1
|
Peng J, He J, Lin L, Li Y, Xia Y. Neural Stem Cell Extracellular Vesicles Carrying YBX1 Inhibited Neuronal Pyroptosis Through Increasing m6A-modified GPR30 Stability and Expression in Ischemic Stroke. Transl Stroke Res 2025; 16:262-279. [PMID: 37966628 DOI: 10.1007/s12975-023-01210-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 10/12/2023] [Accepted: 10/26/2023] [Indexed: 11/16/2023]
Abstract
Neural stem cell-derived extracellular vesicles (NSC-derived EVs) alleviated ischemic stroke (IS) by suppressing the activation of nucleotide-binding domain leucine-rich repeats family protein 3 (NLRP3) inflammasome and neuronal pyroptosis. However, the specific mechanism needs further investigation. qRT-qPCR, Western blotting, and immunofluorescence detected related gene expression. Immunofluorescent analyzed the expression of Ki-67, βIII-Tubulin (Tuj1), and GFAP. Lactate dehydrogenase (LDH) release and IL-1β and IL-18 levels were analyzed by LDH and ELISA kits. TTC staining evaluated the infarction of brain tissues. Flow cytometric analysis measured caspase-1 activity. M6A methylated RNA immunoprecipitation PCR (MeRIP-PCR) measured methylation levels of G protein-coupled receptor 30 (GPR30). RIP and Co-IP analyzed the interactions of Y box binding protein (YBX1)/GPR30, YBX1/IGF2BP1 and NLRP3/speckle-type POZ protein (SPOP), as well as the ubiquitination levels of NLRP3. NSC-derived EVs inhibited the ischemia-reperfusion (I/R) injury of rats and the neuronal pyroptosis induced by oxygen-glucose deprivation/reoxygenation (OGD/R). Knockdown of EVs carrying YBX1 or GPR30 silencing abolished these inhibiting effects. GPR30 mRNA and IGF2BP1 protein were enriched by YBX1 antibody. YBX1 enhanced the stability of m6A-modified GPR30 by interacting with IGF2BP1 and thus promoting GPR30 expression. Knockdown of IGF2BP1 suppressed the binding between YBX1 and GPR30 mRNA. GPR30 promoted NLRP3 ubiquitination by interacting with SPOP. EVs carrying YBX1 could reduce the infarction of brain tissues and inhibit neuronal pyroptosis in rats with I/R injury. NSC-derived EVs carrying YBX1 increased the stability of m6A-modified GPR30 by interacting with IGF2BP1; the upregulation of GPR30 inhibited the activation of NLRP3 inflammasome through promoting NLRP3 ubiquitination by SPOP, ultimately suppressing the neuronal pyroptosis in IS.
Collapse
Affiliation(s)
- Jun Peng
- Department of Neurosurgery, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Hainan Province, Haikou, 570208, People's Republic of China
| | - Jun He
- Department of Neurosurgery, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Hainan Province, Haikou, 570208, People's Republic of China
| | - Long Lin
- Department of Neurosurgery, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Hainan Province, Haikou, 570208, People's Republic of China
| | - You Li
- Department of Neurosurgery, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Hainan Province, Haikou, 570208, People's Republic of China
| | - Ying Xia
- Department of Neurosurgery, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Hainan Province, Haikou, 570208, People's Republic of China.
| |
Collapse
|
2
|
Zhuo B, Qin C, Deng S, Jiang H, Si S, Tao F, Cai F, Meng Z. The role of ACSL4 in stroke: mechanisms and potential therapeutic target. Mol Cell Biochem 2025; 480:2223-2246. [PMID: 39496916 PMCID: PMC11961533 DOI: 10.1007/s11010-024-05150-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 10/24/2024] [Indexed: 11/06/2024]
Abstract
Stroke, as a neurological disorder with a poor overall prognosis, has long plagued the patients. Current stroke therapy lacks effective treatments. Ferroptosis has emerged as a prominent subject of discourse across various maladies in recent years. As an emerging therapeutic target, notwithstanding its initial identification in tumor cells associated with brain diseases, it has lately been recognized as a pivotal factor in the pathological progression of stroke. Acyl-CoA synthetase long-chain family member 4 (ACSL4) is a potential target and biomarker of catalytic unsaturated fatty acids mediating ferroptosis in stroke. Specifically, the upregulation of ACSL4 leads to heightened accumulation of lipid peroxidation products and reactive oxygen species (ROS), thereby exacerbating the progression of ferroptosis in neuronal cells. ACSL4 is present in various tissues and involved in multiple pathways of ferroptosis. At present, the pharmacological mechanisms of targeting ACSL4 to inhibit ferroptosis have been found in many drugs, but the molecular mechanisms of targeting ACSL4 are still in the exploratory stage. This paper introduces the physiopathological mechanism of ACSL4 and the current status of the research involved in ferroptosis crosstalk and epigenetics, and summarizes the application status of ACSL4 in modern pharmacology research, and discusses the potential application value of ACSL4 in the field of stroke.
Collapse
Affiliation(s)
- Bifang Zhuo
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Chenyang Qin
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Shizhe Deng
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Hailun Jiang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Shangkun Si
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Feng Tao
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Fei Cai
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China.
| | - Zhihong Meng
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China.
| |
Collapse
|
3
|
Ngwa C, Misrani A, Manyam KV, Xu Y, Qi S, Sharmeen R, Lee J, Wu LJ, McCullough L, Liu F. Escape of Kdm6a from X Chromosome Is Detrimental to Ischemic Brains via IRF5 Signaling. Transl Stroke Res 2025:10.1007/s12975-024-01321-1. [PMID: 39752046 DOI: 10.1007/s12975-024-01321-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/18/2024] [Accepted: 12/23/2024] [Indexed: 01/04/2025]
Abstract
The role of chromatin biology and epigenetics in disease progression is gaining increasing recognition. Genes that escape X chromosome inactivation (XCI) can impact neuroinflammation through epigenetic mechanisms. Our previous study has suggested that the X escapee genes Kdm6a and Kdm5c are involved in microglial activation after stroke in aged mice. However, the underlying mechanisms remain unclear. We hypothesized that Kdm6a/5c demethylate H3K27Me3/H3K4Me3 in microglia, respectively, and mediate the transcription of interferon regulatory factor 5 (IRF5) and IRF4, leading to microglial pro-inflammatory responses and exacerbated stroke injury. Aged (17-20 months) Kdm6a/5c microglial conditional knockout (CKO) female mice (one allele of the gene) were subjected to a 60-min middle cerebral artery occlusion (MCAO). Gene floxed females (two alleles) and males (one allele) were included as controls. Infarct volume and behavioral deficits were quantified 3 days after stroke. Immune responses including microglial activation and infiltration of peripheral leukocytes in the ischemic brain were assessed by flow cytometry. Epigenetic modification of IRF5/4 by Kdm6a/5c was analyzed by CUT&RUN assay. The demethylation of H3K27Me3 by kdm6a increased IRF5 transcription; meanwhile, Kdm5c demethylated H3K4Me3 to repress IRF5. Both Kdm6afl/fl and Kdm5cfl/fl mice had worse stroke outcomes compared to fl/y and CKO mice. Gene floxed females showed more robust expression of CD68 in microglia and elevated brain and plasma levels of IL-1β or TNF-α, after stroke. We concluded that IRF5 signaling plays a critical role in mediating the deleterious effect of Kdm6a, whereas Kdm5c's effect is independent of IRF5.
Collapse
Affiliation(s)
- Conelius Ngwa
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX, 77030, USA
| | - Afzal Misrani
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX, 77030, USA
| | - Kanaka Valli Manyam
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX, 77030, USA
| | - Yan Xu
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX, 77030, USA
| | - Shaohua Qi
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX, 77030, USA
| | - Romana Sharmeen
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX, 77030, USA
| | - Juneyoung Lee
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX, 77030, USA
| | - Long-Jun Wu
- IMM-Center for Neuroimmunology and Glial Biology, McGovern Medical School, The University of Texas Health Science Center at Houston, 1825 Pressler Street, Houston, TX, 77030, USA
| | - Louise McCullough
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX, 77030, USA
| | - Fudong Liu
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX, 77030, USA.
| |
Collapse
|
4
|
Rroji O, Mucignat C. Factors influencing brain recovery from stroke via possible epigenetic changes. Future Sci OA 2024; 10:2409609. [PMID: 39429231 PMCID: PMC11497982 DOI: 10.1080/20565623.2024.2409609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 09/24/2024] [Indexed: 10/22/2024] Open
Abstract
Aim: To examine epigenetic changes leading to functional repair after damage to the central motor system.Data sources: A literature search was conducted using medical and health science electronic databases (PubMed, MEDLINE, Scopus) up to July 2023.Study selection: Data were summarized for type of intervention, study design, findings including human and animal studies.Data extraction: Data were extracted and double-checked independently for methodological quality. By means of the influence of environmental (calorie restriction or physical exercise) and other factors, epigenetic instructions were found to increase levels of BDNF and enhance synaptic neurotransmission, possibly leading to larger scale changes in structural and functional assets, which may end up to cognitive and motor repair after stroke.
Collapse
Affiliation(s)
- Orjon Rroji
- Department of Radiology & Imaging techniques, European University of Tirana, Albania
| | - Carla Mucignat
- Department of Molecular Medicine, University of Padova, Italy
- National Institute for Biostructures & Biosystems, Rome, Italy
| |
Collapse
|
5
|
Vaali R, Ahmadi I, Sehati F, Ranjbaran M, Nikbakhtzadeh M, Nabavizadeh F, Zareei A, Ashabi G. Maternal Metformin Administration During the Pre-Gestation Period Improves Transient Cerebral Ischemia Injury in Male Offspring Rats. Adv Pharm Bull 2024; 14:927-937. [PMID: 40190675 PMCID: PMC11970484 DOI: 10.34172/apb.43049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 08/26/2024] [Accepted: 09/08/2024] [Indexed: 04/09/2025] Open
Abstract
Purpose It seems that maternal intervention, which may involve epigenetic mechanisms, can affect cerebral ischemia in offspring. Metformin consumption by the mother activates the AMP-activated protein kinase (AMPK) pathway. Metformin has also induced the AMPK and protected neurons in cerebral ischemia. This study investigates the effect of maternal metformin administration, which activates the AMPK pathway, on cerebral ischemia in offspring. Methods Animals were separated into four groups: sham, 2-vessels occlusion (2VO), Met+2VO, Met+compound c (CC)+2VO. Female rats were administrated with metformin at a dose of 200 mg.kg-1 body weight for 2 weeks prior to mating. After the final metformin injection, each female rat was paired with an intact adult male to allow for mating. Sixty-days old offspring underwent cerebral ischemia and then memory-related tests were done. Results Current data revealed that the neurological deficits score was reduced Met+2VO group (P<0.001), and the memory increased (P<0.001) in comparison to the 2VO. The Bcl-2/Bax ratio declined in the metformin group (P<0.001) while the brain-derived neurotropic factor (BDNF), c-fos, p-AMPK/AMPK ratio and Histone H3K9 acetylation in the hippocampus augmented significantly compared to the 2VO group (P<0.001). Conclusion These findings indicated that the metformin intervention via AMPK activation could improve the movement disability, enhance spatial memory, increase neural plasticity, and augment the bioenergetics state and histone acetylation in the hippocampus of the offspring.
