1
|
Núñez S, Valero MS, Mustafa AM, Caprioli G, Maggi F, Gómez‐Rincón C, López V. Ultrasound-assisted extraction versus traditional Soxhlet apparatus for the obtention of polyphenols, carotenoids and tocopherols from Tagetes erecta L. flowers. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025; 105:3453-3462. [PMID: 39716808 PMCID: PMC11949861 DOI: 10.1002/jsfa.14105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 10/30/2024] [Accepted: 12/15/2024] [Indexed: 12/25/2024]
Abstract
BACKGROUND Tagetes erecta L., commonly known as American marigold, serves as a food plant used for the extraction of carotenoids such as lutein, employed both as culinary ingredient in certain dishes and for its ornamental and medicinal applications. Two extraction techniques, Soxhlet and ultrasound-assisted extraction (UAE), were used on two cultivars (yellow and orange) of T. erecta. Polyphenols were quantified using HPLC-tandem mass spectrometry, whereas carotenoids and tocopherols were determined using HPLC-diode array detection. Biological activity for antioxidant and antiglycation properties was carried out. RESULTS The best extraction yield was obtained for UAE (7.51% and 6.83% for yellow and orange flowers), corresponding with the largest amounts of polyphenols quantified. The highest content of tocopherols was obtained in the yellow cultivar extracted by Soxhlet (6499.3 ± 21.2 and 4671.0 ± 92.9 mg kg-1 dry extract for α- and γ-tocopherol). The antioxidant potential resulted higher in the orange Soxhlet extract, whereas the yellow Soxhlet extract displayed the best antiglycation activity (median 50% inhibitory concentration of 25.3 ± 3.3 μg mL-1). CONCLUSION Both extraction techniques showed interesting results in terms of bioactivity and compounds obtention. © 2024 The Author(s). Journal of the Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Sonia Núñez
- Department of Pharmacy, Faculty of Health SciencesUniversidad San JorgeZaragozaSpain
- Instituto Agroalimentario de Aragón, IA2Universidad de Zaragoza‐CITAZaragozaSpain
| | - Marta Sofía Valero
- Instituto Agroalimentario de Aragón, IA2Universidad de Zaragoza‐CITAZaragozaSpain
- Department of Pharmacology, Physiology and Legal and Forensic MedicineUniversidad de ZaragozaZaragozaSpain
| | - Ahmed M Mustafa
- Chemistry Interdisciplinary Project (ChIP) Research Center, School of PharmacyUniversity of CamerinoCamerinoItaly
| | - Giovanni Caprioli
- Chemistry Interdisciplinary Project (ChIP) Research Center, School of PharmacyUniversity of CamerinoCamerinoItaly
| | - Filippo Maggi
- Chemistry Interdisciplinary Project (ChIP) Research Center, School of PharmacyUniversity of CamerinoCamerinoItaly
| | - Carlota Gómez‐Rincón
- Department of Pharmacy, Faculty of Health SciencesUniversidad San JorgeZaragozaSpain
- Instituto Agroalimentario de Aragón, IA2Universidad de Zaragoza‐CITAZaragozaSpain
| | - Víctor López
- Department of Pharmacy, Faculty of Health SciencesUniversidad San JorgeZaragozaSpain
- Instituto Agroalimentario de Aragón, IA2Universidad de Zaragoza‐CITAZaragozaSpain
| |
Collapse
|
2
|
Gaba ABM, Hassan MA, Abd El-Tawab AA, Al-Dalain SY, Abdelaziz M, Morsy OM, Sami R, Alsanei WA, Almehmadi AM, Bedaiwi RI, Kadi RH, Qari SH, Almasoudi SH, Bay DH, Morsy MK. Bioactive chitosan based coating incorporated with essential oil to inactivate foodborne pathogen microorganisms and improve quality parameters of beef burger. FOOD SCI TECHNOL INT 2025:10820132251323937. [PMID: 40084817 DOI: 10.1177/10820132251323937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2025]
Abstract
The aim of this study is to assess the impacts of chitosan (CH) coating with oregano essential oil (OEO) and thyme essential oil (TEO) (0.5%-1.0%; v/w) on the foodborne pathogens and physicochemical parameters of beef burger during refrigerated storage. Preliminary experiment (in vitro) demonstrated that 0.5% OEO and TEO were inhibited all or some of S. aureus, S. Typhimurium, and E. coli O157:H7. On day 30, the E. coli O157:H7 of burger coated with CH + OEO and TEO (1%; w/v) declined by 4 and 5 log10 CFU g-1, respectively, S. Typhimurium and S. aureus decreases (4,5-6 log10 CFU g-1) when compared to the control sample. The quality parameters of beef burger were also enhanced after the coating treatment of CH and essential oils (EOs), including pH value, TBARS, and TVB-N in burger during storage (4 °C/30 d). Besides, CH + EOs coating also reduced the deterioration of the sensory attributes of beef burger, including color, odor, and overall acceptability. The chitosan coatings with EOs have superior mechanical qualities than the control sample, also, the structure of the films was evaluated by SEM. In conclusion, CH coating with EOs (OEO, ETO; 1%) regarded as a successful strategy to improve the quality and prolong the shelf life of beef burger.
Collapse
Affiliation(s)
- Abdul Basit M Gaba
- Department of Food Hygiene and Control, Faculty of Veterinary Medicine, Benha University, Qaluobia, Egypt
- Department of Quality Systems and Sustainability, Kalustyan Corporation, Union, NJ, USA
| | - Mohamed A Hassan
- Department of Food Hygiene and Control, Faculty of Veterinary Medicine, Benha University, Qaluobia, Egypt
| | - Ashraf A Abd El-Tawab
- Department of Bacteriology, Immunology, and Mycology, Faculty of Veterinary Medicine, Benha University, Qaluobia, Egypt
| | - Sati Y Al-Dalain
- Department of Medical Support, Al-Karak University College, Al-Balqa Applied University, Salt, Jordan
| | - Manal Abdelaziz
- Department of Microbiology, Central Laboratory of Residue Analysis of Pesticides and Heavy Metals in Food, Agriculture Research Center, Giza, Egypt
| | - Osama M Morsy
- Department of Basic and Applied Sciences, Faculty of Engineering, Arab Academy of Science, Technology, and Maritime Transport, Cairo, Egypt
| | - Rokayya Sami
- Department of Food Science and Nutrition, College of Sciences, Taif University, Taif, Saudi Arabia
| | - Woroud A Alsanei
- Department of Food and Nutrition, Faculty of Human Sciences and Design, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Awatif M Almehmadi
- Department of Clinical Nutrition, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Ruqaiah I Bedaiwi
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | - Roqayah H Kadi
- Department of Biological Sciences, College of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Sameer H Qari
- Department of Biology, Al-Jumum University College, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Suad H Almasoudi
- Department of Biology, Faculty of Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Daniyah H Bay
- Department of Biology, Faculty of Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Mohamed K Morsy
- Department of Food Technology, Faculty of Agriculture, Benha University, Qaluobia, Egypt
| |
Collapse
|
3
|
Khnissi S, Ben Salem I, Bejaoui B, Fattouch S, Mustapha SB, Haj‐Kacem R, M'Hamdi N, Martin P, Dattena M, Lassoued N. Antioxidant Capacity of Thyme (Thymus vulgaris) Essential Oil and Its Effect on In Vivo Fertility of Rams Subjected to Testicle Heat Stress. J Anim Physiol Anim Nutr (Berl) 2025; 109:437-448. [PMID: 39467072 PMCID: PMC11919805 DOI: 10.1111/jpn.14063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 09/18/2024] [Accepted: 10/13/2024] [Indexed: 10/30/2024]
Abstract
The detrimental effects of hyperthermia on the testes and the protective effect of thyme essential oil against testicular damage induced by this stress in rams were studied. Twenty-four rams of the Barbarine breed with an average weight of 62.5 ± 0.3 kg and an average age of 24 ± 0.6 months. The experiment consisted of inducing localized heat stress on the first group of rams by applying heat bags to both testicles of six rams (G s). The second group underwent the same heat stress on the testes but received orally 100 µL/day/animal of thyme essential oil (G s-he). A positive control did not undergo stress but received thyme essential oil (G he) with the same doses as the (G s-he) group, and the negative control did not undergo either stress or receive the essential oil of thyme (G c). One hundred twenty-eight adult ewes of the same breed divided into four groups of 32 ewes were used to study the effect of different treatments on the in vivo ram's fertility. Ewes are synchronized and we have applied natural mating with oestrus control, the reproduction balance sheet is calculated after lambing. The results showed that tests of heat stress (HS) negatively affect semen quality but did not cause infertility. However, neither tests for heat stress nor treatment with thyme EO significantly affected the haematological profile. The study of the effect of heat stress on the testes on fertility in vivo showed a drop in the number of females who were fertilized at the first oestrus and consequently a drop in fertility. However, the rams that suffered the same stress but were treated with EO thymus recorded an improvement in these parameters.
Collapse
Affiliation(s)
- Samia Khnissi
- Laboratory of Animal and Forage ProductionNational Institute of Agronomic Research of Tunisia (INRAT) University of CarthageTunisTunisia
| | - Imène Ben Salem
- Department of Animal Production, Service of Zootechnics and Agricultural Economy National School of Veterinary Medicine Sidi ThabetUniversity of ManoubaCité NasrTunisia
| | - Bochra Bejaoui
- Laboratory of Useful MaterialsNational Institute of Research and Pysico‐Chemical Analysis (INRAP), Technopark of Sidi ThabetArianaTunisia
- Department of ChemistryUniversity of Carthage, Faculty of Sciences of BizerteBizerteZarzounaTunisia
| | - Sami Fattouch
- EcoChemistry Laboratory, National Institute of Applied Sciences and Technology (INSAT)University of CarthageCarthageTunisia
| | - Souha ben Mustapha
- EcoChemistry Laboratory, National Institute of Applied Sciences and Technology (INSAT)University of CarthageCarthageTunisia
| | - Rami Haj‐Kacem
- Tunisia Polytechnic School, LEGIUniversity of CarthageCarthageTunisia
| | - Naceur M'Hamdi
- Research Laboratory of Ecosystems and Aquatic Resources, National Agronomic Institute of TunisiaCarthage UniversityTunisTunisia
| | - Patrick Martin
- Unité Transformations and Agroressources, ULR7519Université d'Artois‐UniLaSalleBéthuneFrance
| | - Maria Dattena
- Department of Animal ScienceAgricultural Research Agency of Sardinia OlmedoSassariItaly
| | - Narjess Lassoued
- Laboratory of Animal and Forage ProductionNational Institute of Agronomic Research of Tunisia (INRAT) University of CarthageTunisTunisia
| |
Collapse
|
4
|
Okeke UJ, Micucci M, Mihaylova D, Cappiello A. The effects of experimental conditions on extraction of polyphenols from African Nutmeg peels using NADESs-UAE: a multifactorial modelling technique. Sci Rep 2025; 15:4890. [PMID: 39930029 PMCID: PMC11811197 DOI: 10.1038/s41598-025-88233-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 01/28/2025] [Indexed: 02/13/2025] Open
Abstract
Extraction of polyphenolic compounds from African nutmeg (Monodora myristica (Gaertn.)) peels using natural acidic deep eutectic solvents coupled to ultrasound-assisted extraction (NADESs-UAE) followed many factors at a time (MFAT) screening with response surface optimization was investigated. Fourteen different NADESs based on citric acid as hydrogen bond acceptor (HBA) were designed and tested. Sucrose, fructose, xylitol, glycerol, glycine, and glucose were used as hydrogen bond donors (HBDs). The responses studied are total phenolic compounds (TPC), total flavonoid compounds (TFC), and antioxidant activity (AA) based on cupric ion reducing antioxidant capacity (CUPRAC) and ferric reducing antioxidant power (FRAP). The UAE procedure was optimized with the most efficient NADES. Quadratic models produced satisfactory fitting of the experimental data regarding TPC (R2 = 0.9999, p < 0.0001), TFC (R2 = 0.9991, p < 0.0001), and AA- CUPRAC (R2 = 0.9988, p < 0.0001) and FRAP (R2 = 1.000, P < 0001). Ultrasound temperature 30°c, extraction time 5 min, solvent volume 25 ml, and solvent concentration 90% (v/v) were considered optimal conditions for the extraction models resulting in TPC 1290.9 ± 5.6 mg/g GAE db, TFC 2398.7 ± 23 µg/g QE db, CUPRAC 38.46 ± 0.4.4 µmol/g TE db, and FRAP 26.15 ± 0.11µmol/g TE db, respectively.
Collapse
Affiliation(s)
- Udodinma Jude Okeke
- Department of Pure and Applied Science, University of Urbino Carlo Bo, Urbino, Italy
- Department of Biomolecular Science, University of Urbino Carlo Bo, Urbino, Italy
- Department of Biotechnology, University of Food Technologies, Plovdiv, Bulgaria
| | - Matteo Micucci
- Department of Biomolecular Science, University of Urbino Carlo Bo, Urbino, Italy.
| | - Dasha Mihaylova
- Department of Biotechnology, University of Food Technologies, Plovdiv, Bulgaria
| | - Achile Cappiello
- Department of Pure and Applied Science, University of Urbino Carlo Bo, Urbino, Italy.
| |
Collapse
|
5
|
Lin S, Yincang W, Jiazhe D, Xilin X, Zhang X. Pharmacology and mechanisms of apigenin in preventing osteoporosis. Front Pharmacol 2024; 15:1486646. [PMID: 39726788 PMCID: PMC11669520 DOI: 10.3389/fphar.2024.1486646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 11/13/2024] [Indexed: 12/28/2024] Open
Abstract
Osteoporosis (OP) stands as the most prevalent systemic skeletal condition associated with aging. The current clinical management of OP predominantly depends on anti-resorptive and anabolic agents. Nevertheless, prolonged use of some of these medications has been observed to reduce efficacy and elevate adverse effects. Given the necessity for sustained or even lifelong treatment of OP, the identification of drugs that are not only effective but also safe and cost-efficient is of utmost significance. As disease treatment paradigms continue to evolve and recent advancements in OP research come to light, certain plant-derived compounds have emerged, presenting notable benefits in the management of OP. This review primarily explores the pharmacological properties of apigenin and elucidates its therapeutic mechanisms in the context of OP. The insights provided herein aspire to offer a foundation for the judicious use of apigenin in forthcoming research, particularly within the scope of OP.
