1
|
Biffani S, Ablondi M, Cipolat-Gotet C, Summer A, Mariani E, Ramírez-Díaz J, Negro A, Lotto A, Stocco G. Application of generalized additive models to explore minerals in sheep milk. J Dairy Sci 2025:S0022-0302(25)00250-4. [PMID: 40250612 DOI: 10.3168/jds.2025-26340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Accepted: 03/18/2025] [Indexed: 04/20/2025]
Abstract
This study explores the complex relationships among ovine milk minerals (Ca, P, Na, K, Mg, K, Cl, respectively) and different factors employing generalized additive mixed models (GAMM). The GAMM included milk yield (MY), parity, and breed as parametric terms, and casein, fat, lactose, pH, SCS, DIM, and sampling day as smooth functions. The objectives were to investigate how these factors could affect minerals in sheep milk and to assess whether their patterns change over time and across different concentrations of major milk components. The GAMM identified distinct patterns in the mineral concentrations between Comisana and Massese breeds, with the Massese ewes having less P, Mg, K, and Cl compared with the Comisana. Moreover, these minerals were also affected by DIM; Mg, S, and Cl were influenced by parity; and P, K, and Na changed across MY levels. Regarding milk components, all the minerals were affected by casein, fat, and lactose concentrations (excluding P for fat). Milk pH was important for Ca, K, Na, and Cl, whereas SCS affected the variability of all minerals except Ca. This study provided valuable insights on the variability of macro-minerals in sheep milk, by using GAMM and examining the trajectory of each element across factors as breed, MY, parity, and DIM, as well as across various concentrations of major milk components and their interactions. The dynamic nature of milk mineral content was evident through temporal variability, likely driven by dietary changes, environmental fluctuations, and physiological adaptations, as well as synergistic and antagonistic interactions between milk components and fixed factors. These findings enhance understanding of mineral composition in sheep milk, providing a comprehensive framework for future research on milk quality, animal health, and cheesemaking properties.
Collapse
Affiliation(s)
- Stefano Biffani
- Institute of Agricultural Biology and Biotechnology, National Research Council, Milano, Italy; Department of Veterinary Science, University of Parma, Parma, Italy
| | - Michela Ablondi
- Department of Veterinary Science, University of Parma, Parma, Italy
| | | | - Andrea Summer
- Department of Veterinary Science, University of Parma, Parma, Italy
| | - Elena Mariani
- Department of Veterinary Science, University of Parma, Parma, Italy
| | - Johanna Ramírez-Díaz
- Institute of Agricultural Biology and Biotechnology, National Research Council, Milano, Italy
| | - Alessio Negro
- Ufficio Studi, Associazione Nazionale della Pastorizia, Rome, Italy; Department of Agricultural and Environmental Sciences (DISAA), University of Milan, Milano, Italy
| | | | - Giorgia Stocco
- Department of Veterinary Science, University of Parma, Parma, Italy
| |
Collapse
|
2
|
Fereja WM, Muda C, Labena AA. Assessment of heavy metal levels in cow's milk and associated health risks in the vicinity of the MIDROC Laga Dambi gold mine in Ethiopia. J Trace Elem Med Biol 2024; 86:127529. [PMID: 39303547 DOI: 10.1016/j.jtemb.2024.127529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/31/2024] [Accepted: 09/08/2024] [Indexed: 09/22/2024]
Abstract
INTRODUCTION The possible health effects of consuming milk contaminated with heavy metals have been the subject of considerable concern worldwide. OBJECTIVE The aim of this study was to determine the level of heavy metals in cow's milk in the vicinity of MIDROC Laga Dambi gold mine and to assess their possible health risks for consumers. METHODS Nine composite samples were formed by aggregating 243 milk samples obtained in triplicates from 81 domestic milk-producing households. Inductively coupled plasma-optical emission spectroscopy was used to measure the amount of heavy metals after samples digestion under optimal conditions. RESULTS The heavy metals concentrations obtained were 13.913-7.843, 9.505-3.589, 5.972-3.147, 2.288-1.851, 0.403-0.143, 0.436-0.128, 0.26-0.153, 0.143-0.048, 0.160-ND (not detected), and 0.140-ND mgkg-1for Fe, Zn, Pb, Mn, Hg, Cr, Cd, As, Ni, and Co, respectively. Of the heavy metals identified, the levels of Pb, As, Cd, and Hg exceeded the recommended value. Based on the estimated daily intake (EDI), the total health quotient (THQ) is higher than unity even for Pb alone. It has been found that the consumption of cow milk increases the health index (HI) by 2.972. Ninety five percent of the HI in the study area was explained by the toxic heavy metals (Pb, Cd, As, and Hg) in the cow milk, which were found to be beyond the safe limit. CONCLUSION This demonstrates that there is a health risk to the population who consume cow's milk sourced from the vicinity of MIDROC Laga Dambi gold mine. To safeguard the public's health, we advised strict monitoring and legislative control for the safety of cow's milk originating from study area.