Collapse
Affiliation(s)
- Reyhaneh Vaali
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Iraj Ahmadi
- Department of Physiology, School of Medicine, Ilam University of Medical Sciences, Ilam, Iran
| | - Fradin Sehati
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mina Ranjbaran
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Marjan Nikbakhtzadeh
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Nabavizadeh
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Abbas Zareei
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ghorbangol Ashabi
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
6
|
Zhuang H, Zhang X, Wu S, Yong P, Yan H. Opportunities and challenges of foodborne polyphenols applied to anti-aging health foods. Food Sci Biotechnol 2024; 33:3445-3461. [PMID: 39493397 PMCID: PMC11525373 DOI: 10.1007/s10068-024-01686-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/27/2024] [Accepted: 08/12/2024] [Indexed: 11/05/2024] Open
Abstract
Abstract With the increasing proportion of the global aging population, aging mechanisms and anti-aging strategies become hot topics. Nonetheless, the safety of non-natural anti-aging active molecule and the changes in physiological function that occur during aging have not been clarified. There is therefore a need to develop safer pharmaceutical interventions for anti-aging. Numerous types of research have shown that food-derived biomolecules are of great interest due to their unique contribution to anti-aging safety issues and the prevention of degenerative diseases. Among these, polyphenolic organic compounds are widely used in anti-aging research for their ability to mitigate the physiological functional changes that occur during aging. The mechanisms include the free radical theory, immune aging theory, cellular autophagy theory, epigenetic modification theory, gut microbial effects on aging theory, telomere shortening theory, etc. This review elucidates the mechanisms underlying the anti-aging effects of polyphenols found in food-derived bioactive molecules, while also addressing the challenges associated with anti-aging pharmaceuticals. The review concludes by offering insights into the current landscape of anti-aging active molecule research, aiming to serve as a valuable resource for further scholarly inquiry. Graphical abstract
Collapse
Affiliation(s)
- Hong Zhuang
- College of Food Science and Engineering, Jilin University, Changchun, 130062 Jilin China
| | - Xiaoliang Zhang
- College of Food Science and Engineering, Jilin University, Changchun, 130062 Jilin China
| | - Sijia Wu
- College of Food Science and Engineering, Jilin University, Changchun, 130062 Jilin China
| | - Pang Yong
- College of Food Science and Engineering, Jilin University, Changchun, 130062 Jilin China
| | - Haiyang Yan
- College of Food Science and Engineering, Jilin University, Changchun, 130062 Jilin China
| |
Collapse
|
7
|
Wang Y, Zhang L, Lyu T, Cui L, Zhao S, Wang X, Wang M, Wang Y, Li Z. Association of DNA methylation/demethylation with the functional outcome of stroke in a hyperinflammatory state. Neural Regen Res 2024; 19:2229-2239. [PMID: 38488557 PMCID: PMC11034580 DOI: 10.4103/1673-5374.392890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 10/07/2023] [Accepted: 11/13/2023] [Indexed: 04/24/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202410000-00024/figure1/v/2024-02-06T055622Z/r/image-tiff Inflammation is closely related to stroke prognosis, and high inflammation status leads to poor functional outcome in stroke. DNA methylation is involved in the pathogenesis and prognosis of stroke. However, the effect of DNA methylation on stroke at high levels of inflammation is unclear. In this study, we constructed a hyperinflammatory cerebral ischemia mouse model and investigated the effect of hypomethylation and hypermethylation on the functional outcome. We constructed a mouse model of transient middle cerebral artery occlusion and treated the mice with lipopolysaccharide to induce a hyperinflammatory state. To investigate the effect of DNA methylation on stroke, we used small molecule inhibitors to restrain the function of key DNA methylation and demethylation enzymes. 2,3,5-Triphenyltetrazolium chloride staining, neurological function scores, neurobehavioral tests, enzyme-linked immunosorbent assay, quantitative reverse transcription PCR and western blot assay were used to evaluate the effects after stroke in mice. We assessed changes in the global methylation status by measuring DNA 5-mc and DNA 5-hmc levels in peripheral blood after the use of the inhibitor. In the group treated with the DNA methylation inhibitor, brain tissue 2,3,5-triphenyltetrazolium chloride staining showed an increase in infarct volume, which was accompanied by a decrease in neurological scores and worsening of neurobehavioral performance. The levels of inflammatory factors interleukin 6 and interleukin-1 beta in ischemic brain tissue and plasma were elevated, indicating increased inflammation. Related inflammatory pathway exploration showed significant overactivation of nuclear factor kappa B. These results suggested that inhibiting DNA methylation led to poor functional outcome in mice with high inflammation following stroke. Further, the effects were reversed by inhibition of DNA demethylation. Our findings suggest that DNA methylation regulates the inflammatory response in stroke and has an important role in the functional outcome of hyperinflammatory stroke.
Collapse
Affiliation(s)
- Yubo Wang
- Vascular Neurology, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Ling Zhang
- Vascular Neurology, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Tianjie Lyu
- Vascular Neurology, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Lu Cui
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Shunying Zhao
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xuechun Wang
- Vascular Neurology, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Meng Wang
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- National Center for Healthcare Quality Management in Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yongjun Wang
- Vascular Neurology, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- National Center for Healthcare Quality Management in Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Chinese Institute for Brain Research, Beijing, China
- Research Unit of Artificial Intelligence in Cerebrovascular Disease, Chinese Academy of Medical Sciences, Beijing, China
- Beijing Engineering Research Center of Digital Healthcare for Neurological Diseases, Beijing, China
| | - Zixiao Li
- Vascular Neurology, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- National Center for Healthcare Quality Management in Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Chinese Institute for Brain Research, Beijing, China
- Research Unit of Artificial Intelligence in Cerebrovascular Disease, Chinese Academy of Medical Sciences, Beijing, China
- Beijing Engineering Research Center of Digital Healthcare for Neurological Diseases, Beijing, China
| |
Collapse
|
8
|
Ngwa C, Misrani A, Manyam KV, Xu Y, Qi S, Sharmeen R, McCullough L, Liu F. Escape of Kdm6a from X chromosome is detrimental to ischemic brains via IRF5 signaling. RESEARCH SQUARE 2024:rs.3.rs-4986866. [PMID: 39399684 PMCID: PMC11469404 DOI: 10.21203/rs.3.rs-4986866/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
The role of chromatin biology and epigenetics in disease progression is gaining increasing recognition. Genes that escape X chromosome inactivation (XCI) can impact neuroinflammation through epigenetic mechanisms. Our prior research has suggested that the X escapee genes Kdm6a and Kdm5c are involved in microglial activation after stroke in aged mice. However, the underlying mechanisms remain unclear. We hypothesized that Kdm6a/5c demethylate H3K27Me3/H3K4Me3 in microglia respectively, and mediate the transcription of interferon regulatory factor 5 (IRF5) and IRF4, leading to microglial pro-inflammatory responses and exacerbated stroke injury. Aged (17-20 months) Kdm6a/5c microglial conditional knockout (CKO) female mice (one allele of the gene) were subjected to a 60-min middle cerebral artery occlusion (MCAO). Gene floxed females (two alleles) and males (one allele) were included as controls. Infarct volume and behavioral deficits were quantified 3 days after stroke. Immune responses including microglial activation and infiltration of peripheral leukocytes in the ischemic brain were assessed by flow cytometry. Epigenetic modification of IRF5/4 by Kdm6a/5c were analyzed by CUT&RUN assay. The demethylation of H3K27Me3 by kdm6a increased IRF5 transcription; meanwhile Kdm5c demethylated H3K4Me3 to repress IRF5. Both Kdm6a fl/fl and Kdm5c fl/fl mice had worse stroke outcomes compared to fl/y and CKO mice. Gene floxed females showed more robust expression of CD68 in microglia, elevated brain and plasma levels of IL-1β or TNF-α, after stroke. We concluded that IRF5 signaling plays a critical role in mediating the deleterious effect of Kdm6a; whereas Kdm5c's effect is independent of IRF5.
