of an enriched black corn chip (BC) made with endemic ingredients on post-weaned UN mice. METHODS A chip was made with a mixture of black corn, fava beans, amaranth, and nopal cactus. To probe the effects of UN, UN was induced in 3wo post-weaned male C57Bl/6j mice through a low-protein diet (LPD-50% of the regular requirement of protein) for 3w. Then, the BC was introduced to the animals' diet (17%) for 5w; murinometric parameters were measured, as were postprandial glucose response, PA, and short-term memory. Histological analysis was conducted on the liver and kidneys to measure toxicity. Gene expression related to energy balance, thermogenesis, and inflammation was measured in adipose and hypothalamic tissues. RESULTS Treatment with the BC significantly improved mouse growth, even with a low protein intake, as evidenced by a significant increase in body weight, tail length, cerebral growth, memory improvement, physical activation, normalized energy expenditure (thermogenesis), and orexigenic peptides (AGRP and NPY). It decreased anorexigenic peptides (POMC), and there was no tissue toxicity. CONCLUSIONS BC treatment, even with persistent low protein intake, is a promising strategy against UN, as it showed efficacy in correcting growth deficiency, cognitive impairment, and metabolic problems linked to treatment by adjusting energy expenditure, which led to the promotion of energy intake and regulation of thermogenesis, all by using low-cost, accessible, and endemic ingredients.
Collapse
Affiliation(s)
- Mercedes-Victoria Urquiza-Martínez
- Master in Engineering for the Energetic Sustainability, Universidad Intercultural Indígena de Michoacán, Campus Tzipekua, Pátzcuaro 61614, Mexico
| | - Imelda M Fabián-Avilés
- Master in Engineering for the Energetic Sustainability, Universidad Intercultural Indígena de Michoacán, Campus Tzipekua, Pátzcuaro 61614, Mexico
| | - Luz Torner
- Centro de Investigación Biomédica de Michoacán, Instituto Mexicano del Seguro Social, Morelia 58330, Mexico
| | - Hermelinda Servín-Campuzano
- Master in Engineering for the Energetic Sustainability, Universidad Intercultural Indígena de Michoacán, Campus Tzipekua, Pátzcuaro 61614, Mexico
| | - Mauricio González-Avilés
- Master in Engineering for the Energetic Sustainability, Universidad Intercultural Indígena de Michoacán, Campus Tzipekua, Pátzcuaro 61614, Mexico
| |
Collapse
|
3
|
Popescu (Stegarus) DI, Frum A, Dobrea CM, Cristea R, Gligor FG, Vicas LG, Ionete RE, Sutan NA, Georgescu C. Comparative Antioxidant and Antimicrobial Activities of Several Conifer Needles and Bark Extracts. Pharmaceutics 2023; 16:52. [PMID: 38258063 PMCID: PMC10821083 DOI: 10.3390/pharmaceutics16010052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 12/22/2023] [Accepted: 12/26/2023] [Indexed: 01/24/2024] Open
Abstract
Nowadays, an increased concern regarding using natural products for their health benefits can be observed. The aim of this study was to assess and compare several phenolic compounds found in 15- to 60-year-old Douglas fir, silver fir, larch, pine, and spruce needle and bark extracts and to evaluate their antioxidant and antimicrobial activities. Spectrophotometric assays were used to determine the total polyphenol content and the antioxidant activity that was assessed by using the DPPH• radical scavenging assay (RSA), the ferric reducing antioxidant power assay (FRAP), and the ABTS•+ radical cation scavenging assay (ABTS). The phytochemical content was determined by using high-performance liquid chromatography, and the antimicrobial activity was determined by assessing the minimal inhibition concentration (MIC). The results of the study show a total polyphenol content of 62.45-109.80 mg GAE/g d.w. and an antioxidant activity of 91.18-99.32% for RSA, 29.16-35.74 µmol TE/g d.w. for FRAP, and 38.23-53.57 µmol TE/g d.w. for ABTS. The greatest quantity of phenolic compound for most of the extracts was for (+)-catechin, and it had values between 165.79 and 5343.27 µg/g d.w. for these samples. The antimicrobial inhibition for all the extracts was the strongest for Staphylococcus aureus (MIC 62.5-125 µg/mL). The extracts analyzed could be used for their bioactive potential after further investigations.
Collapse
Affiliation(s)
- Diana Ionela Popescu (Stegarus)
- National Research and Development Institute for Cryogenic and Isotopic Technologies—ICSI Ramnicu Valcea, 240050 Ramnicu Valcea, Romania; (D.I.P.); (R.E.I.)
| | - Adina Frum
- Preclinical Department, Faculty of Medicine, “Lucian Blaga” University of Sibiu, 550169 Sibiu, Romania;
| | - Carmen Maximiliana Dobrea
- Preclinical Department, Faculty of Medicine, “Lucian Blaga” University of Sibiu, 550169 Sibiu, Romania;
| | - Ramona Cristea
- Department of Agricultural Sciences and Food Engineering, “Lucian Blaga” University of Sibiu, 550012 Sibiu, Romania; (R.C.); (C.G.)