Collapse
Affiliation(s)
- Workineh Mengesha Fereja
- Department of Chemistry, College of Natural and Computational Sciences, Energy and Environment Research Center, Dilla University, 419, Dilla, Ethiopia.
| | - Chuluke Muda
- Department of Chemistry, College of Natural and Computational Sciences, Dilla University, 419, Dilla, Ethiopia.
| | - Abraham Alemayehu Labena
- Department of Chemistry, College of Natural and Computational Sciences, Dilla University, 419, Dilla, Ethiopia.
| |
Collapse
|
3
|
Kerdoun MA, Djafer R. Toxic metal levels in raw camel milk sold in the northern Algerian Sahara. FOOD ADDITIVES & CONTAMINANTS. PART B, SURVEILLANCE 2024; 17:153-160. [PMID: 38538249 DOI: 10.1080/19393210.2024.2326917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 03/02/2024] [Indexed: 06/09/2024]
Abstract
The consumption of camel milk is gaining popularity in Algeria. This study aimed to determine the concentrations of Lead (Pb), Cadmium (Cd), Nickel (Ni) and Mercury (Hg) in camel milk sold in Southeast Algeria and assess the potential health risks associated with its consumption. 120 samples of camel milk were collected from 10 farms located near the roads in the south of Algeria. Metals were measured using an atomic absorption spectrophotometer with a graphite furnace and Target Hazard Quotients (THQs) were calculated. The mean concentrations were 0.026 ± 0.013 mg/kg, 0.001 ± 0.0002 mg/kg, 0.017 ± 0.002 mg/kg and 0.0005 ± 0.0002 mg/kg for Pb, Cd, Ni and Hg. The THQ was higher for children, suggesting health risks associated with consumption of camel milk for this age group (p < .001). The primary contribution of this study is the establishment of a database on toxic metal levels in camel milk, which can be valuable to manage possible risk associated with metals in milk.
Collapse
Affiliation(s)
- Mohamed Amine Kerdoun
- Department of Pharmacy, Faculty of Medical Sciences, Kasdi Merbah University, Ouargla, Algeria
- Laboratory of Biopharmacy and Pharmatechnology, Faculty of Medical Sciences, Ferhat Abbas University, Setif, Algeria
| | - Rachid Djafer
- Toxicology Service and Poison Control Center, Ibn-Sina Hospital, Annaba University Hospital, Annaba, Algeria
- Department of Pharmacy, Faculty of Medical Sciences, Badji Mokhtar University, Annaba, Algeria
| |
Collapse
|
4
|
Newton EE, Theodoridou K, Terré M, Huws S, Ray P, Reynolds CK, Prat N, Sabrià D, Stergiadis S. Effect of dietary seaweed (Ascophyllum nodosum) supplementation on milk mineral concentrations, transfer efficiency, and hematological parameters in lactating Holstein cows. J Dairy Sci 2023; 106:6880-6893. [PMID: 37210373 PMCID: PMC10570403 DOI: 10.3168/jds.2022-23074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 04/17/2023] [Indexed: 05/22/2023]
Abstract
This study investigated the effect of feeding seaweed (Ascophyllum nodosum) to dairy cows on milk mineral concentrations, feed-to-milk mineral transfer efficiencies, and hematological parameters. Lactating Holstein cows (n = 46) were allocated to 1 of 2 diets (n = 23 each): (1) control (CON; without seaweed) and (2) seaweed (SWD; replacing 330 g/d of dried corn meal in CON with 330 g/d dried A. nodosum). All cows were fed the CON diet for 4 wk before the experiment (adaptation period), and animals were then fed the experimental diets for 9 wk. Samples included sequential 3-wk composite feed samples, a composite milk sample on the last day of each week, and a blood sample at the end of the study. Data were statistically analyzed using a linear mixed effects model with diet, week, and their interaction as fixed factors; cow (nested within diet) as a random factor; and data collected on the last day of the adaptation period as covariates. Feeding SWD increased milk concentrations of Mg (+6.6 mg/kg), P (+56 mg/kg), and I (+1,720 μg/kg). It also reduced transfer efficiency of Ca, Mg, P, K, Mn, and Zn, and increased transfer efficiency of Mo. Feeding SWD marginally reduced milk protein concentrations, whereas there was no effect of SWD feeding on cows' hematological parameters. Feeding A. nodosum increased milk I concentrations, which can be beneficial when feed I concentration is limited or in demographics or populations with increased risk of I deficiency (e.g., female adolescents, pregnant women, nursing mothers). However, care should also be taken when feeding SWD to dairy cows because, in the present study, milk I concentrations were particularly high and could result in I intakes that pose a health risk for children consuming milk.
