1
|
Huda KU, Ahmad A, Mushtaq Z, Raza MA, Moreno A, Saeed F, Afzaal M. Development of ultrasonic-assisted gelatin-based biodegradable packaging film incorporated with turmeric extract for the shelf-life extension of chicken minced meat. Int J Biol Macromol 2025; 306:141558. [PMID: 40043995 DOI: 10.1016/j.ijbiomac.2025.141558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 02/18/2025] [Accepted: 02/25/2025] [Indexed: 03/09/2025]
Abstract
This study aims to develop the gelatin-based packaging film incorporated with turmeric extract to enhance the shelf life of a minced chicken. The films were subjected to functional, morphological and physicochemical characterization. The results showed that ethanolic extract of turmeric has a higher amount of turmerone and ar-turmerone along with some other bioactive compounds. The antioxidant activity of turmeric extract (TE) was (TPC 15 ± 0.9 mg GAE/g, DPPH 87 ± 7.5 %, FRAP 4.8 ± 0.05 mmol Trolox eq/100 g, ABTS 714.48 ± 22 %). FTIR spectra showed slight changes in their amide regions with the addition of TE. XRD indicated that characteristic peak 2θ ≈ 13° in the control film and T1 while it disappeared in T2. SEM micrographs showed that the control film and T1 have uniformity, while T2 showed some irregularities. UV transmission was decreased with the addition of TE in the films as compared to control films. The physical tests of the films showed that film solubility (16 ± 2.1-26 ± 3), moisture content (10 ± 1-16.1 ± 2.2), tensile strength (8.1 ± 1.3-8.8 ± 0.9) and WVP (8.4 ± 1.5-10 ± 1.7) decreased by increasing the concentration of turmeric extract while thickness (0.038 ± 0.002-0.045 ± 0.003) and EAB (68 ± 7-71.9 ± 8) increased. Meanwhile, the films effectively inhibited the lipid oxidation and growth of microbes to extend the shelf-life of meat.
Collapse
Affiliation(s)
- Kashaf Ul Huda
- Department of Food Science, Government College University Faisalabad, Pakistan
| | - Awais Ahmad
- Department of Food Science, Government College University Faisalabad, Pakistan
| | - Zarina Mushtaq
- Department of Food Science, Government College University Faisalabad, Pakistan
| | | | - Andres Moreno
- Department of Organic Chemistry, Faculty of Chemical Sciences and Technologies, University of Castilla La Mancha, 13071 Ciudad Real, Spain
| | - Farhan Saeed
- Department of Food Science, Government College University Faisalabad, Pakistan
| | - Muhammad Afzaal
- Department of Food Science, Government College University Faisalabad, Pakistan
| |
Collapse
|
2
|
Zhang Y, Lu J, Cui K, Wang H, Su J, Zhang W, Jiang W. The encapsulation strategies of clove essential oil enhance its delivery effect in food preservation applications. Food Chem 2025; 484:144465. [PMID: 40300405 DOI: 10.1016/j.foodchem.2025.144465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 04/15/2025] [Accepted: 04/20/2025] [Indexed: 05/01/2025]
Abstract
Food supply chain faces challenges from quality degradation, microbial contamination, and chemical synthetic fungicides. Recently, the remarkable food preserving ability and biological activity of natural clove essential oil (CEO) has gained significant attention. However, its application is limited by volatility, photothermal sensitivity, and inherent odor. To this end, encapsulation strategies have been attempted on CEO to enhance its bioavailability, as well as their efficacy in food preservation scenarios. This study outlines CEO's chemistry and delves into its antimicrobial/antioxidant mechanisms. Subsequently, latest advances in encapsulation strategies for CEO in food preservation are comprehensively reviewed, including film blending, emulsification techniques, polyelectrolyte complexation, ion gelation, etc. The encapsulation enhances CEO's benefits, augmenting its long-term bioavailability in diverse food preservation systems. Finally, CEO's security and limitations are also discussed in-depth. This work aims to compile recent trends in encapsulation strategies for active substances and guide judicious utilize for natural CEO preservative.
Collapse
Affiliation(s)
- Yiqin Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; College of Food Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Jingxuan Lu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Kuanbo Cui
- Agricultural Mechanization Institute, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China
| | - Han Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Jiaqi Su
- Department of Health Sciences and Technology, ETH, Zurich, Zurich, Switzerland.
| | - Wanli Zhang
- College of Food Science and Engineering, Hainan University, Haikou 570228, PR China.
| | - Weibo Jiang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
3
|
Dardari O, Benzaouia MA, El Idrissi A, Channab BE, Benjellound GR, El Gharrak A, El Ouardi M, El Kadib A. Anthocyanin and thyme oil embedded carrageenan-PVA towards bioactive and pH-sensitive food-packaging materials. Int J Biol Macromol 2025; 310:143213. [PMID: 40250673 DOI: 10.1016/j.ijbiomac.2025.143213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 04/08/2025] [Accepted: 04/14/2025] [Indexed: 04/20/2025]
Abstract
Consumer interest in smart food packaging is rapidly growing due to its ability to monitor food quality in real time. These packages not only track changes in the product but also help prevent microbial growth, extending food shelf life and safety. A prime example is anthocyanin-containing packaging, which visually indicates pH changes through color shifts. We herein illustrate this approach by designing biocompatible and biodegradable packaging containing anthocyanin and thyme oil entrapping bio-based carrageenan (CR) blended with polyvinylalcool (PVA) films. Incorporating thyme oil and anthocyanin into carrageenan/polyvinyl alcohol (CR/PVA) films has significantly enhanced the desired mechanical properties of the biodegradable packaging. Specifically, flexibility increased by 20 % compared to the pristine CR/PVA film. Moreover, the physical properties of the films improved, with a reduction in water vapor permeability (WVP) from 1.74 to 1.30 and an increase in the water contact angle (WCA) from 60.5° to 89.5°, indicating enhanced hydrophobicity. Additionally, the resulting films exhibited substantial antimicrobial potential particularly against Escherichia coli and Staphylococcus aureus, along with strong antioxidant properties, surpassing the performance of the original CR/PVA films. The incorporation of anthocyanin endowed the films with high pH sensitivity, enabling effective visual detection of pH changes. Stability tests showed that anthocyanins degrade under temperature and light exposure. However, their incorporation into CR/PVA films significantly improved stability by reducing degradation. This enhancement highlights their potential for smart, protective food packaging.
Collapse
Affiliation(s)
| | | | - Ayoub El Idrissi
- Special Glass Key Lab of Hainan Province, School of Materials Science and Engineering, Hainan University, Haikou 570228, PR China
| | - Badr-Eddine Channab
- Center of Excellence for Soil and Fertilizer Research in Africa (CESFRA), College for Sustainable Agriculture and Environmental Sciences, Mohammed VI Polytechnic University (UM6P), Lot 660, Hay Moulay Rachid, 43150 Ben Guerir, Morocco
| | - Ghita Radi Benjellound
- Hassan 2 University of Casablanca, Laboratory of Biochemistry, Environment and Agri-Food, LBEA URAC36, 20650, Morocco
| | - Abdelouahed El Gharrak
- Laboratory of Materials, Catalysis and Valorization of Natural Resources, URAC 24, FST, Hassan II-Mohammedia University, B.P. 146, 20650, Morocco
| | - Mohamed El Ouardi
- Aix Marseille University, University of Toulon, CNRS, IM2NP, CS 60584, CEDEX 9, F 83041 Toulon, France
| | | |
Collapse
|
4
|
Eshaghi Shahri MM, Noshirvani N, Kadivar M. High performance carbohydrate-based films incorporated with thyme essential oils/zinc-based metal-organic frameworks for cheese preservation. Int J Biol Macromol 2025; 306:141756. [PMID: 40049482 DOI: 10.1016/j.ijbiomac.2025.141756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 02/27/2025] [Accepted: 03/03/2025] [Indexed: 03/27/2025]
Abstract
This study addresses the preparation and characterization of high performance multifunctional carboxymethyl cellulose (CMC) films loaded with zinc-based metal-organic frameworks (Zn-MOFs) and thyme essential oil (TEO). The effects of introducing Zn-MOFs and TEO on the morphological, mechanical, thermal, water barrier, optical, antioxidant, and antimicrobial properties of the films were systematically investigated. SEM results showed a uniform distribution of Zn-MOFs in the polymer matrix, which improved the tensile strength, water barrier, thermal stability, UV shielding, antimicrobial and antioxidant properties of films. The incorporation of 1, 2, and 3 % Zn-MOFs and 500 mL TEO into CMC-based films resulted in a significant increase in antioxidant activity by 38, 43, and 56 %, respectively. CMC-based films loaded with Zn-MOFs and TEO showed excellent antifungal activity against Penicillium digitatum and Aspergillus niger. These superior antioxidant and antimicrobial properties can be attributed to the high absorption effect of Zn-MOFs due to their high porosity and maintaining a high content of bioactive compounds in the film matrix. The films produced were proven to play a crucial role in controlling microbial growth, reducing weight loss and lowering the pH of soft cheese and ultimately extending its shelf life.
Collapse
Affiliation(s)
| | - Nooshin Noshirvani
- Department of Food Science and Technology, Tuyserkan Faculty of Engineering & Natural Resources, Bu-Ali Sina University, Hamedan, Iran.
| | - Mahdi Kadivar
- Department of Food Science, College of Agriculture, Isfahan University of Technology, Isfahan, Iran
| |
Collapse
|
5
|
Shen L, Chen C, Xie J. Development and characterization of starch/polyvinyl alcohol active films with slow-release property by utilizing Mucorracemosus Fresenius mycelium to load with clove essential oil. Int J Biol Macromol 2025; 295:139610. [PMID: 39793829 DOI: 10.1016/j.ijbiomac.2025.139610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 01/04/2025] [Accepted: 01/06/2025] [Indexed: 01/13/2025]
Abstract
The controlled release active packaging film represents a novel technology that always can effectively slow down the release of active agents, extending their efficacy. Mucorracemosus Fresenius (MF) mycelium was prepared and used as an adsorption carrier to load clove essential oil (CEO). The CEO/MF complexes were incorporated into the starch/polyvinyl alcohol (Starch/PVA) matrix to develop active films. The effects of MF content on the films' properties were investigated. MF exhibited the internal hollow structure with diaphragm inside and showed antioxidant activity. The adsorption rate of MF on CEO was 238.09 %. As MF increased, the tensile strength, water contact angle and gas barrier properties (water vapor and oxygen) of the films containing CEO enhanced. The release rate of CEO from the films into food simulant (10 % ethanol) slowed down significantly with increasing of MF. Compared to the film without MF, the film with highest MF delayed 33 h to reach equilibrium. The films with different content of MF showed different antioxidant and antibacterial activities, and different preservation effects on shrimp. It showed a great prospect to develop controlled release active films by utilizing MF mycelium as an adsorption material, which enriched the technical solutions for developing controlled release active packaging films.