| | - Felicia Gabriela Gligor
- Preclinical Department, Faculty of Medicine, “Lucian Blaga” University of Sibiu, 550169 Sibiu, Romania;
| | - Laura Gratiela Vicas
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania;
| | - Roxana Elena Ionete
- National Research and Development Institute for Cryogenic and Isotopic Technologies—ICSI Ramnicu Valcea, 240050 Ramnicu Valcea, Romania; (D.I.P.); (R.E.I.)
| | - Nicoleta Anca Sutan
- Department of Natural Sciences, Piteşti University Center, National University of Science and Technology Politechnica Bucharest, 110040 Pitesti, Romania;
| | - Cecilia Georgescu
- Department of Agricultural Sciences and Food Engineering, “Lucian Blaga” University of Sibiu, 550012 Sibiu, Romania; (R.C.); (C.G.)
| |
Collapse
|
4
|
Mattoli L, Pelucchini C, Fiordelli V, Burico M, Gianni M, Zambaldi I. Natural complex substances: From molecules to the molecular complexes. Analytical and technological advances for their definition and differentiation from the corresponding synthetic substances. PHYTOCHEMISTRY 2023; 215:113790. [PMID: 37487919 DOI: 10.1016/j.phytochem.2023.113790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 07/06/2023] [Accepted: 07/11/2023] [Indexed: 07/26/2023]
Abstract
Natural complex substances (NCSs) are a heterogeneous family of substances that are notably used as ingredients in several products classified as food supplements, medical devices, cosmetics and traditional medicines, according to the correspondent regulatory framework. The compositions of NCSs vary widely and hundreds to thousands of compounds can be present at the same time. A key concept is that NCSs are much more than the simple sum of the compounds that constitute them, in fact some emerging phenomena are the result of the supramolecular interaction of the constituents of the system. Therefore, close attention should be paid to produce and characterize these systems. Today many natural compounds are produced by chemical synthesis and are intentionally added to NCSs, or to formulated natural products, to enhance their properties, lowering their production costs. Market analysis shows a tendency of people to use products made with NCSs and, currently, products made with ingredients of natural origin only are not conveniently distinguishable from those containing compounds of synthetic origin. Furthermore, the uncertainty of the current European regulatory framework does not allow consumers to correctly differentiate and identify products containing only ingredients of natural origin. The high demand for specific and effective NCSs and their high-cost offer on the market, create the conditions to economically motivated sophistications, characterized by the addition of a cheap material to a more expensive one, just to increase profit. This type of practice can concern both the addition of less valuable natural materials and the addition of pure artificial compounds with the same structure as those naturally present. In this scenario, it becomes essential for producers of natural products to have advanced analytical techniques to evaluate the effective naturalness of NCSs. In fact, synthetically obtained compounds are not identical to their naturally occurring counterparts, due to the isotopic composition or chirality, as well as the presence of different trace metabolites (since pure substances in nature do not exist). For this reason, in this review, the main analytical tests that can be performed to differentiate natural compounds from their synthetic counterparts will be highlighted and the main analytical technologies will be described. At the same time, the main fingerprint techniques useful for characterizing the complexity of the NCSs, also allowing their identification and quali-quantitative evaluation, will be described. Furthermore, NCSs can be produced through different manufacturing processes, not all of which are on the same level of quality. In this review the most suitable technologies for green processes that operate according to physical extraction principles will be presented, as according to the authors they are the ones that come closest to creating more life-cycle compatible NCSs and that are well suited to the European green deal, a strategy with the aim of transforming the EU into a sustainable and resource-efficient society by 2050.
Collapse
Affiliation(s)
- Luisa Mattoli
- Innovation & Medical Science, Aboca SpA, Sansepolcro, AR, Italy.
| | | | | | - Michela Burico
- Innovation & Medical Science, Aboca SpA, Sansepolcro, AR, Italy
| | - Mattia Gianni
- Innovation & Medical Science, Aboca SpA, Sansepolcro, AR, Italy
| | - Ilaria Zambaldi
- Innovation & Medical Science, Aboca SpA, Sansepolcro, AR, Italy
| |
Collapse
|
5
|
Klavins L, Almonaitytė K, Šalaševičienė A, Zommere A, Spalvis K, Vincevica-Gaile Z, Korpinen R, Klavins M. Strategy of Coniferous Needle Biorefinery into Value-Added Products to Implement Circular Bioeconomy Concepts in Forestry Side Stream Utilization. Molecules 2023; 28:7085. [PMID: 37894564 PMCID: PMC10609605 DOI: 10.3390/molecules28207085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/24/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Sustainable development goals require a reduction in the existing heavy reliance on fossil resources. Forestry can be considered a key resource for the bioeconomy, providing timber, energy, chemicals (including fine chemicals), and various other products. Besides the main product, timber, forestry generates significant amounts of different biomass side streams. Considering the unique and highly complex chemical composition of coniferous needle/greenery biomass, biorefinery strategies can be considered as prospective possibilities to address top segments of the bio-based value pyramid, addressing coniferous biomass side streams as a source of diverse chemical substances with applications as the replacement of fossil material-based chemicals, building blocks, food, and feed and applications as fine chemicals. This study reviews biorefinery methods for coniferous tree forestry biomass side streams, exploring the production of value-added products. Additionally, it discusses the potential for developing further biorefinery strategies to obtain products with enhanced value.