Collapse
Affiliation(s)
- E E Newton
- School of Agriculture, Policy and Development, University of Reading, Reading, RG6 6EU, United Kingdom
| | - K Theodoridou
- Queen's University Belfast, Institute for Global Food Security, Belfast, BT9 5DL, United Kingdom.
| | - M Terré
- Department of Ruminant Production, Institute de Recerca i Tecnologia Agroalimentàries, Caldes de Montbui, 08140, Spain
| | - S Huws
- Queen's University Belfast, Institute for Global Food Security, Belfast, BT9 5DL, United Kingdom
| | - P Ray
- The Nature Conservancy, Arlington, VA 22203
| | - C K Reynolds
- School of Agriculture, Policy and Development, University of Reading, Reading, RG6 6EU, United Kingdom
| | - N Prat
- Department of Ruminant Production, Institute de Recerca i Tecnologia Agroalimentàries, Caldes de Montbui, 08140, Spain
| | - D Sabrià
- Department of Ruminant Production, Institute de Recerca i Tecnologia Agroalimentàries, Caldes de Montbui, 08140, Spain
| | - S Stergiadis
- School of Agriculture, Policy and Development, University of Reading, Reading, RG6 6EU, United Kingdom.
| |
Collapse
|
5
|
Sun N, Dang H, Zhang Y, Yang M, Zhang W, Zhao Y, Zhang H, Ji H, Zhang B. Inorganic Selenium Transformation into Organic Selenium by Monascus purpureus. Foods 2023; 12:3375. [PMID: 37761084 PMCID: PMC10529015 DOI: 10.3390/foods12183375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 09/01/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
Selenium (Se) is a trace element that plays a crucial role in metabolism; a lack of selenium reduces the body's resistance and immunity, as well as causes other physiological problems. In this study, we aim to identify favorable conditions for improving organic selenium production. The functional microbe Monascus purpureus, which is widely used in food production, was employed to optimize selenium-enriched culture conditions, and its growth mode and selenium-enriched features were investigated. Spectrophotometry, inductively coupled plasma optical emission spectrometry (ICP-OES), and HPLC (High-Performance Liquid Chromatography) were used to determine the effects of various doses of sodium selenite on the selenium content, growth, and metabolism of M. purpureus, as well as the conversion rate of organic selenium. The best culture parameters for selenium-rich M. purpureus included 7.5 mg/100 mL of selenium content in the culture medium, a pH value of 6.8, a culture temperature of 30 °C, and a rotation speed of 180 rpm. Under ideal circumstances, the mycelia had a maximum selenium concentration of approximately 239.17 mg/kg, with organic selenium accounting for 93.45%, monacoline K production reaching 70.264 mg/L, and a secondary utilization rate of external selenium of 22.99%. This study revealed a novel biological route-selenium-rich M. purpureus fermentation-for converting inorganic selenium into organic selenium.
Collapse
Affiliation(s)
- Nan Sun
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi’an 710119, China
| | - Hui Dang
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi’an 710119, China
| | - Yuyao Zhang
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi’an 710119, China
| | - Mengjie Yang
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi’an 710119, China
| | - Wei Zhang
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi’an 710119, China
| | - Yu Zhao
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi’an 710119, China
| | - Haisheng Zhang
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi’an 710119, China
| | - Hua Ji
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi’an 710119, China
| | - Baoshan Zhang
- Research Center of Fruit and Vegetable Deep-Processing Technology, Xi’an 710119, China
| |
Collapse
|
6
|
de Oliveira Filho EF, López-Alonso M, Vieira Marcolino G, Castro Soares P, Herrero-Latorre C, Lopes de Mendonça C, de Azevedo Costa N, Miranda M. Factors Affecting Toxic and Essential Trace Element Concentrations in Cow's Milk Produced in the State of Pernambuco, Brazil. Animals (Basel) 2023; 13:2465. [PMID: 37570274 PMCID: PMC10417244 DOI: 10.3390/ani13152465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 07/21/2023] [Accepted: 07/28/2023] [Indexed: 08/13/2023] Open
Abstract
The aim of this study was to provide information on the levels of toxic (Cd and Pb) and essential (Cu, Fe, and Zn) elements in cow's milk produced in the State of Pernambuco (Brazil). A total of 142 samples of raw milk were collected, and the concentrations of essential and toxic elements were determined using inductively coupled plasma-optical emission spectrometry. In almost 30% of the samples analyzed, the Pb content exceeded the maximum level established in the Brazilian legislation (0.05 mg/L). By contrast, in all the samples, the Cd content was below the maximum allowable level (0.02 mg/L). The essential trace elements Cu, Fe, and Zn were generally present at lower concentrations than reported in other studies and can be considered within the deficient range for cow's milk. Statistical and chemometric procedures were used to evaluate the main factors influencing the metal concentrations (proximity to major roads, presence of effluents, and milking method). The study findings demonstrate that the proximity of the farms to major roads influences the concentrations of Cd, Pb, and Cu and that this is the main factor explaining the Pb content of milk. In addition, the presence of effluents influenced the concentrations of Cu, while no relationship between the metal content and the milking method was observed. Thus, in accordance with the study findings, the consumption of cow's milk produced in the region can be considered a risk to public health due to the high concentrations of Pb and the low concentrations of other essential minerals such as Cu, Zn, and Fe in some of the milk samples.