Collapse
Affiliation(s)
- Conelius Ngwa
- The University of Texas Health Science Center at Houston, McGovern Medical School
| | - Afzal Misrani
- The University of Texas Health Science Center at Houston, McGovern Medical School
| | - Kanaka Valli Manyam
- The University of Texas Health Science Center at Houston, McGovern Medical School
| | - Yan Xu
- The University of Texas Health Science Center at Houston, McGovern Medical School
| | - Shaohua Qi
- The University of Texas Health Science Center at Houston, McGovern Medical School
| | - Romana Sharmeen
- The University of Texas Health Science Center at Houston, McGovern Medical School
| | - Louise McCullough
- The University of Texas Health Science Center at Houston, McGovern Medical School
| | - Fudong Liu
- The University of Texas Health Science Center at Houston, McGovern Medical School
| |
Collapse
|
9
|
Bi L, Jin J, Fan Y, Liu Y, Xu H, Li M, Chen C, Shen C, Yang R. Blood-based HYAL2 methylation as a potential marker for the preclinical detection of coronary heart disease and stroke. Clin Epigenetics 2024; 16:130. [PMID: 39285429 PMCID: PMC11406760 DOI: 10.1186/s13148-024-01742-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 09/08/2024] [Indexed: 09/19/2024] Open
Abstract
BACKGROUND Coronary heart disease (CHD) and stroke have become the leading cause of premature mortality and morbidity worldwide. Therefore, sensitive and accurate biomarkers for early detection of CHD and stroke are urgently needed for effective prevention and treatment. We aim to investigate the association between blood-based HYAL2 methylation and the risk of CHD and stroke in Chinese population. METHODS In a prospective nested case-control study comprising 171 CHD cases, 139 stroke cases, who developed the diseases after recruitment and 356 controls who remained healthy during the 2.5 years of follow-up time, the methylation level of HYAL2 in the peripheral blood was quantified using mass spectrometry, and the association was calculated by logistic regression adjusted for covariant. RESULTS Significant association between HYAL2 methylation in the peripheral blood and increased risk of preclinical CHD and stroke were identified [odds ratios (ORs) per - 10% methylation: 1.35-1.64, p ≤ 0.045 for HYAL2_CpG_1, HYAL2_CpG_2 and HYAL2_CpG_3 in CHD; ORs per - 10% methylation: 0.76-1.64, p ≤ 0.033 for HYAL2_CpG_2 and HYAL2_CpG_4 in stroke]. The association in CHD was further enhanced by female gender, younger age (< 70 years old), without the history of hypertension and cancer. The combination of four HYAL2 methylation sites showed an effective discrimination of CHD and stroke cases without hypertension from controls [area under curve (AUC) = 0.78 and 0.75, respectively]. CONCLUSIONS This study presents a strong association of altered HYAL2 methylation in peripheral blood with preclinical CHD and stroke, providing a novel biomarker for risk assessment and early detection of cardiovascular diseases.
Collapse
Affiliation(s)
- Lanfei Bi
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Jialie Jin
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Yao Fan
- Division of Clinical Epidemiology, Affiliated Geriatric Hospital of Nanjing Medical University, Nanjing, China
| | - Yu Liu
- Center for Disease Control and Prevention of Jurong City, Jurong, Jiangsu, China
| | - Haifeng Xu
- Center for Disease Control and Prevention of Jurong City, Jurong, Jiangsu, China
| | - Mengxia Li
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Changying Chen
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Chong Shen
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, China.
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China.
| | - Rongxi Yang
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
10
|
Ciaccio AM, Tuttolomondo A. Epigenetics of cerebrovascular diseases: an update review of clinical studies. Epigenomics 2024; 16:1043-1055. [PMID: 39072474 PMCID: PMC11404611 DOI: 10.1080/17501911.2024.2377947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 07/05/2024] [Indexed: 07/30/2024] Open
Abstract
Cerebrovascular diseases, especially stroke, are critical and heterogenous clinical conditions associated with high mortality and chronic disability. Genome-wide association studies reveal substantial stroke heritability, though specific genetic variants account for a minor fraction of stroke risk, suggesting an essential role for the epigenome. Epigenome-wide association studies and candidate gene approaches show that DNA methylation patterns significantly influence stroke susceptibility. Additionally, chromatin remodelers and non-coding RNA regulate gene expression in response to ischemic conditions. In this updated review, we summarized the progress of knowledge on epigenetics in the field of ischemic stroke underlying opportunities and challenges.
Collapse
Affiliation(s)
- Anna Maria Ciaccio
- Internal Medicine & Stroke Care Ward, PROMISE Department, University of Palermo, Piazza delle Cliniche n.2, 90127, Palermo, Italy
| | - Antonino Tuttolomondo
- Internal Medicine & Stroke Care Ward, PROMISE Department, University of Palermo, Piazza delle Cliniche n.2, 90127, Palermo, Italy
| |
Collapse
|
11
|
Chen Q, Wu M, Tang Q, Yan P, Zhu L. Age-Related Alterations in Immune Function and Inflammation: Focus on Ischemic Stroke. Aging Dis 2024; 15:1046-1074. [PMID: 37728582 PMCID: PMC11081165 DOI: 10.14336/ad.2023.0721-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 07/21/2023] [Indexed: 09/21/2023] Open
Abstract
The aging of the global population poses significant scientific challenges. Moreover, the biological process of aging is the most significant risk factor for most chronic illnesses; therefore, understanding the molecular and cellular mechanisms underlying these aging-related challenges is crucial for extending the healthy lifespan of older individuals. Preventing brain aging remains a priority public health goal, and integrative and comprehensive aging analyses have revealed that immunosenescence is a potential cause of age-related brain damage and disease (e.g., stroke). Importantly, the neuroinflammatory and immune systems present two-way contact and thus can affect each other. Emerging evidence supports the numerous effects of immunosenescence- and inflammation-mediated immunity in neurologically injured brains. In this study, we briefly outline how aging alters the pathophysiology and transcriptional amplitude in patients who experienced stroke and then discuss how the immune system and its cellular components and molecular mechanisms are affected by age after stroke. Finally, we highlight emerging interventions with the potential to slow down or reduce aging and prevent stroke onset.
Collapse
Affiliation(s)
- Qiuxin Chen
- The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin 150000, China
| | - Minmin Wu
- Heilongjiang University of Chinese Medicine, Harbin 150000, China
| | - Qiang Tang
- The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin 150000, China
| | - Peiyu Yan
- Faculty of Chinese Medicine, Macau University of Science and Technology, Macau 999078, China
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau 999078, China
| | - Luwen Zhu
- The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin 150000, China
| |
Collapse
|
12
|
Słowikowski B, Owecki W, Jeske J, Jezierski M, Draguła M, Goutor U, Jagodziński PP, Kozubski W, Dorszewska J. Epigenetics and the neurodegenerative process. Epigenomics 2024; 16:473-491. [PMID: 38511224 DOI: 10.2217/epi-2023-0416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024] Open
Abstract
Neurological diseases are multifactorial, genetic and environmental. Environmental factors such as diet, physical activity and emotional state are epigenetic factors. Environmental markers are responsible for epigenetic modifications. The effect of epigenetic changes is increased inflammation of the nervous system and neuronal damage. In recent years, it has been shown that epigenetic changes may cause an increased risk of neurological disorders but, currently, the relationship between epigenetic modifications and neurodegeneration remains unclear. This review summarizes current knowledge about neurological disorders caused by epigenetic changes in diseases such as Alzheimer's disease, Parkinson's disease, stroke and epilepsy. Advances in epigenetic techniques may be key to understanding the epigenetics of central changes in neurological diseases.
Collapse
Affiliation(s)
- Bartosz Słowikowski
- Department of Biochemistry & Molecular Biology, Poznan University of Medical Sciences, Poznan, 61-701, Poland
| | - Wojciech Owecki
- Laboratory of Neurobiology, Department of Neurology, Poznan University of Medical Sciences, Poznan, 61-701, Poland
| | - Jan Jeske
- Laboratory of Neurobiology, Department of Neurology, Poznan University of Medical Sciences, Poznan, 61-701, Poland
| | - Michał Jezierski
- Laboratory of Neurobiology, Department of Neurology, Poznan University of Medical Sciences, Poznan, 61-701, Poland
| | - Michał Draguła
- Laboratory of Neurobiology, Department of Neurology, Poznan University of Medical Sciences, Poznan, 61-701, Poland
| | - Ulyana Goutor
- Laboratory of Neurobiology, Department of Neurology, Poznan University of Medical Sciences, Poznan, 61-701, Poland
| | - Paweł P Jagodziński
- Department of Biochemistry & Molecular Biology, Poznan University of Medical Sciences, Poznan, 61-701, Poland
| | - Wojciech Kozubski
- Chair & Department of Neurology, Poznan University of Medical Sciences, Poznan, 61-701, Poland
| | - Jolanta Dorszewska
- Laboratory of Neurobiology, Department of Neurology, Poznan University of Medical Sciences, Poznan, 61-701, Poland
| |
Collapse
|
13
|
Stanzione R, Pietrangelo D, Cotugno M, Forte M, Rubattu S. Role of autophagy in ischemic stroke: insights from animal models and preliminary evidence in the human disease. Front Cell Dev Biol 2024; 12:1360014. [PMID: 38590779 PMCID: PMC10999556 DOI: 10.3389/fcell.2024.1360014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 03/13/2024] [Indexed: 04/10/2024] Open
Abstract
Stroke represents a main cause of death and permanent disability worldwide. The molecular mechanisms underlying cerebral injury in response to the ischemic insults are not completely understood. In this article, we summarize recent evidence regarding the role of autophagy in the pathogenesis of ischemic stroke by reviewing data obtained in murine models of either transient or permanent middle cerebral artery occlusion, and in the stroke-prone spontaneously hypertensive rat. Few preliminary observational studies investigating the role of autophagy in subjects at high cerebrovascular risk and in cohorts of stroke patients were also reviewed. Autophagy plays a dual role in neuronal and vascular cells by exerting both protective and detrimental effects depending on its level, duration of stress and type of cells involved. Protective autophagy exerts adaptive mechanisms which reduce neuronal loss and promote survival. On the other hand, excessive activation of autophagy leads to neuronal cell death and increases brain injury. In conclusion, the evidence reviewed suggests that a proper manipulation of autophagy may represent an interesting strategy to either prevent or reduce brain ischemic injury.