Collapse
Affiliation(s)
- Linards Klavins
- Department of Environmental Science, University of Latvia, Raina Blvd. 19, LV-1586 Riga, Latvia; (A.Z.); (Z.V.-G.); (M.K.)
| | - Karolina Almonaitytė
- Food Institute, Kaunas University of Technology, Radvilenu Rd. 19, LT-50254 Kaunas, Lithuania; (K.A.); (A.Š.)
| | - Alvija Šalaševičienė
- Food Institute, Kaunas University of Technology, Radvilenu Rd. 19, LT-50254 Kaunas, Lithuania; (K.A.); (A.Š.)
| | - Alise Zommere
- Department of Environmental Science, University of Latvia, Raina Blvd. 19, LV-1586 Riga, Latvia; (A.Z.); (Z.V.-G.); (M.K.)
| | | | - Zane Vincevica-Gaile
- Department of Environmental Science, University of Latvia, Raina Blvd. 19, LV-1586 Riga, Latvia; (A.Z.); (Z.V.-G.); (M.K.)
| | - Risto Korpinen
- Biomass Fractionation Technologies, Production Systems, Natural Resources Institute Finland, Viikinkaari 9, FI-00790 Helsinki, Finland;
| | - Maris Klavins
- Department of Environmental Science, University of Latvia, Raina Blvd. 19, LV-1586 Riga, Latvia; (A.Z.); (Z.V.-G.); (M.K.)
| |
Collapse
|
6
|
Ancuceanu R, Hovaneț MV, Miron A, Anghel AI, Dinu M. Phytochemistry, Biological, and Pharmacological Properties of Abies alba Mill. PLANTS (BASEL, SWITZERLAND) 2023; 12:2860. [PMID: 37571016 PMCID: PMC10421038 DOI: 10.3390/plants12152860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 07/24/2023] [Accepted: 08/01/2023] [Indexed: 08/13/2023]
Abstract
Abies alba Mill. (Pinaceae), silver fir, is a widespread gymnosperm species in Europe, important for its ecological, economic, social, and cultural significance, as well as for its use for food and bioremediation purposes. The various parts of the plant (leaves, branches, cones, wood, bark) are also of pharmaceutical interest due to their composition of active compounds. In the last three decades, an impressive amount of research has been dedicated to this species. The variability of the chemical composition of essential oils (whether they come from leaves, oleoresin from branches, or other parts of the plant) is impressive, even in the case of specimens collected from the same geographical area. For essential oils prepared from needles or twigs and branches, limonene, β-pinene, α-pinene, camphene, β-phellandrene, and bornyl acetate are the leading compounds, although their wide variations seem to correspond to multiple chemotypes. Both bark and wood are rich in lignans and phenolic compounds. Matairesinol is apparently the dominant lignan in bark, and secoisolariciresinol and lariciresinol are the dominant ones in wood samples. Pharmacological studies with promising results have evaluated the antioxidant effect (mainly due to essential oils), but also the antimicrobial, antitumor, probiotic, antidiabetic, anti-steatosis, and anti-psoriatic activities.
Collapse
Affiliation(s)
- Robert Ancuceanu
- Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 020956 Bucharest, Romania; (A.I.A.); (M.D.)
| | - Marilena Viorica Hovaneț
- Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 020956 Bucharest, Romania; (A.I.A.); (M.D.)
| | - Anca Miron
- Faculty of Pharmacy, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iasi, Romania;
| | - Adriana Iuliana Anghel
- Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 020956 Bucharest, Romania; (A.I.A.); (M.D.)
| | - Mihaela Dinu
- Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 020956 Bucharest, Romania; (A.I.A.); (M.D.)
| |
Collapse
|
7
|
Arya SS, More PR, Ladole MR, Pegu K, Pandit AB. Non-thermal, energy efficient hydrodynamic cavitation for food processing, process intensification and extraction of natural bioactives: A review. ULTRASONICS SONOCHEMISTRY 2023; 98:106504. [PMID: 37406541 PMCID: PMC10339045 DOI: 10.1016/j.ultsonch.2023.106504] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 06/21/2023] [Accepted: 06/24/2023] [Indexed: 07/07/2023]
Abstract
Hydrodynamic cavitation (HC) is the process of bubbles formation, expansion, and violent collapse, which results in the generation of high pressures in the order of 100-5000 bar and temperatures in the range of 727-9727 °C for just a fraction of seconds. Increasing consumer demand for high-quality foods with higher nutritive values and fresh-like sensory attributes, food processors, scientists, and process engineers are pushed to develop innovative and effective non-thermal methods as an alternative to conventional heat treatments. Hydrodynamic cavitation can play a significant role in non-thermal food processing as it has the potential to destroy microbes and reduce enzyme activity while retaining essential nutritional and physicochemical properties. As hydrodynamic cavitation occurs in a flowing liquid, there is a decrease in local pressure followed by its recovery; hence it can be used for liquid foods. It can also be used to create stable emulsions and homogenize food constituents. Moreover, this technology can extract food constituents such as polyphenols, essential oils, pigments, etc., via biomass pretreatment, cell disruption for selective enzyme release, waste valorization, and beer brewing. Other applications related to food production include water treatment, biodiesel, and biogas production. The present review discusses the application of HC in the preservation, processing, and quality improvement of food and other related applications. The reviewed examples in this paper demonstrate the potential of hydrodynamic cavitation with further expansion toward the scaling up, which looks at commercialization as a driving force.