Collapse
Affiliation(s)
- Emanuel Felipe de Oliveira Filho
- Department of Veterinary Medicine, Universidade Federal Rural de Pernambuco (UFRPE), Rua Dom Manoel de Medeiros, s/n, Dois Irmãos, Recife 52171-900, Brazil; (E.F.d.O.F.); (P.C.S.)
- Department of Animal Pathology, Faculty of Veterinary, Campus Terra, University of Santiago de Compostela, 27002 Lugo, Spain;
| | - Marta López-Alonso
- Department of Animal Pathology, Faculty of Veterinary, Campus Terra, University of Santiago de Compostela, 27002 Lugo, Spain;
| | | | - Pierre Castro Soares
- Department of Veterinary Medicine, Universidade Federal Rural de Pernambuco (UFRPE), Rua Dom Manoel de Medeiros, s/n, Dois Irmãos, Recife 52171-900, Brazil; (E.F.d.O.F.); (P.C.S.)
| | - Carlos Herrero-Latorre
- Research Institute on Chemical and Biological Analysis, Analytical Chemistry, Nutrition and Bromatology Department, Faculty of Sciences, Campus Terra, University of Santiago de Compostela, 27002 Lugo, Spain;
| | - Carla Lopes de Mendonça
- Clinic of Cattle of Garanhuns/UFRPE, Campus Garanhuns, Av. Bom Pastor–Boa Vista, Garanhuns 55292-270, Brazil; (C.L.d.M.); (N.d.A.C.)
| | - Nivaldo de Azevedo Costa
- Clinic of Cattle of Garanhuns/UFRPE, Campus Garanhuns, Av. Bom Pastor–Boa Vista, Garanhuns 55292-270, Brazil; (C.L.d.M.); (N.d.A.C.)
| | - Marta Miranda
- Department of Anatomy, Animal Production and Clinical Veterinary Sciences, Faculty of Veterinary, University of Santiago de Compostela, 27002 Lugo, Spain
| |
Collapse
|
7
|
Oloyede OO, Barros AI, Oloyede UN, de Macedo V, Morenikeji OA, Urquieta-Gonzalez EA. Elemental composition of marketed milk from Nigeria and Brazil using ICP-OES: Health risk assessment study. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
8
|
Sizova E, Yausheva E, Marshinskaia O, Kazakova T, Khlopko Y, Lebedev S. Elemental composition of the hair and milk of black-spotted cows and its relationship with intestinal microbiome reorganization. Vet World 2022; 15:2565-2574. [PMID: 36590114 PMCID: PMC9798049 DOI: 10.14202/vetworld.2022.2565-2574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 09/30/2022] [Indexed: 11/16/2022] Open
Abstract
Background and Aim The cattle breeding system is facing severe problems associated with the increased negative impact of various human activity areas on the environment and the bodies of farm animals. The use of heavy metals in different production areas leads to their accumulation in the environment due to the ingestion of animals and humans through animal products. This study aimed to assess the elemental composition of the hair and milk of black-spotted cows and to identify the relationship between the content of toxic and essential elements and the state of the intestinal microbiome. Materials and Methods The element status was estimated by studying the chemical composition of the biosubstrates using inductively coupled plasma-mass spectroscopy. Based on the analysis of hair, the elemental composition, and the use of the coefficient of toxic load, two groups of animals were formed: Group I, which included cows with a lower load factor, and Group II, which included cows with a higher load factor. Results An increase in the heavy metal concentrations in the hair and milk of animals in Group II was observed. The As, Fe, Pb, Al, Co, Ni, and V concentrations in the hair of cows from Group II increased relative to Group I by 19%, 29%, 24.5%, 32.3%, 35.6%, 21.5%, and 18.2%, respectively. There was a significant increase in the level of Fe by 11.5%, Cr by 8.25%, Mn by 17.6%, Pb by 46.1%, and Cd by 25% in Group II compared with Group I in the assessment of elemental milk composition. There were no apparent changes in the intestinal microbiome of Group II. Conclusion Some heavy metals were accumulated in the bodies and milk of animals. This shows a high probability of heavy metals causing harm to the health of animals and humans.