Collapse
Affiliation(s)
- Sun Lin
- Second Affiliated Hospital of Heilongjiang, University Of Chinese Medicine, Harbin, China
| | - Wang Yincang
- Second Affiliated Hospital of Heilongjiang, University Of Chinese Medicine, Harbin, China
| | - Du Jiazhe
- The First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Xu Xilin
- The Third Affiliated Hospital of Heilongjiang, University of Chinese Medicine, Harbin, China
| | - Xiaofeng Zhang
- Second Affiliated Hospital of Heilongjiang, University Of Chinese Medicine, Harbin, China
| |
Collapse
|
6
|
Laaboudi FZ, Rejdali M, Amhamdi H, Salhi A, Elyoussfi A, Ahari M. In the weeds: A comprehensive review of cannabis; its chemical complexity, biosynthesis, and healing abilities. Toxicol Rep 2024; 13:101685. [PMID: 39056093 PMCID: PMC11269304 DOI: 10.1016/j.toxrep.2024.101685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 06/16/2024] [Accepted: 06/23/2024] [Indexed: 07/28/2024] Open
Abstract
For millennia, various cultures have utilized cannabis for food, textile fiber, ethno-medicines, and pharmacotherapy, owing to its medicinal potential and psychotropic effects. An in-depth exploration of its historical, chemical, and therapeutic dimensions provides context for its contemporary understanding. The criminalization of cannabis in many countries was influenced by the presence of psychoactive cannabinoids; however, scientific advances and growing public awareness have renewed interest in cannabis-related products, especially for medical use. Described as a 'treasure trove,' cannabis produces a diverse array of cannabinoids and non-cannabinoid compounds. Recent research focuses on cannabinoids for treating conditions such as anxiety, depression, chronic pain, Alzheimer's, Parkinson's, and epilepsy. Additionally, secondary metabolites like phenolic compounds, terpenes, and terpenoids are increasingly recognized for their therapeutic effects and their synergistic role with cannabinoids. These compounds show potential in treating neuro and non-neuro disorders, and studies suggest their promise as antitumoral agents. This comprehensive review integrates historical, chemical, and therapeutic perspectives on cannabis, highlighting contemporary research and its vast potential in medicine.
Collapse
Affiliation(s)
- Fatima-Zahrae Laaboudi
- Applied Chemistry Team, Department of Chemistry, Faculty of Sciences and Techniques of Al Hoceima, Abdelmalek Essaâdi University, Tetouan, Morocco
| | - Mohamed Rejdali
- Applied Chemistry Team, Department of Chemistry, Faculty of Sciences and Techniques of Al Hoceima, Abdelmalek Essaâdi University, Tetouan, Morocco
| | - Hassan Amhamdi
- Applied Chemistry Team, Department of Chemistry, Faculty of Sciences and Techniques of Al Hoceima, Abdelmalek Essaâdi University, Tetouan, Morocco
| | - Amin Salhi
- Applied Chemistry Team, Department of Chemistry, Faculty of Sciences and Techniques of Al Hoceima, Abdelmalek Essaâdi University, Tetouan, Morocco
| | - Abedellah Elyoussfi
- Applied Chemistry Team, Department of Chemistry, Faculty of Sciences and Techniques of Al Hoceima, Abdelmalek Essaâdi University, Tetouan, Morocco
| | - M.’hamed Ahari
- Applied Chemistry Team, Department of Chemistry, Faculty of Sciences and Techniques of Al Hoceima, Abdelmalek Essaâdi University, Tetouan, Morocco
| |
Collapse
|
7
|
Waheed M, Hussain MB, Saeed F, Afzaal M, Ahmed A, Irfan R, Akram N, Ahmed F, Hailu GG. Phytochemical Profiling and Therapeutic Potential of Thyme ( Thymus spp.): A Medicinal Herb. Food Sci Nutr 2024; 12:9893-9912. [PMID: 39723027 PMCID: PMC11666979 DOI: 10.1002/fsn3.4563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 10/07/2024] [Accepted: 10/11/2024] [Indexed: 12/28/2024] Open
Abstract
Thymol is a phenol monoterpene that is naturally derived from cymene and is an isomer of carvacrol. It constitutes a significant portion (10%-64%) of the essential oils found in thyme (Thymus vulgaris L., Lamiaceae), a medicinal plant renowned for its therapeutic properties. Wild thyme is native to the Mediterranean region and has been used in cooking and medicine for a long time. In contemporary contexts, both thymol and thyme offer diverse functional applications in the pharmaceutical, food, and cosmetic industries. Thymol has attracted scientific interest for its potential therapeutic applications in pharmaceuticals and nutraceuticals. Studies have explored its efficacy in treating respiratory, nervous, and cardiovascular disorders, highlighting its promising role in diverse therapeutic interventions. Additionally, this compound demonstrates antimicrobial, antioxidant, anticarcinogenic, anti-inflammatory, and antispasmodic properties. It also shows potential as a growth enhancer and has immunomodulatory properties as well. Other discussed aspects include thymol toxicity, bioavailability, metabolism, and distribution in animals and humans. This review summarizes the most significant data regarding the beneficial effects of thyme bioactive compounds and their applications as a food preservative while taking into account the thyme plant extract and its essential oil.
Collapse
Affiliation(s)
- Marwa Waheed
- Department of Food ScienceGovernment College University FaisalabadFaisalabadPakistan
| | | | - Farhan Saeed
- Department of Food ScienceGovernment College University FaisalabadFaisalabadPakistan
| | - Muhammad Afzaal
- Department of Food ScienceGovernment College University FaisalabadFaisalabadPakistan
| | - Aftab Ahmed
- Department of Nutritional SciencesGovernment College University FaisalabadFaisalabadPakistan
| | - Rushba Irfan
- Institute of Home Sciences, Faculty of Food, Nutrition & Home SciencesUniversity of Agriculture FaisalabadFaisalabadPakistan
| | - Noor Akram
- Food Safety & Biotechnology Lab, Department of Food ScienceGovernment College University FaisalabadFaisalabadPakistan
| | - Faiyaz Ahmed
- Department of Basic Health Sciences, College of Applied Medical SciencesQassim UniversityBuraydahSaudi Arabia
| | | |
Collapse
|
8
|
Shakerdarabad R, Mohabatkar H, Behbahani M, Dini G. Antibiofilm and antibacterial activities of green synthesized ZnO nanoparticles against Erwinia amylovora and Pseudomonas syringae pv. Syringae: in vitro and in silico investigations. Microb Pathog 2024; 196:107011. [PMID: 39396688 DOI: 10.1016/j.micpath.2024.107011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/21/2024] [Accepted: 10/10/2024] [Indexed: 10/15/2024]
Abstract
Today, many infections in plants are related to biofilm-developing bacteria. These infections can result in severe agricultural losses. Thus, this study aims to investigate the synergistic antibiofilm activity of Thymus vulgaris extract on the inherent antibacterial properties of ZnO nanoparticles against Erwinia amylovora and Pseudomonas syringae pv. syringae. Additionally, to gain insight into the molecular mechanisms of phytocompounds' antibacterial activity, the molecular interactions of T. vulgaris phytochemicals with the TolC protein and TonB-dependent siderophore receptor were investigated through in-silico studies. Green-synthesized ZnO NPs (ZnO@GS) and chemically synthesized ZnO (ZnO@CHS) were evaluated using XRD and SEM techniques, showing a crystalline structure for both powders with average sizes of 50, and 40 nm, respectively. According to FT-IR and EDS spectroscopy, ZnO@GS was covered with thyme extract. Based on the in vitro results, all samples of ZnO NPs exhibited considerable antibacterial activity against both bacteria. At the same time, thyme aqueous extract alone proved considerably less effective at all tested concentrations. Compared to ZnO@CHS and thyme extract, the antibacterial efficacy of ZnO@GS against E. amylovora (MIC = 512 μg/mL) and P. syringae pv. syringae (MIC = 256 μg/mL) was significantly improved upon surface covering with thyme phytocompounds. Moreover, their antibiofilm properties were enhanced by almost 20 % compared to ZnO@CHS. In addition, molecular docking investigations showed that most of the phytocompounds could form stable interactions with the TonB-dependent siderophore receptor (P. syringae) plug domain and the TolC (E. amylovora) external channel. In vitro and in silico studies demonstrate that using the green approach for synthesizing ZnO NPs via thyme extract can notably boost its antibacterial and antibiofilm effects on the tested phytopathogenic bacteria.
Collapse
Affiliation(s)
- Roozbeh Shakerdarabad
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, 81746-73441, Iran
| | - Hassan Mohabatkar
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, 81746-73441, Iran.
| | - Mandana Behbahani
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, 81746-73441, Iran
| | - Ghasem Dini
- Department of Nanotechnology, Faculty of Chemistry, University of Isfahan, Isfahan, 81746-73441, Iran.
| |
Collapse
|
9
|
Xie J, Xiong S, Li Y, Xia B, Li M, Zhang Z, Shi Z, Peng Q, Li C, Lin L, Liao D. Phenolic acids from medicinal and edible homologous plants: a potential anti-inflammatory agent for inflammatory diseases. Front Immunol 2024; 15:1345002. [PMID: 38975345 PMCID: PMC11224438 DOI: 10.3389/fimmu.2024.1345002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 06/10/2024] [Indexed: 07/09/2024] Open
Abstract
Inflammation has been shown to trigger a wide range of chronic diseases, particularly inflammatory diseases. As a result, the focus of research has been on anti-inflammatory drugs and foods. In recent years, the field of medicinal and edible homology (MEH) has developed rapidly in both medical and food sciences, with 95% of MEH being associated with plants. Phenolic acids are a crucial group of natural bioactive substances found in medicinal and edible homologous plants (MEHPs). Their anti-inflammatory activity is significant as they play a vital role in treating several inflammatory diseases. These compounds possess enormous potential for developing anti-inflammatory drugs and functional foods. However, their development is far from satisfactory due to their diverse structure and intricate anti-inflammatory mechanisms. In this review, we summarize the various types, structures, and distribution of MEHP phenolic acids that have been identified as of 2023. We also analyze their anti-inflammatory activity and molecular mechanisms in inflammatory diseases through NF-κB, MAPK, NLRP3, Nrf2, TLRs, and IL-17 pathways. Additionally, we investigate their impact on regulating the composition of the gut microbiota and immune responses. This analysis lays the groundwork for further exploration of the anti-inflammatory structure-activity relationship of MEHP phenolic acids, aiming to inspire structural optimization and deepen our understanding of their mechanism, and provides valuable insights for future research and development in this field.
Collapse
Affiliation(s)
- Jingchen Xie
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Suhui Xiong
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Yamei Li
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Bohou Xia
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Minjie Li
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Zhimin Zhang
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Zhe Shi
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Qiuxian Peng
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Chun Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Limei Lin
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Duanfang Liao
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
10
|
Nouioura G, El fadili M, El Hachlafi N, Maache S, Mssillou I, A. Abuelizz H, Lafdil FZ, Er-rahmani S, Lyoussi B, Derwich E. Coriandrum sativum L., essential oil as a promising source of bioactive compounds with GC/MS, antioxidant, antimicrobial activities : in vitro and in silico predictions. Front Chem 2024; 12:1369745. [PMID: 38974992 PMCID: PMC11226197 DOI: 10.3389/fchem.2024.1369745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 04/29/2024] [Indexed: 07/09/2024] Open
Abstract
Introduction: Coriandrum sativum L. essential oil (CS-EO) is being evaluated in vitro for its antioxidant and antimicrobial properties, and its volatile compounds are to be identified as part of this exploratory study. Methods: The processes underlying the in vitro biological properties were explained using in silico simulations, including drug-likeness prediction, molecular docking, and pharmacokinetics (absorption, distribution, metabolism, excretion, and toxicity-ADMET). Chemical screening of CS-EO was conducted using gas chromatography-mass spectrometry (GC-MS). Five in vitro complementary techniques were used to assess the antioxidant activity of CS-EO: reducing power (RP), 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2'-azinobis (3-ethylbenzothiazoline-6-sulfonate) (ABTS) radical scavenging activity, β-Carotene bleaching test (BCBT), and phosphomolybdenum assay (TAC). Results: According to GC-MS analysis, linalool (59.04%), γ-Terpinene (13.02%), and α-Pinene (6.83%) are the main constituents of CS-EO. Based on the in vitro antioxidant assay results, CS-EO has been found to have a superior antioxidant profile. Its estimated scavenging rates for ABTS+ are 0.51 ± 0.04 mg/mL, BCBT is 9.02 ± 0.01 mg/mL, and CS-EO is 1.52 ± 0.14 mg/mL. C. sativum demonstrated 6.13 ± 0.00 μg/mL for reducing power and 213.44 ± 0.45 mg AAE/mL for total antioxidant activity. The in vitro antimicrobial activity of CS-EO was assessed against five strains, including two gram-positive bacteria, two gram-negative bacteria, and one fungal strain (Candida albicans). Significant antibacterial and antifungal activities against all strains were found using the disc-diffusion assay, with zones of inhibition larger than 15 mm. The microdilution test highlighted the lowest MIC and MBC values with gram-positive bacteria, ranging from 0.0612 to 0.125% v/v for MIC and 0.125% v/v for MBC. The fungal strain's MFC was 1.0% v/v and its MIC was measured at 0.5%. Based on the MBC/MIC and MFC/MIC ratios, CS-EO exhibits bactericidal and fungicidal activity. The ADMET study indicates that the primary CS-EO compounds are good candidates for the development of pharmaceutical drugs due to their favorable pharmacokinetic properties. Conclusion: These results point to a potential application of this plant as a natural remedy and offer empirical backing for its traditional uses. It is a promising environmentally friendly preservative that can be used extensively in the food and agricultural industries to prevent aflatoxin contamination and fungal growth in stored goods.