Collapse
Affiliation(s)
- Lan Shen
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Chenwei Chen
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai 201306, China; Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai 201306, China.
| | - Jing Xie
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai 201306, China; Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai 201306, China.
| |
Collapse
|
6
|
Atteya M, Romeilah RM, Ramadan KMA, El-Beltagi HS, Gaber AM, Al Hashedi SA, AboZaid NA, Mahmoud MAA, Youssef R, Mohamed RA, Bendary ES. Clove and Thyme Essential Oils: From Molecular Docking to Food Application-A Study of Their Preservative Properties in Buttermilk. ACS OMEGA 2025; 10:5119-5137. [PMID: 39959075 PMCID: PMC11822516 DOI: 10.1021/acsomega.4c11538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 01/14/2025] [Accepted: 01/22/2025] [Indexed: 02/18/2025]
Abstract
This study investigates clove (CEO) and thyme (TEO) essential oils as natural preservatives, focusing on their composition, antimicrobial and antioxidant properties, and application in buttermilk. In the first part, GC-MS analysis identified eugenol (73.45%) and thymol (27.53%) as the major bioactive compounds in CEO and TEO, respectively. Antioxidant activity assays revealed strong performance for CEO, with EC50 values of 0.058 mg/mL for H2O2 scavenging and 0.063 mg/mL for DPPH, significantly outperforming TEO (EC50 values of 0.102 and 0.106 mg/mL, respectively). In vitro antibacterial assays demonstrated CEO's superior efficacy, achieving minimum inhibitory concentrations (MICs) as low as 25 mg/L against Gram-positive bacteria and 50 mg/L against Gram-negative bacteria, while TEO exhibited MICs ranging from 50 to 100 mg/L. Molecular docking highlighted selective binding of eugenol (-6.5 kcal/mol) and thymol (-5.9 kcal/mol) to bacterial enzymes, underpinning their selective antimicrobial mechanisms. In the second part, buttermilk was fortified with CEO and TEO, and sensory analysis revealed that TEO significantly enhanced aroma and taste, achieving a mean score of 7.93 for taste at 100 μg/mL, while CEO exhibited a more neutral sensory impact with a mean score of 6.14 at the same concentration. Additionally, CEO and TEO supplementation promoted LAB growth, sustaining beneficial microbial populations over a 5-day storage period and preserving microbiological quality comparable to untreated samples. These findings highlight CEO and TEO as effective natural preservatives for functional food systems, combining selective antimicrobial, antioxidant, and sensory benefits.
Collapse
Affiliation(s)
- Mohamed
Raafat Atteya
- Department
of Physical Therapy, College of Applied Medical Sciences, University of Hail, Hail 81451, Saudi
Arabia
| | - Ramy M Romeilah
- Department
of Chemistry, College of Science, University
of Hail, Hail 81451, Saudi Arabia
- Biochemistry
Department, Faculty of Agriculture, Cairo
University, Giza 12613, Egypt
| | - Khaled M. A. Ramadan
- Central
Laboratories, Department of Chemistry, King
Faisal University, Al-Ahsa 31982, Saudi Arabia
- Department
of Agricultural Biochemistry, Faculty of Agriculture, Ain Shams University, P.O. Box 68, Hadayek Shobra, Cairo 11241, Egypt
| | - Hossam S. El-Beltagi
- Agricultural
Biotechnology Department, College of Agriculture and Food Sciences, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Biochemistry
Department, Faculty of Agriculture, Cairo
University, Giza 12613, Egypt
| | - Ahmed Maher Gaber
- Department
of Physical Therapy, College of Applied Medical Sciences, University of Hail, Hail 81451, Saudi
Arabia
| | - Sallah A. Al Hashedi
- Central
Laboratories, Department of Chemistry, King
Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Nada Ali AboZaid
- Department
of Health Management, College of Public Health and Health Informatics, University of Hail, Hail 81451, Saudi Arabia
| | - Mohamed A. A. Mahmoud
- Department
of Agricultural Biochemistry, Faculty of Agriculture, Ain Shams University, P.O. Box 68, Hadayek Shobra, Cairo 11241, Egypt
| | - Rania Youssef
- Department
of Health Management, College of Public Health and Health Informatics, University of Hail, Hail 81451, Saudi Arabia
| | - Rasha A. Mohamed
- Bioinformatics
Department, Agriculture Genetic Engineering
Research Institute (AGERI), Agricultural Research Center, Giza 1125, Egypt
| | - Eslam S.A. Bendary
- Department
of Agricultural Biochemistry, Faculty of Agriculture, Ain Shams University, P.O. Box 68, Hadayek Shobra, Cairo 11241, Egypt
| |
Collapse
|
7
|
Zhao X, Chen T, Liu J, Wang X, Weng Y. Development of antifouling antibacterial polylactic acid (PLA) -based packaging and application for chicken meat preservation. Food Chem 2025; 463:141116. [PMID: 39265408 DOI: 10.1016/j.foodchem.2024.141116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 07/26/2024] [Accepted: 09/01/2024] [Indexed: 09/14/2024]
Abstract
Microbial contamination is the leading cause of food spoilage and food-borne disease. Here, we developed a multifunctional surface based on polylactic acid (PLA) bioplastic with antifouling and antibacterial properties via a facile dual-coating approach. The surface was designed with hierarchical micro/nano-scale roughness and low surface energy. Bactericidal agent polyhexamethylene guanidine hydrochloride (PHMG) was incorporated to endow the film with bactericidal activity. The film had good superhydrophobic, antifouling and antibacterial performance, with a water contact angle of 154.3°, antibacterial efficiency against E. coli and S. aureus of 99.9 % and 99.6 %, respectively, and biofilm inhibition against E. coli and S. aureus of 63.5 % and 68.9 %, respectively. Synergistic effects of antibacterial adhesion and contact killing of bacteria contributed to the significant antibacterial performance of the film. The biobased biodegradable film was highly effective in preventing microbial growth when applied as antibacterial food packaging for poultry product, extending the shelf life of fresh chicken breast up to eight days.
Collapse
Affiliation(s)
- Xiaoying Zhao
- School of Light Industry Science and Engineering, Beijing Technology and Business University, No.11 Fucheng Road, Haidian District, Beijing 100048, China.
| | - Tianyu Chen
- School of Light Industry Science and Engineering, Beijing Technology and Business University, No.11 Fucheng Road, Haidian District, Beijing 100048, China
| | - Jiaxin Liu
- School of Light Industry Science and Engineering, Beijing Technology and Business University, No.11 Fucheng Road, Haidian District, Beijing 100048, China
| | - Xinning Wang
- School of Light Industry Science and Engineering, Beijing Technology and Business University, No.11 Fucheng Road, Haidian District, Beijing 100048, China
| | - Yunxuan Weng
- School of Light Industry Science and Engineering, Beijing Technology and Business University, No.11 Fucheng Road, Haidian District, Beijing 100048, China; Beijing Key Laboratory of Quality Evaluation Technology for Hygiene and Safety of Plastics, No.11 Fucheng Road, Haidian District, Beijing 100048, China.
| |
Collapse
|
8
|
Verešová A, Terentjeva M, Ban Z, Li L, Vukic M, Vukovic N, Kluz MI, Ben Sad R, Ben Hsouna A, Bianchi A, Kollár J, Elizondo-Luévano JH, Čmiková N, Garzoli S, Kačániová M. Enhancing Antimicrobial Efficacy of Sandalwood Essential Oil Against Salmonella enterica for Food Preservation. Foods 2024; 13:3919. [PMID: 39682991 DOI: 10.3390/foods13233919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 11/28/2024] [Accepted: 12/03/2024] [Indexed: 12/18/2024] Open
Abstract
The growing emphasis on food safety and healthier lifestyles, driven by industrial expansion and scientific priorities, has highlighted the necessity of managing harmful microorganisms to guarantee food quality. A significant challenge in this domain is the control of pathogens that are capable of forming biofilms, entering a sessile state that enhances their resistance to broad-spectrum antibiotics. Essential oils, renowned for their antibacterial properties, present a promising natural alternative for food preservation. In this study, we analyzed the chemical composition of Santalum album essential oil (SAEO) using GC-MS, identifying (Z)-α-santalol (57.1%) as the primary constituent. Antimicrobial activity was confirmed through disc diffusion and minimum inhibitory concentration (MIC) assays against Gram-positive and Gram-negative bacteria and yeast from the genus Candida. Additionally, in situ experiments demonstrated that vapor-phase SAEO effectively inhibited Serratia marcescens on the food model, supporting its potential as a natural preservative. MBIC assays, crystal violet staining, and MALDI-TOF MS analysis on S. enterica biofilms were used to further evaluate the antibiofilm effects of SAEO. The crystal violet assay revealed a strong antibiofilm effect, while the MALDI-TOF MS analysis showed changes in the bacterial protein profiles on both glass and plastic surfaces. SAEO also showed significant anti-Salmonella activity on vacuum-packed carrot slices. SAEO outperformed the control samples. The insecticidal activity against Megabruchidius dorsalis was also studied in this work, and the best insecticidal activity was found at the highest concentrations. These findings indicate that SAEO could serve as a valuable component in food preservation, with notable antibacterial and antibiofilm benefits.
Collapse
Affiliation(s)
- Andrea Verešová
- Institute of Horticulture, Faculty of Horticulture and Landscape Engineering, Slovak University of Agriculture, Tr. A. Hlinku 2, 94976 Nitra, Slovakia
| | - Margarita Terentjeva
- Faculty of Veterinary Medicine, Latvia University of Life Sciences and Technologies, LV-3001 Jelgava, Latvia
| | - Zhaojun Ban
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Zhejiang Provincial Key Laboratory of Chemical and Biological Processing Technology of Farm Products, Zhejiang Provincial Collaborative Innovation Center of Agricultural Biological Resources Biochemical Manufacturing, Hangzhou 310023, China
| | - Li Li
- Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Milena Vukic
- Department of Chemistry, Faculty of Science, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Nenad Vukovic
- Department of Chemistry, Faculty of Science, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Maciej Ireneusz Kluz
- School of Medical & Health Sciences, University of Economics and Human Sciences in Warsaw, Okopowa 59, 01 043 Warszawa, Poland
| | - Rania Ben Sad
- Laboratory of Biotechnology and Plant Improvement, Centre of Biotechnology of Sfax, P.O. Box 1177, Sfax 3018, Tunisia
| | - Anis Ben Hsouna
- Laboratory of Biotechnology and Plant Improvement, Centre of Biotechnology of Sfax, P.O. Box 1177, Sfax 3018, Tunisia
- Department of Environmental Sciences and Nutrition, Higher Institute of Applied Sciences and Technology of Mahdia, University of Monastir, Monastir 5000, Tunisia
| | - Alessandro Bianchi
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| | - Ján Kollár
- Institute of Landscape Architecture, Faculty of Horticulture and Landscape Engineering, Slovak University of Agriculture, Tulipánová 7, 94976 Nitra, Slovakia
| | - Joel Horacio Elizondo-Luévano
- Department of Chemistry, Faculty of Biological Sciences, Universidad Autónoma de Nuevo León, San Nicolás de los Garza 64455, Nuevo León, Mexico
| | - Natália Čmiková
- Institute of Horticulture, Faculty of Horticulture and Landscape Engineering, Slovak University of Agriculture, Tr. A. Hlinku 2, 94976 Nitra, Slovakia
| | - Stefania Garzoli
- Department of Chemistry and Technologies of Drug, Sapienza University, P. le Aldo Moro, 5, 00185 Rome, Italy
| | - Miroslava Kačániová
- Institute of Horticulture, Faculty of Horticulture and Landscape Engineering, Slovak University of Agriculture, Tr. A. Hlinku 2, 94976 Nitra, Slovakia
- School of Medical & Health Sciences, University of Economics and Human Sciences in Warsaw, Okopowa 59, 01 043 Warszawa, Poland
| |
Collapse
|
9
|
Singh A, Ahuja A, Madan M, Singh D, Rastogi VK. Active packaging film of poly(lactic acid) incorporated with plant-based essential oils of Trachyspermum ammi as an antimicrobial agent and vanilla as an aroma corrector for waffles. Int J Biol Macromol 2024; 278:135086. [PMID: 39191339 DOI: 10.1016/j.ijbiomac.2024.135086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/08/2024] [Accepted: 08/24/2024] [Indexed: 08/29/2024]
Abstract
This study developed active packaging films of Polylactic acid incorporated with the plant-based essential oils of Trachyspermum ammi, T. ammi and Vanilla to package waffles, where the antimicrobial property was provided by T. ammi and its odor was masked by vanilla essential oil. Compared to conventional solvent-cast films of smaller sizes requiring a huge amount of solvents, bigger-size PLA-oil films with lower solvent demand were prepared by tape casting technique with 10, 30, and 50 wt% essential oil blends. Films were studied for their morphological, chemical, mechanical, barrier, and antimicrobial properties. The presence and time-bound release of volatile oils from the films was confirmed by infrared spectroscopy, with a continuous decrease of oils from the films till day 30. The plasticizing effect of oils in films was evidenced by decreased tensile strength and crystallinity. In contrast, an increase in elongation at break and water vapor permeability of oil films were also measured. Finally, when packed in PLA films containing 50 wt% blend of both oils, waffles shelf-life extended up to 30 days compared to 2 days for the neat PLA film, where Vanilla was found effective in masking the unpleasant odor of T.ammi as confirmed by sensory analysis.