Collapse
Affiliation(s)
| | - Donatella Pietrangelo
- Clinical and Molecular Medicine Department, School of Medicine and Psychology, Sapienza University of Rome, Rome, Italy
| | | | | | - Speranza Rubattu
- IRCCS Neuromed, Pozzilli, Italy
- Clinical and Molecular Medicine Department, School of Medicine and Psychology, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
14
|
Farahmand Y, Nabiuni M, Vafaei Mastanabad M, Sheibani M, Mahmood BS, Obayes AM, Asadi F, Davallou R. The exo-microRNA (miRNA) signaling pathways in pathogenesis and treatment of stroke diseases: Emphasize on mesenchymal stem cells (MSCs). Cell Biochem Funct 2024; 42:e3917. [PMID: 38379232 DOI: 10.1002/cbf.3917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/07/2023] [Accepted: 12/17/2023] [Indexed: 02/22/2024]
Abstract
A major factor in long-term impairment is stroke. Patients with persistent stroke and severe functional disabilities have few therapy choices. Long noncoding RNAs (lncRNAs) may contribute to the regulation of the pathophysiologic processes of ischemic stroke as shown by altered expression of lncRNAs and microRNA (miRNAs) in blood samples of acute ischemic stroke patients. On the other hand, multipotent mesenchymal stem cells (MSCs) increase neurogenesis, and angiogenesis, dampen neuroinflammation, and boost brain plasticity to improve functional recovery in experimental stroke models. MSCs can be procured from various sources such as the bone marrow, adipose tissue, and peripheral blood. Under the proper circumstances, MSCs can differentiate into a variety of mature cells, including neurons, astrocytes, and oligodendrocytes. Accordingly, the capability of MSCs to exert neuroprotection and also neurogenesis has recently attracted more attention. Nowadays, lncRNAs and miRNAs derived from MSCs have opened new avenues to alleviate stroke symptoms. Accordingly, in this review article, we examined various studies concerning the lncRNAs and miRNAs' role in stroke pathogenesis and delivered an overview of the therapeutic role of MSC-derived miRNAs and lncRNAs in stroke conditions.
Collapse
Affiliation(s)
- Yalda Farahmand
- School of Medicine, Terhan University of Medical Sciences, Tehran, Iran
| | - Mohsen Nabiuni
- Neurosurgery Department, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mahsa Vafaei Mastanabad
- Neurosurgery Department, Faculty of Medicine, Qazvin University of Medical Science, Qazvin, Iran
| | - Mehrnaz Sheibani
- Division of Pediatric Neurology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | | | - Ali Mohammed Obayes
- College of Nursing, National University of Science and Technology, Dhi Qar, Iraq
| | - Fatemeh Asadi
- Department of Genetics, Fars Science and Research Branch, Islamic Azad University, Marvdasht, Iran
- Department of Genetics, Marvdasht Branch, Islamic Azad University, Marvdasht, Iran
| | - Rosa Davallou
- Department of Neurology, Sayyad Shirazi Hospital, Golestan University of Medical Siences, Gorgan, Iran
| |
Collapse
|
15
|
Wu H, Lv P, Wang J, Bennett B, Wang J, Li P, Peng Y, Hu G, Lin J. Genetic screen identified PRMT5 as a neuroprotection target against cerebral ischemia. eLife 2024; 12:RP89754. [PMID: 38372724 PMCID: PMC10942588 DOI: 10.7554/elife.89754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2024] Open
Abstract
Epigenetic regulators present novel opportunities for both ischemic stroke research and therapeutic interventions. While previous work has implicated that they may provide neuroprotection by potentially influencing coordinated sets of genes and pathways, most of them remain largely uncharacterized in ischemic conditions. In this study, we used the oxygen-glucose deprivation (OGD) model in the immortalized mouse hippocampal neuronal cell line HT-22 and carried out an RNAi screen on epigenetic regulators. PRMT5 was identified as a novel negative regulator of neuronal cell survival after OGD, which presented a phenotype of translocation from the cytosol to the nucleus upon oxygen and energy depletion both in vitro and in vivo. PRMT5 bound to the chromatin and a large number of promoter regions to repress downstream gene expression. Silencing Prmt5 significantly dampened the OGD-induced changes for a large-scale of genes, and gene ontology analysis showed that PRMT5-target genes were highly enriched for Hedgehog signaling. Encouraged by the above observation, mice were treated with middle cerebral artery occlusion with the PRMT5 inhibitor EPZ015666 and found that PRMT5 inhibition sustains protection against neuronal death in vivo. Together, these findings revealed a novel epigenetic mechanism of PRMT5 in cerebral ischemia and uncovered a potential target for neuroprotection.
Collapse
Affiliation(s)
- Haoyang Wu
- Department of Neurology, The Second Affiliated Hospital of Air Force Medical UniversityXi'anChina
- Basic Medical School, Air Force Medical UniversityXi'anChina
| | - Peiyuan Lv
- Department of Neurology, The Second Affiliated Hospital of Air Force Medical UniversityXi'anChina
- Basic Medical School, Air Force Medical UniversityXi'anChina
| | - Jinyu Wang
- Department of Neurology, The Second Affiliated Hospital of Air Force Medical UniversityXi'anChina
- Basic Medical School, Air Force Medical UniversityXi'anChina
| | - Brian Bennett
- Integrative Bioinformatics Support Group, National Institute of Environmental Health SciencesDurhamUnited States
| | - Jiajia Wang
- Computer Network Information Center, Chinese Academy of SciencesBeijingChina
| | - Pishun Li
- College of Veterinary Medicine, Hunan Agricultural UniversityChangshaChina
| | - Yi Peng
- Department of Neurology, The Second Affiliated Hospital of Air Force Medical UniversityXi'anChina
| | - Guang Hu
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health SciencesDurhamUnited States
| | - Jiaji Lin
- Department of Neurology, The Second Affiliated Hospital of Air Force Medical UniversityXi'anChina
- Basic Medical School, Air Force Medical UniversityXi'anChina
| |
Collapse
|
16
|
Wróbel-Biedrawa D, Podolak I. Anti-Neuroinflammatory Effects of Adaptogens: A Mini-Review. Molecules 2024; 29:866. [PMID: 38398618 PMCID: PMC10891670 DOI: 10.3390/molecules29040866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/07/2024] [Accepted: 02/12/2024] [Indexed: 02/25/2024] Open
Abstract
Introduction: Adaptogens are a group of plants that exhibit complex, nonspecific effects on the human body, increasing its ability to adapt, develop resilience, and survive in stress conditions. They are found in many traditional medicinal systems and play a key role in restoring the body's strength and stamina. Research in recent years has attempted to elucidate the mechanisms behind their pharmacological effects, but it appears that these effects are difficult to define precisely and involve multiple molecular pathways. Neuroinflammation: In recent years, chronic inflammation has been recognized as one of the common features of many central nervous system disorders (dementia and other neurodegenerative diseases, depression, anxiety, ischemic stroke, and infections). Because of the specific nature of the brain, this process is called neuroinflammation, and its suppression can result in an improvement of patients' condition and may promote their recovery. Adaptogens as anti-inflammatory agents: As has been discovered, adaptogens display anti-inflammatory effects, which suggests that their application may be broader than previously thought. They regulate gene expression of anti- and proinflammatory cytokines (prostaglandins, leukotriens) and can modulate signaling pathways (e.g., NF-κB). Aim: This mini-review aims to present the anti-neuroinflammatory potential of the most important plants classified as adaptogens: Schisandra chinensis, Eleutherococcus senticosus, Rhodiola rosea and Withania somnifera.
Collapse
Affiliation(s)
| | - Irma Podolak
- Department of Pharmacognosy, Jagiellonian University Collegium Medicum, Medyczna 9, 30-688 Cracow, Poland;
| |
Collapse
|
17
|
Motawi TK, Sadik NAH, Shaker OG, Ghaleb MMH, Elbaz EM. Expression, Functional Polymorphism, and Diagnostic Values of MIAT rs2331291 and H19 rs217727 Long Non-Coding RNAs in Cerebral Ischemic Stroke Egyptian Patients. Int J Mol Sci 2024; 25:842. [PMID: 38255915 PMCID: PMC10815378 DOI: 10.3390/ijms25020842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/24/2023] [Accepted: 12/30/2023] [Indexed: 01/24/2024] Open
Abstract
Cerebral ischemic stroke (CIS) is a severe cerebral vascular event. This research aimed to evaluate the role of single-nucleotide polymorphisms (SNPs) of the lncRNAs MIAT rs2331291 and H19 rs217727 and epigenetic methylation in the expression patterns of serum lncRNA H19 in CIS Egyptian patients. It included 80 CIS cases and 40 healthy subjects. Serum MIAT expression levels decreased, whereas serum H19 expression levels increased among CIS compared to controls. For MIAT rs2331291, there were significant differences in the genotypic and allelic frequencies between the CIS and healthy subjects at p = 0.02 and p = 0.0001, respectively. Our findings illustrated a significantly increased MIAT T/T genotype frequency in hypertensive CIS compared to non-hypertensive CIS at p = 0.004. However, H19 rs217727 gene frequency C/C was not significantly higher in non-hypertensive CIS than in hypertensive CIS. The methylation of the H19 gene promoter was significantly higher in CIS patients compared to healthy subjects. The level of MIAT was positively correlated with serum H19 in CIS. Receiver operating characteristics (ROC) analysis revealed that serum MIAT and H19 have a high diagnostic potential for distinguishing CIS subjects from healthy ones. In conclusion, the MIAT-rs2331291 polymorphism might serve as a novel potential indicator of CIS.
Collapse
Affiliation(s)
- Tarek K. Motawi
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | | | - Olfat G. Shaker
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Cairo University, Cairo 11562, Egypt
| | | | - Eman M. Elbaz
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| |
Collapse
|
18
|
Aziz N, Wal P, Sinha R, Shirode PR, Chakraborthy G, Sharma MC, Kumar P. A Comprehensive Review on the Significance of Cysteine in Various Metabolic Disorders; Particularly CVD, Diabetes, Renal Dysfunction, and Ischemic Stroke. Curr Protein Pept Sci 2024; 25:682-707. [PMID: 38766817 DOI: 10.2174/0113892037287215240424090908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/20/2024] [Accepted: 03/27/2024] [Indexed: 05/22/2024]
Abstract
Metabolic disorders have long been a challenge for medical professionals and are a leading cause of mortality in adults. Diabetes, cardiovascular disorders (CVD), renal dysfunction, and ischemic stroke are the most prevalent ailments contributing to a high mortality rate worldwide. Reactive oxygen species are one of the leading factors that act as a fundamental root cause of metabolic syndrome. All of these disorders have their respective treatments, which, to some degree, sabotage the pathological worsening of the disease and an inevitable death. However, they pose a perilous health hazard to humankind. Cysteine, a functional amino acid shows promise for the prevention and treatment of metabolic disorders, such as CVD, Diabetes mellitus, renal dysfunction, and ischemic stroke. In this review, we explored whether cysteine can eradicate reactive oxygen species and subsequently prevent and treat these diseases.