Collapse
Affiliation(s)
- Shalini S Arya
- Food Engineering and Technology Department, Institute of Chemical Technology, NM Parekh Marg, Matunga, Mumbai, India.
| | - Pavankumar R More
- Food Engineering and Technology Department, Institute of Chemical Technology, NM Parekh Marg, Matunga, Mumbai, India
| | - Mayur R Ladole
- School of Chemical and Bioprocess Engineering, University College Dublin, Ireland
| | - Kakoli Pegu
- Food Engineering and Technology Department, Institute of Chemical Technology, NM Parekh Marg, Matunga, Mumbai, India
| | - Aniruddha B Pandit
- Chemical Engineering Department, Institute of Chemical Technology, NM Parekh Marg, Matunga, Mumbai, India
| |
Collapse
|
8
|
Benedetti G, Zabini F, Tagliavento L, Meneguzzo F, Calderone V, Testai L. An Overview of the Health Benefits, Extraction Methods and Improving the Properties of Pomegranate. Antioxidants (Basel) 2023; 12:1351. [PMID: 37507891 PMCID: PMC10376364 DOI: 10.3390/antiox12071351] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 06/24/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023] Open
Abstract
Pomegranate (Punica granatum L.) is a polyphenol-rich edible food and medicinal plant of ancient origin, containing flavonols, anthocyanins, and tannins, with ellagitannins as the most abundant polyphenols. In the last decades, its consumption and scientific interest increased, due to its multiple beneficial effects. Pomegranate is a balausta fruit, a large berry surrounded by a thick colored peel composed of exocarp and mesocarp with edible arils inside, from which the pomegranate juice can be produced by pressing. Seeds are used to obtain the seed oil, rich in fatty acids. The non-edible part of the fruit, the peel, although generally disposed as a waste or transformed into compost or biogas, is also used to extract bioactive products. This review summarizes some recent preclinical and clinical studies on pomegranate, which highlight promising beneficial effects in several fields. Although further insight is needed on key aspects, including the limited oral bioavailability and the role of possible active metabolites, the ongoing development of suitable encapsulation and green extraction techniques enabling the valorization of waste pomegranate products point to the great potential of pomegranate and its bioactive constituents as dietary supplements or adjuvants in therapies of cardiovascular and non-cardiovascular diseases.
Collapse
Affiliation(s)
- Giada Benedetti
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56120 Pisa, Italy
| | - Federica Zabini
- Istituto per la Bioeconomia, CNR, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy
| | | | - Francesco Meneguzzo
- Istituto per la Bioeconomia, CNR, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy
| | - Vincenzo Calderone
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56120 Pisa, Italy
- Interdeparmental Center of Nutrafood, University of Pisa, Via del Borghetto, 56120 Pisa, Italy
| | - Lara Testai
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56120 Pisa, Italy
- Interdeparmental Center of Nutrafood, University of Pisa, Via del Borghetto, 56120 Pisa, Italy
| |
Collapse
|
9
|
Faraloni C, Albanese L, Chini Zittelli G, Meneguzzo F, Tagliavento L, Zabini F. New Route to the Production of Almond Beverages Using Hydrodynamic Cavitation. Foods 2023; 12:935. [PMID: 36900452 PMCID: PMC10001306 DOI: 10.3390/foods12050935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 02/19/2023] [Accepted: 02/20/2023] [Indexed: 02/25/2023] Open
Abstract
Perceived as a healthy food, almond beverages are gaining ever-increasing consumer preference across nonalcoholic vegetable beverages, ranking in first place among oilseed-based drinks. However, costly raw material; time and energy consuming pre- and posttreatments such as soaking, blanching and peeling; and thermal sterilization hinder their sustainability, affordability and spread. Hydrodynamic cavitation processes were applied, for the first time, as a single-unit operation with straightforward scalability, to the extraction in water of almond skinless kernels in the form of flour and fine grains, and of whole almond seeds in the form of coarse grains, up to high concentrations. The nutritional profile of the extracts matched that of a high-end commercial product, as well as showing nearly complete extraction of the raw materials. The availability of bioactive micronutrients and the microbiological stability exceeded the commercial product. The concentrated extract of whole almond seeds showed comparatively higher antiradical activity, likely due to the properties of the almond kernel skin. Hydrodynamic cavitation-based processing might represent a convenient route to the production of conventional as well as integral and potentially healthier almond beverages, avoiding multiple technological steps, while affording fast production cycles and consuming less than 50 Wh of electricity per liter before bottling.