Collapse
Affiliation(s)
- Anamika Singh
- Department of Pulp and Paper Technology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| | - Arihant Ahuja
- Department of Pulp and Paper Technology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| | - Manisha Madan
- Department of Pulp and Paper Technology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| | - Dimple Singh
- Department of Pulp and Paper Technology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| | - Vibhore Kumar Rastogi
- Department of Pulp and Paper Technology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India.
| |
Collapse
|
10
|
Adedeji OE, Abiodun OA, Adedeji OG, Kang HJ, Istiana N, Min JH, Ayo JA, Chinma CE, Jung YH. Cellulose synthesis from germinated tiger nut residue and its application in the production of a functional cookie. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2024; 61:1965-1975. [PMID: 39285988 PMCID: PMC11401828 DOI: 10.1007/s13197-024-05972-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 12/26/2023] [Accepted: 03/11/2024] [Indexed: 09/19/2024]
Abstract
In this study, cellulose was synthesized from the residue obtained after germinating tiger nuts for 0, 48, 72 or 96 h. The influence of the synthesized cellulose (0%, 2%, or 5%) on the quality of clove extract laden-cookies was evaluated. The optimum structure, morphology, and thermal properties of cellulose were obtained after geminating tiger nuts for 72 h. Adding cellulose to the dough stabilized the total phenolic, flavonoid, and protein contents and radical scavenging activity during the baking operation. The addition of 2% cellulose generally enhanced the hydration, pasting, and viscoelastic properties of the dough. However, 5% cellulose negatively affected the highlighted properties, culminating in poorer textural and sensory properties of the cookies produced therefrom. Germination could be effective in modifying the properties of cellulose from tiger nuts; thus, enhancing its application in the production of a functional cookie. Graphical abstract Supplementary Information The online version contains supplementary material available at 10.1007/s13197-024-05972-8.
Collapse
Affiliation(s)
| | | | - Omotayo Gloria Adedeji
- Department of Home Economics and Food Science, University of Ilorin, PMB 1515, Ilorin, Nigeria
| | - Hye Jee Kang
- School of Food Science and Biotechnology, Kyungpook National University, Daegu, 41566 Republic of Korea
| | - Nur Istiana
- School of Food Science and Biotechnology, Kyungpook National University, Daegu, 41566 Republic of Korea
- Department of Food Science and Biotechnology, Brawijaya University, Malang, 65145 Indonesia
| | - Ju Hyun Min
- School of Food Science and Biotechnology, Kyungpook National University, Daegu, 41566 Republic of Korea
| | - Jerome Adekunle Ayo
- Department of Food Science and Technology, Federal University Wukari, PMB 1020, Wukari, Nigeria
| | - Chiemela Enyinnaya Chinma
- Department of Food Science and Technology, Federal University of Technology, PMB 65, Minna, Nigeria
- Department of Biotechnology and Food Technology, University of Johannesburg, Doornfortein Campus, Johannesburg, Gauteng South Africa
- Africa Centre of Excellence for Mycotoxin and Food Safety, Federal University of Technology Minna, Minna, Nigeria
| | - Young Hoon Jung
- School of Food Science and Biotechnology, Kyungpook National University, Daegu, 41566 Republic of Korea
| |
Collapse
|
11
|
Kačániová M, Garzoli S, Ben Hsouna A, Bianchi A, Kluz MI, Elizondo-Luevano JH, Ban Z, Ben Saad R, Mnif W, Haščík P. The Potential of Thymus serpyllum Essential Oil as an Antibacterial Agent against Pseudomonas aeruginosa in the Preservation of Sous Vide Red Deer Meat. Foods 2024; 13:3107. [PMID: 39410141 PMCID: PMC11476099 DOI: 10.3390/foods13193107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/20/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024] Open
Abstract
Foodborne infections caused by microbes are a serious health risk. Regarding this, customer preferences for "ready-to-eat" or minimally processed (MP) deer meat are one of the main risk factors. Given the health dangers associated with food, essential oil (EO) is a practical substitute used to decrease pathogenic germs and extend the shelf-life of MP meals. Nonetheless, further data regarding EO use in MP meals are required. In order to evaluate new, safer alternatives to chemicals for disease control and food preservation, this research was carried out in the following areas to assess the antibacterial and antibiofilm characteristics of Thymus serpyllum (TSEO) essential oil, which is extracted from dried flowering stalks. Furthermore, this study applied an essential oil of wild thyme and inoculated the sous vide deer meat with Pseudomonas aeruginosa for seven days at 4 °C in an effort to prolong its shelf-life. Against P. aeruginosa, the essential oil exhibited potent antibacterial action. The findings of the minimal biofilm inhibition concentration (MBIC) crystal violet test demonstrated the substantial antibiofilm activity of the TSEO. The TSEO modified the protein profiles of bacteria on glass and plastic surfaces, according to data from MALDI-TOF MS analysis. Moreover, it was discovered that P. aeruginosa was positively affected by the antibacterial properties of TSEO. The anti-Pseudomonas activity of the TSEO was marginally higher in vacuum-packed sous vide red deer meat samples than in control samples. The most frequently isolated species from sous vide deer meat, if we do not consider the applied bacteria Pseudomonas aeruginosa, were P. fragi, P. lundensis, and P. taetrolens. These results highlight the antibacterial and antibiofilm qualities of TSEO, demonstrating its potential for food preservation and extending the shelf-life of deer meat.
Collapse
Affiliation(s)
- Miroslava Kačániová
- Institute of Horticulture, Faculty of Horticulture and Landscape Engineering, Slovak University of Agriculture, Trieda Andreja Hlinku 2, 949 76 Nitra, Slovakia
- School of Medical & Health Sciences, University of Economics and Human Sciences in Warsaw, Okopowa 59, 01043 Warszawa, Poland;
| | - Stefania Garzoli
- Department of Chemistry and Technologies of Drug, Sapienza University, P. le Aldo Moro, 5, 00185 Rome, Italy;
| | - Anis Ben Hsouna
- Laboratory of Biotechnology and Plant Improvement, Centre of Biotechnology of Sfax, B.P “1177”, Sfax 3018, Tunisia; (A.B.H.); (R.B.S.)
- Department of Environmental Sciences and Nutrition, Higher Institute of Applied Sciences and Technology of Mahdia, University of Monastir, Monastir 5000, Tunisia
| | - Alessandro Bianchi
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy;
| | - Maciej Ireneusz Kluz
- School of Medical & Health Sciences, University of Economics and Human Sciences in Warsaw, Okopowa 59, 01043 Warszawa, Poland;
| | - Joel Horacio Elizondo-Luevano
- Faculty of Agronomy, Universidad Autónoma de Nuevo León, Av. Francisco Villa S/N, Col. Ex Hacienda el Canadá, General Escobedo 66050, Nuevo León, Mexico;
| | - Zhaojun Ban
- Zhejiang Provincial Key Laboratory of Chemical and Biological Processing Technology of Farm Products, Zhejiang Provincial Collaborative Innovation Center of Agricultural Biological Resources Biochemical Manufacturing, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China;
| | - Rania Ben Saad
- Laboratory of Biotechnology and Plant Improvement, Centre of Biotechnology of Sfax, B.P “1177”, Sfax 3018, Tunisia; (A.B.H.); (R.B.S.)
| | - Wissem Mnif
- Department of Chemistry, College of Sciences of Bisha, University of Bisha, P.O. Box 199, Bisha 61922, Saudi Arabia;
| | - Peter Haščík
- Institute of Food Technology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture, Trieda Andreja Hlinku 2, 949 76 Nitra, Slovakia;
| |
Collapse
|
12
|
Cerdá-Gandia R, Agüero Á, Arrieta MP, Fenollar O. Effect of Different Porous Size of Porous Inorganic Fillers on the Encapsulation of Rosemary Essential Oil for PLA-Based Active Packaging. Polymers (Basel) 2024; 16:2632. [PMID: 39339096 PMCID: PMC11435855 DOI: 10.3390/polym16182632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/13/2024] [Accepted: 09/16/2024] [Indexed: 09/30/2024] Open
Abstract
Essential oils are interesting active additives for packaging manufacturing as they can provide the final material with active functionalities. However, they are frequently volatile compounds and can be degraded during plastic processing. In this work Rosmarinus officinalis (RO) essential oil was encapsulated into Diatomaceous earth (DE) microparticles and into Halloysite nanotubes (HNTs) and further used to produce eco-friendly active packaging based on polylactic acid (PLA). PLA-based composites and nanocoposites films based on PLA reinforced with DE + RO and HNTs + RO, respectively, were developed by melt extrusion followed by cast-film, simulating the industrial processing conditions. As these materials are intended as active food packaging films, the obtained materials were fully characterized in terms of their mechanical, thermal and structural properties, while migration of antioxidant RO was also assessed as well as the compostability at laboratory scale level. Both DE and HNTs were able to protect the Rosmarinus officinalis (RO) from thermal degradation during processing, allowing to obtain films with antioxidant properties as demonstrated by the antioxidant assays after the materials were exposed for 10 days to a fatty food simulant. The results showed that incorporating Rosmarinus officinalis encapsulated in either DE or HNTs and the good dispersion of such particles into the PLA matrix strengthened its mechanical performance and sped up the disintegration under composting conditions of PLA, while allowing to obtain films with antioxidant properties of interest as antioxidant active food packaging materials.
Collapse
Affiliation(s)
- Raúl Cerdá-Gandia
- Instituto Universitario de Investigación de Tecnología de Materiales (IUITM), Universitat Politècnica de València (UPV), Plaza Ferrándiz y Carbonell 1, 03801 Alcoy, Spain
- FAPERIN S.L. Av. de los Trabajadores, 27, 03430 Onil, Spain
| | - Ángel Agüero
- Instituto Universitario de Investigación de Tecnología de Materiales (IUITM), Universitat Politècnica de València (UPV), Plaza Ferrándiz y Carbonell 1, 03801 Alcoy, Spain
- Departamento de Ingeniería Química Industrial y del Medio Ambiente, Escuela Técnica Superior de Ingenieros Industriales, Universidad Politécnica de Madrid (ETSII-UPM), C/José Gutiérrez Abascal 2, 28006 Madrid, Spain
| | - Marina Patricia Arrieta
- Departamento de Ingeniería Química Industrial y del Medio Ambiente, Escuela Técnica Superior de Ingenieros Industriales, Universidad Politécnica de Madrid (ETSII-UPM), C/José Gutiérrez Abascal 2, 28006 Madrid, Spain
- Grupo de Investigación: Polímeros, Caracterización y Aplicaciones (POLCA), 28006 Madrid, Spain
| | - Octavio Fenollar
- Instituto Universitario de Investigación de Tecnología de Materiales (IUITM), Universitat Politècnica de València (UPV), Plaza Ferrándiz y Carbonell 1, 03801 Alcoy, Spain
| |
Collapse
|
13
|
Hoque M, Babu RP, McDonagh C, Jaiswal S, Tiwari BK, Kerry JP, Pathania S. Pectin/sodium alginate-based active film integrated with microcrystalline cellulose and geraniol for food packaging applications. Int J Biol Macromol 2024; 271:132414. [PMID: 38763243 DOI: 10.1016/j.ijbiomac.2024.132414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 05/04/2024] [Accepted: 05/14/2024] [Indexed: 05/21/2024]
Abstract
Biopolymer-based packaging films were prepared from pectin (PEC) and sodium alginate (SA), with the incorporation of 10 % MCC and different concentrations of geraniol (GER at 2.5, 5.0, 7.5, and 10.0 %). Rheological properties suggested that film-forming solutions and film-forming emulsions exhibited a shear-thinning or pseudo-plastic non-Newtonian behaviour. The dried films were crosslinked with 2.0 % CaCl2. The addition of MCC into PEC/SA film enhanced the TS but reduced it with the impregnation of GER without influencing the EAB and toughness of the film. The water solubility of the films significantly reduced with the rise in the GER levels but enhanced the water vapor and oxygen barrier attributes. TGA demonstrated that incorporating MCC reduced the film's thermal degradation (44.92 % to 28.81 %), but GER had an insignificant influence on the thermal stability. FTIR spectra revealed that hydrogen bond formation was positively linked with the GER addition in the film formulation. X-ray diffractograms showed that prepared films were predominantly amorphous. Antimicrobial studies showed a complete reduction of Escherichia coli and Bacillus cereus in 24 h. Overall, the composite film displayed excellent physical and active properties and PEC/SA/MCC/5.0 %GER/CaCl2 film was considered the best formulation for food packaging applications.