Collapse
Affiliation(s)
- Namra Aziz
- PSIT-Pranveer Singh Institute of Technology (Pharmacy), NH-19, Kanpur-209305, UP, India
| | - Pranay Wal
- PSIT-Pranveer Singh Institute of Technology (Pharmacy), NH-19, Kanpur-209305, UP, India
| | - Rishika Sinha
- PSIT-Pranveer Singh Institute of Technology (Pharmacy), NH-19, Kanpur-209305, UP, India
| | | | | | | | - Pankaj Kumar
- Department of Pharmacology, Adesh Institute of Pharmacy and Biomedical Sciences, Adesh 6 University, NH-7, Barnala Road, Bathinda 151001, India
| |
Collapse
|
19
|
Wang S, Deng X, Wu Y, Wu Y, Zhou S, Yang J, Huang Y. Understanding the pathogenesis of brain arteriovenous malformation: genetic variations, epigenetics, signaling pathways, and immune inflammation. Hum Genet 2023; 142:1633-1649. [PMID: 37768356 DOI: 10.1007/s00439-023-02605-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 09/10/2023] [Indexed: 09/29/2023]
Abstract
Brain arteriovenous malformation (BAVM) is a rare but serious cerebrovascular disease whose pathogenesis has not been fully elucidated. Studies have found that epigenetic regulation, genetic variation and their signaling pathways, immune inflammation, may be the cause of BAVM the main reason. This review comprehensively analyzes the key pathways and inflammatory factors related to BAVMs, and explores their interplay with epigenetic regulation and genetics. Studies have found that epigenetic regulation such as DNA methylation, non-coding RNAs and m6A RNA modification can regulate endothelial cell proliferation, apoptosis, migration and damage repair of vascular malformations through different target gene pathways. Gene defects such as KRAS, ACVRL1 and EPHB4 lead to a disordered vascular environment, which may promote abnormal proliferation of blood vessels through ERK, NOTCH, mTOR, Wnt and other pathways. PDGF-B and PDGFR-β were responsible for the recruitment of vascular adventitial cells and smooth muscle cells in the extracellular matrix environment of blood vessels, and played an important role in the pathological process of BAVM. Recent single-cell sequencing data revealed the diversity of various cell types within BAVM, as well as the heterogeneous expression of vascular-associated antigens, while neutrophils, macrophages and cytokines such as IL-6, IL-1, TNF-α, and IL-17A in BAVM tissue were significantly increased. Currently, there are no specific drugs targeting BAVMs, and biomarkers for BAVM formation, bleeding, and recurrence are lacking clinically. Therefore, further studies on molecular biological mechanisms will help to gain insight into the pathogenesis of BAVM and develop potential therapeutic strategies.
Collapse
Affiliation(s)
- Shiyi Wang
- Department of Neurology, The First Affiliated Hospital of Ningbo University, Ningbo, 315010, Zhejiang, China
| | - Xinpeng Deng
- Department of Neurosurgery, The First Affiliated Hospital of Ningbo University, Ningbo, 315010, Zhejiang, China
| | - Yuefei Wu
- Department of Neurology, The First Affiliated Hospital of Ningbo University, Ningbo, 315010, Zhejiang, China
| | - Yiwen Wu
- Department of Neurosurgery, The First Affiliated Hospital of Ningbo University, Ningbo, 315010, Zhejiang, China
| | - Shengjun Zhou
- Department of Neurosurgery, The First Affiliated Hospital of Ningbo University, Ningbo, 315010, Zhejiang, China
| | - Jianhong Yang
- Department of Neurology, The First Affiliated Hospital of Ningbo University, Ningbo, 315010, Zhejiang, China.
| | - Yi Huang
- Department of Neurosurgery, The First Affiliated Hospital of Ningbo University, Ningbo, 315010, Zhejiang, China.
- Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang Province, Ningbo, 315010, Zhejiang, China.
| |
Collapse
|
20
|
Xie Q, Lu D, Yuan J, Ren M, Li Y, Wang J, Ma R, Wang J. l-borneol promotes neurovascular unit protection in the subacute phase of transient middle cerebral artery occlusion rats: p38-MAPK pathway activation, anti-inflammatory, and anti-apoptotic effect. Phytother Res 2023; 37:4166-4184. [PMID: 37310024 DOI: 10.1002/ptr.7878] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/05/2023] [Accepted: 05/09/2023] [Indexed: 06/14/2023]
Abstract
Our previous study showed l-borneol reduced cerebral infarction in the acute stage after cerebral ischemia, but there is little about the study of subacute phase. We herein investigated the cerebral protective effects of l-borneol on neurovascular units (NVU) in the subacute phase after transient middle cerebral artery occlusion (t-MCAO). The t-MCAO model was prepared by the line embolus method. Zea Longa, mNss, HE, and TTC staining were used to evaluate the effect of l-borneol. We evaluated the mechanisms of l-borneol on inflammation, p38 MAPK pathway, and apoptosis, etc. through various technologies. l-borneol 0.2, 0.1, 0.05 g·kg-1 could significantly reduce cerebral infarction rate, alleviate the pathological injury, and inhibit inflammation reaction. l-borneol could also significantly increase brain blood supply, Nissl bodies, and the expression of GFAP. Additionally, l-borneol activated the p38 MAPK signaling pathway, inhibited cell apoptosis, and maintained BBB integrity. l-borneol had a neuroprotective effect, which was related to activating the p38 MAPK signaling pathway, inhibiting inflammatory response and apoptosis, and improving cerebral blood supply to protect BBB and stabilize and remodel NVU. The study will provide a reference for the use of l-borneol in the treatment of ischemic stroke in the subacute phase.
Collapse
Affiliation(s)
- Qian Xie
- State Key Laboratory of Southwestern Chinese Medicine Resource, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Foshan University, Foshan, China
| | - Danni Lu
- State Key Laboratory of Southwestern Chinese Medicine Resource, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jianmei Yuan
- State Key Laboratory of Southwestern Chinese Medicine Resource, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Mihong Ren
- State Key Laboratory of Southwestern Chinese Medicine Resource, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yong Li
- State Key Laboratory of Southwestern Chinese Medicine Resource, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jiajun Wang
- State Key Laboratory of Southwestern Chinese Medicine Resource, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Rong Ma
- State Key Laboratory of Southwestern Chinese Medicine Resource, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Foshan University, Foshan, China
- South China University of Technology, Guangzhou, China
| | - Jian Wang
- State Key Laboratory of Southwestern Chinese Medicine Resource, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
21
|
Freire MAM, Rocha GS, Bittencourt LO, Falcao D, Lima RR, Cavalcanti JRLP. Cellular and Molecular Pathophysiology of Traumatic Brain Injury: What Have We Learned So Far? BIOLOGY 2023; 12:1139. [PMID: 37627023 PMCID: PMC10452099 DOI: 10.3390/biology12081139] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/07/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023]
Abstract
Traumatic brain injury (TBI) is one of the leading causes of long-lasting morbidity and mortality worldwide, being a devastating condition related to the impairment of the nervous system after an external traumatic event resulting in transitory or permanent functional disability, with a significant burden to the healthcare system. Harmful events underlying TBI can be classified into two sequential stages, primary and secondary, which are both associated with breakdown of the tissue homeostasis due to impairment of the blood-brain barrier, osmotic imbalance, inflammatory processes, oxidative stress, excitotoxicity, and apoptotic cell death, ultimately resulting in a loss of tissue functionality. The present study provides an updated review concerning the roles of brain edema, inflammation, excitotoxicity, and oxidative stress on brain changes resulting from a TBI. The proper characterization of the phenomena resulting from TBI can contribute to the improvement of care, rehabilitation and quality of life of the affected people.
Collapse
Affiliation(s)
- Marco Aurelio M. Freire
- Graduate Program in Physiological Sciences, University of the State of Rio Grande do Norte, Mossoró 59607-360, RN, Brazil
| | - Gabriel Sousa Rocha
- Graduate Program in Biochemistry and Molecular Biology, University of the State of Rio Grande do Norte, Mossoró 59607-360, RN, Brazil
| | - Leonardo Oliveira Bittencourt
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém 66075-900, PA, Brazil
| | - Daniel Falcao
- VCU Health Systems, Virginia Commonwealth University, 23219 Richmond, VA, USA
| | - Rafael Rodrigues Lima
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém 66075-900, PA, Brazil
| | - Jose Rodolfo Lopes P. Cavalcanti
- Graduate Program in Physiological Sciences, University of the State of Rio Grande do Norte, Mossoró 59607-360, RN, Brazil
- Graduate Program in Biochemistry and Molecular Biology, University of the State of Rio Grande do Norte, Mossoró 59607-360, RN, Brazil
| |
Collapse
|
22
|
Maejima H, Okamura M, Inoue T, Takamatsu Y, Nishio T, Liu Y. Epigenetic modifications in the motor cortex caused by exercise or pharmacological inhibition of histone deacetylases (HDACs) after intracerebral hemorrhage (ICH). Brain Res 2023; 1806:148286. [PMID: 36801267 DOI: 10.1016/j.brainres.2023.148286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/30/2023] [Accepted: 02/14/2023] [Indexed: 02/18/2023]
Abstract
Epigenetic regulation is expected to provide an enriched platform for neurorehabilitation of post-stroke patients. Acetylation of specific lysine residues in histones is a potent epigenetic target essential for transcriptional regulation. Exercise modulates histone acetylation and gene expression in neuroplasticity in the brain. This study sought to examine the effect of epigenetic treatment using a histone deacetylase (HDAC) inhibitor, sodium butyrate (NaB), and exercise on epigenetic markers in the bilateral motor cortex after intracerebral hemorrhage (ICH) to identify a more enriched neuronal condition for neurorehabilitation. Forty-one male Wistar rats were randomly divided into five groups: sham (n = 8), control (n = 9), NaB, exercise (n = 8), and NaB and exercise (n = 8). Intraperitoneal administration of an HDAC inhibitor (300 mg/kg NaB) and treadmill exercise (11 m/min for 30 min) was conducted five days a week for approximately-four weeks. ICH specifically decreased the acetylation level of histone H4 in the ipsilateral cortex, and HDAC inhibition with NaB increased the acetylation level of histone H4 over the sham level, accompanied by an improvement in motor function as assessed by the cylinder test. Exercise increased the acetylation levels of histones (H3 and H4) in the bilateral cortex. Synergistic effects of exercise and NaB were not observed during histone acetylation. Pharmacological treatment with a HDAC inhibitor and exercise can provide an enriched epigenetic platform for neurorehabilitation in an individual manner.