Collapse
Affiliation(s)
- Cecilia Faraloni
- Istituto per la Bioeconomia, CNR, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy
| | - Lorenzo Albanese
- Istituto per la Bioeconomia, CNR, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy
| | | | - Francesco Meneguzzo
- Istituto per la Bioeconomia, CNR, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy
| | | | - Federica Zabini
- Istituto per la Bioeconomia, CNR, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
10
|
Plant Extraction in Water: Towards Highly Efficient Industrial Applications. Processes (Basel) 2022. [DOI: 10.3390/pr10112233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Since the beginning of this century, the world has experienced a growing need for enabling techniques and more environmentally friendly protocols that can facilitate more rational industrial production. Scientists are faced with the major challenges of global warming and safeguarding water and food quality. Organic solvents are still widely used and seem to be hard to replace, despite their enormous environmental and toxicological impact. The development of water-based strategies for the extraction of primary and secondary metabolites from plants on a laboratory scale is well documented, with several intensified processes being able to maximize the extraction power of water. Technologies, such as ultrasound, hydrodynamic cavitation, microwaves and pressurized reactors that achieve subcritical water conditions can dramatically increase extraction rates and yields. In addition, significant synergistic effects have been observed when using combined techniques. Due to the limited penetration depth of microwaves and ultrasonic waves, scaling up entails changes to reactor design. Nevertheless, the rich academic literature from laboratory-scale investigations may contribute to the engineering work involved in maximizing mass/energy transfer. In this article, we provide an overview of current and innovative techniques for solid-liquid extraction in water for industrial applications, where continuous and semi-continuous processes can meet the high demands for productivity, profitability and quality.
Collapse
|
11
|
More PR, Jambrak AR, Arya SS. Green, environment-friendly and sustainable techniques for extraction of food bioactive compounds and waste valorization. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.08.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
12
|
Parenti O, Albanese L, Guerrini L, Zanoni B, Zabini F, Meneguzzo F. Whole wheat bread enriched with silver fir (Abies alba Mill.) needles extract: technological and antioxidant properties. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:3581-3589. [PMID: 34862604 DOI: 10.1002/jsfa.11704] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 11/29/2021] [Accepted: 12/04/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND The interest of consumers and market and scientific research for added-value foods obtained with environmentally sustainable productive chains is increasing. Silver fir (Abies alba Mill.) needles (SFNs), often by-products of forest management and logging, represent an unexploited source of bioactive compounds. RESULTS For the first time, SFN aqueous extract obtained through controlled hydrodynamic cavitation was used to enrich whole wheat flour bread. The first trial found that 35% SFNs extract addition was the absolute threshold of taste perception. The second trial investigated dough rheological properties and bread technological and antioxidant properties in samples enriched with 35% and 100% SFNs extract compared with the control (0% SFNs extract). SFNs extract significantly increased bread antioxidant capacity in both 35% and 100% SFN fresh breads by ~42.5% and ~87% respectively and in 100% SFNs bread samples after 72 h of storage by ~76%. Enrichment of 35% showed higher alveograph dough extensibility (~11%) and different bread texture in terms of hardness, springiness, and chewiness. Enrichment with 100% SFNs extract significantly improved dough and bread technological quality: it increased alveograph dough extensibility L (~18%), swelling index G (~8%), and flour strength W (~14%) and showed the highest increase in bread specific volume (~0.200 L kg-1 ). CONCLUSIONS SFNs aqueous extract produced with controlled hydrodynamic cavitation appeared a valuable technical material for the manufacturing of added-value and functional breads. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Ottavia Parenti
- Institute for Bioeconomy, National Research Council, Florence, Italy
| | - Lorenzo Albanese
- Institute for Bioeconomy, National Research Council, Florence, Italy
| | - Lorenzo Guerrini
- Department of Land, Environment, Agriculture and Forestry (TeSAF), University of Padova, Legnaro, Italy
| | - Bruno Zanoni
- Department of Agricultural, Food and Forestry Systems Management (DAGRI), University of Florence, Florence, Italy
| | - Federica Zabini
- Institute for Bioeconomy, National Research Council, Florence, Italy
| | | |
Collapse
|
13
|
Khan UM, Sameen A, Aadil RM, Shahid M, Sezen S, Zarrabi A, Ozdemir B, Sevindik M, Kaplan DN, Selamoglu Z, Ydyrys A, Anitha T, Kumar M, Sharifi-Rad J, Butnariu M. Citrus Genus and Its Waste Utilization: A Review on Health-Promoting Activities and Industrial Application. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2021; 2021:2488804. [PMID: 34795782 PMCID: PMC8595006 DOI: 10.1155/2021/2488804] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/15/2021] [Accepted: 09/28/2021] [Indexed: 11/18/2022]
Abstract
Citrus fruits such as oranges, grapefruits, lemons, limes, tangerines, and mandarins, whose production is increasing every year with the rise of consumer demand, are among the most popular fruits cultivated throughout the globe. Citrus genus belongs to the Rutaceae family and is known for its beneficial effects on health for centuries. These plant groups contain many beneficial nutrients and bioactive compounds. These compounds have antimicrobial, anticancer, antidiabetic, antiplatelet aggregation, and anti-inflammatory activities. Citrus waste, generated by citrus-processing industries in large amounts every year, has an important economic value due to richness of bioactive compounds. The present review paper has summarized the application and properties of Citrus and its waste in some fields such as food and drinks, traditional medicine practices, and recent advances in modern approaches towards pharmaceutical and nutraceutical formulations.