Collapse
Affiliation(s)
- Monjurul Hoque
- Food Industry Development Department, Teagasc Food Research Centre, Ashtown, 5p, Dublin, Ireland; School of Food and Nutritional Sciences, University College Cork, T12 R229, Ireland
| | - Ramesh P Babu
- AMBER Centre, CRANN Institute, School of Chemistry, Trinity College Dublin, Dublin, Ireland
| | - Ciara McDonagh
- Food Industry Development Department, Teagasc Food Research Centre, Ashtown, 5p, Dublin, Ireland
| | - Swarna Jaiswal
- School of Food Science and Environmental Health, College of Sciences and Health, Technological University Dublin - City Campus, Central Quad, Grangegorman, Dublin D07 ADY7, Ireland; Environmental Sustainability and Health Institute, Technological University Dublin - City Campus, Grangegorman, Dublin D07 H6K8, Ireland
| | - Brijesh K Tiwari
- Food Chemistry and Technology Department, Teagasc Food Research Centre, Ashtown, D15 KN3K Dublin, Ireland
| | - Joseph P Kerry
- School of Food and Nutritional Sciences, University College Cork, T12 R229, Ireland
| | - Shivani Pathania
- Food Industry Development Department, Teagasc Food Research Centre, Ashtown, 5p, Dublin, Ireland.
| |
Collapse
|
14
|
Ebirim RI, Long W. Evaluation of Antimicrobial and Preservative Effects of Cinnamaldehyde and Clove Oil in Catfish ( Ictalurus punctatus) Fillets Stored at 4 °C. Foods 2024; 13:1445. [PMID: 38790745 PMCID: PMC11119078 DOI: 10.3390/foods13101445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/29/2024] [Accepted: 05/02/2024] [Indexed: 05/26/2024] Open
Abstract
This study aimed to evaluate cinnamaldehyde (CN) and clove oil (CO) effectiveness in inhibiting growth and killing spoilage and total aerobic bacteria when overlaid with catfish fillet stored at 4 °C. A 1.00 mL concentration of CO inhibited growth by 2.90, 1.96, and 1.96 cm, respectively, for S. baltica, A. hydrophilia, and total bacteria. Similarly, treatment with 1.00 mL of CN resulted in ZIB of 2.17, 2.10, and 1.10 cm, respectively, for S. baltica, A. hydrophilia, and total bacteria from catfish exudates. Total bacteria from catfish exudates treated with 0.50 mL CN for 40 min, resulted in a 6.84 log decrease, and treatment with 1.00 mL resulted in a 5.66 log decrease at 40 min. Total bacteria exudates treated with 0.50 mL CO resulted in a 9.69 log reduction at 40 min. Total bacteria treated with 1.00 mL CO resulted in a 7.69 log decrease at 7 days, while untreated pads overlaid with catfish resulted in ≥9.00 CFU/mL. However, treated absorbent pads with catfish at 7 days, using 0.50 mL and 1.00 mL CN, had a bacterial recovery of 5.53 and 1.88 log CFU/mL, respectively. Furthermore, CO at 0.50 mL and 1.00 mL reduced the bacteria count to 5.21 and 1.53 log CFU/mL, respectively, at day 7.
Collapse
Affiliation(s)
| | - Wilbert Long
- Department of Human Ecology, Delaware State University, 1200 North Dupont Highway, Dover, DE 19901, USA
| |
Collapse
|
15
|
Hong SJ, Riahi Z, Shin GH, Kim JT. Development of innovative active packaging films using gelatin/pullulan-based composites incorporated with cinnamon essential oil-loaded metal-organic frameworks for meat preservation. Int J Biol Macromol 2024; 267:131606. [PMID: 38631566 DOI: 10.1016/j.ijbiomac.2024.131606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/28/2024] [Accepted: 04/12/2024] [Indexed: 04/19/2024]
Abstract
This study aimed to investigate the effect of cinnamon essential oil (CEO)-loaded metal-organic frameworks (CEO@MOF) on the properties of gelatin/pullulan (Gel/Pull)-based composite films (Gel/Pull-based films). The incorporation of CEO@MOF into Gel/Pull-based films demonstrated significant antimicrobial activity against S. aureus, S. enterica, E. coli, and L. monocytogenes. Additionally, CEO@MOF integrated film exhibited a 98.16 % ABTS radical scavenging, with no significant change in the mechanical properties of the neat Gel/Pull film. The UV blocking efficiency of the composite films increased significantly from 81.38 to 99.56 % at 280 nm with the addition of 3 wt% CEO@MOF. Additionally, Gel/Pull/CEO@MOF films effectively extended the shelf life of meat preserved at 4 °C by reducing moisture loss by 3.35 %, maintaining the pH within the threshold limit (6.2), and inhibiting bacterial growth by 99.9 %. These results propose that CEO@MOF has significant potential as an effective additive in active packaging to improve shelf life and food safety.
Collapse
Affiliation(s)
- Su Jung Hong
- Department of Food and Nutrition, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Zohreh Riahi
- Department of Food and Nutrition, Kyung Hee University, Seoul 02447, Republic of Korea; BioNanocomposite Research Center, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Gye Hwa Shin
- Department of Food and Nutrition, Kunsan National University, Gunsan 54150, Republic of Korea.
| | - Jun Tae Kim
- Department of Food and Nutrition, Kyung Hee University, Seoul 02447, Republic of Korea; BioNanocomposite Research Center, Kyung Hee University, Seoul 02447, Republic of Korea.
| |
Collapse
|
16
|
Liñán-Atero R, Aghababaei F, García SR, Hasiri Z, Ziogkas D, Moreno A, Hadidi M. Clove Essential Oil: Chemical Profile, Biological Activities, Encapsulation Strategies, and Food Applications. Antioxidants (Basel) 2024; 13:488. [PMID: 38671935 PMCID: PMC11047511 DOI: 10.3390/antiox13040488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/07/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024] Open
Abstract
Plants have proven to be important sources for discovering new compounds that are useful in the treatment of various diseases due to their phytoconstituents. Clove (Syzygium aromaticum L.), an aromatic plant widely cultivated around the world, has been traditionally used for food preservation and medicinal purposes. In particular, clove essential oil (CEO) has attracted attention for containing various bioactive compounds, such as phenolics (eugenol and eugenol acetate), terpenes (β-caryophyllene and α-humulene), and hydrocarbons. These constituents have found applications in cosmetics, food, and medicine industries due to their bioactivity. Pharmacologically, CEO has been tested against a variety of parasites and pathogenic microorganisms, demonstrating antibacterial and antifungal properties. Additionally, many studies have also demonstrated the analgesic, antioxidant, anticancer, antiseptic, and anti-inflammatory effects of this essential oil. However, CEO could degrade for different reasons, impacting its quality and bioactivity. To address this challenge, encapsulation is viewed as a promising strategy that could prolong the shelf life of CEO, improving its physicochemical stability and application in various areas. This review examines the phytochemical composition and biological activities of CEO and its constituents, as well as extraction methods to obtain it. Moreover, encapsulation strategies for CEO and numerous applications in different food fields are also highlighted.
Collapse
Affiliation(s)
- Rafael Liñán-Atero
- Department of Organic Chemistry, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, 13071 Ciudad Real, Spain; (R.L.-A.); (S.R.G.); (D.Z.)
| | | | - Samuel Rodríguez García
- Department of Organic Chemistry, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, 13071 Ciudad Real, Spain; (R.L.-A.); (S.R.G.); (D.Z.)
| | - Zahra Hasiri
- College of Veterinary Medicine, Islamic Azad University of Shahrekord, Shahrekord 88137-33395, Iran;
| | - Dimitrios Ziogkas
- Department of Organic Chemistry, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, 13071 Ciudad Real, Spain; (R.L.-A.); (S.R.G.); (D.Z.)
| | - Andres Moreno
- Department of Organic Chemistry, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, 13071 Ciudad Real, Spain; (R.L.-A.); (S.R.G.); (D.Z.)
| | - Milad Hadidi
- Department of Organic Chemistry, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, 13071 Ciudad Real, Spain; (R.L.-A.); (S.R.G.); (D.Z.)
- Department of Physiological Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
17
|
Yan X, Meng F, Wigati LP, Van TT, Phuong NTH, Koga A, Tanaka F, Tanaka F. Improvement of cross-linked films based on chitosan/diepoxy-poly (ethylene glycol) incorporating trans-cinnamaldehyde essential oil: Preparation, properties, and application in banana storage. Int J Biol Macromol 2024; 263:130299. [PMID: 38387633 DOI: 10.1016/j.ijbiomac.2024.130299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 02/07/2024] [Accepted: 02/17/2024] [Indexed: 02/24/2024]
Abstract
In this study, development of bioactive coatings containing 1 % (w/v) chitosan (CS), 0.6 % (w/v) diepoxy-polyethylene glycol (PEG), and trans-cinnamaldehyde (CIN) was achieved. The physicochemical and biological properties of the coatings were investigated. The tensile strength, light transmission, water vapor permeability (WVP), and antibacterial properties were enhanced by the incorporation of CIN. The CIN-containing films appeared compact and rough, as observed using scanning electron microscopy (SEM) and atomic force microscopy (AFM). In addition, the quality attributes of the bananas were evaluated at room temperature for 24 days, and the results showed that the CS/PEG/CIN coating delayed the respiration peak, weight loss, sugar content loss, and maintained firmness, color, total soluble solids (TSS), titratable acid (TA), and the appearance of the bananas. Principal component analysis (PCA) revealed that the bioactive coating significantly affected the respiration rate and weight loss of bananas.