Collapse
Affiliation(s)
- Hiroshi Maejima
- Department of Rehabilitation Science, Faculty of Health Sciences, Hokkaido University, Kita 12 Nishi 5, Kita-ku, Sapporo 060-0812, Japan.
| | - Misato Okamura
- Graduate School of Health Sciences, Hokkaido University, Kita 12 Nishi 5, Kita-ku, Sapporo 060-0812, Japan
| | - Takahiro Inoue
- Graduate School of Health Sciences, Hokkaido University, Kita 12 Nishi 5, Kita-ku, Sapporo 060-0812, Japan
| | - Yasuyuki Takamatsu
- Department of Rehabilitation Science, Faculty of Health Sciences, Hokkaido University, Kita 12 Nishi 5, Kita-ku, Sapporo 060-0812, Japan
| | - Taichi Nishio
- Graduate School of Health Sciences, Hokkaido University, Kita 12 Nishi 5, Kita-ku, Sapporo 060-0812, Japan
| | - Yushan Liu
- Graduate School of Health Sciences, Hokkaido University, Kita 12 Nishi 5, Kita-ku, Sapporo 060-0812, Japan
| |
Collapse
|
23
|
Feng X, Li X, Feng J, Xia J. Intracranial hemorrhage management in the multi-omics era. Heliyon 2023; 9:e14749. [PMID: 37101482 PMCID: PMC10123201 DOI: 10.1016/j.heliyon.2023.e14749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 03/08/2023] [Accepted: 03/16/2023] [Indexed: 03/29/2023] Open
Abstract
Intracranial hemorrhage (ICH) is a devastating disorder. Neuroprotective strategies that prevent tissue injury and improve functional outcomes have been identified in multiple animal models of ICH. However, these potential interventions in clinical trials produced generally disappointing results. With progress in omics, studies of omics data, including genomics, transcriptomics, epigenetics, proteomics, metabolomics, and the gut microbiome, may help promote precision medicine. In this review, we focused on introducing the applications of all omics in ICH and shed light on all of the considerable advantages to systematically analyze the necessity and importance of multiple omics technology in ICH.
Collapse
Affiliation(s)
- Xianjing Feng
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Xi Li
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Jie Feng
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Jian Xia
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- Clinical Research Center for Cerebrovascular Disease of Hunan Province, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Corresponding author. Department of Neurology, Xiangya Hospital, Central South University, No.87, Xiangya Road, Changsha, 410008, China
| |
Collapse
|
24
|
Phillips CM, Stamatovic SM, Keep RF, Andjelkovic AV. Epigenetics and stroke: role of DNA methylation and effect of aging on blood-brain barrier recovery. Fluids Barriers CNS 2023; 20:14. [PMID: 36855111 PMCID: PMC9972738 DOI: 10.1186/s12987-023-00414-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 02/10/2023] [Indexed: 03/02/2023] Open
Abstract
Incomplete recovery of blood-brain barrier (BBB) function contributes to stroke outcomes. How the BBB recovers after stroke remains largely unknown. Emerging evidence suggests that epigenetic factors play a significant role in regulating post-stroke BBB recovery. This study aimed to evaluate the epigenetic and transcriptional profile of cerebral microvessels after thromboembolic (TE) stroke to define potential causes of limited BBB recovery. RNA-sequencing and reduced representation bisulfite sequencing (RRBS) analyses were performed using microvessels isolated from young (6 months) and old (18 months) mice seven days poststroke compared to age-matched sham controls. DNA methylation profiling of poststroke brain microvessels revealed 11,287 differentially methylated regions (DMR) in old and 9818 DMR in young mice, corresponding to annotated genes. These DMR were enriched in genes encoding cell structural proteins (e.g., cell junction, and cell polarity, actin cytoskeleton, extracellular matrix), transporters and channels (e.g., potassium transmembrane transporter, organic anion and inorganic cation transporters, calcium ion transport), and proteins involved in endothelial cell processes (e.g., angiogenesis/vasculogenesis, cell signaling and transcription regulation). Integrated analysis of methylation and RNA sequencing identified changes in cell junctions (occludin), actin remodeling (ezrin) as well as signaling pathways like Rho GTPase (RhoA and Cdc42ep4). Aging as a hub of aberrant methylation affected BBB recovery processes by profound alterations (hypermethylation and repression) in structural protein expression (e.g., claudin-5) as well as activation of a set of genes involved in endothelial to mesenchymal transformation (e.g., Sox9, Snai1), repression of angiogenesis and epigenetic regulation. These findings revealed that DNA methylation plays an important role in regulating BBB repair after stroke, through regulating processes associated with BBB restoration and prevalently with processes enhancing BBB injury.
Collapse
Affiliation(s)
- Chelsea M Phillips
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, USA
| | - Svetlana M Stamatovic
- Department of Pathology, Medical School, University of Michigan, 7520A MSRB I, 1150 W Medical Center Dr, Ann Arbor, MI, 48109-5602, USA
| | - Richard F Keep
- Department of Neurosurgery, Medical School, University of Michigan, 7520A MSRB I, 1150 W Medical Center Dr, Ann Arbor, MI, 48109-5602, USA.,Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Anuska V Andjelkovic
- Department of Pathology, Medical School, University of Michigan, 7520A MSRB I, 1150 W Medical Center Dr, Ann Arbor, MI, 48109-5602, USA. .,Department of Neurosurgery, Medical School, University of Michigan, 7520A MSRB I, 1150 W Medical Center Dr, Ann Arbor, MI, 48109-5602, USA.
| |
Collapse
|
25
|
Phillips C, Stamatovic S, Keep R, Andjelkovic A. Epigenetics and stroke: role of DNA methylation and effect of aging on blood-brain barrier recovery. RESEARCH SQUARE 2023:rs.3.rs-2444060. [PMID: 36711725 PMCID: PMC9882686 DOI: 10.21203/rs.3.rs-2444060/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Incomplete recovery of blood-brain barrier (BBB) function contributes to stroke outcomes. How the BBB recovers after stroke remains largely unknown. Emerging evidence suggests that epigenetic factors play a significant role in regulating post-stroke BBB recovery. This study aimed to evaluate the epigenetic and transcriptional profile of cerebral microvessels after thromboembolic (TE) stroke to define potential causes of limited BBB recovery. RNA-sequencing and reduced representation bisulfite sequencing (RRBS) analyses were performed using microvessels isolated from young (6 months) and old (18 months) mice seven days poststroke compared to age-matched sham controls. DNA methylation profiling of poststroke brain microvessels revealed 11287 differentially methylated regions (DMR) in old and 9818 DMR in young mice, corresponding to annotated genes. These DMR were enriched in genes encoding cell structural proteins (e.g., cell junction, and cell polarity, actin cytoskeleton, extracellular matrix), transporters and channels (e.g., potassium transmembrane transporter, organic anion and inorganic cation transporters, calcium ion transport), and proteins involved in endothelial cell processes (e.g., angiogenesis/vasculogenesis, cell signaling and transcription regulation). Integrated analysis of methylation and RNA sequencing identified changes in cell junctions (occludin), actin remodeling (ezrin) as well as signaling pathways like Rho GTPase (RhoA and Cdc42ep4). Aging as a hub of aberrant methylation affected BBB recovery processes by profound alterations (hypermethylation and repression) in structural protein expression (e.g., claudin-5) as well as activation of a set of genes involved in endothelial to mesenchymal transformation (e.g., Sox17 , Snail1 ), repression of angiogenesis and epigenetic regulation. These findings revealed that DNA methylation plays an important role in regulating BBB repair after stroke, through regulating processes associated with BBB restoration and prevalently with processes enhancing BBB injury.
Collapse
|
26
|
Randhawa PK, Rajakumar A, Futuro de Lima IB, Gupta MK. Eugenol attenuates ischemia-mediated oxidative stress in cardiomyocytes via acetylation of histone at H3K27. Free Radic Biol Med 2023; 194:326-336. [PMID: 36526244 PMCID: PMC10074330 DOI: 10.1016/j.freeradbiomed.2022.12.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/02/2022] [Accepted: 12/08/2022] [Indexed: 12/15/2022]
Abstract
Despite clinical advances, ischemia-induced cardiac diseases remain an underlying cause of death worldwide. Epigenetic modifications, especially alterations in the acetylation of histone proteins play a pivotal role in counteracting stressful conditions, including ischemia. In our study, we found that histone active mark H3K27ac was significantly reduced and histone repressive mark H3K27me3 was significantly upregulated in the cardiomyocytes exposed to the ischemic condition. Then, we performed a high throughput drug screening assay using rat ventricular cardiomyocytes during the ischemic condition and screened an antioxidant compound library comprising of 84 drugs for H3K27ac by fluorescence microscopy. Our data revealed that most of the phenolic compounds like eugenol, apigenin, resveratrol, bis-demethoxy curcumin, D-gamma-tocopherol, ambroxol, and non-phenolic compounds like l-Ergothioneine, ciclopirox ethanolamine, and Tanshinone IIA have a crucial role in maintaining the cellular H3K27ac histone marks during the ischemic condition. Further, we tested the role of eugenol on cellular protection during ischemia. Our study shows that ischemia significantly reduces cellular viability and increases total reactive oxygen species (ROS), and mitochondrial ROS in the cells. Interestingly, eugenol treatment significantly restores the cellular acetylation at H3K27, decreases cellular ROS, and improves cellular viability. To explore the mechanism of eugenol-medicated inhibition of deacetylation, we performed a RNAseq experiment. Analysis of transcriptome data using IPA indicated that eugenol regulates several cellular functions associated with cardiovascular diseases, and metabolic processes. Further, we found that eugenol regulates the expression of HMGN1, CD151 and Ppp2ca genes during ischemia. Furthermore, we found that eugenol might protect the cells from ischemia through modulation of HMGN1 protein expression, which plays an active role in regulation of histone acetylation and cellular protection during stress. Thus, our study indicated that eugenol can be exploited as an agent to protect the ischemic cells and also could be used to develop a novel drug for treating cardiac disease.