Collapse
Affiliation(s)
- Ghizlane Nouioura
- Laboratory of Natural Substances, Pharmacology, Environment, Modeling, Health and Quality of Life (SNAMOPEQ), Faculty of Sciences Dhar El Mehraz, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Mohamed El fadili
- LIMAS Laboratory, Faculty of Sciences Dhar El Mehraz, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Naoufal El Hachlafi
- Laboratory of Microbial Biotechnology and Bioactive Molecules, Sciences and Technologies Faculty, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Souad Maache
- Laboratory of Natural Substances, Pharmacology, Environment, Modeling, Health and Quality of Life (SNAMOPEQ), Faculty of Sciences Dhar El Mehraz, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Ibrahim Mssillou
- Laboratory of Natural Substances, Pharmacology, Environment, Modeling, Health and Quality of Life (SNAMOPEQ), Faculty of Sciences Dhar El Mehraz, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Hatem A. Abuelizz
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Fatima Zahra Lafdil
- Laboratory of Bio-resources, Biotechnology, Faculty of Sciences, Ethnopharmacology and Health, Mohammed the First University, Oujda, Morocco
| | - Sara Er-rahmani
- Department of Chemistry, University of Torino, Torino, Italy
| | - Badiaa Lyoussi
- Laboratory of Natural Substances, Pharmacology, Environment, Modeling, Health and Quality of Life (SNAMOPEQ), Faculty of Sciences Dhar El Mehraz, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Elhoussine Derwich
- Laboratory of Natural Substances, Pharmacology, Environment, Modeling, Health and Quality of Life (SNAMOPEQ), Faculty of Sciences Dhar El Mehraz, Sidi Mohamed Ben Abdellah University, Fez, Morocco
- Unity of GC/MS and GC, City of Innovation, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| |
Collapse
|
11
|
Stojanović NM, Ranđelović PJ, Simonović M, Radić M, Todorović S, Corrigan M, Harkin A, Boylan F. Essential Oil Constituents as Anti-Inflammatory and Neuroprotective Agents: An Insight through Microglia Modulation. Int J Mol Sci 2024; 25:5168. [PMID: 38791205 PMCID: PMC11121245 DOI: 10.3390/ijms25105168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 04/30/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
Microglia are key players in the brain's innate immune response, contributing to homeostatic and reparative functions but also to inflammatory and underlying mechanisms of neurodegeneration. Targeting microglia and modulating their function may have therapeutic potential for mitigating neuroinflammation and neurodegeneration. The anti-inflammatory properties of essential oils suggest that some of their components may be useful in regulating microglial function and microglial-associated neuroinflammation. This study, starting from the ethnopharmacological premises of the therapeutic benefits of aromatic plants, assessed the evidence for the essential oil modulation of microglia, investigating their potential pharmacological mechanisms. Current knowledge of the phytoconstituents, safety of essential oil components, and anti-inflammatory and potential neuroprotective effects were reviewed. This review encompasses essential oils of Thymus spp., Artemisia spp., Ziziphora clinopodioides, Valeriana jatamansi, Acorus spp., and others as well as some of their components including 1,8-cineole, β-caryophyllene, β-patchoulene, carvacrol, β-ionone, eugenol, geraniol, menthol, linalool, thymol, α-asarone, and α-thujone. Essential oils that target PPAR/PI3K-Akt/MAPK signalling pathways could supplement other approaches to modulate microglial-associated inflammation to treat neurodegenerative diseases, particularly in cases where reactive microglia play a part in the pathophysiological mechanisms underlying neurodegeneration.
Collapse
Affiliation(s)
- Nikola M. Stojanović
- Department of Physiology, Faculty of Medicine, University of Niš, 18000 Niš, Serbia; (N.M.S.); (P.J.R.)
| | - Pavle J. Ranđelović
- Department of Physiology, Faculty of Medicine, University of Niš, 18000 Niš, Serbia; (N.M.S.); (P.J.R.)
| | - Maja Simonović
- Department of Psychiatry, Faculty of Medicine, University of Niš, 18000 Niš, Serbia;
- University Clinical Centre Niš, 18000 Niš, Serbia; (M.R.); (S.T.)
| | - Milica Radić
- University Clinical Centre Niš, 18000 Niš, Serbia; (M.R.); (S.T.)
- Department of Oncology, Faculty of Medicine, University of Niš, 18000 Niš, Serbia
| | - Stefan Todorović
- University Clinical Centre Niš, 18000 Niš, Serbia; (M.R.); (S.T.)
| | - Myles Corrigan
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, Dublin 2, Ireland; (M.C.); (A.H.)
| | - Andrew Harkin
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, Dublin 2, Ireland; (M.C.); (A.H.)
| | - Fabio Boylan
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, Dublin 2, Ireland; (M.C.); (A.H.)
- Trinity Biomedical Sciences Institute (TBSI) and The Trinity Centre for Natural Product Research (NatPro), D02 R590 Dublin, Ireland
| |
Collapse
|
12
|
Edis Z, Bloukh SH. Thymol, a Monoterpenoid within Polymeric Iodophor Formulations and Their Antimicrobial Activities. Int J Mol Sci 2024; 25:4949. [PMID: 38732168 PMCID: PMC11084924 DOI: 10.3390/ijms25094949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 04/18/2024] [Accepted: 04/30/2024] [Indexed: 05/13/2024] Open
Abstract
Antimicrobial resistance (AMR) poses an emanating threat to humanity's future. The effectiveness of commonly used antibiotics against microbial infections is declining at an alarming rate. As a result, morbidity and mortality rates are soaring, particularly among immunocompromised populations. Exploring alternative solutions, such as medicinal plants and iodine, shows promise in combating resistant pathogens. Such antimicrobials could effectively inhibit microbial proliferation through synergistic combinations. In our study, we prepared a formulation consisting of Aloe barbadensis Miller (AV), Thymol, iodine (I2), and polyvinylpyrrolidone (PVP). Various analytical methods including SEM/EDS, UV-vis, Raman, FTIR, and XRD were carried out to verify the purity, composition, and morphology of AV-PVP-Thymol-I2. We evaluated the inhibitory effects of this formulation against 10 selected reference strains using impregnated sterile discs, surgical sutures, gauze bandages, surgical face masks, and KN95 masks. The antimicrobial properties of AV-PVP-Thymol-I2 were assessed through disc diffusion methods against 10 reference strains in comparison with two common antibiotics. The 25-month-old formulation exhibited slightly lower inhibitory zones, indicating changes in the sustained-iodine-release reservoir. Our findings confirm AV-PVP-Thymol-I2 as a potent antifungal and antibacterial agent against the reference strains, demonstrating particularly strong inhibitory action on surgical sutures, cotton bandages, and face masks. These results enable the potential use of the formulation AV-PVP-Thymol-I2 as a promising antimicrobial agent against wound infections and as a spray-on contact-killing agent.
Collapse
Affiliation(s)
- Zehra Edis
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Science, Ajman University, Ajman P.O. Box 346, United Arab Emirates
- Center of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman P.O. Box 346, United Arab Emirates;
| | - Samir Haj Bloukh
- Center of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman P.O. Box 346, United Arab Emirates;
- Department of Clinical Sciences, College of Pharmacy and Health Science, Ajman University, Ajman P.O. Box 346, United Arab Emirates
| |
Collapse
|
13
|
Yeasmen N, Orsat V. Microencapsulation of ultrasound-assisted phenolic extracts of sugar maple leaves: Characterization, in vitro gastrointestinal digestion, and storage stability. Food Res Int 2024; 182:114133. [PMID: 38519199 DOI: 10.1016/j.foodres.2024.114133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/07/2024] [Accepted: 02/16/2024] [Indexed: 03/24/2024]
Abstract
Sugar maple leaves (SML), usually considered residue plant biomass and discarded accordingly, contain a considerable amount of phenolic antioxidants. In this study, SML phenolics were extracted employing both advanced (homogenization pretreated ultrasound-assisted extraction) and conventional (maceration) methods followed by their encapsulation by freeze drying and spray drying using a combination of maltodextrin and gum arabic as coating agents. Detailed physicochemical analyses revealed that the encapsulated microparticles had high solubility (>90 %) and encapsulation efficiency (>95 %), acceptable thermal stability with good handling properties. Phenolic compounds were completely released from microparticles during simulated gastric conditions. The microparticles influenced the bioaccessibility of more than 43 % of the phenolic fraction in the intestinal phase. The antioxidant capacity of the microparticles was preserved during storage. These findings suggest the effectiveness of the microencapsulation process for producing high quality microparticles of SML phenolic extracts and the possibility of their use in the food, nutraceutical, bio-pharmaceutical sectors.
Collapse
Affiliation(s)
- Nushrat Yeasmen
- Department of Bioresource Engineering, McGill University, Sainte-Anne-de-Bellevue, Quebec H9X 3V9, Canada; Department of Food Technology and Rural Industries, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh.
| | - Valérie Orsat
- Department of Bioresource Engineering, McGill University, Sainte-Anne-de-Bellevue, Quebec H9X 3V9, Canada
| |
Collapse
|
14
|
Edis Z, Bloukh SH, Sara HA, Bloukh IH. Green Synthesized Polymeric Iodophors with Thyme as Antimicrobial Agents. Int J Mol Sci 2024; 25:1133. [PMID: 38256211 PMCID: PMC10815993 DOI: 10.3390/ijms25021133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/14/2024] [Accepted: 01/15/2024] [Indexed: 01/24/2024] Open
Abstract
Antimicrobial resistance (AMR) is a growing concern for the future of mankind. Common antibiotics fail in the treatment of microbial infections at an alarming rate. Morbidity and mortality rates increase, especially among immune-compromised populations. Medicinal plants and their essential oils, as well as iodine could be potential solutions against resistant pathogens. These natural antimicrobials abate microbial proliferation, especially in synergistic combinations. We performed a simple, one-pot synthesis to prepare our formulation with polyvinylpyrrolidone (PVP)-complexed iodine (I2), Thymus Vulgaris L. (Thyme), and Aloe Barbadensis Miller (AV). SEM/EDS, UV-vis, Raman, FTIR, and XRD analyses verified the purity, composition, and morphology of AV-PVP-Thyme-I2. We investigated the inhibitory action of the bio-formulation AV-PVP-Thyme-I2 against 10 selected reference pathogens on impregnated sterile discs, surgical sutures, cotton gauze bandages, surgical face masks, and KN95 masks. The antimicrobial properties of AV-PVP-Thyme-I2 were studied by disc diffusion methods and compared with those of the antibiotics gentamycin and nystatin. The results confirm AV-PVP-Thyme-I2 as a strong antifungal and antibacterial agent against the majority of the tested microorganisms with excellent results on cotton bandages and face masks. After storing AV-PVP-Thyme-I2 for 18 months, the inhibitory action was augmented compared to the fresh formulation. Consequently, we suggest AV-PVP-Thyme-I2 as an antimicrobial agent against wound infections and a spray-on contact killing agent.
Collapse
Affiliation(s)
- Zehra Edis
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Science, Ajman University, Ajman P.O. Box 346, United Arab Emirates
- Center of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman P.O. Box 346, United Arab Emirates; (S.H.B.); (H.A.S.)
| | - Samir Haj Bloukh
- Center of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman P.O. Box 346, United Arab Emirates; (S.H.B.); (H.A.S.)
- Department of Clinical Sciences, College of Pharmacy and Health Science, Ajman University, Ajman P.O. Box 346, United Arab Emirates
| | - Hamed Abu Sara
- Center of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman P.O. Box 346, United Arab Emirates; (S.H.B.); (H.A.S.)