Collapse
Affiliation(s)
- Xirui Yan
- Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 744, Motooka, Nishi-Ku, Fukuoka-shi, Fukuoka 819-0395, Japan
| | - Fanze Meng
- Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 744, Motooka, Nishi-Ku, Fukuoka-shi, Fukuoka 819-0395, Japan
| | - Laras Putri Wigati
- Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 744, Motooka, Nishi-Ku, Fukuoka-shi, Fukuoka 819-0395, Japan
| | - Tran Thi Van
- Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 744, Motooka, Nishi-Ku, Fukuoka-shi, Fukuoka 819-0395, Japan
| | - Nguyen Thi Hang Phuong
- Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 744, Motooka, Nishi-Ku, Fukuoka-shi, Fukuoka 819-0395, Japan; Department of Food Technology, Faculty of Agriculture and Food Technology, Tien Giang University, My Tho City, 119 Ap Bac, Viet Nam
| | - Arisa Koga
- Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 744, Motooka, Nishi-Ku, Fukuoka-shi, Fukuoka 819-0395, Japan
| | - Fumina Tanaka
- Faculty of Agriculture, Kyushu University, W5-874, 744, Motooka, Nishi-Ku, Fukuoka-shi, Fukuoka 819-0395, Japan.
| | - Fumihiko Tanaka
- Faculty of Agriculture, Kyushu University, W5-874, 744, Motooka, Nishi-Ku, Fukuoka-shi, Fukuoka 819-0395, Japan
| |
Collapse
|
18
|
Gulzar S, Tagrida M, Prodpran T, Li L, Benjakul S. Packaging films based on biopolymers from seafood processing wastes: Preparation, properties, and their applications for shelf-life extension of seafoods-A comprehensive review. Compr Rev Food Sci Food Saf 2023; 22:4451-4483. [PMID: 37680068 DOI: 10.1111/1541-4337.13230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 07/31/2023] [Accepted: 08/03/2023] [Indexed: 09/09/2023]
Abstract
Biopolymers derived from seafood processing byproducts are used to prepare active and biodegradable films as the packaging of food products. These films possess bioactivities to enhance the shelf life of packed foods by proactively releasing antimicrobial/antioxidative agents into the foods and providing sufficient barrier properties. Seafood processing byproducts are an eminent source of valuable compounds, including biopolymers and bioactive compounds. These biopolymers, including collagen, gelatin, chitosan, and muscle proteins, could be used to prepare robust and sustainable food packaging with some antimicrobial agents or antioxidants, for example, plant extracts rich in polyphenols or essential oils. These active packaging are not only biodegradable but also prevent the deterioration of packed foods caused by spoilage microorganisms as well as chemical deterioration. Seafood discards have a promising benefit for the development of environmentally friendly food packaging systems via the appropriate preparation methods or techniques. Therefore, the green packaging from seafood leftover can be better exploited and replace the synthetic counterpart.
Collapse
Affiliation(s)
- Saqib Gulzar
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla, Thailand
- Department of Food Technology, Engineering and Science, University of Lleida-Agrotecnio CERCA Center, Lleida, Spain
| | - Mohamed Tagrida
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Thummanoon Prodpran
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla, Thailand
- Center of Excellence in Bio-based Materials and Packaging Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Li Li
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Soottawat Benjakul
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla, Thailand
- Department of Food and Nutrition, Kyung Hee Unibersity, Seoul, Republic of Korea
| |
Collapse
|
19
|
Shahdan D, Rosli NA, Chen RS, Ahmad S, Gan S. Strategies for strengthening toughened poly(lactic acid) blend via natural reinforcement with enhanced biodegradability: A review. Int J Biol Macromol 2023; 251:126214. [PMID: 37572810 DOI: 10.1016/j.ijbiomac.2023.126214] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 07/06/2023] [Accepted: 08/05/2023] [Indexed: 08/14/2023]
Abstract
The growing popularity of poly(lactic acid) (PLA) can be attributed to its favorable attributes, such as excellent compostability and robust mechanical properties. Two notable limitations of PLA are its high brittleness and slow biodegradation rate. Both of blending and copolymerization strategies work well to improve PLA's toughness while sacrificing the good tensile strength and modulus properties of PLA. One of the most effective and economical approaches to address this challenge is to incorporate natural reinforcing agents into the toughened PLA system, thereby simultaneously promoting the biodegradation rate of PLA. Nevertheless, the enhancement of tensile strength and modulus is accompanied by a notable decrease in elongation. Therefore, this review provides comprehensive information on the literature works related to the tensile strength, modulus, elongation at break and impact strength of the toughened PLA and its natural fiber reinforced composites. The impact of natural reinforcing agent on the tensile fracture mechanism as well as the synergistic effect on strengthening and toughening performance will be discussed. This review also focuses on the factors boosting the biodegradability of toughened PLA blend by using natural reinforcing fiber. Review presents potential future insights into the development of biodegradable and balanced strengthened-toughened PLA based advanced materials.
Collapse
Affiliation(s)
- Dalila Shahdan
- Department of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), 43600 Bangi, Selangor, Malaysia
| | - Noor Afizah Rosli
- Department of Chemical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia..
| | - Ruey Shan Chen
- Department of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), 43600 Bangi, Selangor, Malaysia.
| | - Sahrim Ahmad
- Department of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), 43600 Bangi, Selangor, Malaysia
| | - Sinyee Gan
- Malaysian Palm Oil Board, 6 Persiaran Institusi, Bandar Baru Bangi, 43000 Kajang, Selangor, Malaysia
| |
Collapse
|
20
|
Manzoor A, Asif M, Khalid SH, Ullah Khan I, Asghar S. Nanosizing of Lavender, Basil, and Clove Essential Oils into Microemulsions for Enhanced Antioxidant Potential and Antibacterial and Antibiofilm Activities. ACS OMEGA 2023; 8:40600-40612. [PMID: 37929152 PMCID: PMC10621020 DOI: 10.1021/acsomega.3c05394] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 10/03/2023] [Indexed: 11/07/2023]
Abstract
Plant essential oils (EOs) possess significant bioactivities (antibacterial and antioxidant) and can be substituted for potentially harmful synthetic preservatives in the food industry. However, limited water solubility, bioavailability, volatility, and stability limit their use. Therefore, the goal of this research was nanosizing lavender essential oil (LEO), basil essential oil (BEO), and clove essential oil (CEO) in a microemulsion (ME) to improve their physicochemical attributes and bioefficacy. Tween 80 and Transcutol P were utilized for construction of pseudoternary phase diagrams. It was observed that the concentration of EOs had a great impact on the physicochemical and biological properties of MEs. A spherical droplet of MEs with a diameter of less than 20 nm with a narrower size distribution (polydispersity index (PDI) = 0.10-0.27) and a ζ potential of -0.27 to -9.03 was observed. ME formulations were also evaluated for viscosity, conductivity, and the refractive index. Moreover, the impact of delivery systems on the antibacterial property of EOs was assessed by determining the zone of inhibition and minimum inhibitory concentration against two distinct pathogen classes (S. aureus and E. coli). Crystal violet assay was used to measure the growth and development of biofilms. According to bioefficacy assays, ME demonstrated more efficient antibacterial activity against microorganisms at concentrations lower than pure EOs. CEO ME had superior activity againstS. aureus and E. coli. Similarly, dose-dependent antioxidant capacity was noted for MEs. Consequently, nanosized EO formulations with improved physicochemical properties and enhanced bioactivities can be employed in the food processing sector as a preservation agent.
Collapse
Affiliation(s)
- Aneela Manzoor
- Department
of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Muhammad Asif
- Faculty
of Pharmacy, Islamia University Bahawalpur, Bahawalpur 63100, Pakistan
| | - Syed Haroon Khalid
- Department
of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Ikram Ullah Khan
- Department
of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Sajid Asghar
- Department
of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan
| |
Collapse
|
21
|
Nasution H, Harahap H, Julianti E, Safitri A, Jaafar M. Smart Packaging Based on Polylactic Acid: The Effects of Antibacterial and Antioxidant Agents from Natural Extracts on Physical-Mechanical Properties, Colony Reduction, Perishable Food Shelf Life, and Future Prospective. Polymers (Basel) 2023; 15:4103. [PMID: 37896347 PMCID: PMC10611019 DOI: 10.3390/polym15204103] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 10/04/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Changes in consumer lifestyles have raised awareness of a variety of food options and packaging technologies. Active and smart packaging is an innovative technology that serves to enhance the safety and quality of food products like fruit, vegetables, fish, and meat. Smart packaging, as a subset of this technology, entails the integration of additives into packaging materials, thereby facilitating the preservation or extension of product quality and shelf life. This technological approach stimulates a heightened demand for safer food products with a prolonged shelf life. Active packaging predominantly relies on the utilization of natural active substances. Therefore, the combination of active substances has a significant impact on the characteristics of active packaging, particularly on polymeric blends like polylactic acid (PLA) as a matrix. Therefore, this review will summarize how the addition of natural active agents influences the performance of smart packaging through systematic analysis, providing new insights into the types of active agents on physical-mechanical properties, colony reduction, and its application in foods. Through their integration, the market for active and smart packaging systems is expected to have a bright future.
Collapse
Affiliation(s)
- Halimatuddahliana Nasution
- Department of Chemical Engineering, Faculty of Engineering, Universitas Sumatera Utara, Padang Bulan, Kec. Medan Baru, Medan 20155, Sumatera Utara, Indonesia; (H.H.); (A.S.)
| | - Hamidah Harahap
- Department of Chemical Engineering, Faculty of Engineering, Universitas Sumatera Utara, Padang Bulan, Kec. Medan Baru, Medan 20155, Sumatera Utara, Indonesia; (H.H.); (A.S.)
| | - Elisa Julianti
- Department of Food and Science Technology, Faculty of Agriculture, Universitas Sumatera Utara, Padang Bulan, Kec. Medan Baru, Medan 20155, Sumatera Utara, Indonesia;
| | - Aida Safitri
- Department of Chemical Engineering, Faculty of Engineering, Universitas Sumatera Utara, Padang Bulan, Kec. Medan Baru, Medan 20155, Sumatera Utara, Indonesia; (H.H.); (A.S.)
| | - Mariatti Jaafar
- School of Materials & Mineral Resources Engineering, Universiti Sains Malaysia, Nibong Tebal 14300, Pulau Pinang, Malaysia;
| |
Collapse
|
22
|
Bushra R, Ahmad M, Seidi F, Qurtulen, Song J, Jin Y, Xiao H. Polysaccharide-based nanoassemblies: From synthesis methodologies and industrial applications to future prospects. Adv Colloid Interface Sci 2023; 318:102953. [PMID: 37399637 DOI: 10.1016/j.cis.2023.102953] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 05/23/2023] [Accepted: 06/19/2023] [Indexed: 07/05/2023]
Abstract
Polysaccharides, due to their remarkable features, have gained significant prominence in the sustainable production of nanoparticles (NPs). High market demand and minimal production cost, compared to the chemically synthesised NPs, demonstrate a drive towards polysaccharide-based nanoparticles (PSNPs) benign to environment. Various approaches are used for the synthesis of PSNPs including cross-linking, polyelectrolyte complexation, and self-assembly. PSNPs have the potential to replace a wide diversity of chemical-based agents within the food, health, medical and pharmacy sectors. Nevertheless, the considerable challenges associated with optimising the characteristics of PSNPs to meet specific targeting applications are of utmost importance. This review provides a detailed compilation of recent accomplishments in the synthesis of PSNPs, the fundamental principles and critical factors that govern their rational fabrication, as well as various characterisation techniques. Noteworthy, the multiple use of PSNPs in different disciplines such as biomedical, cosmetics agrochemicals, energy storage, water detoxification, and food-related realms, is accounted in detail. Insights into the toxicological impacts of the PSNPs and their possible risks to human health are addressed, and efforts made in terms of PSNPs development and optimising strategies that allow for enhanced delivery are highlighted. Finally, limitations, potential drawbacks, market diffusion, economic viability and future possibilities for PSNPs to achieve widespread commercial use are also discussed.