Collapse
Affiliation(s)
- Elena Sizova
- Federal Research Centre of Biological Systems and Agrotechnologies of the Russian Academy of Sciences, 460000 Orenburg, Russia
| | - Elena Yausheva
- Federal Research Centre of Biological Systems and Agrotechnologies of the Russian Academy of Sciences, 460000 Orenburg, Russia
| | - Olga Marshinskaia
- Federal Research Centre of Biological Systems and Agrotechnologies of the Russian Academy of Sciences, 460000 Orenburg, Russia
| | - Tatiana Kazakova
- Federal Research Centre of Biological Systems and Agrotechnologies of the Russian Academy of Sciences, 460000 Orenburg, Russia,Corresponding author: Tatiana Kazakova, e-mail: Co-authors: ES: , EY: , OM: , YK: , SL:
| | - Yuriy Khlopko
- Institute for Cellular and Intracellular Symbiosis of the Ural Branch of the Russian Academy of Sciences, 460000 Orenburg, Russia
| | - Svyatoslav Lebedev
- Federal Research Centre of Biological Systems and Agrotechnologies of the Russian Academy of Sciences, 460000 Orenburg, Russia
| |
Collapse
|
9
|
Macro Minerals and Trace Elements in Milk of Dairy Buffaloes and Cows Reared in Mediterranean Areas. BEVERAGES 2022. [DOI: 10.3390/beverages8030051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Aim of this study was to evaluate the differences in Ca, P, K, Na, Mg, Zn, Fe, Cu, Mn, Se, Mo, Co, Li, B, Ti, Rb, and Sr concentrations in milk from buffaloes and cows reared in the same farm in Mediterranean areas and fed diets including the same ingredients. Individual milk samples were obtained from 32 Mediterranean buffaloes and 29 Italian Friesian cows and samples of milk, dietary ingredients and drinking water were analyzed for the investigated chemical elements by inductively coupled plasma-mass spectrometry. Data about milk element concentrations were processed by one-way analysis of variance. Buffalo milk contains higher concentrations of Ca, P, Mg, Zn, Fe, Cu, B, Ti, and Sr, and lower concentrations of K, Na, Mo, Li, and Rb compared to cow milk, whereas milk from both species contains similar concentrations of Mn, Se, and Co. The concentrations of the investigated elements in the diet were similar for both species and the differences observed between buffalo and cow milk were not dependent on environmental factors.
Collapse
|
10
|
Kamal GM, Rehmani MN, Iqbal SZ, Uddin J, Nazir S, Rehman JU, Hussain AI, Mousavi Khaneghah A. The determination of potentially toxic elements (PTEs) in milk from the Sothern Cities of Punjab, Pakistan: a health risk assessment study. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
11
|
Marrugo Padilla A, Rizzo G, Smaldini PL, Vaccaro J, Méndez Cuadro D, Rodríguez Cavallo E, Docena GH. Carbonylation induced by antibiotic and pesticide residues on casein increases its IgE binding and allergenicity. Free Radic Res 2022; 56:28-39. [DOI: 10.1080/10715762.2022.2032020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Albeiro Marrugo Padilla
- Analytical Chemistry and Biomedicine Group. Campus of Zaragocilla ancient building Cread. University of Cartagena. Cartagena-Colombia.
| | - Gastón Rizzo
- Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP), UNLP, CONICET, asociado a CIC PBA, Facultad de Ciencias Exactas, Departamento de Ciencias Biológicas, La Plata, Argentina
| | - Paola L. Smaldini
- Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP), UNLP, CONICET, asociado a CIC PBA, Facultad de Ciencias Exactas, Departamento de Ciencias Biológicas, La Plata, Argentina
| | - Julián Vaccaro
- Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP), UNLP, CONICET, asociado a CIC PBA, Facultad de Ciencias Exactas, Departamento de Ciencias Biológicas, La Plata, Argentina
| | - Darío Méndez Cuadro
- Analytical Chemistry and Biomedicine Group. Campus of Zaragocilla ancient building Cread. University of Cartagena. Cartagena-Colombia.