- Department of Clinical Sciences, College of Pharmacy and Health Science, Ajman University, Ajman P.O. Box 346, United Arab Emirates
| | - Iman Haj Bloukh
- College of Dentistry, Ajman University, Ajman P.O. Box 346, United Arab Emirates;
| |
Collapse
|
15
|
Campanella B, Simoncini M, Passaglia E, Cicogna F, Ciancaleoni G, González-Rivera J, Bernazzani L, Bramanti E. Ecofriendly Preparation of Rosmarinic Acid-poly(vinyl alcohol) Biofilms Using NADES/DES, Ultrasounds and Optimization via a Mixture-Process Design Strategy. MATERIALS (BASEL, SWITZERLAND) 2024; 17:377. [PMID: 38255545 PMCID: PMC10820272 DOI: 10.3390/ma17020377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/03/2024] [Accepted: 01/05/2024] [Indexed: 01/24/2024]
Abstract
Green chemistry emphasizes the isolation of biologically active compounds from plants and biomass to produce renewable, bio-based products and materials through sustainability and circularity-driven innovation processes. In this work, we have investigated the extraction of rosmarinic acid (RA), a phenolic acid with several biological properties, from aromatic herbs using ultrasounds and low environmental risk natural deep eutectic solvents (NADES). Various solvent mixtures have been investigated, and the parameters influencing the process have been studied by a mixture-process experimental design to identify the optimal RA extraction conditions. The extraction yield has been calculated by HPLC-diode array analysis. The lactic acid:ethylene glycol mixture using an ultrasound-assisted process has been found to be the most versatile solvent system, giving RA yields 127-160% higher than hydroalcoholic extraction (70% ethanol). The deep eutectic solvent nature of lactic acid:ethylene glycol has been demonstrated for the first time by multi-technique characterization (1H-NMR and 13C-NMR, DSC, and W absorption properties). The aqueous raw extract has been directly incorporated into poly(vinyl alcohol) to obtain films with potential antibacterial properties for applications in the field of food and pharmaceutical packaging.
Collapse
Affiliation(s)
- Beatrice Campanella
- National Research Council, Institute for the Chemistry of Organometallic Compounds, Via Giuseppe Moruzzi 1, 56124 Pisa, Italy; (B.C.); (M.S.); (E.P.); (F.C.)
| | - Mattia Simoncini
- National Research Council, Institute for the Chemistry of Organometallic Compounds, Via Giuseppe Moruzzi 1, 56124 Pisa, Italy; (B.C.); (M.S.); (E.P.); (F.C.)
| | - Elisa Passaglia
- National Research Council, Institute for the Chemistry of Organometallic Compounds, Via Giuseppe Moruzzi 1, 56124 Pisa, Italy; (B.C.); (M.S.); (E.P.); (F.C.)
| | - Francesca Cicogna
- National Research Council, Institute for the Chemistry of Organometallic Compounds, Via Giuseppe Moruzzi 1, 56124 Pisa, Italy; (B.C.); (M.S.); (E.P.); (F.C.)
| | - Gianluca Ciancaleoni
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via Giuseppe Moruzzi 13, 56124 Pisa, Italy; (G.C.); (J.G.-R.); (L.B.)
| | - José González-Rivera
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via Giuseppe Moruzzi 13, 56124 Pisa, Italy; (G.C.); (J.G.-R.); (L.B.)
- National Research Council, National Institute of Optics, Via Giuseppe Moruzzi 1, 56124 Pisa, Italy
| | - Luca Bernazzani
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via Giuseppe Moruzzi 13, 56124 Pisa, Italy; (G.C.); (J.G.-R.); (L.B.)
| | - Emilia Bramanti
- National Research Council, Institute for the Chemistry of Organometallic Compounds, Via Giuseppe Moruzzi 1, 56124 Pisa, Italy; (B.C.); (M.S.); (E.P.); (F.C.)
| |
Collapse
|
16
|
Ahmad A, Mahmood N, Hussain M, Aiman U, Al-Mijalli SH, Raza MA, Al Jbawi E. Improvement in oxidative stability and quality characteristics of functional chicken meat product supplemented with aqueous coriander extract. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2023. [DOI: 10.1080/10942912.2023.2189086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Affiliation(s)
- Awais Ahmad
- Department of Food Sciences, Government College University, Faisalabad, Pakistan
| | - Nasir Mahmood
- Department of Zoology, University of Central Punjab Bahawalpur Campus, Bahawalpur, Pakistan
| | - Muzzamal Hussain
- Department of Food Sciences, Government College University, Faisalabad, Pakistan
| | - Umme Aiman
- Department of Food Science and Nutrition, Government College University, Faisalabad, Pakistan
| | - Samiah H. Al-Mijalli
- Department of Biology, College of Sciences, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | | | | |
Collapse
|
17
|
Ianni F, Scandar S, Mangiapelo L, Blasi F, Marcotullio MC, Cossignani L. NADES-Assisted Extraction of Polyphenols from Coriander Seeds: A Systematic Optimization Study. Antioxidants (Basel) 2023; 12:2048. [PMID: 38136168 PMCID: PMC10741060 DOI: 10.3390/antiox12122048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/15/2023] [Accepted: 11/21/2023] [Indexed: 12/24/2023] Open
Abstract
Coriandrum sativum L. seeds are widely recognized for their traditional use in medicine. Among the most investigated components, the terpenoid linalool and monounsaturated petroselinic acid have attracted interest for their nutritional value. Instead, minor attention was paid to the polyphenolic fraction, resulting still being incomplete today. This study aimed to develop a systematic approach in which green natural deep eutectic solvents (NADES) were combined with conventional (maceration, MAC) or non-conventional (ultrasound-assisted extraction, UAE) techniques in a one-step methodology to recover polyphenols from coriander seeds. The NADES system choline chloride-citric acid (ChCl:CA, 1:1) was firstly evaluated, coupled with MAC or UAE, and then compared with ChCl-Urea (ChCl:Ur, 1:1) and ChCl-Glucose (ChCl:Glu, 1:1) under optimal conditions (20 min extraction time). The system ChCl:Ur UAE significantly improved the extraction of chlorogenic acid and its isomer (453.90 ± 4.77 and 537.42 ± 1.27 µg/g, respectively), while the system ChCl:Glu UAE improved the extraction of protocatechuic, caffeic and p-coumaric acids (131.13 ± 6.16, 269.03 ± 4.15 and 57.36 ± 0.06 µg/g, respectively). The highest levels of rutin were obtained with ChCl:CA-based NADES when the MAC technique was applied (820.31 ± 28.59 µg/g). These findings indicate that the NADES composition could be appropriately modulated to tailor extraction towards higher levels of a desirable bioactive for further applications.
Collapse
Affiliation(s)
- Federica Ianni
- Department of Pharmaceutical Sciences, Section of Food, Biochemical, Physiological and Nutrition Sciences, University of Perugia, 06126 Perugia, Italy; (L.M.); (F.B.); (L.C.)
| | - Samir Scandar
- Department of Pharmaceutical Sciences, Section of Morphological, Biomolecular, Nutraceutical and Health Sciences (SIMBIONUS), University of Perugia, 06122 Perugia, Italy;
| | - Luciano Mangiapelo
- Department of Pharmaceutical Sciences, Section of Food, Biochemical, Physiological and Nutrition Sciences, University of Perugia, 06126 Perugia, Italy; (L.M.); (F.B.); (L.C.)
| | - Francesca Blasi
- Department of Pharmaceutical Sciences, Section of Food, Biochemical, Physiological and Nutrition Sciences, University of Perugia, 06126 Perugia, Italy; (L.M.); (F.B.); (L.C.)
| | - Maria Carla Marcotullio
- Department of Pharmaceutical Sciences, Section of Morphological, Biomolecular, Nutraceutical and Health Sciences (SIMBIONUS), University of Perugia, 06122 Perugia, Italy;
| | - Lina Cossignani
- Department of Pharmaceutical Sciences, Section of Food, Biochemical, Physiological and Nutrition Sciences, University of Perugia, 06126 Perugia, Italy; (L.M.); (F.B.); (L.C.)
| |
Collapse
|
18
|
Miller SJ, Darji RY, Walaieh S, Lewis JA, Logan R. Senolytic and senomorphic secondary metabolites as therapeutic agents in Drosophila melanogaster models of Parkinson's disease. Front Neurol 2023; 14:1271941. [PMID: 37840914 PMCID: PMC10568035 DOI: 10.3389/fneur.2023.1271941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 09/04/2023] [Indexed: 10/17/2023] Open
Abstract
Drosophila melanogaster is a valuable model organism for a wide range of biological exploration. The well-known advantages of D. melanogaster include its relatively simple biology, the ease with which it is genetically modified, the relatively low financial and time costs associated with their short gestation and life cycles, and the large number of offspring they produce per generation. D. melanogaster has facilitated the discovery of many significant insights into the pathology of Parkinson's disease (PD) and has served as an excellent preclinical model of PD-related therapeutic discovery. In this review, we provide an overview of the major D. melanogaster models of PD, each of which provide unique insights into PD-relevant pathology and therapeutic targets. These models are discussed in the context of their past, current, and future potential use for studying the utility of secondary metabolites as therapeutic agents in PD. Over the last decade, senolytics have garnered an exponential interest in their ability to mitigate a broad spectrum of diseases, including PD. Therefore, an emphasis is placed on the senolytic and senomorphic properties of secondary metabolites. It is expected that D. melanogaster will continue to be critical in the effort to understand and improve treatment of PD, including their involvement in translational studies focused on secondary metabolites.
Collapse
Affiliation(s)
- Sean J. Miller
- Department of Ophthalmology and Visual Science, Yale University School of Medicine, New Haven, CT, United States
| | - Rayyan Y. Darji
- Department of Ophthalmology and Visual Science, Yale University School of Medicine, New Haven, CT, United States
| | - Sami Walaieh
- Department of Biology, Eastern Nazarene College, Quincy, MA, United States
| | - Jhemerial A. Lewis
- Department of Biology, Eastern Nazarene College, Quincy, MA, United States
| | - Robert Logan
- Department of Biology, Eastern Nazarene College, Quincy, MA, United States
| |
Collapse
|
19
|
Irakli M, Skendi A, Bouloumpasi E, Christaki S, Biliaderis CG, Chatzopoulou P. Sustainable Recovery of Phenolic Compounds from Distilled Rosemary By-Product Using Green Extraction Methods: Optimization, Comparison, and Antioxidant Activity. Molecules 2023; 28:6669. [PMID: 37764444 PMCID: PMC10537096 DOI: 10.3390/molecules28186669] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/12/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
Rosemary solid distillation waste (SWR), a by-product of the essential oil industry, represents an important source of phenolic antioxidants. Green technologies such as ultrasound-assisted extraction (UAE), microwave-assisted extraction (MAE), and accelerated solvent extraction (ASE) of phenolic compounds from SWR were optimized as valorization routes to maximize yield, rosmarinic acid (RMA), carnosol (CARO) and carnosic acid (CARA) contents. Response surface methodology was used in this context, with ethanol concentration (X1), extraction temperature (X2), and time (X3) being the independent variables. A second-order polynomial model was fitted to the data, and multiple regression analysis and analysis of variance were used to determine model fitness and optimal conditions. Ethanol concentration was the most influential extraction parameter, affecting phenolic compounds, while the influence of other parameters was moderate. The optimized conditions were as follows: X1: 67.4, 80.0, and 59.0%, X2: 70, 51, and 125 °C, and X3: 15, 10, and 7 min for MAE, UAE, and ASE, respectively. A comparison of optimized MAE, UAE, and ASE with conventional Soxhlet extraction techniques indicated that ASE provided a higher extraction yield and content of phenolic compounds. However, UAE represented the best process from an environmental point of view, allowing an improved extraction of phenolics from SWR with high energy efficiency and low energy costs.
Collapse
Affiliation(s)
- Maria Irakli
- Hellenic Agricultural Organization—Dimitra, Institute of Plant Breeding and Genetic Resources, 57001 Thessaloniki, Greece; (A.S.); (E.B.); (S.C.)
| | - Adriana Skendi
- Hellenic Agricultural Organization—Dimitra, Institute of Plant Breeding and Genetic Resources, 57001 Thessaloniki, Greece; (A.S.); (E.B.); (S.C.)
| | - Elisavet Bouloumpasi
- Hellenic Agricultural Organization—Dimitra, Institute of Plant Breeding and Genetic Resources, 57001 Thessaloniki, Greece; (A.S.); (E.B.); (S.C.)
| | - Stamatia Christaki
- Hellenic Agricultural Organization—Dimitra, Institute of Plant Breeding and Genetic Resources, 57001 Thessaloniki, Greece; (A.S.); (E.B.); (S.C.)
- Department of Food Science and Technology, School of Agriculture, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Costas G. Biliaderis
- Department of Food Science and Technology, School of Agriculture, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Paschalina Chatzopoulou
- Hellenic Agricultural Organization—Dimitra, Institute of Plant Breeding and Genetic Resources, 57001 Thessaloniki, Greece; (A.S.); (E.B.); (S.C.)
| |
Collapse
|
20
|
Naviglio D, Trifuoggi M, Varchetta F, Nebbioso V, Perrone A, Avolio L, De Martino E, Montesano D, Gallo M. Efficiency of Recovery of the Bioactive Principles of Plants by Comparison between Solid-Liquid Extraction in Mixture and Single-Vegetable Matrices via Maceration and RSLDE. PLANTS (BASEL, SWITZERLAND) 2023; 12:2900. [PMID: 37631112 PMCID: PMC10458922 DOI: 10.3390/plants12162900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/13/2023] [Accepted: 08/04/2023] [Indexed: 08/27/2023]
Abstract
The term "officinal" derives from the Latin and includes all medicinal, aromatic and perfume plant species, which have long been a subject of interest for multiple purposes: health, food, pharmacological, cosmetic and so on. In this work, a study on six different species of medicinal plants, particularly characterized by digestive, choleretic and diuretic properties, was carried out: rosemary (Rosmarinus officinalis), sage (Salvia officinalis), laurel (Laurus nobilis), gentian (Gentiana lutea), dandelion (Taraxacum officinale) and rhubarb (Rheum palmatum). The roots and aerial parts of plants were separately extracted with two different techniques-maceration and rapid solid-liquid dynamic extraction (RSLDE)-and the quali/quantitative analysis of active ingredients have been determined by applying dry residue, Folin-Ciocalteu and DPPH assays. Data obtained have provided useful answers regarding the efficiency of the extraction carried out on a mixture or on single plants, allowing us to evaluate the best choice according to the cases and the final uses.