Collapse
Affiliation(s)
- Rani Bushra
- International Innovation Center for Forest Chemicals and Materials and Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, Jiangsu, China; Joint International Research Lab of Lignocellulosic Functional Materials and Provincial Key Lab of Pulp and Paper Sci & Tech, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Mehraj Ahmad
- International Innovation Center for Forest Chemicals and Materials and Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, Jiangsu, China; College of Light Industry and Food, Department of Food Science and Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu, China; Joint International Research Lab of Lignocellulosic Functional Materials and Provincial Key Lab of Pulp and Paper Sci & Tech, Nanjing Forestry University, Nanjing 210037, Jiangsu, China.
| | - Farzad Seidi
- International Innovation Center for Forest Chemicals and Materials and Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, Jiangsu, China; Joint International Research Lab of Lignocellulosic Functional Materials and Provincial Key Lab of Pulp and Paper Sci & Tech, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Qurtulen
- Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India
| | - Junlong Song
- International Innovation Center for Forest Chemicals and Materials and Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, Jiangsu, China; Joint International Research Lab of Lignocellulosic Functional Materials and Provincial Key Lab of Pulp and Paper Sci & Tech, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Yongcan Jin
- International Innovation Center for Forest Chemicals and Materials and Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, Jiangsu, China; Joint International Research Lab of Lignocellulosic Functional Materials and Provincial Key Lab of Pulp and Paper Sci & Tech, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Huining Xiao
- Department of Chemical Engineering, University of New Brunswick, Fredericton, NB E3B 5A3, Canada
| |
Collapse
|
23
|
Perera KY, Jaiswal AK, Jaiswal S. Biopolymer-Based Sustainable Food Packaging Materials: Challenges, Solutions, and Applications. Foods 2023; 12:2422. [PMID: 37372632 DOI: 10.3390/foods12122422] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/06/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
Biopolymer-based packaging materials have become of greater interest to the world due to their biodegradability, renewability, and biocompatibility. In recent years, numerous biopolymers-such as starch, chitosan, carrageenan, polylactic acid, etc.-have been investigated for their potential application in food packaging. Reinforcement agents such as nanofillers and active agents improve the properties of the biopolymers, making them suitable for active and intelligent packaging. Some of the packaging materials, e.g., cellulose, starch, polylactic acid, and polybutylene adipate terephthalate, are currently used in the packaging industry. The trend of using biopolymers in the packaging industry has increased immensely; therefore, many legislations have been approved by various organizations. This review article describes various challenges and possible solutions associated with food packaging materials. It covers a wide range of biopolymers used in food packaging and the limitations of using them in their pure form. Finally, a SWOT analysis is presented for biopolymers, and the future trends are discussed. Biopolymers are eco-friendly, biodegradable, nontoxic, renewable, and biocompatible alternatives to synthetic packaging materials. Research shows that biopolymer-based packaging materials are of great essence in combined form, and further studies are needed for them to be used as an alternative packaging material.
Collapse
Affiliation(s)
- Kalpani Y Perera
- Sustainable Packaging and Bioproducts Research (SPBR) Group, School of Food Science and Environmental Health, Faculty of Sciences and Health, Technological University Dublin, City Campus, Grangegorman, D07 ADY7 Dublin, Ireland
- Environmental Sustainability and Health Institute, Technological University Dublin, City Campus, Grangegorman, D07 H6K8 Dublin, Ireland
| | - Amit K Jaiswal
- Sustainable Packaging and Bioproducts Research (SPBR) Group, School of Food Science and Environmental Health, Faculty of Sciences and Health, Technological University Dublin, City Campus, Grangegorman, D07 ADY7 Dublin, Ireland
- Environmental Sustainability and Health Institute, Technological University Dublin, City Campus, Grangegorman, D07 H6K8 Dublin, Ireland
| | - Swarna Jaiswal
- Sustainable Packaging and Bioproducts Research (SPBR) Group, School of Food Science and Environmental Health, Faculty of Sciences and Health, Technological University Dublin, City Campus, Grangegorman, D07 ADY7 Dublin, Ireland
- Environmental Sustainability and Health Institute, Technological University Dublin, City Campus, Grangegorman, D07 H6K8 Dublin, Ireland
| |
Collapse
|
24
|
Zhang D, Cao G, Bu N, Huang L, Lin H, Mu R, Pang J, Wang L. Multi-functional konjac glucomannan/chitosan bilayer films reinforced with oregano essential oil loaded β-cyclodextrin and anthocyanins for cheese preservation. Int J Biol Macromol 2023:125365. [PMID: 37330095 DOI: 10.1016/j.ijbiomac.2023.125365] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 05/24/2023] [Accepted: 06/11/2023] [Indexed: 06/19/2023]
Abstract
In this work, a multifunctional bilayer film was prepared by solvent casting method. Elderberry anthocyanins (EA) were incorporated into konjac glucomannan (KGM) film as the inner indicator layer (KEA). β-cyclodextrin (β-CD) loaded with oregano essential oil (OEO) inclusion complexes (β-CD@OEO) was prepared and incorporated into chitosan (CS) film as the outer hydrophobic and antibacterial layer (CS-β-CD@OEO). The impacts of β-CD@OEO on the morphological, mechanical, thermal, water vapor permeability and water resistance properties, pH sensitivity, antioxidant, and antibacterial activities of bilayer films were thoroughly evaluated. The incorporation of β-CD@OEO into bilayer films can significantly improve the mechanical properties (tensile strength (TS): 65.71 MPa and elongation at break (EB): 16.81 %), thermal stability, and water resistance (Water contact angle (WCA): 88.15°, water vapor permeability (WVP): 3.53 g mm/m2 day kPa). In addition, the KEA/CS-β-CD@OEO bilayer films showed color variations in acid-base environments, which could be used as pH-responsive indicators. The KEA/CS-β-CD@OEO bilayer films also presented controlled release of OEO, good antioxidant, and antimicrobial activity, which exhibited good potential for the preservation of cheese. To sum up, KEA/CS-β-CD@OEO bilayer films have potential applications in the field of food packaging industry.
Collapse
Affiliation(s)
- Di Zhang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Guoyu Cao
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Nitong Bu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Liying Huang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Huanglong Lin
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ruojun Mu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Jie Pang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Lin Wang
- Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China; Institute of Superlubricity Technology, Research Institute of Tsinghua University in Shenzhen, Shenzhen 518057, China.
| |
Collapse
|
25
|
Gengatharan A, Rahim MHA. The application of clove extracts as a potential functional component in active food packaging materials and model food systems: A mini-review. APPLIED FOOD RESEARCH 2023; 3:100283. [DOI: 10.1016/j.afres.2023.100283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
26
|
Bose I, Roy S, Pandey VK, Singh R. A Comprehensive Review on Significance and Advancements of Antimicrobial Agents in Biodegradable Food Packaging. Antibiotics (Basel) 2023; 12:968. [PMID: 37370286 DOI: 10.3390/antibiotics12060968] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/18/2023] [Accepted: 05/25/2023] [Indexed: 06/29/2023] Open
Abstract
Food waste is key global problem and more than 90% of the leftover waste produced by food packaging factories is dumped in landfills. Foods packaged using eco-friendly materials have a longer shelf life as a result of the increased need for high-quality and secure packaging materials. For packaging purposes, natural foundation materials are required, as well as active substances that can prolong the freshness of the food items. Antimicrobial packaging is one such advancement in the area of active packaging. Biodegradable packaging is a basic form of packaging that will naturally degrade and disintegrate in due course of time. A developing trend in the active and smart food packaging sector is the use of natural antioxidant chemicals and inorganic nanoparticles (NPs). The potential for active food packaging applications has been highlighted by the incorporation of these materials, such as polysaccharides and proteins, in biobased and degradable matrices, because of their stronger antibacterial and antioxidant properties, UV-light obstruction, water vapor permeability, oxygen scavenging, and low environmental impact. The present review highlights the use of antimicrobial agents and nanoparticles in food packaging, which helps to prevent undesirable changes in the food, such as off flavors, colour changes, or the occurrence of any foodborne outcomes. This review attempts to cover the most recent advancements in antimicrobial packaging, whether edible or not, employing both conventional and novel polymers as support, with a focus on natural and biodegradable ingredients.
Collapse
Affiliation(s)
- Ipsheta Bose
- School of Bioengineering and Food Technology, Shoolini University, Solan 173229, India
| | - Swarup Roy
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara 144411, India
| | - Vinay Kumar Pandey
- Department of Bioengineering, Integral University, Lucknow 226026, India
- Department of Biotechnology, Axis Institute of Higher Education, Kanpur 209402, India
| | - Rahul Singh
- Department of Bioengineering, Integral University, Lucknow 226026, India
| |
Collapse
|
27
|
Amoroso L, De France KJ, Kummer N, Ren Q, Siqueira G, Nyström G. Nanocomposites of cellulose nanofibers incorporated with carvacrol via stabilizing octenyl succinic anhydride-modified ɛ-polylysine. Int J Biol Macromol 2023; 242:124869. [PMID: 37201880 DOI: 10.1016/j.ijbiomac.2023.124869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 05/03/2023] [Accepted: 05/11/2023] [Indexed: 05/20/2023]
Abstract
Food packaging plays an extremely important role in the global food chain, allowing for products to be shipped across long distances without spoiling. However, there is an increased need to both reduce plastic waste caused by traditional single-use plastic packaging and improve the overall functionality of packaging materials to extend shelf-life even further. Herein, we investigate composite mixtures based on cellulose nanofibers and carvacrol via stabilizing octenyl-succinic anhydride-modified epsilon polylysine (MɛPL-CNF) for active food packaging applications. The effects of epsilon polylysine (εPL) concentration and modification with octenyl-succinic anhydride (OSA) and carvacrol are evaluated with respect to composites morphology, mechanical, optical, antioxidant, and antimicrobial properties. We find that both increased εPL concentration and modification with OSA and carvacrol lead to films with increased antioxidant and antimicrobial properties, albeit at the expense of reduced mechanical performance. Importantly, when sprayed onto the surface of sliced apples, MεPL-CNF-mixtures are able to successfully delay/hinder enzymatic browning, suggesting the potential of such materials for a range of active food packaging applications.
Collapse
Affiliation(s)
- Luana Amoroso
- Laboratory for Cellulose & Wood Materials, Empa - Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, 8600 DÜbendorf, Switzerland
| | - Kevin J De France
- Laboratory for Cellulose & Wood Materials, Empa - Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, 8600 DÜbendorf, Switzerland
| | - Nico Kummer
- Laboratory for Cellulose & Wood Materials, Empa - Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, 8600 DÜbendorf, Switzerland; Department of Health Science and Technology, ETH Zürich, Schmelzbergstrasse 9, 8092 Zürich, Switzerland
| | - Qun Ren
- Laboratory for Biointerfaces, Empa - Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, 9041 St. Gallen, Switzerland
| | - Gilberto Siqueira
- Laboratory for Cellulose & Wood Materials, Empa - Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, 8600 DÜbendorf, Switzerland.
| | - Gustav Nyström
- Laboratory for Cellulose & Wood Materials, Empa - Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, 8600 DÜbendorf, Switzerland; Department of Health Science and Technology, ETH Zürich, Schmelzbergstrasse 9, 8092 Zürich, Switzerland.
| |
Collapse
|
28
|
Chelliah R, Jo KH, Yan P, Chen X, Jo HY, Hasan Madar I, Sultan G, Oh DH. Unravelling the sanitization potential of slightly acidic electrolyzed water combined Thymus vulgaris based nanoemulsion against foodborne pathogens and its safety assessment. Food Control 2023; 146:109527. [DOI: 10.1016/j.foodcont.2022.109527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
29
|
Chelliah R, Jo KH, Yan P, Chen X, Jo HY, Hasan Madar I, Sultan G, Oh DH. Unravelling the sanitization potential of slightly acidic electrolyzed water combined Thymus vulgaris based nanoemulsion against foodborne pathogens and its safety assessment. Food Control 2023; 146:109527. [DOI: https:/doi.10.1016/j.foodcont.2022.109527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
|
30
|
Mittal M, Ahuja S, Yadav A, Aggarwal NK. Development of poly(hydroxybutyrate) film incorporated with nano silica and clove essential oil intended for active packaging of brown bread. Int J Biol Macromol 2023; 233:123512. [PMID: 36739047 DOI: 10.1016/j.ijbiomac.2023.123512] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/25/2023] [Accepted: 01/29/2023] [Indexed: 02/05/2023]
Abstract
The objective of current study was to develop Poly(hydroxybutyrate) (PHB) based active packaging film with long lasting antimicrobial potential in food-packaging applications. For developing such films, PHB was incorporated with poly(ethylene glycol) (PEG) as a plasticizer, nano-silica (n-Si) as strengthening material and clove essential oil (CEO) as an antimicrobial agent. These solvent-casted films with varying concentration of n-Si (0.5, 1, 1.5, 2 %) and 30 % CEO of total polymer matrix weight i.e., PHB/PEG (90/10) were prepared and studied on the basis of morphological, mechanical, thermal, degradation and antimicrobial behaviours. The presence of CEO and n-Si was confirmed by Fourier transform infrared spectroscopy (FTIR). Scanning Electron Microscopy (SEM) and X-ray diffraction (XRD) were used to investigate homogeneous dispersal of n-Si in polymer matrix. PHB/PEG/CEO/Si 1.0 film was selected as optimized one after mechanical testing and therefore further carried for antimicrobial testing. This selected film extended the shelf-life of brown bread up to 10 days comparable to bread wrapped in polyethylene. This revealed that PHB/PEG/CEO/Si 1.0 exhibited superior antibacterial activity against the food borne microbes i.e., Escherichia coli, Staphylococcus aureus and Aspergillus niger. Our findings indicate that this film improved the shelf-life of packaged bread and has promising features for active food packaging.