Collapse
Affiliation(s)
- Usman Mir Khan
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad 38000, Pakistan
| | - Aysha Sameen
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad 38000, Pakistan
| | - Rana Muhammad Aadil
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad 38000, Pakistan
| | - Muhammad Shahid
- Department of Biochemistry, Faculty of Sciences, University of Agriculture, Faisalabad 38000, Pakistan
| | - Serap Sezen
- Faculty of Engineering and Natural Science, Sabanci University, Tuzla, Istanbul 34956, Turkey
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, Istanbul 34956, Turkey
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, Istanbul 34956, Turkey
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul, Turkey
| | - Betul Ozdemir
- Department of Cardiology, Faculty of Medicine, Nigde Ömer Halisdemir University, Nigde, Turkey
| | - Mustafa Sevindik
- Bahçe Vocational High School, Osmaniye Korkut Ata University, Osmaniye 80500, Turkey
| | - Dilara Nur Kaplan
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Karabuk University, Karabuk 78050, Turkey
| | - Zeliha Selamoglu
- Department of Medical Biology, Faculty of Medicine, Nigde Ömer Halisdemir University, Nigde 51240, Turkey
| | - Alibek Ydyrys
- Biomedical Research Centre, Al-Farabi Kazakh National University, Al-Farabi Av. 71, Almaty 050040, Kazakhstan
| | - T. Anitha
- Department of Postharvest Technology, Horticultural College and Research Institute, Periyakulam 625604, Tamil Nadu, India
| | - Manoj Kumar
- Chemical and Biochemical Processing Division, ICAR–Central Institute for Research on Cotton Technology, Mumbai 400019, India
| | - Javad Sharifi-Rad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Monica Butnariu
- Banat's University of Agricultural Sciences and Veterinary Medicine “King Michael I of Romania” from Timisoara, Timisoara, Romania
| |
Collapse
|
14
|
Mattila P, Pap N, Järvenpää E, Kahala M, Mäkinen S. Underutilized Northern plant sources and technological aspects for recovering their polyphenols. ADVANCES IN FOOD AND NUTRITION RESEARCH 2021; 98:125-169. [PMID: 34507641 DOI: 10.1016/bs.afnr.2021.02.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Consumers worldwide are increasingly interested in the authenticity and naturalness of products. At the same time, the food, agricultural and forest industries generate large quantities of sidestreams that are not effectively utilized. However, these raw materials are rich and inexpensive sources of bioactive compounds such as polyphenols. The exploitation of these raw materials increases income for producers and processors, while reducing transportation and waste management costs. Many Northern sidestreams and other underutilized raw materials are good sources of polyphenols. These include berry, apple, vegetable, softwood, and rapeseed sidestreams, as well as underutilized algae species. Berry sidestreams are especially good sources of various phenolic compounds. This chapter presents the properties of these raw materials, providing an overview of the techniques for refining these materials into functional polyphenol-rich ingredients. The focus is on economically and environmentally sound technologies suitable for the pre-treatment of the raw materials, the modification and recovery of the polyphenols, as well as the formulation and stabilization of the ingredients. For example, sprouting, fermentation, and enzyme technologies, as well as various traditional and novel extraction methods are discussed. Regarding the extraction technologies, this chapter focuses on safe and green technologies that do not use organic solvents. In addition, formulation and stabilization that aim to protect isolated polyphenols during storage and extend shelflife are reviewed. The formulated polyphenol-rich ingredients produced from underutilized renewable resources could be used as sustainable, active ingredients--for example, in food and nutraceutical industries.
Collapse
Affiliation(s)
- Pirjo Mattila
- Natural Resources Institute Finland (Luke), Turku, Finland.