Collapse
Affiliation(s)
- Daniele Naviglio
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia, 4, 80126 Naples, Italy; (D.N.); (M.T.); (F.V.); (V.N.); (A.P.); (L.A.); (E.D.M.)
| | - Marco Trifuoggi
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia, 4, 80126 Naples, Italy; (D.N.); (M.T.); (F.V.); (V.N.); (A.P.); (L.A.); (E.D.M.)
| | - Francesca Varchetta
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia, 4, 80126 Naples, Italy; (D.N.); (M.T.); (F.V.); (V.N.); (A.P.); (L.A.); (E.D.M.)
| | - Viviana Nebbioso
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia, 4, 80126 Naples, Italy; (D.N.); (M.T.); (F.V.); (V.N.); (A.P.); (L.A.); (E.D.M.)
| | - Angela Perrone
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia, 4, 80126 Naples, Italy; (D.N.); (M.T.); (F.V.); (V.N.); (A.P.); (L.A.); (E.D.M.)
| | - Laura Avolio
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia, 4, 80126 Naples, Italy; (D.N.); (M.T.); (F.V.); (V.N.); (A.P.); (L.A.); (E.D.M.)
| | - Eleonora De Martino
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia, 4, 80126 Naples, Italy; (D.N.); (M.T.); (F.V.); (V.N.); (A.P.); (L.A.); (E.D.M.)
| | - Domenico Montesano
- Department of Research & Development, Erbagil s.r.l., Via L. Settembrini 13, 82034 Telese Terme, Italy;
| | - Monica Gallo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via Pansini 5, 80131 Naples, Italy
| |
Collapse
|
21
|
Awais M, Akter R, Boopathi V, Ahn JC, Lee JH, Mathiyalagan R, Kwak GY, Rauf M, Yang DC, Lee GS, Kim YJ, Jung SK. Discrimination of Dendropanax morbifera via HPLC fingerprinting and SNP analysis and its impact on obesity by modulating adipogenesis- and thermogenesis-related genes. Front Nutr 2023; 10:1168095. [PMID: 37621738 PMCID: PMC10446900 DOI: 10.3389/fnut.2023.1168095] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 06/28/2023] [Indexed: 08/26/2023] Open
Abstract
Dendropanax morbifera (DM), a medicinal plant, is rich in polyphenols and commonly used to treat cancer, inflammation, and thrombosis. However, to date, no study has been conducted on DM regarding the enormous drift of secondary metabolites of plants in different regions of the Republic of Korea and their effects on antiobesity, to explore compounds that play an important role in two major obesity-related pathways. Here, we present an in-depth study on DM samples collected from three regions of the Republic of Korea [Jeju Island (DMJ), Bogildo (DMB), and Jangheung (DMJG)]. We used high-performance liquid chromatography (HPLC) and multivariate component analyses to analyze polyphenol contents (neochlorogenic acid, chlorogenic acid, cryptochlorogenic acid, and rutin), followed by discrimination of the samples in DMJG using single nucleotide polymorphism and chemometric analysis. In silico and in vitro evaluation of major compounds found in the plant extract on two major anti-obesity pathways (adipogenesis and thermogenesis) was carried out. Furthermore, two extraction methods (Soxhlet and ultrasound-assisted extraction) were used to understand which method is better and why. Upon quantifying plant samples in three regions with the polyphenols, DMJG had the highest content of polyphenols. The internal transcribed region (ITS) revealed a specific gel-based band for the authentication of DMJG. PCA and PLS-DA revealed the polyphenol's discriminative power of the region DMJG. The anti-obesity effects of plant extracts from the three regions were related to their polyphenol contents, with DMJG showing the highest effect followed by DMJ and DMB. Ultrasound-assisted extraction yielded a high number of polyphenols compared to that of the Soxhlet method, which was supported by scanning electron microscopy. The present work encourages studies on plants rich in secondary metabolites to efficiently use them for dietary and therapeutic purposes.
Collapse
Affiliation(s)
- Muhammad Awais
- Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin si, Republic of Korea
| | - Reshmi Akter
- Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin si, Republic of Korea
| | - Vinothini Boopathi
- Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin si, Republic of Korea
| | - Jong Chan Ahn
- Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin si, Republic of Korea
| | - Jung Hyeok Lee
- Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin si, Republic of Korea
| | - Ramya Mathiyalagan
- Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin si, Republic of Korea
| | - Gi-Young Kwak
- Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin si, Republic of Korea
| | - Mamoona Rauf
- Department of Oriental Medicinal Biotechnology, College of Life Sciences, Kyung Hee University, Yongin-si, Republic of Korea
| | - Deok Chun Yang
- Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin si, Republic of Korea
- Department of Botany, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Geun Sik Lee
- Southwest Coast Hwangchil Cooperative, Chonnam National University, Gwangju si, Republic of Korea
- Jungwon University Industry Academic Cooperation Building, Goesan-gun, Republic of Korea
| | - Yeon-Ju Kim
- Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin si, Republic of Korea
| | - Seok-Kyu Jung
- Department of Horticulture, Kongju National University, Yesan, Republic of Korea
| |
Collapse
|
22
|
Yeasmen N, Orsat V. Phenolic mapping and associated antioxidant activities through the annual growth cycle of sugar maple leaves. Food Chem 2023; 428:136882. [PMID: 37481905 DOI: 10.1016/j.foodchem.2023.136882] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 07/06/2023] [Accepted: 07/11/2023] [Indexed: 07/25/2023]
Abstract
Concentrations of antioxidant components (analyzed by HPLC-UV) and antioxidant attributes (assayed by radical scavenging and non-radical redox potential methods) of sugar maple leaves (SML) from different harvesting times were investigated. Moreover, measurements of colorimetry, SEM, and FTIR spectroscopy-based characterization of leaves composition, throughout the growth cycle, were performed. Results showed that the antioxidant activities of SML are strongly correlated with phenolic contents and significantly (p < 0.05) varied with harvesting time where minimum amount of total phenolics (105.67 ± 13.16 mg GAE/g DM) and total flavonoids (3.27 ± 0.26 mg CTE/g DM) were found to be concentrated in Fall leaves. The absorption bands obtained from FTIR spectra revealed the presence of functional groups that have great significance towards the antioxidant activity of SML. Principal component analysis revealed that biosynthesis of maximum phenolic compounds in SML mostly occurs during the leaf expansion and growth phases. The obtained data provided a better understanding towards the effect of harvesting time on the phenolic mapping of SML in favor of its valorization into functional food ingredients.
Collapse
Affiliation(s)
- Nushrat Yeasmen
- Department of Bioresource Engineering, McGill University, Sainte-Anne-de-Bellevue, Quebec H9X 3V9, Canada; Department of Food Technology and Rural Industries, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh.
| | - Valérie Orsat
- Department of Bioresource Engineering, McGill University, Sainte-Anne-de-Bellevue, Quebec H9X 3V9, Canada
| |
Collapse
|
23
|
Scandar S, Zadra C, Marcotullio MC. Coriander ( Coriandrum sativum) Polyphenols and Their Nutraceutical Value against Obesity and Metabolic Syndrome. Molecules 2023; 28:molecules28104187. [PMID: 37241925 DOI: 10.3390/molecules28104187] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/02/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
Coriander is a widely used plant for its medicinal and biological properties. Both coriander essential oil and extracts are interesting sources of bioactive compounds and are widely used as spices in culinary practice due to their exclusive aroma and flavour. We focus our attention on coriander extracts that are rich in polyphenols. It is well known that plant polyphenols possess different biological activities and several functional foods contain this class of compounds. The polyphenol profile in an extract can be influenced by the plant part studied, the method of extraction and other parameters. This study performs a literature review using the words "coriander", "polyphenols" and "extraction" or "biological activity" in different databases such as PubMed, Google Scholar and Scopus. After that, we focus on the evidence of coriander polyphenols as protective agents against some inflammation-related diseases. Due to the bioactivities of coriander extract, this herb can be considered a valuable functional food against obesity, metabolic syndrome and diabetes.
Collapse
Affiliation(s)
- Samir Scandar
- Department of Pharmaceutical Sciences, University of Perugia, Via del Giochetto-Ed. B, 06122 Perugia, Italy
| | - Claudia Zadra
- Department of Pharmaceutical Sciences, University of Perugia, Via del Giochetto-Ed. B, 06122 Perugia, Italy
| | - Maria Carla Marcotullio
- Department of Pharmaceutical Sciences, University of Perugia, Via del Giochetto-Ed. B, 06122 Perugia, Italy
| |
Collapse
|
24
|
Idoudi S, Othman KB, Bouajila J, Tourrette A, Romdhane M, Elfalleh W. Influence of Extraction Techniques and Solvents on the Antioxidant and Biological Potential of Different Parts of Scorzonera undulata. Life (Basel) 2023; 13:904. [PMID: 37109433 PMCID: PMC10140856 DOI: 10.3390/life13040904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 03/22/2023] [Accepted: 03/27/2023] [Indexed: 03/31/2023] Open
Abstract
The genus Scorzonera has various medicinal values. Species belonging to this genus were traditionally used as drugs or in food. The current study aimed to determine the phytochemical composition, antioxidant activity, and biological properties of the tuber, leaf, and flower of Scorzonera undulata extracts, collected from the southwest of Tunisia. Phenolic compounds from the three parts were extracted using two solvents (water and ethanol) and two extraction techniques (maceration and ultrasound). The total phenolic content was measured by the Folin-Ciocalteu assay. Furthermore, the chemical composition of Scorzonera undulata extract was also investigated by the LC-ESI-MS method using phenolic acid and flavonoid standards. The variation of the extraction methods induced a variation in the real potentialities of the three parts in terms of bioactive molecules. However, the aerial part of S. undulata (leaves and flowers) showed, in general, the highest phenolic contents. Twenty-five volatile compounds have been detected by GC-MS in S. undulata extracts; among them, fourteen were identified before derivatization. The DPPH test showed that the aerial part of the plant has a higher antioxidant activity compared to the tuber (25.06% at 50 µg/mL for the leaf ethanolic extract obtained by ultrasound extraction). For most biological activities (anti-Xanthine, anti-inflammatory, and antidiabetic (alpha-amylase and alpha-glucosidase)), the aerial parts (flowers and leaves) of the plant showed the highest inhibition than tubers.
Collapse
Affiliation(s)
- Sourour Idoudi
- Energy, Water, Environment and Process Laboratory, (LR18ES35), National Engineering School of Gabes, University of Gabes, Gabes 6072, Tunisia; (S.I.); (K.B.O.); (M.R.)
- Research Unit Advanced Materials, Applied Mechanics, Innovative Processes and Environment, UR22ES04, Higher Institute of Applied Sciences and Technology of Gabes (ISSATG), University of Gabes, Gabes 6072, Tunisia
- CIRIMAT, Faculté des Sciences Pharmaceutiques, Université de Toulouse, 35 Chemin des Maraîchers, 31400 Toulouse, France;
| | - Khadija Ben Othman
- Energy, Water, Environment and Process Laboratory, (LR18ES35), National Engineering School of Gabes, University of Gabes, Gabes 6072, Tunisia; (S.I.); (K.B.O.); (M.R.)
- Research Unit Advanced Materials, Applied Mechanics, Innovative Processes and Environment, UR22ES04, Higher Institute of Applied Sciences and Technology of Gabes (ISSATG), University of Gabes, Gabes 6072, Tunisia
| | - Jalloul Bouajila
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INP, UPS, F-31062 Toulouse, France;
| | - Audrey Tourrette
- CIRIMAT, Faculté des Sciences Pharmaceutiques, Université de Toulouse, 35 Chemin des Maraîchers, 31400 Toulouse, France;
| | - Mehrez Romdhane
- Energy, Water, Environment and Process Laboratory, (LR18ES35), National Engineering School of Gabes, University of Gabes, Gabes 6072, Tunisia; (S.I.); (K.B.O.); (M.R.)
| | - Walid Elfalleh
- Energy, Water, Environment and Process Laboratory, (LR18ES35), National Engineering School of Gabes, University of Gabes, Gabes 6072, Tunisia; (S.I.); (K.B.O.); (M.R.)
- Research Unit Advanced Materials, Applied Mechanics, Innovative Processes and Environment, UR22ES04, Higher Institute of Applied Sciences and Technology of Gabes (ISSATG), University of Gabes, Gabes 6072, Tunisia
| |
Collapse
|
25
|
Hourfane S, Mechqoq H, Bekkali AY, Rocha JM, El Aouad N. A Comprehensive Review on Cannabis sativa Ethnobotany, Phytochemistry, Molecular Docking and Biological Activities. PLANTS (BASEL, SWITZERLAND) 2023; 12:1245. [PMID: 36986932 PMCID: PMC10058143 DOI: 10.3390/plants12061245] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/03/2023] [Accepted: 03/07/2023] [Indexed: 06/18/2023]
Abstract
For more than a century, Cannabis was considered a narcotic and has been banned by lawmakers all over the world. In recent years, interest in this plant has increased due to its therapeutic potential, in addition to a very interesting chemical composition, characterized by the presence of an atypical family of molecules known as phytocannabinoids. With this emerging interest, it is very important to take stock of what research has been conducted so far on the chemistry and biology of Cannabis sativa. The aim of this review is to describe the traditional uses, chemical composition and biological activities of different parts of this plant, as well as the molecular docking studies. Information was collected from electronic databases, namely SciFinder, ScienceDirect, PubMed and Web of Science. Cannabis is mainly popular for its recreational use, but it is also traditionally used as remedy for the treatment of several diseases, including diabetes, digestive, circulatory, genital, nervous, urinary, skin and respiratory diseases. These biological proprieties are mainly due to the presence of bioactive metabolites represented by more than 550 different molecules. Molecular docking simulations proved the presence of affinities between Cannabis compounds and several enzymes responsible for anti-inflammatory, antidiabetic, antiepileptic and anticancer activities. Several biological activities have been evaluated on the metabolites of Cannabis sativa, and these works have shown the presence of antioxidant, antibacterial, anticoagulant, antifungal, anti-aflatoxigenic, insecticidal, anti-inflammatory, anticancer, neuroprotective and dermocosmetic activities. This paper presents the up-to-date reported investigations and opens many reflections and further research perspectives.