Collapse
Affiliation(s)
- Mahak Mittal
- Laboratory of Fermentation Technology, Department of Microbiology, Kurukshetra 136119, Haryana, India
| | - Simran Ahuja
- Department of Chemistry, Kurukshetra 136119, Haryana, India
| | - Anita Yadav
- Department of Biotechnology, Kurukshetra 136119, Haryana, India.
| | - Neeraj K Aggarwal
- Laboratory of Fermentation Technology, Department of Microbiology, Kurukshetra 136119, Haryana, India.
| |
Collapse
|
31
|
An eco-friendly chitosan/cellulose acetate hybrid nanostructure containing Ziziphora clinopodioides essential oils for active food packaging applications. Int J Biol Macromol 2023; 235:123885. [PMID: 36871690 DOI: 10.1016/j.ijbiomac.2023.123885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 02/23/2023] [Accepted: 02/26/2023] [Indexed: 03/06/2023]
Abstract
This work presents the fabrication and characterization of a hybrid nanostructure, Ziziphora clinopodioides essential oils (ZEO)-loaded chitosan nanoparticles (CSNPs-ZEO) embedded into cellulose acetate (CA) nanofibers (CA-CSNPs-ZEO). The CSNPs-ZEO were first synthesized through the ionic gelation method. Then, through simultaneous electrospraying and electrospinning processes, the nanoparticles were embedded in the CA nanofibers. The morphological and physicochemical characteristics of the prepared nanostructures were evaluated using different methods, including scanning electron microscopy (SEM), water vapor permeability (WVP), moisture content (MC), mechanical testing, differential scanning calorimetry (DSC), and release profile studies. The antibacterial activity of the nanostructures was explored on raw beef as a food model during 12 days of storage at 4 °C. The obtained results indicated the successful synthesis of CSNPs-ZEO nanoparticles with an average size of 267 ± 6 nm and their incorporation into the nanofibers matrix. Moreover, the CA-CSNPs-ZEO nanostructure showed a lower water vapor barrier and higher tensile strength compared with ZEO-loaded CA (CA-ZEO) nanofiber. The CA-CSNPs-ZEO nanostructure also exhibited strong antibacterial activity, which effectively extended the shelf-life of raw beef. The results demonstrated a strong potential for innovative hybrid nanostructures in active packaging to maintain the quality of perishable food products.
Collapse
|
32
|
Antibacterial and Antibiofilm Efficacy of Thyme (Thymus vulgaris L.) Essential Oil against Foodborne Illness Pathogens, Salmonella enterica subsp. enterica Serovar Typhimurium and Bacillus cereus. Antibiotics (Basel) 2023; 12:antibiotics12030485. [PMID: 36978352 PMCID: PMC10044538 DOI: 10.3390/antibiotics12030485] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/18/2023] [Accepted: 02/27/2023] [Indexed: 03/05/2023] Open
Abstract
Nowadays, the wide spread of foodborne illness and the growing concerns about the use of synthetic food additives have shifted the focus of researchers towards essential oils (EOs) as possible antimicrobials and preservatives of natural origin. Thanks to their antimicrobial properties against pathogenic and food spoilage microorganisms, EOs have shown good potential for use as alternative food additives, also to counteract biofilm-forming bacterial strains, the spread of which is considered to be among the main causes of the increase in foodborne illness outbreaks. In this context, the aim of this study has been to define the antibacterial and antibiofilm profile of thyme (Thymus vulgaris L.) essential oil (TEO) against widespread foodborne pathogens, Salmonella enterica subsp. enterica serovar Typhimurium and Bacillus cereus. TEO chemical composition was analyzed through gas chromatography-mass spectrometry (GC-MS). Preliminary in vitro antibacterial tests allowed to qualitatively verify TEO efficacy against the tested foodborne pathogens. The subsequent determination of minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) values allowed to quantitatively define the bacteriostatic and bactericidal effects of TEO. To evaluate the ability of essential oils to inhibit biofilm formation, a microplate assay was performed for the bacterial biofilm biomass measurement. Results suggest that TEO, rich in bioactive compounds, is able to inhibit the growth of tested foodborne bacteria. In addition, the highlighted in vitro anti-biofilm properties of TEO suggest the use of this natural agent as a promising food preservative to counteract biofilm-related infections in the food industry.
Collapse
|
33
|
Beyond brewing: β-acid rich hop extract in the development of a multifunctional polylactic acid-based food packaging. Int J Biol Macromol 2023; 228:23-39. [PMID: 36565824 DOI: 10.1016/j.ijbiomac.2022.12.191] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 12/08/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022]
Abstract
Hops' (Humulus lupulus L.) phytochemicals are well known for their bioactivity. In the present study, the functional properties of hop extract rich in β-acids, as potassium-salts structures (KBA), were investigated to develop a sustainable active food packaging. Polylactic acid (PLA)-based sheets were incorporated with increasing concentrations of hop extract (0.1-5 % w/w in terms of KBA) and characterized through performance and bioactive properties. KBA-added sheets presented decreased crystallinity and affected mechanical and thermal properties, especially with higher KBA amounts. The sheets' surface hydrophobicity gradually decreased by KBA-extract addition, while the water vapor permeability was not affected. A Fickian diffuse behavior and a better fit to application in fatty foods were observed during release tests. UV-blocking and antioxidant properties were improved by KBA incorporation. Furthermore, results from antibacterial assays revealed great susceptibility of Staphylococcus aureus and Listeria monocytogenes towards sheets added with 5 % of KBA. Moreover, the atomic force microscopy (AFM) observations revealed that KBA led to strong effects on the cell membranes of both bacteria, including disruption of membrane integrity and cell death. Therefore, this study is a sign of great prospects of hop β-acids use, as KBA compound, in the production of sustainable active packaging for safe food shelf-life extension.
Collapse
|
34
|
Akturk A. Enrichment of Cellulose Acetate Nanofibrous Scaffolds with Retinyl Palmitate and Clove Essential Oil for Wound Healing Applications. ACS OMEGA 2023; 8:5553-5560. [PMID: 36816664 PMCID: PMC9933185 DOI: 10.1021/acsomega.2c06881] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 01/20/2023] [Indexed: 06/18/2023]
Abstract
The use of biocompatible materials and fabrication methods is of particular importance in the development of wound dressings. Cellulose acetate (CA) has excellent properties for wound dressing applications, but it is insufficient for the wound healing process due to its lack of bioactive and antibacterial properties. In this study, CA was electrospun with retinyl palmitate (RP) and clove essential oil (CLV) to fabricate a novel antibacterial and antioxidant biomaterial. The effects of RP and CLV incorporation on the surface morphology, fiber diameter, antioxidant activity, antibacterial activity, cell viability, and release behavior of the fabricated CA mats were investigated. In light of these studies, it was determined that the nanofiber mat, fabricated with a 15% w/v CA polymer concentration, a 1% w/w RP ratio, and a 5% w/w CLV ratio, was biocompatible with L929 fibroblast cells with antibacterial and antioxidant properties. Overall, results showed that this nanofiber offers promise for use as a wound dressing.
Collapse
|
35
|
MOTTA JFG, FREITAS BCBD, ALMEIDA AFD, MARTINS GADS, BORGES SV. Use of enzymes in the food industry: a review. FOOD SCIENCE AND TECHNOLOGY 2023. [DOI: 10.1590/fst.106222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
36
|
Sateriale D, Forgione G, De Cristofaro GA, Facchiano S, Boscaino F, Pagliuca C, Colicchio R, Salvatore P, Paolucci M, Pagliarulo C. Towards Green Strategies of Food Security: Antibacterial Synergy of Essential Oils from Thymus vulgaris and Syzygium aromaticum to Inhibit Escherichia coli and Staphylococcus aureus Pathogenic Food Isolates. Microorganisms 2022; 10:microorganisms10122446. [PMID: 36557699 PMCID: PMC9780947 DOI: 10.3390/microorganisms10122446] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/05/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022] Open
Abstract
Foodborne diseases continue to represent an important public health issue. The control of food spoilage and pathogenic microorganisms is achieved mainly by synthetic chemicals, unfortunately associated to several undesirable aspects. The growing requirement for new and safe alternative strategies has resulted in the research of agents from natural sources with antimicrobial properties, such as essential oils (EOs). This study's purpose was to define the antibacterial profile of thyme (Thymus vulgaris) and cloves (Syzygium aromaticum) essential oils against both Gram-positive and Gram-negative important foodborne pathogenic bacteria. Gas chromatography mass spectrometry analysis was performed for EOs' chemical composition. Qualitative in vitro antimicrobial assays (i.e., agar well diffusion method and disk-volatilization method) allowed for verification of the efficacy of EOs, used individually and in binary combination and both in liquid and vapor phase, against Staphylococcus aureus and Escherichia coli food isolates. Minimal inhibitory concentrations and minimal bactericidal concentration values have been used to quantitatively measure the antibacterial activity of EOs, while the fractional inhibitory concentration index has been considered as a predictor of in vitro antibacterial synergistic effects. The microbiological tests suggest that thyme and cloves EOs, rich in bioactive compounds, are able to inhibit the growth of tested foodborne bacteria, especially in vapor phase, also with synergistic effects. Results provide evidence to consider the tested essential oils as promising sources for development of new, broad-spectrum, green food preservatives.