| | - Erika Rodríguez Cavallo
- Analytical Chemistry and Biomedicine Group. Campus of Zaragocilla ancient building Cread. University of Cartagena. Cartagena-Colombia.
| | - Guillermo H. Docena
- Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP), UNLP, CONICET, asociado a CIC PBA, Facultad de Ciencias Exactas, Departamento de Ciencias Biológicas, La Plata, Argentina
| |
Collapse
|
12
|
Barone G, Yazdi SR, Lillevang SK, Ahrné L. Calcium: A comprehensive review on quantification, interaction with milk proteins and implications for processing of dairy products. Compr Rev Food Sci Food Saf 2021; 20:5616-5640. [PMID: 34622552 DOI: 10.1111/1541-4337.12844] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 09/01/2021] [Accepted: 09/02/2021] [Indexed: 12/22/2022]
Abstract
Calcium (Ca) is a key micronutrient of high relevance for human nutrition that also influences the texture and taste of dairy products and their processability. In bovine milk, Ca is presented in several speciation forms, such as complexed with other milk components or free as ionic calcium while being distributed between colloidal and serum phases of milk. Partitioning of Ca between these phases is highly dynamic and influenced by factors, such as temperature, ionic strength, pH, and milk composition. Processing steps used during the manufacture of dairy products, such as preconditioning, concentration, acidification, salting, cooling, and heating, all contribute to modify Ca speciation and partition, thereby influencing product functionality, product yield, and fouling of equipment. This review aims to provide a comprehensive understanding of the influence of Ca partition on dairy products properties to support the development of kinetics models to reduce product losses and develop added-value products with improved functionality. To achieve this objective, approaches to separate milk phases, analytical approaches to determine Ca partition and speciation, the role of Ca on protein-protein interactions, and their influence on processing of dairy products are discussed.
Collapse
Affiliation(s)
- Giovanni Barone
- Department of Food Science, Ingredients and Dairy Technology, University of Copenhagen, Frederiksberg, Denmark
| | | | | | - Lilia Ahrné
- Department of Food Science, Ingredients and Dairy Technology, University of Copenhagen, Frederiksberg, Denmark
| |
Collapse
|
13
|
|
14
|
Majumder S, Jung D, Ronholm J, George S. Prevalence and mechanisms of antibiotic resistance in Escherichia coli isolated from mastitic dairy cattle in Canada. BMC Microbiol 2021; 21:222. [PMID: 34332549 PMCID: PMC8325273 DOI: 10.1186/s12866-021-02280-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 06/28/2021] [Indexed: 01/22/2023] Open
Abstract
Background Bovine mastitis is the most common infectious disease in dairy cattle with major economic implications for the dairy industry worldwide. Continuous monitoring for the emergence of antimicrobial resistance (AMR) among bacterial isolates from dairy farms is vital not only for animal husbandry but also for public health. Methods In this study, the prevalence of AMR in 113 Escherichia coli isolates from cases of bovine clinical mastitis in Canada was investigated. Kirby-Bauer disk diffusion test with 18 antibiotics and microdilution method with 3 heavy metals (copper, zinc, and silver) was performed to determine the antibiotic and heavy-metal susceptibility. Resistant strains were assessed for efflux and ß-lactamase activities besides assessing biofilm formation and hemolysis. Whole-genome sequences for each of the isolates were examined to detect the presence of genes corresponding to the observed AMR and virulence factors. Results Phenotypic analysis revealed that 32 isolates were resistant to one or more antibiotics and 107 showed resistance against at least one heavy metal. Quinolones and silver were the most efficient against the tested isolates. Among the AMR isolates, AcrAB-TolC efflux activity and ß-lactamase enzyme activities were detected in 13 and 14 isolates, respectively. All isolates produced biofilm but with different capacities, and 33 isolates showed α-hemolysin activity. A positive correlation (Pearson r = + 0.89) between efflux pump activity and quantity of biofilm was observed. Genes associated with aggregation, adhesion, cyclic di-GMP, quorum sensing were detected in the AMR isolates corroborating phenotype observations. Conclusions This investigation showed the prevalence of AMR in E. coli isolates from bovine clinical mastitis. The results also suggest the inadequacy of antimicrobials with a single mode of action to curtail AMR bacteria with multiple mechanisms of resistance and virulence factors. Therefore, it calls for combinatorial therapy for the effective management of AMR infections in dairy farms and combats its potential transmission to the food supply chain through the milk and dairy products. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-021-02280-5.