Collapse
Affiliation(s)
- Sohaib Hourfane
- Research Team on Natural Products Chemistry and Smart Technology (NPC-ST), Polydisciplinary Faculty of Larache, Route de Rabat, Abdelmalek Essaadi University, Tetouan 92000, Morocco
| | - Hicham Mechqoq
- Research Team on Natural Products Chemistry and Smart Technology (NPC-ST), Polydisciplinary Faculty of Larache, Route de Rabat, Abdelmalek Essaadi University, Tetouan 92000, Morocco
| | - Abdellah Yassine Bekkali
- Research Team on Natural Products Chemistry and Smart Technology (NPC-ST), Polydisciplinary Faculty of Larache, Route de Rabat, Abdelmalek Essaadi University, Tetouan 92000, Morocco
| | - João Miguel Rocha
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal
| | - Noureddine El Aouad
- Research Team on Natural Products Chemistry and Smart Technology (NPC-ST), Polydisciplinary Faculty of Larache, Route de Rabat, Abdelmalek Essaadi University, Tetouan 92000, Morocco
| |
Collapse
|
26
|
Essential Oil from Coriandrum sativum: A review on Its Phytochemistry and Biological Activity. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020696. [PMID: 36677754 PMCID: PMC9864992 DOI: 10.3390/molecules28020696] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/09/2022] [Accepted: 12/11/2022] [Indexed: 01/13/2023]
Abstract
Essential oils are hydrophobic liquids produced as secondary metabolites by specialized secretory tissues in the leaves, seeds, flowers, bark and wood of the plant, and they play an important ecological role in plants. Essential oils have been used in various traditional healing systems due to their pharmaceutical properties, and are reported to be a suitable replacement for chemical and synthetic drugs that come with adverse side effects. Thus, currently, various plant sources for essential oil production have been explored. Coriander essential oil, obtained from the leaf and seed oil of Coriandrum sativum, has been reported to have various biological activities. Apart from its application in food preservation, the oil has many pharmacological properties, including allelopathic properties. The present review discusses the phytochemical composition of the seed and leaf oil of coriander and the variation of the essential oil across various germplasms, accessions, at different growth stages and across various regions. Furthermore, the study explores various extraction and quantification methods for coriander essential oils. The study also provides detailed information on various pharmacological properties of essential oils, such as antimicrobial, anthelmintic, insecticidal, allelopathic, antioxidant, antidiabetic, anticonvulsive, antidepressant, and hepatoprotective properties, as well as playing a major role in maintaining good digestive health. Coriander essential oil is one of the most promising alternatives in the food and pharmaceutical industries.
Collapse
|
27
|
Hemp seed-based food products as functional foods: a comprehensive characterization of secondary metabolites using liquid and gas chromatography methods. J Food Compost Anal 2023. [DOI: 10.1016/j.jfca.2023.105151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
28
|
Dawidowicz AL, Typek R, Olszowy-Tomczyk M. Natural vs. artificial cannabinoid oils: the comparison of their antioxidant activities. Eur Food Res Technol 2023; 249:359-366. [PMID: 36164439 PMCID: PMC9492465 DOI: 10.1007/s00217-022-04121-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/29/2022] [Accepted: 09/02/2022] [Indexed: 11/30/2022]
Abstract
In the wide range of products containing hemp ingredients, cannabinoid oils are the most popular. They have gained popularity not only among people struggling with various health ailments, but also those who search for a neutral way of taking care of their body and mind. The antioxidant activities of cannabinoid oils differing in the type of their main cannabinoid [i.e., Cannabigerol (CBG), Cannabidiol (CBD), Δ9-Tetrahydrocannabinol (Δ9-THC), Cannabigerolic acid (CBGA), Cannabidiolic acid (CBDA) or Δ9-Tetrahydrocannabinolic acid (Δ9-THCA)] are compared and discussed in the paper. The oils with the same concentration of their main cannabinoid but prepared in different ways were applied in the experiments. Following the presented results, cannabinoid oils obtained from the plant extracts are characterized by evidently greater antioxidant activity than those prepared from pure cannabinoids. The essential difference in the antioxidant activity of the oils containing the neutral or acidic form of a given cannabinoid is observed only in the case of THC and THCA oils.
Collapse
Affiliation(s)
- Andrzej L. Dawidowicz
- Department of Chromatography, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Sklodowska University in Lublin, Pl. Marii Curie Sklodowskiej 3, 20-031 Lublin, Poland
| | - Rafał Typek
- Department of Chromatography, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Sklodowska University in Lublin, Pl. Marii Curie Sklodowskiej 3, 20-031 Lublin, Poland
| | - Małgorzata Olszowy-Tomczyk
- Department of Chromatography, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Sklodowska University in Lublin, Pl. Marii Curie Sklodowskiej 3, 20-031 Lublin, Poland
| |
Collapse
|
29
|
Rivera-Pérez A, Romero-González R, Garrido Frenich A. Fingerprinting based on gas chromatography-Orbitrap high-resolution mass spectrometry and chemometrics to reveal geographical origin, processing, and volatile markers for thyme authentication. Food Chem 2022; 393:133377. [PMID: 35691070 DOI: 10.1016/j.foodchem.2022.133377] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/28/2022] [Accepted: 05/31/2022] [Indexed: 11/17/2022]
Abstract
Thyme is an aromatic herb traditionally used for food purposes due to its organoleptic characteristics and medicinal properties, which is highly susceptible to food fraud. In this study, GC-HRMS-based fingerprinting was applied for the first time to determine the geographical traceability of thyme based on different origins (Spain, Poland, and Morocco), as well as to assess its processing by comparing sterilized vs. non-sterilized thyme. Unsupervised chemometric methods (PCA and HCA) revealed a predominant influence of the geographical origin on thyme fingerprints rather than processing effects. Supervised PLS-DA and OPLS-DA were used for discrimination purposes, revealing high predictive ability for further samples (100%), and allowing the identification of differential compounds (markers). A total of 24 markers were putatively identified (13 metabolites were confirmed) belonging to different classes: monoterpenoids, diterpenoids, sesquiterpenoids, alkenylbenzenes, and other miscellaneous compounds. This study outlines the potential of combining untargeted analysis by GC-HRMS with chemometrics for thyme authenticity and traceability.
Collapse
Affiliation(s)
- Araceli Rivera-Pérez
- Research Group "Analytical Chemistry of Contaminants", Department of Chemistry and Physics, Research Centre for Mediterranean Intensive Agrosystems and Agrifood Biotechnology (CIAIMBITAL), Agrifood Campus of International Excellence (ceiA3), University of Almeria, E-04120 Almeria, Spain.
| | - Roberto Romero-González
- Research Group "Analytical Chemistry of Contaminants", Department of Chemistry and Physics, Research Centre for Mediterranean Intensive Agrosystems and Agrifood Biotechnology (CIAIMBITAL), Agrifood Campus of International Excellence (ceiA3), University of Almeria, E-04120 Almeria, Spain.
| | - Antonia Garrido Frenich
- Research Group "Analytical Chemistry of Contaminants", Department of Chemistry and Physics, Research Centre for Mediterranean Intensive Agrosystems and Agrifood Biotechnology (CIAIMBITAL), Agrifood Campus of International Excellence (ceiA3), University of Almeria, E-04120 Almeria, Spain.
| |
Collapse
|
30
|
Characterization of constituents by UPLC-MS and the influence of extraction methods of the seeds of Vernonia anthelmintica willd.: extraction, characterization, antioxidant and enzyme modulatory activities. Heliyon 2022; 8:e10332. [PMID: 36060997 PMCID: PMC9433684 DOI: 10.1016/j.heliyon.2022.e10332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/11/2022] [Accepted: 08/12/2022] [Indexed: 11/30/2022] Open
Abstract
Vernonia anthelmintica Willd (VA) is a popular medicinal plant used in local and traditional medicine to manage various disorders. In order to explore the phytochemical profile, antioxidant and enzyme modulatory activities of extracts prepared from the seeds of VA, different extraction methodologies, including modern (accelerated-ASE, ultrasound-UAE, and tissue smashing-TSE extractions) and traditional (maceration and Soxhlet) extractions, were employed and their effects on the activities of the extracts were investigated. The chemical compounds of the extracts were qualitatively analyzed by ultra-high-pressure liquid chromatography-tandem mass spectrometry (UPLC-Orbitrap-MS) technique. Among them, 11 compounds were undoubtedly identified by comparison with reference substance, while 13 compounds were tentatively identified by comparison with literature data, including 8 phenolic acids, 14 flavonoids and 2 esters were identified in the extracts. Additionally, the quantitative analysis found that ASE showed the highest extraction efficiency. The antioxidant activity was determined in vitro via six standard assays. Two key enzymes related to the diseases of vitiligo (tyrosinase) and type II diabetes (α-glucosidase) were adopted to assess the activity of VA extracts against them. All extracts showed potent antioxidant ability with a predominance for that obtained by ASE, which corroborated with the high phenolic (22.62 ± 0.23 mg gallic acid equivalent (GAE)/g extract) and flavonoid contents (68.85 ± 0.25 mg rutin equivalent (RE)/g extract). The extracts obtained by ASE, UAE and SE could increase the tyrosinase activity and all the extracts displayed remarkable inhibitory activity against α-glucosidase. This study demonstrated that the VA extracts obtained by novel extraction techniques such as ASE, could be considered as a positive candidate to be utilized by the food and medical industries, not only for obtaining bioactive compounds to be used as natural antioxidants, but possibly also for its health benefits for therapeutic bio-product development.
Collapse
|
31
|
El Bakali I, Sakar EH, Boutahar A, Kadiri M, Merzouki A. A comparative phytochemical profiling of essential oils isolated from three hemp (Cannabis sativa L.) cultivars grown in central-northern Morocco. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2022.102327] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
32
|
Goulas V, Banegas-Luna AJ, Constantinou A, Pérez-Sánchez H, Barbouti A. Computation Screening of Multi-Target Antidiabetic Properties of Phytochemicals in Common Edible Mediterranean Plants. PLANTS (BASEL, SWITZERLAND) 2022; 11:1637. [PMID: 35807588 PMCID: PMC9269125 DOI: 10.3390/plants11131637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/09/2022] [Accepted: 06/16/2022] [Indexed: 11/16/2022]
Abstract
Diabetes mellitus is a metabolic disease and one of the leading causes of deaths worldwide. Numerous studies support that the Mediterranean diet has preventive and treatment effects on diabetes. These effects have been attributed to the special bioactive composition of Mediterranean foods. The objective of this work was to decipher the antidiabetic activity of Mediterranean edible plant materials using the DIA-DB inverse virtual screening web server. A literature review on the antidiabetic potential of Mediterranean plants was performed and twenty plants were selected for further examination. Subsequently, the most abundant flavonoids, phenolic acids, and terpenes in plant materials were studied to predict their antidiabetic activity. Results showed that flavonoids are the most active phytochemicals as they modulate the function of 17 protein-targets and present high structural similarity with antidiabetic drugs. Their antidiabetic effects are linked with three mechanisms of action, namely (i) regulation of insulin secretion/sensitivity, (ii) regulation of glucose metabolism, and (iii) regulation of lipid metabolism. Overall, the findings can be utilized to understand the antidiabetic activity of edible Mediterranean plants pinpointing the most active phytoconstituents.
Collapse
Affiliation(s)
- Vlasios Goulas
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, Lemesos 3603, Cyprus;
| | - Antonio J. Banegas-Luna
- Structural Bioinformatics and High Performance Computing (BIO-HPC) Research Group, UCAM Universidad Católica de Murcia, 30107 Guadalupe, Spain; (A.J.B.-L.); (H.P.-S.)
| | - Athena Constantinou
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, Lemesos 3603, Cyprus;
| | - Horacio Pérez-Sánchez
- Structural Bioinformatics and High Performance Computing (BIO-HPC) Research Group, UCAM Universidad Católica de Murcia, 30107 Guadalupe, Spain; (A.J.B.-L.); (H.P.-S.)
| | - Alexandra Barbouti
- Department of Anatomy-Histology-Embryology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece;
| |
Collapse
|
33
|
Noppawan P, Bainier C, Lanot A, McQueen-Mason S, Supanchaiyamat N, Attard TM, Hunt AJ. Effect of harvest time on the compositional changes in essential oils, cannabinoids, and waxes of hemp ( Cannabis sativa L.). ROYAL SOCIETY OPEN SCIENCE 2022; 9:211699. [PMID: 35719880 PMCID: PMC9198500 DOI: 10.1098/rsos.211699] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 04/27/2022] [Indexed: 05/03/2023]
Abstract
Demand for cannabinoid is growing, with the global market expected to reach $9.69 billion by 2025. Understanding how chemical composition changes in hemp at different harvest times is crucial to maximizing this industrial crop value. Important compositional changes in three different compound classes (essential oils, cannabinoids, and lipids) from inflorescences (tops), leaves, and stems of hemp (Cannabis sativa L., Finola variety) at different harvesting stages have been investigated. Over 85% of the total extracts from the tops were cannabinoids, while leaves demonstrated the greatest quantities of wax ester and sterols. Essential oil and cannabinoid increased in tops until full flowering (third harvest), reaching 2030 µg g-1 and 39 475 µg g-1, respectively. Cannabinoids decreased at seed maturity (final harvest) to 26 969 µg g-1. This demonstrates the importance of early harvesting to maximize cannabidiol (CBD), which is highly sought after for its therapeutic and pharmacological properties. A total of 21 161 µg g-1 of CBD was extracted from the tops at full flowering (third harvest); however, a significant increase (63%) in the banned psychoactive tetrahydrocannabinol (THC) was observed from budding (157 µg g-1 of biomass) to the full flowering (9873 µg g-1 of biomass). Harvesting the tops after budding is preferable due to the high CBD content and low amounts of THC.