Collapse
Affiliation(s)
- Puneet Kaur Randhawa
- Division of Metabolic and Cardiovascular Sciences, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, 32827, USA
| | - Aishwarya Rajakumar
- Division of Metabolic and Cardiovascular Sciences, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, 32827, USA
| | - Isabela Beatriz Futuro de Lima
- Division of Metabolic and Cardiovascular Sciences, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, 32827, USA
| | - Manish K Gupta
- Division of Metabolic and Cardiovascular Sciences, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, 32827, USA.
| |
Collapse
|
27
|
Zhang JK, Li Y, Yu ZT, Jiang JW, Tang H, Tu GL, Xia Y. OIP5-AS1 Inhibits Oxidative Stress and Inflammation in Ischemic Stroke Through miR-155-5p/IRF2BP2 Axis. Neurochem Res 2022; 48:1382-1394. [PMID: 36460840 DOI: 10.1007/s11064-022-03830-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 10/14/2022] [Accepted: 11/14/2022] [Indexed: 12/04/2022]
Abstract
BACKGROUND Ischemic stroke is a very dangerous disease with high incidence, fatality and disability rate in human beings. Massive evidence has indicated that oxidative stress and inflammation are intimately correlated with progression of ischemic stroke. Additionally, LncRNAs were reported to be involved in ischemic stroke. Here, we aim to explore the effects and molecular mechanism of lncRNA OIP5-AS1 on oxidative stress and inflammation in ischemic stroke. METHODS HMC3 and SH-SY5Y cells were under the condition of oxygen-glucose deprivation/reoxygenation (OGD/R) treatment to establish cell models of ischemic stroke. Commercial kits were employed to detect the indicators of oxidative stress including ROS, MDA and SOD. The expression of OIP5-AS1, miR-155-5p and IRF2BP2 mRNA was determined using RT-qPCR. The protein levels of inflammatory factors including TNF-α, IL-1β and IL-6 and IRF2BP2 were assessed by western blot and/or ELISA. Luciferase activity assay was employed to validate their correlations among OIP5-AS1, miR-155-5p and IRF2BP2. RESULTS In OGD/R-induced HMC3 and SH-SY5Y cells, the expression of OIP5-AS1 and IRF2BP2 was reduced while miR-155-5p was elevated. OGD/R induction promoted oxidative stress and inflammatory response in HMC3 and SH-SY5Y cells, while OIP5-AS1 or IRF2BP2 sufficiency as well as miR-155-5p inhibitor attenuated OGD/R-induced these influences. In addition, IRF2BP2 knockdown abolished the suppressive impacts of OIP5-AS1 overexpression on oxidative stress and inflammatory response in OGD/R-induced HMC3 and SH-SY5Y cells. Mechanistically, OIP5-AS1 enhanced IRF2BP2 expression via sponging miR-155-5p. CONCLUSION OIP5-AS1 suppressed oxidative stress and inflammatory response to alleviate cell injury caused by OGD/R induction in HMC3 and SH-SY5Y cells through regulating miR-155-5p/IRF2BP2 axis, which might offer novel targeted molecules for ischemic stroke therapy.
Collapse
|
28
|
Zhang X, Wang Y, Dong B, Jiang Y, Liu D, Xie K, Yu Y. Expression pattern and clinical value of Key RNA methylation modification regulators in ischemic stroke. Front Genet 2022; 13:1009145. [PMID: 36263422 PMCID: PMC9574037 DOI: 10.3389/fgene.2022.1009145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 09/16/2022] [Indexed: 11/13/2022] Open
Abstract
Ischemic stroke (IS) is one of the major causes of death and disability worldwide, and effective diagnosis and treatment methods are lacking. RNA methylation, a common epigenetic modification, plays an important role in disease progression. However, little is known about the role of RNA methylation modification in the regulation of IS. The aim of this study was to investigate RNA methylation modification patterns and immune infiltration characteristics in IS through bioinformatics analysis. We downloaded gene expression profiles of control and IS model rat brain tissues from the Gene Expression Omnibus database. IS profiles were divided into two subtypes based on RNA methylation regulators, and functional enrichment analyses were conducted to determine the differentially expressed genes (DEGs) between the subtypes. Weighted gene co-expression network analysis was used to explore co-expression modules and genes based on DEGs. The IS clinical diagnosis model was successfully constructed and four IS characteristic genes (GFAP, GPNMB, FKBP9, and CHMP5) were identified, which were significantly upregulated in IS samples. Characteristic genes were verified by receiver operating characteristic curve and real-time quantitative PCR analyses. The correlation between characteristic genes and infiltrating immune cells was determined by correlation analysis. Furthermore, GPNMB was screened using the protein-protein interaction network, and its regulatory network and the potential therapeutic drug chloroquine were predicted. Our finding describes the expression pattern and clinical value of key RNA methylation modification regulators in IS and novel diagnostic and therapeutic targets of IS from a new perspective.
Collapse
Affiliation(s)
- Xinyue Zhang
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Institute of Anesthesiology, Tianjin, China
| | - Yuanlin Wang
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Institute of Anesthesiology, Tianjin, China
| | - Beibei Dong
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Institute of Anesthesiology, Tianjin, China
| | - Yi Jiang
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Institute of Anesthesiology, Tianjin, China
| | - Dan Liu
- School of Medicine, Nankai University, Tianjin, China
| | - Keliang Xie
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Institute of Anesthesiology, Tianjin, China
- Department of Critical Care Medicine, Tianjin Medical University General Hospital, Tianjin, China
| | - Yonghao Yu
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Institute of Anesthesiology, Tianjin, China
- *Correspondence: Yonghao Yu,
| |
Collapse
|
29
|
Jin M, Wang N, Li X, Zhang H, Zhou J, Cong M, Niu J, Lin C, Hu Y, Wu N, Liu J, Zhang K, Qiu C. Relationship between MTHFR C677T, homocysteine, and ischemic stroke in a large sample of the Han Chinese population. Medicine (Baltimore) 2022; 101:e30562. [PMID: 36197177 PMCID: PMC9509028 DOI: 10.1097/md.0000000000030562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Ischemic stroke, one of the prevalent causes of death and disability worldwide, is linked to environmental and genetic factors, including polymorphisms in the methylenetetrahydrofolate reductase (MTHFR) gene involved in homocysteine metabolism. The present study aimed to explore the relationship between the MTHFR C677T variant, plasma homocysteine, and risk of developing large-artery atherosclerotic ischemic stroke (LAAIS) among Han Chinese. A population-based case-control study, which included 1810 patients with LAAIS and 1765 unrelated control subjects, was conducted. Compared to the controls, LAAIS patients had a significantly higher prevalence of hypertension, diabetes mellitus, smoking, and alcohol consumption (P < .001), as well as significantly higher mean fasting blood glucose, triglyceride, total cholesterol, and plasma homocysteine levels (P < .001). The TT homozygous genotype correlated with increased risk of developing LAAIS, as indicated by a significantly higher odds ratio (OR) compared to the CT and CC genotypes, in both additive (OR = 3.215, P = .01) and recessive models (OR = 3.265, P = .01). The plasma homocysteine level was genotype-dependent according to the following trend: TT > CT > CC. In conclusion, our data demonstrate that, in spite of its low prevalence in both patients and controls (1.5% vs 0.8%), the MTHFR C677T variant could, at least in part, affect homocysteine levels and this, either alone or in combination with other factors, increases the risk of LAAIS.
Collapse
Affiliation(s)
- Ming Jin
- Institute of Polygenic Disease, Qiqihar Medical University, Qiqihar, Heilongjiang Province, People’s Republic of China
| | - Ningning Wang
- Institute of Polygenic Disease, Qiqihar Medical University, Qiqihar, Heilongjiang Province, People’s Republic of China
| | - Xueyan Li
- Institute of Polygenic Disease, Qiqihar Medical University, Qiqihar, Heilongjiang Province, People’s Republic of China
| | - Hao Zhang
- Institute of Polygenic Disease, Qiqihar Medical University, Qiqihar, Heilongjiang Province, People’s Republic of China
| | - Jexin Zhou
- Institute of Polygenic Disease, Qiqihar Medical University, Qiqihar, Heilongjiang Province, People’s Republic of China
| | - Mingyu Cong
- Institute of Polygenic Disease, Qiqihar Medical University, Qiqihar, Heilongjiang Province, People’s Republic of China
| | - Jun Niu
- Mohe City Hospital, Mohe, Heilongjiang Province, People’s Republic of China
| | - Chongyang Lin
- Mohe City Hospital, Mohe, Heilongjiang Province, People’s Republic of China
| | - Ying Hu
- Institute of Polygenic Disease, Qiqihar Medical University, Qiqihar, Heilongjiang Province, People’s Republic of China
| | - Nan Wu
- Institute of Polygenic Disease, Qiqihar Medical University, Qiqihar, Heilongjiang Province, People’s Republic of China
| | - Jicheng Liu
- Institute of Polygenic Disease, Qiqihar Medical University, Qiqihar, Heilongjiang Province, People’s Republic of China
| | - Keyong Zhang
- Institute of Polygenic Disease, Qiqihar Medical University, Qiqihar, Heilongjiang Province, People’s Republic of China
- *Correspondence: Keyong Zhang, Institute of Medical Sciences, Qiqihar Medical University, 333 Bukui North Street, Qiqihar, Heilongjiang Province, 161006, People’s Republic of China (e-mail: )
| | - Changchun Qiu
- Institute of Polygenic Disease, Qiqihar Medical University, Qiqihar, Heilongjiang Province, People’s Republic of China
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences Peking Union Medical College, Beijing, People’s Republic of China
| |
Collapse
|
30
|
Baranovicova E, Kalenska D, Kovalska M, Lehotsky J. Hippocampal metabolic recovery as a manifestation of the protective effect of ischemic preconditioning in rats. Neurochem Int 2022; 160:105419. [PMID: 36113578 DOI: 10.1016/j.neuint.2022.105419] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 08/25/2022] [Accepted: 09/04/2022] [Indexed: 10/31/2022]
Abstract
The ever-present risk of brain ischemic events in humans and its full prevention make the detailed studies of an organism's response to ischemia at different levels essential to understanding the mechanism of the injury as well as protection. We used the four-vessel occlusion as an animal model of forebrain ischemia to investigate its impact on the metabolic alterations in both the hippocampus and the blood plasma to see changes on the systemic level. By inducing sublethal ischemic stimuli, we focused on the endogenous phenomena known as ischemic tolerance. NMR spectroscopy was used to analyze relative metabolite levels in tissue extracts from rats' hippocampus and blood plasma in three various ischemic/reperfusion times: 3 h, 24 h, and 72 h. Hippocampal tissues were characterized by postischemically decreased glutamate and GABA (4-aminobutyrate) tissue content balanced with increased glutamine level, with most pronounced changes at 3 h reperfusion time. Glutamate (as well as glutamine) levels recovered towards the control levels on the third day, as if the glutamate re-synthesis would be firstly preferred before GABA. These results are indicating the higher feasibility of re-establishing of glutamatergic transmission three days after an ischemic event, in contrast to GABA-ergic. Tissue levels of N-acetylaspartate (NAA), as well as choline, were decreased without the tendency to recover three days after the ischemic event. Metabolomic analysis of blood plasma revealed that ischemically preconditioned rats, contrary to the non-preconditioned animals, did not show hyperglycemic conditions. Ischemically induced semi-ketotic state, manifested in increased plasma ketone bodies 3-hydroxybutyrate and acetoacetate, seems to be programmed to support the brain tissue revitalization after the ischemic event. These and other metabolites changes found in blood plasma as well as in the hippocampus were observed to a lower extent or recovered faster in preconditioned animals. Some metabolomic changes in hippocampal tissue extract were so strong that even single metabolites were able to differentiate between ischemic, ischemically preconditioned, and control brain tissues.