Collapse
Affiliation(s)
- Satwik Majumder
- Department of Food Science and Agricultural Chemistry, McGill University, Macdonald Campus, 21111 Lakeshore Ste Anne de Bellevue, H9X 3V9, Quebec, Canada
| | - Dongyun Jung
- Department of Food Science and Agricultural Chemistry, McGill University, Macdonald Campus, 21111 Lakeshore Ste Anne de Bellevue, H9X 3V9, Quebec, Canada
| | - Jennifer Ronholm
- Department of Food Science and Agricultural Chemistry, McGill University, Macdonald Campus, 21111 Lakeshore Ste Anne de Bellevue, H9X 3V9, Quebec, Canada. .,Department of Animal Science, McGill University, Macdonald Campus, 21111 Lakeshore Ste Anne de Bellevue, H9X 3V9, Quebec, Canada.
| | - Saji George
- Department of Food Science and Agricultural Chemistry, McGill University, Macdonald Campus, 21111 Lakeshore Ste Anne de Bellevue, H9X 3V9, Quebec, Canada.
| |
Collapse
|
15
|
Domingo JL. Concentrations of toxic elements (As, Cd, Hg and Pb) in cow milk: A review of the recent scientific literature. INT J DAIRY TECHNOL 2021. [DOI: 10.1111/1471-0307.12764] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Jose L. Domingo
- Laboratory of Toxicology and Environmental Health School of Medicine Universitat Rovira i Virgili San Llorenç 21 43201 Reus CataloniaSpain
| |
Collapse
|
16
|
Boudebbouz A, Boudalia S, Bousbia A, Habila S, Boussadia MI, Gueroui Y. Heavy metals levels in raw cow milk and health risk assessment across the globe: A systematic review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 751:141830. [PMID: 33182002 DOI: 10.1016/j.scitotenv.2020.141830] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 08/15/2020] [Accepted: 08/18/2020] [Indexed: 06/11/2023]
Abstract
This systematic review presents the potential toxicity of heavy metals such as lead (Pb), mercury (Hg), cadmium (Cd), iron (Fe), nickel (Ni), aluminum (Al), and copper (Cu) in raw cow milk, focusing on their contamination sources and on the assessment of the related human health risk. Multiple keywords such as "raw cow milk, heavy metals, and human health" were used to search in related databases. A total of 60 original articles published since 2010 reporting the levels of these metals in raw cow's milk across the world were reviewed. Data showed that the highest levels of Ni (833 mg/L), Pb (60 mg/L), Cu (36 mg/L) were noticed in raw cow milk collected in area consists of granites and granite gneisses in India, while the highest level of Cd (12 mg/L) was reported in barite mining area in India. Fe values in raw cow milk samples were above the WHO maximum limit (0.37 mg/L) with highest values (37.02 mg/L) recorded in India. The highest Al level was (22.50 mg/L) reported for raw cow's milk collected close to food producing plants region in Turkey. The Target Hazard Quotients (THQ) values of Hg were below 1 suggesting that milk consumers are not at a non-carcinogenic risk except in Faisalabad province (Pakistan) where THQ values = 7.7. For the other heavy metals, the THQ values were >1 for Pb (10 regions out of 70), for Cd (6 regions out of 59), for Ni (3 out of 29), and for Cu (3 out of 54). Exposure to heavy metals is positively associated with diseases developments. Moreover, data actualization and continuous monitoring are necessary and recommended to evaluate heavy metals effects in future studies.
Collapse
Affiliation(s)
- Ali Boudebbouz
- Département d'Écologie et Génie de l'Environnement, Université 8 Mai 1945 Guelma, BP 4010, Guelma 24000, Algeria; Laboratoire de Biologie, Eau et Environnement, Université 8 Mai 1945 Guelma, BP 4010, Guelma 24000, Algeria
| | - Sofiane Boudalia
- Département d'Écologie et Génie de l'Environnement, Université 8 Mai 1945 Guelma, BP 4010, Guelma 24000, Algeria; Laboratoire de Biologie, Eau et Environnement, Université 8 Mai 1945 Guelma, BP 4010, Guelma 24000, Algeria.