Collapse
Affiliation(s)
- Pakin Noppawan
- Materials Chemistry Research Center, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Camille Bainier
- Department of Chemistry, Green Chemistry Centre of Excellence, University of York, Wentworth Way, York YO10 5DD, UK
| | - Alexandra Lanot
- Department of Biology, Centre for Novel Agricultural Products, University of York, Wentworth Way, York YO10 5DD, UK
| | - Simon McQueen-Mason
- Department of Biology, Centre for Novel Agricultural Products, University of York, Wentworth Way, York YO10 5DD, UK
| | - Nontipa Supanchaiyamat
- Materials Chemistry Research Center, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Thomas M. Attard
- RX Extraction Ltd., Unit 10, Rowen Trade Estate, Neville Road, Bradford BD4 8TQ, UK
| | - Andrew J. Hunt
- Materials Chemistry Research Center, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| |
Collapse
|
34
|
Hammoudi Halat D, Krayem M, Khaled S, Younes S. A Focused Insight into Thyme: Biological, Chemical, and Therapeutic Properties of an Indigenous Mediterranean Herb. Nutrients 2022; 14:2104. [PMID: 35631245 PMCID: PMC9147557 DOI: 10.3390/nu14102104] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/08/2022] [Accepted: 05/12/2022] [Indexed: 02/06/2023] Open
Abstract
A perennial wild shrub from the Lamiaceae family and native to the Mediterranean region, thyme is considered an important wild edible plant studied for centuries for its unique importance in the food, pharmaceutical, and cosmetic industry. Thyme is loaded with phytonutrients, minerals and vitamins. It is pungent in taste, yet rich in moisture, proteins, crude fiber, minerals and vitamins. Its chemical composition may vary with geographical location but is mainly composed of flavonoids and antioxidants. Previous studies have illustrated the therapeutic effects of thyme and its essential oils, especially thymol and carvacrol, against various diseases. This is attributed to its multi-pharmacological properties that include, but are not limited to, antioxidant, anti-inflammatory, and antineoplastic actions. Moreover, thyme has long been known for its antiviral, antibacterial, antifungal, and antiseptic activities, in addition to remarkable disruption of microbial biofilms. In the COVID-19 era, some thyme constituents were investigated for their potential in viral binding. As such, thyme presents a wide range of functional possibilities in food, drugs, and other fields and prominent interest as a nutraceutical. The aims of the current review are to present botanical and nutritive values of this herb, elaborate its major constituents, and review available literature on its dietetic and biological activities.
Collapse
Affiliation(s)
- Dalal Hammoudi Halat
- Department of Pharmaceutical Sciences, School of Pharmacy, Lebanese International University, Bekaa Campus, Bekaa P.O. Box 146404, Lebanon
| | - Maha Krayem
- Department of Biological and Chemical Sciences, School of Arts and Sciences, Lebanese International University, Bekaa Campus, Bekaa P.O. Box 146404, Lebanon; (M.K.); (S.K.)
| | - Sanaa Khaled
- Department of Biological and Chemical Sciences, School of Arts and Sciences, Lebanese International University, Bekaa Campus, Bekaa P.O. Box 146404, Lebanon; (M.K.); (S.K.)
| | - Samar Younes
- Department of Biomedical Sciences, School of Pharmacy, Lebanese International University, Bekaa Campus, Bekaa P.O. Box 146404, Lebanon;
| |
Collapse
|
35
|
Gaba ABM, Hassan MA, Abd EL-Tawab AA, Abdelmonem MA, Morsy MK. Protective Impact of Chitosan Film Loaded Oregano and Thyme Essential Oil on the Microbial Profile and Quality Attributes of Beef Meat. Antibiotics (Basel) 2022; 11:583. [PMID: 35625227 PMCID: PMC9137996 DOI: 10.3390/antibiotics11050583] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/21/2022] [Accepted: 04/22/2022] [Indexed: 11/30/2022] Open
Abstract
Edible films and essential oil (EO) systems have the potency to enhance the microbial quality and shelf life of food. This investigation aimed to evaluate the efficacy of chitosan films including essential oils against spoilage bacteria and foodborne pathogens associated with meat. Antimicrobial activity (in vitro and in vivo) of chitosan films (CH) incorporated with oregano oil (OO) and thyme oil (TO) at 0.5 and 1% was done against spoilage bacteria and foodborne pathogens, compared to the control sample and CH alone. Preliminary experiments (in vitro) showed that the 1% OO and TO were more active against Staphylococcus aureus compared to Escherichia coli O157:H7 and Salmonella Typhimurium. In in vivo studies, CH containing OO and TO effectively inhibited the three foodborne pathogens and spoilage bacteria linked with packed beef meat which was kept at 4 °C/30 days compared to the control. The total phenolic content of the EOs was 201.52 mg GAE L-1 in thyme and 187.64 mg GAE L-1 in oregano. The antioxidant activity of thyme oil was higher than oregano oil. The results demonstrated that the shelf life of meat including CH with EOs was prolonged ~10 days compared to CH alone. Additionally, CH-OO and CH-TO have improved the sensory acceptability until 25 days, compared to the control. Results revealed that edible films made of chitosan and containing EOs improved the quality parameters and safety attributes of refrigerated or fresh meat.
Collapse
Affiliation(s)
- Abdul Basit M. Gaba
- Department of Food Hygiene and Control, Faculty of Veterinary Medicine, Benha University, Qaluobia 13736, Egypt; (A.B.M.G.); (M.A.H.)
- Department of Quality Systems and Sustainability, Kalustyan Corporation, 855 Rahway Ave, Union, NJ 07083, USA
| | - Mohamed A. Hassan
- Department of Food Hygiene and Control, Faculty of Veterinary Medicine, Benha University, Qaluobia 13736, Egypt; (A.B.M.G.); (M.A.H.)
| | - Ashraf A. Abd EL-Tawab
- Department of Bacteriology, Immunology, and Mycology, Faculty of Veterinary Medicine, Benha University, Qaluobia 13736, Egypt;
| | - Mohamed A. Abdelmonem
- Agriculture Research Center, Central Lab of Residue Analysis of Pesticides and Heavy Metals on Food, Food Microbiology Unit, Cairo 12311, Egypt;
| | - Mohamed K. Morsy
- Department of Food Technology, Faculty of Agriculture, Benha University, Qaluobia 13736, Egypt
| |
Collapse
|
36
|
Karğılı U, Aytaç E. Evaluation of cannabinoid (CBD and THC) content of four different strains of cannabis grown in four different regions. Eur Food Res Technol 2022. [DOI: 10.1007/s00217-022-03975-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
37
|
Cannabis sativa Bioactive Compounds and Their Extraction, Separation, Purification, and Identification Technologies: An Updated Review. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116554] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
38
|
AL Ubeed HMS, Bhuyan DJ, Alsherbiny MA, Basu A, Vuong QV. A Comprehensive Review on the Techniques for Extraction of Bioactive Compounds from Medicinal Cannabis. Molecules 2022; 27:604. [PMID: 35163863 PMCID: PMC8840415 DOI: 10.3390/molecules27030604] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/13/2022] [Accepted: 01/14/2022] [Indexed: 12/27/2022] Open
Abstract
Cannabis is well-known for its numerous therapeutic activities, as demonstrated in pre-clinical and clinical studies primarily due to its bioactive compounds. The Cannabis industry is rapidly growing; therefore, product development and extraction methods have become crucial aspects of Cannabis research. The evaluation of the current extraction methods implemented in the Cannabis industry and scientific literature to produce consistent, reliable, and potent medicinal Cannabis extracts is prudent. Furthermore, these processes must be subjected to higher levels of scientific stringency, as Cannabis has been increasingly used for various ailments, and the Cannabis industry is receiving acceptance in different countries. We comprehensively analysed the current literature and drew a critical summary of the extraction methods implemented thus far to recover bioactive compounds from medicinal Cannabis. Moreover, this review outlines the major bioactive compounds in Cannabis, discusses critical factors affecting extraction yields, and proposes future considerations for the effective extraction of bioactive compounds from Cannabis. Overall, research on medicinal marijuana is limited, with most reports on the industrial hemp variety of Cannabis or pure isolates. We also propose the development of sustainable Cannabis extraction methods through the implementation of mathematical prediction models in future studies.
Collapse
Affiliation(s)
- Hebah Muhsien Sabiah AL Ubeed
- School of Science, College of Sciences, Engineering, Computing Technologies and Health and Medical Sciences, RMIT University, Bundoora, Melbourne, VIC 3083, Australia
| | - Deep Jyoti Bhuyan
- NICM Health Research Institute, Western Sydney University, Penrith, NSW 2751, Australia;
| | - Muhammad A. Alsherbiny
- NICM Health Research Institute, Western Sydney University, Penrith, NSW 2751, Australia;
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Amrita Basu
- Complex Carbohydrate Research Centre, University of Georgia, 315 Riverbend Road, Athens, GA 30602, USA;
| | - Quan V. Vuong
- School of Environmental and Life Sciences, College of Engineering, Science, and Environment, The University of Newcastle, 10 Chittaway Road, Ourimbah, NSW 2258, Australia;
| |
Collapse
|
39
|
Masek A, Cichosz S, Piotrowska M. Comparison of Aging Resistance and Antimicrobial Properties of Ethylene-Norbornene Copolymer and Poly(Lactic Acid) Impregnated with Phytochemicals Embodied in Thyme ( Thymus vulgaris) and Clove ( Syzygium aromaticum). Int J Mol Sci 2021; 22:13025. [PMID: 34884831 PMCID: PMC8657585 DOI: 10.3390/ijms222313025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 11/29/2021] [Accepted: 11/29/2021] [Indexed: 11/16/2022] Open
Abstract
The effects of plant-based extracts on the solar aging and antimicrobial properties of impregnated ethylene-norbornene (EN) copolymer and poly(lactic acid) (PLA) were investigated. In this study, the impregnation yield of polyolefin, lacking in active centers capable of phytochemical bonding, and polyester, abundant in active sides, was measured. Moreover, two different extracts plentiful in phytochemicals-thyme (TE) and clove (CE)-were employed in the solvent-based impregnation process. The effect of thymol and eugenol, the two main compounds embodied in the extracts, was studied as well. Interestingly, oxidation induction times (OIT) for the impregnation of EN with thyme and clove extracts were established to be, respectively, 27.7 and 39.02 min, which are higher than for thymol (18.4 min) and eugenol (21.1 min). Therefore, an aging experiment, mimicking the full spectrum of sunlight, was carried out to investigate the resistance to common radiation of materials impregnated with antioxidative substances. As expected, the experiment revealed that the natural extracts increased the shelf-life of the polymer matrix by inhibiting the degradation processes. The aging resistance was assessed based on detected changes in the materials' behavior and structure that were examined with Fourier-transform infrared spectroscopy, contact angle measurements, color quantification, tensile tests, and hardness investigation. Such broad results of solar aging regarding materials impregnated with thyme and clove extracts have not been reported to date. Moreover, CE was found to be the most effective modifying agent for enabling material with antimicrobial activity against Escherichia coli to be obtained.
Collapse
Affiliation(s)
- Anna Masek
- Faculty of Chemistry, Institute of Polymer and Dye Technology, Lodz University of Technology, Stefanowskiego 16, 90-537 Lodz, Poland;
| | - Stefan Cichosz
- Faculty of Chemistry, Institute of Polymer and Dye Technology, Lodz University of Technology, Stefanowskiego 16, 90-537 Lodz, Poland;
| | - Małgorzata Piotrowska
- Faculty of Biotechnology and Food Sciences, Institute of Fermentation Technology and Microbiology, Lodz University of Technology, Wolczanska 71/173, 90-924 Lodz, Poland;
| |
Collapse
|
40
|
Kucková K, Grešáková L, Takácsová M, Kandričáková A, Chrastinová L, Polačiková M, Cieslak A, Ślusarczyk S, Čobanová K. Changes in the Antioxidant and Mineral Status of Rabbits After Administration of Dietary Zinc and/or Thyme Extract. Front Vet Sci 2021; 8:740658. [PMID: 34746281 PMCID: PMC8569448 DOI: 10.3389/fvets.2021.740658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 09/24/2021] [Indexed: 11/13/2022] Open
Abstract
This study was aimed at determining the impact of organic zinc (Zn) and thyme extract (TE) administration, given alone or together for 6 weeks, on the antioxidant and mineral status (Zn, Cu, Fe, and Mn) in the plasma and tissues of growing rabbits. A total of 96 rabbits of age 35 days were randomly assigned to one of four treatment groups: a control group (C), a Zn group supplemented with dietary zinc (50 mg/kg), a TE group receiving thyme extract applied in drinking water (1 ml/L), and a Zn + TE group treated with both additives. Lipid peroxidation in the plasma was influenced by Zn intake and in the kidney was affected by both the Zn and TE treatment (P < 0.05). Zn supplementation led to a significant increase in glutathione peroxidase activity (P = 0.017), total antioxidant capacity (P = 0.009) and total thiol groups level (P = 0.047) in the kidney, with the highest values occurring in rabbits receiving the combination Zn + TE. Administration of TE influenced Zn content in the kidney (P < 0.001), while zinc intake decreased Cu concentration in muscle (P = 0.021). In conclusion, the simultaneous administration of organic Zn and TE positively affected the antioxidant response of kidneys and can be used for improving the antioxidant status of growing rabbits.