| | - Nora Pap
- Natural Resources Institute Finland (Luke), Jokioinen, Finland
| | - Eila Järvenpää
- Natural Resources Institute Finland (Luke), Jokioinen, Finland
| | - Minna Kahala
- Natural Resources Institute Finland (Luke), Jokioinen, Finland
| | - Sari Mäkinen
- Natural Resources Institute Finland (Luke), Jokioinen, Finland
| |
Collapse
|
15
|
Effects of Silver Fir ( Abies alba Mill.) Needle Extract Produced via Hydrodynamic Cavitation on Seed Germination. PLANTS 2021; 10:plants10071399. [PMID: 34371601 PMCID: PMC8309281 DOI: 10.3390/plants10071399] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 07/03/2021] [Accepted: 07/06/2021] [Indexed: 11/17/2022]
Abstract
This paper describes the antigerminant capacity of water extracts of silver fir needles created by means of hydrodynamic cavitation processes. Fir needles (2 kg fresh weight) collected in the winter were blended and crushed in ice, poured in water only (120 L) and processed in a controlled hydrodynamic cavitation device based on a fixed Venturi-shaped reactor. The A. alba water extract (AWE), comprising an oil-in-water emulsion of silver fir needles’ essential oil (100% AWE), was diluted in distilled water to 75% and 50% AWE, and all aqueous solutions were tested as antigerminant against four weeds and four horticultural species and compared to control (distilled water). This study shows the effective inhibitory effect of pure AWE on germination, which mainly contains limonene (15.99 ng/mL) and α-pinene (11.87 ng/mL). Seeds showed delayed germination and inhibition but also a reduction in radicle elongation in AWE treatments as compared to control. This combined effect was particularly evident in three weeds (C. canadensis, C. album and A. retrofllexus) while horticultural species showed mainly effects on the radicle elongation as found in L. sativa, P. crispum and S. lycospermum, which showed on average 58%, 32% and 28%, respectively, shorter radicles than in the control. P. sativum was not affected by AWE, thus raising the hypothesis that seed characteristics and nutrition reserve might play a role in the resistance to terpenes inhibitory effect.
Collapse
|
16
|
Review of Evidence Available on Hesperidin-Rich Products as Potential Tools against COVID-19 and Hydrodynamic Cavitation-Based Extraction as a Method of Increasing Their Production. Processes (Basel) 2020. [DOI: 10.3390/pr8050549] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Based on recent computational and experimental studies, hesperidin, a bioactive flavonoid abundant in citrus peel, stands out for its high binding affinity to the main cellular receptors of SARS-CoV-2, outperforming drugs already recommended for clinical trials. Thus, it is very promising for prophylaxis and treatment of COVID-19, along with other coexistent flavonoids such as naringin, which could help restraining the proinflammatory overreaction of the immune system. Controlled hydrodynamic cavitation processes showed the highest speed, effectiveness and efficiency in the integral and green aqueous extraction of flavonoids, essential oils and pectin from citrus peel waste. After freeze-drying, the extracted pectin showed high quality and excellent antioxidant and antibacterial activities, attributed to flavonoids and essential oils adsorbed and concentrated on its surface. This study reviews the recent evidence about hesperidin as a promising molecule, and proposes a feasible and affordable process based on hydrodynamic cavitation for the integral aqueous extraction of citrus peel waste resulting in hesperidin-rich products, either aqueous extracts or pectin tablets. The uptake of this process on a relevant scale is urged, in order to achieve large-scale production and distribution of hesperidin-rich products. Meanwhile, experimental and clinical studies could determine the effective doses either for therapeutic and preventive purposes.
Collapse
|
17
|
Controlled Hydrodynamic Cavitation: A Review of Recent Advances and Perspectives for Greener Processing. Processes (Basel) 2020. [DOI: 10.3390/pr8020220] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The 20th century has witnessed a remarkable enhancement in the demand for varieties of consumer products, ranging from food, pharmaceutical, cosmetics, to other industries. To enhance the quality of the product and to reduce the production cost, industries are gradually inclined towards greener processing technologies. Cavitation-based technologies are gaining interest among processing technologies due to their cost effectiveness in operation, minimization of toxic solvent usage, and ability to obtain superior processed products compared to conventional methods. Also, following the recent advancements, cavitation technology with large-scale processing applicability is only denoted to the hydrodynamic cavitation (HC)-based method. This review includes a general overview of hydrodynamic cavitation-based processing technologies and a detailed discussion regarding the process effectiveness. HC has demonstrated its usefulness in food processing, extraction of valuable products, biofuel synthesis, emulsification, and waste remediation, including broad-spectrum contaminants such as pharmaceuticals, bacteria, dyes, and organic pollutants of concern. Following the requirement of a specific process, HC has been implemented either alone or in combination with other process-intensifying steps, for example, catalyst, surfactant, ultraviolet (UV), hydrogen peroxide (H2O2), and ozone (O3), for better performance. The reactor set-up of HC includes orifice, slit venturi, rotor-stator, and sonolator type constrictions that initiate and control the formation of bubbles. Moreover, the future directions have also been pointed out with careful consideration of specific drawbacks.
Collapse
|
18
|
Aromatic Potential and Bioactivity of Cork Stoppers and Cork By-Products. Foods 2020; 9:foods9020133. [PMID: 32012852 PMCID: PMC7073939 DOI: 10.3390/foods9020133] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/16/2020] [Accepted: 01/23/2020] [Indexed: 11/17/2022] Open
Abstract
The characterization of natural waste sources is the first step on the reutilization process, circular economy, and global sustainability. In this work, the aromatic composition and bioactive compounds related to beneficial health effects from cork stoppers and cork by-products were assessed in order to add value to these wastes. Twenty-three aromatic compounds with industrial interest were quantified by gas chromatography coupled mass spectrometry GC–MS in both samples. Vanillins and volatile phenols were the most abundant aromatic families. Other aromatic compounds, such as aldehydes, lactones, terpenols, and alcohols, were also determined. Furthermore, the phenolic composition and the antioxidant activity were also evaluated. Overall, extracts showed high aromatic and antioxidant potential to be further used in different industrial fields. The recovery of these valuable compounds from cork stoppers and cork by-products helps to reuse them in agricultural, cosmetic, pharmaceutical, or food industries.