| | - Aissam Bousbia
- Département d'Écologie et Génie de l'Environnement, Université 8 Mai 1945 Guelma, BP 4010, Guelma 24000, Algeria; Laboratoire de Biologie, Eau et Environnement, Université 8 Mai 1945 Guelma, BP 4010, Guelma 24000, Algeria
| | - Safia Habila
- Laboratoire de Pharmocologie et de Phytochimie, Université Mohammed Seddik Benyahia Jijel, Algeria
| | - Meriem Imen Boussadia
- Département de Biologie, Université 8 Mai 1945 Guelma, BP 4010, Guelma 24000, Algeria
| | - Yassine Gueroui
- Département de Biologie, Université 8 Mai 1945 Guelma, BP 4010, Guelma 24000, Algeria
| |
Collapse
|
17
|
Pietrzak-Fiećko R, Kamelska-Sadowska AM. The Comparison of Nutritional Value of Human Milk with Other Mammals' Milk. Nutrients 2020; 12:E1404. [PMID: 32422857 PMCID: PMC7284997 DOI: 10.3390/nu12051404] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 05/08/2020] [Accepted: 05/09/2020] [Indexed: 11/30/2022] Open
Abstract
(1) Background: The variation in the concentration of different components found in milk depends on mammalian species, genetic, physiological, nutritional factors, and environmental conditions. Here, we analyse, for the first time, the content of different components (cholesterol concentration and fatty acids composition as well as the overall fat and mineral content determined using the same analytical methods) in milk of different mammal species. (2) Methods: The samples (n = 52) of human, cow, sheep, goat and mare milk were analyzed in triplicate for: cholesterol concentration, fatty acids profile and fat and mineral content (calcium, magnesium, sodium, potassium, iron, zinc). (3) Results: The highest fat content was reported in sheep milk (7.10 ± 3.21 g/dL). The highest cholesterol concentration was observed in bovine (20.58 ± 4.21 mg/dL) and sheep milk (17.07 ± 1.18 mg/dL). The saturated fatty acids were the lowest in human milk (46.60 ± 7.88% of total fatty acids). Goat milk had the highest zinc (0.69 ± 0.17 mg/dL), magnesium (17.30 ± 2.70 mg/dL) and potassium (183.60 ± 17.20 mg/dL) content. Sheep milk had the highest sodium (52.10 ± 3.20 mg/dL) and calcium (181.70 ± 17.20 mg/dL) concentration values. (4) Conclusions: The differences in nutritional value of milk could be perceived as a milk profile marker, helping to choose the best food for human nutrition.
Collapse
Affiliation(s)
- Renata Pietrzak-Fiećko
- Department of Commodities and Food Analysis, Faculty of Food Sciences, University of Warmia and Mazury in Olsztyn, 1 Cieszyński Square, 10-726 Olsztyn, Poland;
| | - Anna M. Kamelska-Sadowska
- Department of Rehabilitation and Orthopedics, Collegium Medicum, University of Warmia and Mazury in Olsztyn, 2 Oczapowskiego Street, 10-719 Olsztyn, Poland
- Clinic of Rehabilitation, Provincial Specialist Children’s Hospital in Olsztyn, 18A Żołnierska Street, 10-561 Olsztyn, Poland
| |
Collapse
|
18
|
Gebreyowhans S, Zhang S, Pang X, Yang B, Wang T, Wu Z, Lu J, Lv J. Changes in texture, composition and sensory characteristics of Camembert cheese made from a mixture of goat milk and cow milk during ripening. INT J DAIRY TECHNOL 2020. [DOI: 10.1111/1471-0307.12699] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Solomon Gebreyowhans
- Key Laboratory of Agro‐Food Processing and Quality Control Institute of Food Science and Technology Chinese Academy of Agricultural Sciences Beijing 100193 China
- Tigray Agricultural Research Institute Mekelle Ethiopia
| | - Shuwen Zhang
- Key Laboratory of Agro‐Food Processing and Quality Control Institute of Food Science and Technology Chinese Academy of Agricultural Sciences Beijing 100193 China
| | - Xiaoyang Pang
- Key Laboratory of Agro‐Food Processing and Quality Control Institute of Food Science and Technology Chinese Academy of Agricultural Sciences Beijing 100193 China
| | - Baoyu Yang
- Key Laboratory of Agro‐Food Processing and Quality Control Institute of Food Science and Technology Chinese Academy of Agricultural Sciences Beijing 100193 China
| | - Tong Wang
- Key Laboratory of Agro‐Food Processing and Quality Control Institute of Food Science and Technology Chinese Academy of Agricultural Sciences Beijing 100193 China
| | - Zheng Wu
- Key Laboratory of Agro‐Food Processing and Quality Control Institute of Food Science and Technology Chinese Academy of Agricultural Sciences Beijing 100193 China
| | - Jing Lu
- Key Laboratory of Agro‐Food Processing and Quality Control Institute of Food Science and Technology Chinese Academy of Agricultural Sciences Beijing 100193 China
| | - Jiaping Lv
- Key Laboratory of Agro‐Food Processing and Quality Control Institute of Food Science and Technology Chinese Academy of Agricultural Sciences Beijing 100193 China
| |
Collapse
|