Collapse
Affiliation(s)
- Katarína Kucková
- Centre of Biosciences of the Slovak Academy of Sciences, Institute of Animal Physiology, Kosice, Slovakia
| | - L'ubomíra Grešáková
- Centre of Biosciences of the Slovak Academy of Sciences, Institute of Animal Physiology, Kosice, Slovakia
| | - Margaréta Takácsová
- Centre of Biosciences of the Slovak Academy of Sciences, Institute of Animal Physiology, Kosice, Slovakia
| | - Anna Kandričáková
- Centre of Biosciences of the Slovak Academy of Sciences, Institute of Animal Physiology, Kosice, Slovakia
| | - L'ubica Chrastinová
- National Agricultural and Food Centre, Research Institute for Animal Production, Luzianky, Slovakia
| | - Mária Polačiková
- National Agricultural and Food Centre, Research Institute for Animal Production, Luzianky, Slovakia
| | - Adam Cieslak
- Department of Animal Nutrition, Poznan University of Life Sciences, Poznan, Poland
| | - Sylwester Ślusarczyk
- Department of Pharmaceutical Biology and Botany, Medical University of Wroclaw, Wroclaw, Poland
| | - Klaudia Čobanová
- Centre of Biosciences of the Slovak Academy of Sciences, Institute of Animal Physiology, Kosice, Slovakia
| |
Collapse
|
41
|
Extraction Processes Affect the Composition and Bioavailability of Flavones from Lamiaceae Plants: A Comprehensive Review. Processes (Basel) 2021. [DOI: 10.3390/pr9091675] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Lamiaceae plants are a widespread family of herbaceous plants with around 245 plant genera and nearly 22,576 species distributed in the world. Some of the most representative and widely studied Lamiaceae plants belong to the Ocimum, Origanum, Salvia, and Thymus genera. These plants are a rich source of bioactive molecules such as terpenes, flavonoids, and phenolic acids. In this sense, there is a subgroup of flavonoids classified as flavones. Flavones have antioxidant, anti-inflammatory, anti-cancer, and anti-diabetic potential; thus, efficient extraction techniques from their original plant matrixes have been developed. Currently, conventional extraction methods involving organic solvents are no longer recommended due to their environmental consequences, and new environmentally friendly techniques have been developed. Moreover, once extracted, the bioactivity of flavones is highly linked to their bioavailability, which is often neglected. This review aims to comprehensively gather recent information (2011–2021) regarding extraction techniques and their important relationship with the bioavailability of flavones from Lamiaceae plants including Salvia, Ocimum, Thymus, and Origanum.
Collapse
|
42
|
Oliva E, Viteritti E, Fanti F, Eugelio F, Pepe A, Palmieri S, Sergi M, Compagnone D. Targeted and semi-untargeted determination of phenolic compounds in plant matrices by high performance liquid chromatography-tandem mass spectrometry. J Chromatogr A 2021; 1651:462315. [PMID: 34157475 DOI: 10.1016/j.chroma.2021.462315] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/28/2021] [Accepted: 05/29/2021] [Indexed: 12/20/2022]
Abstract
In this work two different acquisition approaches were used for the quantification and/or tentative identification of phenolic compounds (PCs) in plant matrices by HPLC-MS/MS. A targeted approach, based on MRM acquisition mode, was used for the identification and quantification of a list of target analytes by comparison with standards; a semi-targeted approach was also developed by the precursor ion scan and neutral loss for the tentative identification of compounds not included in the target list. Analysis of phenolic content in three different plant matrices (curry leaves, hemp and blueberry) was carried out. The extraction and clean-up steps were set up according to the characteristics of the sample allowing to minimize the interfering compounds present in such complex matrices, as proved by the low matrix effect obtained (<16%) and recovery values ranging from 45% to 98% for all the analytes. This approach provided a sensitive and robust quantitative analysis of the target compounds with LOQs between 0.0002 and 0.05 ng mg-1, which allowed the identification and quantification of several hydroxycinnamic and hydroxybenzoic acids, in addition to numerous flavonoids in all three matrices. Furthermore, different moieties were considered as neutral losses or as precursor ions in semi-targeted MS/MS approach, providing the putative identification of different glycosylated forms of flavonoids, such as luteolin-galactoside and diosmin in all three matrices, while apigenin-glucuronide was detected in hemp and quercetin-glucuronide in blueberry. A further study was carried out by MS3, allowing the discrimination of compounds with similar aglycones, such as luteolin and kaempferol.
Collapse
Affiliation(s)
- Eleonora Oliva
- University of Teramo, Faculty of Bioscience and Technology for Food, Agriculture and Environment, Teramo, Italy
| | - Eduardo Viteritti
- University of Teramo, Faculty of Bioscience and Technology for Food, Agriculture and Environment, Teramo, Italy
| | - Federico Fanti
- University of Teramo, Faculty of Bioscience and Technology for Food, Agriculture and Environment, Teramo, Italy
| | - Fabiola Eugelio
- University of Teramo, Faculty of Bioscience and Technology for Food, Agriculture and Environment, Teramo, Italy
| | - Alessia Pepe
- University of Teramo, Faculty of Bioscience and Technology for Food, Agriculture and Environment, Teramo, Italy
| | - Sara Palmieri
- University of Teramo, Faculty of Bioscience and Technology for Food, Agriculture and Environment, Teramo, Italy
| | - Manuel Sergi
- University of Teramo, Faculty of Bioscience and Technology for Food, Agriculture and Environment, Teramo, Italy.
| | - Dario Compagnone
- University of Teramo, Faculty of Bioscience and Technology for Food, Agriculture and Environment, Teramo, Italy
| |
Collapse
|
43
|
Isidore E, Karim H, Ioannou I. Extraction of Phenolic Compounds and Terpenes from Cannabis sativa L. By-Products: From Conventional to Intensified Processes. Antioxidants (Basel) 2021; 10:942. [PMID: 34200871 PMCID: PMC8230455 DOI: 10.3390/antiox10060942] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/06/2021] [Accepted: 06/07/2021] [Indexed: 11/17/2022] Open
Abstract
Cannabis sativa L. is a controversial crop due to its high tetrahydrocannabinol content varieties; however, the hemp varieties get an increased interest. This paper describes (i) the main categories of phenolic compounds (flavonoids, stilbenoids and lignans) and terpenes (monoterpenes and sesquiterpenes) from C. sativa by-products and their biological activities and (ii) the main extraction techniques for their recovery. It includes not only common techniques such as conventional solvent extraction, and hydrodistillation, but also intensification and emerging techniques such as ultrasound-assisted extraction or supercritical CO2 extraction. The effect of the operating conditions on the yield and composition of these categories of phenolic compounds and terpenes was discussed. A thorough investigation of innovative extraction techniques is indeed crucial for the extraction of phenolic compounds and terpenes from cannabis toward a sustainable industrial valorization of the whole plant.
Collapse
Affiliation(s)
| | | | - Irina Ioannou
- URD Industrial Agro-Biotechnologies, CEBB, AgroParisTech, 51110 Pomacle, France; (E.I.); (H.K.)
| |
Collapse
|
44
|
Kazlauskaite JA, Ivanauskas L, Bernatoniene J. Cyclodextrin-Assisted Extraction Method as a Green Alternative to Increase the Isoflavone Yield from Trifolium pratensis L. Extract. Pharmaceutics 2021; 13:pharmaceutics13050620. [PMID: 33926032 PMCID: PMC8145902 DOI: 10.3390/pharmaceutics13050620] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/22/2021] [Accepted: 04/22/2021] [Indexed: 01/30/2023] Open
Abstract
Trifolium pratense L. is receiving increasing attention due to the isoflavones it contains, which have been studied for their benefits to human health. A common problem with isoflavone aglycones is a rather low water solubility and limited pharmaceutical applications. The use of excipients, such as cyclodextrins in the production of isoflavone rich extracts, could become one of the new strategies for the extraction of target compounds. The aim of this study was to evaluate an eco-friendly method using the effects of α-, β- and γ-cyclodextrins for isoflavone solubilization in plant extracts in comparison to a standard extract without excipients. Extractions of red clover were prepared using ultrasound-assisted combined with thermal hydrolysis and heat reflux. It was determined that cyclodextrins significantly increased the isoflavones aglycone yields. By increasing cyclodextrins in the extraction media from 1 to 5%, the daidzin concentration increased on average by 1.06 (α-cyclodextrins), 1.4 (β-cyclodextrins) and 1.25 (γ-cyclodextrins) times. Genistein concentration increased using α- and γ-cyclodextrins (1.28 and 1.12 times, α- and γ-cyclodextrins, respectively), but decreased using β-cyclodextrins. The results showed that the cyclodextrin-assisted extraction enhanced the yields of isoflavones from red clover, which suggests using cyclodextrins as a green alternative and a cost-effective method to increase its pharmaceutical application.
Collapse
Affiliation(s)
- Jurga Andreja Kazlauskaite
- Department of Drug Technology and Social Pharmacy, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania;
- Institute of Pharmaceutical Technologies, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania
| | - Liudas Ivanauskas
- Department of Analytical and Toxicological Chemistry, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania;
| | - Jurga Bernatoniene
- Department of Drug Technology and Social Pharmacy, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania;
- Institute of Pharmaceutical Technologies, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania
- Correspondence: ; Tel.: +370-6-0063349
| |
Collapse
|
45
|
Natural Antioxidants: Innovative Extraction and Application in Foods. Foods 2021; 10:foods10050937. [PMID: 33922906 PMCID: PMC8145392 DOI: 10.3390/foods10050937] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 04/22/2021] [Indexed: 11/17/2022] Open
Abstract
Research has devoted great attention to the study of the biological properties of plants, animal products, microorganisms, marine species, and fungi, among others, often driven by the need to discover new medicines [...].
Collapse
|
46
|
Capatina L, Todirascu-Ciornea E, Napoli EM, Ruberto G, Hritcu L, Dumitru G. Thymus vulgaris Essential Oil Protects Zebrafish against Cognitive Dysfunction by Regulating Cholinergic and Antioxidants Systems. Antioxidants (Basel) 2020; 9:antiox9111083. [PMID: 33158153 PMCID: PMC7694219 DOI: 10.3390/antiox9111083] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/27/2020] [Accepted: 11/02/2020] [Indexed: 12/11/2022] Open
Abstract
Thymus vulgaris L. is an aromatic herb used for medicinal purposes such as antimicrobial, spasmolytic, antioxidant, anti-inflammatory, antinociceptive, antitumor, and may have beneficial effects in the treatment of Alzheimer’s disease. The present study aimed to investigate whether Thymus vulgaris L. essential oil enhances cognitive function via the action on cholinergic neurons using scopolamine (Sco)-induced zebrafish (Danio rerio) model of memory impairments. Thymus vulgaris L. essential oil (TEO, 25, 150, and 300 µL/L) was administered by immersion to zebrafish once daily for 13 days, whereas memory impairment was induced by Sco (100 μM), a muscarinic receptor antagonist, delivered 30 min before behavioral tests. Spatial memory was assessed using the Y-maze test and novel object recognition test (NOR). Anxiety and depression were measured in the novel tank diving test (NTT). Gas Chromatograph-Mass Spectrometry (GC-MS) analysis was used to study the phytochemical composition of TEO. Acetylcholinesterase (AChE) activity and oxidative stress response in the brain of zebrafish were determined. TEO ameliorated Sco-induced increasing of AChE activity, amnesia, anxiety, and reduced the brain antioxidant capacity. These results suggest that TEO may have preventive and/or therapeutic potentials in the management of memory deficits and brain oxidative stress in zebrafish with amnesia.
Collapse
Affiliation(s)
- Luminita Capatina
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, 700506 Iasi, Romania; (L.C.); (E.T.-C.); (G.D.)
| | - Elena Todirascu-Ciornea
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, 700506 Iasi, Romania; (L.C.); (E.T.-C.); (G.D.)
| | - Edoardo Marco Napoli
- Institute of Biomolecular Chemistry, National Research Council ICB-CNR, 95126 Catania, Italy; (E.M.N.); (G.R.)
| | - Giuseppe Ruberto
- Institute of Biomolecular Chemistry, National Research Council ICB-CNR, 95126 Catania, Italy; (E.M.N.); (G.R.)
| | - Lucian Hritcu
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, 700506 Iasi, Romania; (L.C.); (E.T.-C.); (G.D.)
- Correspondence: ; Tel.: +40-232-201-666
| | - Gabriela Dumitru
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, 700506 Iasi, Romania; (L.C.); (E.T.-C.); (G.D.)
| |
Collapse
|