Collapse
Affiliation(s)
- Daniela Sateriale
- Department of Science and Technology, University of Sannio, Via F. De Sanctis Snc, 82100 Benevento, Italy
| | - Giuseppina Forgione
- Department of Science and Technology, University of Sannio, Via F. De Sanctis Snc, 82100 Benevento, Italy
| | | | - Serena Facchiano
- Department of Science and Technology, University of Sannio, Via F. De Sanctis Snc, 82100 Benevento, Italy
| | - Floriana Boscaino
- Institute of Food Science, National Research Council (CNR-ISA), Via Roma 64, 83100 Avellino, Italy
| | - Chiara Pagliuca
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy
| | - Roberta Colicchio
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy
| | - Paola Salvatore
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy
- CEINGE-Biotecnologie Avanzate s.c.ar.l., Via G. Salvatore 486, 80145 Naples, Italy
| | - Marina Paolucci
- Department of Science and Technology, University of Sannio, Via F. De Sanctis Snc, 82100 Benevento, Italy
| | - Caterina Pagliarulo
- Department of Science and Technology, University of Sannio, Via F. De Sanctis Snc, 82100 Benevento, Italy
- Correspondence: ; Tel.: +39-0824-305141
| |
Collapse
|
37
|
Sayed A, Safwat G, Abdel-raouf M, Mahmoud GA. Alkali-cellulose/ Polyvinyl alcohol biofilms fabricated with essential clove oil as a novel scented antimicrobial packaging material. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2022. [DOI: 10.1016/j.carpta.2022.100273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
38
|
Sharma S, Byrne M, Perera KY, Duffy B, Jaiswal AK, Jaiswal S. Active film packaging based on bio-nanocomposite TiO2 and cinnamon essential oil for enhanced preservation of cheese quality. Food Chem 2022; 405:134798. [DOI: 10.1016/j.foodchem.2022.134798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 10/22/2022] [Accepted: 10/26/2022] [Indexed: 11/04/2022]
|
39
|
Amorim LFA, Fangueiro R, Gouveia IC. Novel functional material incorporating flexirubin‐type pigment in polyvinyl alcohol_kefiran/polycaprolactone nanofibers. J Appl Polym Sci 2022. [DOI: 10.1002/app.53208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Lúcia F. A. Amorim
- FibEnTech Research Unit Faculty of Engineering University of Beira Interior Covilhã Portugal
| | - Raul Fangueiro
- Centre for Textile Science and Technology (2C2T) University of Minho Guimarães Portugal
| | - Isabel C. Gouveia
- FibEnTech Research Unit Faculty of Engineering University of Beira Interior Covilhã Portugal
| |
Collapse
|
40
|
Bangar SP, Whiteside WS, Dunno KD, Cavender GA, Dawson P. Fabrication and characterization of active nanocomposite films loaded with cellulose nanocrystals stabilized Pickering emulsion of clove bud oil. Int J Biol Macromol 2022; 224:1576-1587. [DOI: 10.1016/j.ijbiomac.2022.10.243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 10/25/2022] [Accepted: 10/26/2022] [Indexed: 11/05/2022]
|
41
|
Shao L, Xi Y, Weng Y. Recent Advances in PLA-Based Antibacterial Food Packaging and Its Applications. Molecules 2022; 27:molecules27185953. [PMID: 36144687 PMCID: PMC9502505 DOI: 10.3390/molecules27185953] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/06/2022] [Accepted: 09/09/2022] [Indexed: 11/20/2022] Open
Abstract
In order to reduce environmental pollution and resource waste, food packaging materials should not only have good biodegradable ability but also effective antibacterial properties. Poly(lactic acid) (PLA) is the most commonly used biopolymer for food packaging applications. PLA has good physical properties, mechanical properties, biodegradability, and cell compatibility but does not have inherent antibacterial properties. Therefore, antibacterial packaging materials based on PLA need to add antibacterial agents to the polymer matrix. Natural antibacterial agents are widely used in food packaging materials due to their low toxicity. The high volatility of natural antibacterial agents restricts their application in food packaging materials. Therefore, appropriate processing methods are particularly important. This review introduces PLA-based natural antibacterial food packaging, and the composition and application of natural antibacterial agents are discussed. The properties of natural antibacterial agents, the technology of binding with the matrix, and the effect of inhibiting various bacteria are summarized.
Collapse
Affiliation(s)
- Linying Shao
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Yuewei Xi
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China
- Beijing Key Laboratory of Quality Evaluation Technology for Hygiene and Safety of Plastics, Beijing Technology and Business University, Beijing 100048, China
- Correspondence: (Y.X.); (Y.W.)
| | - Yunxuan Weng
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China
- Beijing Key Laboratory of Quality Evaluation Technology for Hygiene and Safety of Plastics, Beijing Technology and Business University, Beijing 100048, China
- Correspondence: (Y.X.); (Y.W.)
| |
Collapse
|
42
|
Guo S, Li T, Chen M, Wu C, Ge X, Fan G, Li X, Zhou D, Mi L, Zhao X, Yang T. Sustainable and effective Chitosan-based edible films incorporated with OEO nanoemulsion against apricots’ black spot. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.108965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
43
|
Synthesis and characterization of poly(lactic acid)/clove essential oil/alkali-treated halloysite nanotubes composite films for food packaging applications. Int J Biol Macromol 2022; 216:927-939. [DOI: 10.1016/j.ijbiomac.2022.07.209] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 07/24/2022] [Accepted: 07/25/2022] [Indexed: 12/25/2022]
|
44
|
Bangar SP, Whiteside WS, Dunno KD, Cavender GA, Dawson P. Pearl millet starch-based nanocomposite films reinforced with Kudzu cellulose nanocrystals and essential oil: Effect on functionality and biodegradability. Food Res Int 2022; 157:111384. [DOI: 10.1016/j.foodres.2022.111384] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/09/2022] [Accepted: 05/16/2022] [Indexed: 01/10/2023]
|
45
|
Preparation and characterization of electrospun nanofibre membranes incorporated with an ethanol extract of Capparis spinosa L. as a potential packaging material. Food Packag Shelf Life 2022. [DOI: 10.1016/j.fpsl.2022.100851] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
46
|
Characterization of active and pH-sensitive poly(lactic acid) (PLA)/nanofibrillated cellulose (NFC) films containing essential oils and anthocyanin for food packaging application. Int J Biol Macromol 2022; 212:220-231. [PMID: 35597382 DOI: 10.1016/j.ijbiomac.2022.05.116] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 05/12/2022] [Accepted: 05/16/2022] [Indexed: 02/02/2023]
Abstract
Active and pH-sensitive films of poly(lactic acid) (PLA)/nanofibrillated cellulose (NFC) have been fabricated and tested. The PLA and PLA/NFC films with 1.5% NFC were prepared via solvent casting method, with different loadings of essential oil (EO), including thymol and curry, being added at 5, 10, and 15%. The fixed content of anthocyanin powder (1%) was incorporated into the films as a pH indicator. The active PLA and PLA/NFC films were characterised on their physical, mechanical, thermal, and biodegradation properties. The addition of NFC reduced the tensile strength but increased the flexibility of films due to the plasticizing effect of EOs. The PLA/EO and PLA/NFC/EO films containing curry demonstrated a slightly higher strength than the films with thymol. The flexibility of films was increased at higher loading of EO regardless of the types of EO. The thermal profile demonstrated that the neat PLA film had a higher maximum degradation temperature than the active PLA/EO and PLA/NFC/EO films. The active PLA/EO and PLA/NFC/EO films containing anthocyanin successfully changed its colour in pH 2.0 and 14.0. The PLA/NFC films with thymol and anthocyanin formulation could inhibit fungus growth better in the cherry tomato sample than the PLA/NFC films with curry and anthocyanin.
Collapse
|
47
|
Karami P, Zandi M, Ganjloo A. Evaluation of physicochemical, mechanical and antimicrobial properties of gelatin‐sodium alginate‐yarrow (
Achillea millefolium L
.) essential oil film. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Parvaneh Karami
- Department of Food Science and Engineering, Faculty of Agriculture University of Zanjan Zanjan Iran
| | - Mohsen Zandi
- Department of Food Science and Engineering, Faculty of Agriculture University of Zanjan Zanjan Iran
| | - Ali Ganjloo
- Department of Food Science and Engineering, Faculty of Agriculture University of Zanjan Zanjan Iran
| |
Collapse
|
48
|
Physicochemical and thermal characterization of poly (3-hydroxybutyrate-co-4-hydroxybutyrate) films incorporating thyme essential oil for active packaging of white bread. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108688] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
49
|
Subbuvel M, Kavan P. Preparation and characterization of polylactic acid/fenugreek essential oil/curcumin composite films for food packaging applications. Int J Biol Macromol 2022; 194:470-483. [PMID: 34800525 DOI: 10.1016/j.ijbiomac.2021.11.090] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/11/2021] [Accepted: 11/14/2021] [Indexed: 11/05/2022]
Abstract
Curcumin and Fenugreek essential oil (FEO) were blended into the PLA matrix by solution casting technique to improve the functional properties of the composite film. Both fillers (curcumin and FEO) were properly combined and uniformly distributed in the polymer matrix to create a PLA-compatible composite evidenced by Scanning electron microscope (SEM) and Fourier Transform Infrared (FT-IR) results. The addition of FEO and curcumin to the composite film improved UV-blocking, surface color, tensile strength, flexibility, thickness, and Water contact angle (WCA). However, the inclusion of curcumin and FEO slightly diminish the Water vapor permeability (WVP) while maintaining its thermal stability. The PLA-based composite film exhibited good antibacterial and anti-oxidant properties. In addition, a food quality test was performed on strawberry, and the results were compared to the commercial (polyethylene) film.
Collapse
Affiliation(s)
- Mohan Subbuvel
- Department of Production Engineering, National Institute of Technology Tiruchirappalli, Tamil Nadu 620015, India
| | - Panneerselvem Kavan
- Department of Production Engineering, National Institute of Technology Tiruchirappalli, Tamil Nadu 620015, India.
| |
Collapse
|
50
|
Sharma S, Jaiswal S, Duffy B, Jaiswal AK. Advances in emerging technologies for the decontamination of the food contact surfaces. Food Res Int 2022; 151:110865. [PMID: 34980401 DOI: 10.1016/j.foodres.2021.110865] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 11/13/2021] [Accepted: 12/02/2021] [Indexed: 11/18/2022]
Abstract
Foodborne pathogens could be transferred to food from food contact surfaces contaminated by poor hygiene or biofilm formation. The food processing industry has various conditions favouring microbes' adherence, such as moisture, nutrients, and the microbial inoculums obtained from the raw material. The function of the ideal antimicrobial surface is preventing initial attachment of the microbes, killing the microbes or/and removing the dead bacteria. This review article provides detail about the challenges food industries are facing with respect to food contact materials. It also summarises the merits and demerits of several sanitizing methods developed for industrial use. Furthermore, it reviews the new and emerging techniques that enhance the efficiency of reducing microbial contamination. Techniques such as surface functionalisation, high-intensity ultrasound, cold plasma technologies etc. which have high potential to be used for the decontamination of food contact surfaces are discussed. The emerging designs of antibacterial surfaces provide the opportunity to reduce or eradicate the adhesion of microorganisms. The most important purpose of these surfaces is to prevent the attachment of bacteria and to kill the bacteria that come in contact. These emerging technologies have a high potential for developing safe and inert food contact materials for the food industry.
Collapse
Affiliation(s)
- Shubham Sharma
- School of Food Science and Environmental Health, College of Sciences and Health, Technological University Dublin - City Campus, Central Quad, Grangegorman, Dublin D07 ADY7, Ireland; Environmental Sustainability and Health Institute, Technological University Dublin - City Campus, Grangegorman, Dublin D07 H6K8, Ireland; Centre for Research in Engineering and Surface Technology (CREST-Gateway), FOCAS Institute, Technological University Dublin - City Campus, Kevin Street, Dublin D08 CKP1, Ireland
| | - Swarna Jaiswal
- School of Food Science and Environmental Health, College of Sciences and Health, Technological University Dublin - City Campus, Central Quad, Grangegorman, Dublin D07 ADY7, Ireland; Environmental Sustainability and Health Institute, Technological University Dublin - City Campus, Grangegorman, Dublin D07 H6K8, Ireland.
| | - Brendan Duffy
- Centre for Research in Engineering and Surface Technology (CREST-Gateway), FOCAS Institute, Technological University Dublin - City Campus, Kevin Street, Dublin D08 CKP1, Ireland
| | - Amit K Jaiswal
- School of Food Science and Environmental Health, College of Sciences and Health, Technological University Dublin - City Campus, Central Quad, Grangegorman, Dublin D07 ADY7, Ireland; Environmental Sustainability and Health Institute, Technological University Dublin - City Campus, Grangegorman, Dublin D07 H6K8, Ireland
| |
Collapse
|