Collapse
|
19
|
Abstract
Hydrodynamic cavitation (HC) is a green technology that has been successfully used to intensify a number of process. The cavitation phenomenon is responsible for many effects, including improvements in mass transfer rates and effective cell-wall rupture, leading to matrix disintegration. HC is a promising strategy for extraction processes and provides the fast and efficient recovery of valuable compounds from plants and biomass with high quality. It is a simple method with high energy efficiency that shows great potential for large-scale operations. This review presents a general discussion of the mechanisms of HC, its advantages, different reactor configurations, its applications in the extraction of bioactive compounds from plants, lipids from algal biomass and delignification of lignocellulosic biomass, and a case study in which the HC extraction of basil leftovers is compared with that of other extraction methods.
Collapse
|
20
|
Kosel J, Šinkovec A, Dular M. A novel rotation generator of hydrodynamic cavitation for the fibrillation of long conifer fibers in paper production. ULTRASONICS SONOCHEMISTRY 2019; 59:104721. [PMID: 31422236 DOI: 10.1016/j.ultsonch.2019.104721] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 06/05/2019] [Accepted: 07/27/2019] [Indexed: 05/07/2023]
Abstract
Refining of cellulose pulp is a critical step in obtaining high quality paper characteristics, however, this process is slow and costly especially for refining longer conifer fibers which are the preferred source for high quality paper production and give the paper its strength. In this study, we have applied a novel rotation generator of hydrodynamic cavitation for refining conifer rich pulp samples. Our results show that the device is capable of generating intense shear forces and multiple zones of developed cavitation and is successful in increasing the drainage rate of high consistency pulp (3%). The paper produced by means of the obtained pulp has higher quality because of its higher tensile index (50.5 kN m kg-1) and burst index (3 kPa m2 g-1). These physical parameters were sufficient for newsprint paper and other paper/board quality manufacture. In addition, this laboratory scale rotation generator proved to be economically efficient in comparison to the routinely employed laboratory beaters. To our knowledge, this is the first example of using hydrodynamic cavitation for the refinement of softwood fiber pulp of standard industrial consistencies (3%).
Collapse
Affiliation(s)
- Janez Kosel
- Institute for the Protection of Cultural Heritage of Slovenia, Slovenia.
| | | | - Matevž Dular
- Faculty of Mechanical Engineering, University of Ljubljana, Slovenia
| |
Collapse
|
21
|
Arya SS, Sawant O, Sonawane SK, Show PL, Waghamare A, Hilares R, Santos JCD. Novel, Nonthermal, Energy Efficient, Industrially Scalable Hydrodynamic Cavitation – Applications in Food Processing. FOOD REVIEWS INTERNATIONAL 2019. [DOI: 10.1080/87559129.2019.1669163] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- S. S. Arya
- Food Engineering and Technology Department, Institute of Chemical Technology, Mumbai, India
- Department of Biotechnology, Engineering School of Lorena, University of São Paulo, São Paulo, Brazil
| | - O. Sawant
- Food Engineering and Technology Department, Institute of Chemical Technology, Mumbai, India
| | - Sachin K. Sonawane
- Food Science and Technology, School of Biotechnology and Bioinformatics, D. Y. Patil University, Navi Mumbai, India
| | - P. L Show
- Department of Chemical and Environmental Engineering, The University of Nottingham Malaysia Campus, Semenyih, Malaysia
| | - A. Waghamare
- Food Engineering and Technology Department, Institute of Chemical Technology, Mumbai, India
| | - Ruly Hilares
- Department of Biotechnology, Engineering School of Lorena, University of São Paulo, São Paulo, Brazil
| | - Júlio César Dos Santos
- Department of Biotechnology, Engineering School of Lorena, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
22
|
Real-Scale Integral Valorization of Waste Orange Peel via Hydrodynamic Cavitation. Processes (Basel) 2019. [DOI: 10.3390/pr7090581] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Waste orange peel represents a heavy burden for the orange juice industry, estimated in several million tons per year worldwide; nevertheless, this by-product is endowed with valuable bioactive compounds, such as pectin, polyphenols, and terpenes. The potential value of the waste orange peel has stimulated the search for extraction processes, alternative or complementary to landfilling or to the integral energy conversion. This study introduces controlled hydrodynamic cavitation as a new route to the integral valorization of this by-product, based on simple equipment, speed, effectiveness and efficiency, scalability, and compliance with green extraction principles. Waste orange peel, in batches of several kg, was processed in more than 100 L of water, without any other raw materials, in a device comprising a Venturi-shaped cavitation reactor. The extractions of pectin (with a remarkably low degree of esterification), polyphenols (flavanones and hydroxycinnamic acid derivatives), and terpenes (mainly d-limonene) were effective and efficient (high yields within a few min of process time). The biomethane generation potential of the process residues was determined. The achieved results proved the viability of the proposed route to the integral valorization of waste orange peel, though wide margins exist for further improvements.
Collapse
|