Collapse
Affiliation(s)
- Eva Baranovicova
- Biomedical Center BioMed, Jessenius Faculty of Medicine, Comenius University in Bratislava, Mala Hora 4, 036 01, Martin, Slovakia
| | - Dagmar Kalenska
- Department of Anatomy, Jessenius Faculty of Medicine, Comenius University in Bratislava, Mala Hora 4, 036 01, Martin, Slovakia
| | - Maria Kovalska
- Department of Histology and Embryology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Mala Hora 4, 036 01, Martin, Slovakia
| | - Jan Lehotsky
- Department of Medical Biochemistry, Jessenius Faculty of Medicine, Comenius University in Bratislava, Mala Hora 4, 036 01, Martin, Slovakia.
| |
Collapse
|
31
|
Liu Y, Shang G, Zhang X, Liu F, Zhang C, Li Z, Jia J, Xu Y, Zhang Z, Yang S, Zhou B, Luan Y, Huang Y, Peng Y, Han T, He Y, Zheng H. CAMTA1 gene affects the ischemia-reperfusion injury by regulating CCND1. Front Cell Neurosci 2022; 16:868291. [PMID: 36159397 PMCID: PMC9500443 DOI: 10.3389/fncel.2022.868291] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 06/20/2022] [Indexed: 11/13/2022] Open
Abstract
Epigenetic modulations lead to changes in gene expression, including DNA methylation, histone modifications, and noncoding RNAs. In recent years, epigenetic modifications have been related to the pathogenesis of different types of cancer, cardiovascular disease, and other diseases. Emerging evidence indicates that DNA methylation could be associated with ischemic stroke (IS) and plays a role in pathological progression, but the underlying mechanism has not yet been fully understood. In this study, we used human methylation 850K BeadChip to analyze the differences in gene methylation status in the peripheral blood samples from two groups (3 IS patients vs. 3 healthy controls). According to their bioinformatics profiling, we found 278 genes with significantly different methylation levels. Seven genes with the most significant methylation modifications were validated in two expanded groups (100 IS patients vs. 100 healthy controls). The CAMTA1 gene had significantly different methylation changes in patients compared to the controls. To understand the CAMTA1 function in stroke, we generated CAMTA1 knockout in SH-SY5Y cells. RNA seq results in CAMTA1 knockout cells revealed the pathways and gene set enrichments involved in cellular proliferation and cell cycle. Furthermore, a series of experiments demonstrated that in the oxygen-glucose deprivation/re-oxygenation (OGD/R) model system, the expression of cyclin D1, an essential regulator of cell cycle progression, was increased in SH-SY5Y CAMTA1 KO cells. Increasing evidence demonstrated that ischemic stress could inappropriately raise cyclin D1 levels in mature neurons. However, the molecular signals leading to an increased cyclin D1 level are unclear. Our findings demonstrate for the first time that the CAMTA1 gene could regulate cyclin D1 expression and implicate their role in strokes.
Collapse
Affiliation(s)
- Yang Liu
- Department of Medical Genetics and Cell Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Guohui Shang
- Department of Medical Genetics and Cell Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Xuran Zhang
- Department of Clinical Laboratory, The First Affiliated Hospital of Henan University of CM, Henan University of CM, Zhengzhou, China
| | - Fuyong Liu
- Department of Pathogenic Biology and Immunology, School of Life Sciences, Sanquan College of Xinxiang Medical University, Xinxiang, China
| | - Chi Zhang
- Department of Medical Genetics and Cell Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Zhihao Li
- Department of Medical Genetics and Cell Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Jing Jia
- Department of Medical Genetics and Cell Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Yan Xu
- Department of Medical Genetics and Cell Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Zhaojing Zhang
- Department of Medical Genetics and Cell Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Shangdong Yang
- Department of Medical Genetics and Cell Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Baixue Zhou
- Department of Medical Genetics and Cell Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Yingying Luan
- Department of Medical Genetics and Cell Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Yanyang Huang
- Department of Medical Genetics and Cell Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Yue Peng
- Department of Medical Genetics and Cell Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Tianyi Han
- Department of Medical Genetics and Cell Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Ying He
- Department of Medical Genetics and Cell Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
- Ying He
| | - Hong Zheng
- Department of Medical Genetics and Cell Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
- *Correspondence: Hong Zheng
| |
Collapse
|
32
|
The Role of DNA Methylation in Stroke Recovery. Int J Mol Sci 2022; 23:ijms231810373. [PMID: 36142283 PMCID: PMC9499691 DOI: 10.3390/ijms231810373] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/01/2022] [Accepted: 09/05/2022] [Indexed: 11/17/2022] Open
Abstract
Epigenetic alterations affect the onset of ischemic stroke, brain injury after stroke, and mechanisms of poststroke recovery. In particular, DNA methylation can be dynamically altered by maintaining normal brain function or inducing abnormal brain damage. DNA methylation is regulated by DNA methyltransferase (DNMT), which promotes methylation, DNA demethylase, which removes methyl groups, and methyl-cytosine–phosphate–guanine-binding domain (MBD) protein, which binds methylated DNA and inhibits gene expression. Investigating the effects of modulating DNMT, TET, and MBD protein expression on neuronal cell death and neurorepair in ischemic stroke and elucidating the underlying mechanisms can facilitate the formulation of therapeutic strategies for neuroprotection and promotion of neuronal recovery after stroke. In this review, we summarize the role of DNA methylation in neuroprotection and neuronal recovery after stroke according to the current knowledge regarding the effects of DNA methylation on excitotoxicity, oxidative stress, apoptosis, neuroinflammation, and recovery after ischemic stroke. This review of the literature regarding the role of DNA methylation in neuroprotection and functional recovery after stroke may contribute to the development and application of novel therapeutic strategies for stroke.
Collapse
|
33
|
Zhang Z, Wang L, Wang Z, Zhang T, Shi M, Xin C, Zou Y, Wei W, Li X, Chen J, Zhao W. Lysosomal-associated transmembrane protein 5 deficiency exacerbates cerebral ischemia/reperfusion injury. Front Mol Neurosci 2022; 15:971361. [PMID: 36046710 PMCID: PMC9423384 DOI: 10.3389/fnmol.2022.971361] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 07/27/2022] [Indexed: 11/13/2022] Open
Abstract
Lysosomal-associated transmembrane protein 5 (LAPTM5) has been demonstrated to be involved in regulating immunity, inflammation, cell death, and autophagy in the pathophysiological processes of many diseases. However, the function of LAPTM5 in cerebral ischemia-reperfusion (I/R) injury has not yet been reported. In this study, we found that LAPTM5 expression was dramatically decreased during cerebral I/R injury both in vivo and in vitro. LAPTM5 knockout (KO) mice were compared with a control, and they showed a larger infarct size and more serious neurological dysfunction after transient middle cerebral artery occlusion (tMCAO) treatment. In addition, inflammatory response and apoptosis were exacerbated in these processes. Furthermore, gain- and loss-of-function investigations in an in vitro model revealed that neuronal inflammation and apoptosis were aggravated by LAPTM5 knockdown but mitigated by its overexpression. Mechanistically, combined RNA sequencing and experimental verification showed that the apoptosis signal-regulating kinase 1 (ASK1)-c-Jun N-terminal kinase (JNK)/p38 pathway was mainly involved in the detrimental effects of LAPTM5 deficiency following I/R injury. Specifically, LAPTM5 directly interacts with ASK1, leading to decreased ASK1 N-terminal dimerization and the subsequent reduced activation of downstream JNK/p38 signaling. In conclusion, LAPTM5 was demonstrated to be a novel modulator in the pathophysiology of brain I/R injury, and targeting LAPTM5 may be feasible as a stroke treatment.
Collapse
Affiliation(s)
- Zongyong Zhang
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Lei Wang
- Department of Neurosurgery, Huanggang Central Hospital, Huanggang, China
| | - Zhen Wang
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Tingbao Zhang
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Min Shi
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Can Xin
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Yichun Zou
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Wei Wei
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Xiang Li
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- Medical Research Institute, Wuhan University, Wuhan, China
| | - Jincao Chen
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- *Correspondence: Jincao Chen,
| | - Wenyuan Zhao
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- Wenyuan Zhao,
| |
Collapse
|
34
|
Wang J, Zhang LH, Kang YM, Wang XH, Jiang CY. The regulatory effect and molecular mechanism of lncRNA Gm10451 on islet cell dysfunction in children with diabetes. Front Genet 2022; 13:927471. [PMID: 36003336 PMCID: PMC9393641 DOI: 10.3389/fgene.2022.927471] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 07/11/2022] [Indexed: 11/22/2022] Open
Abstract
The dysfunction of islet β-cells is one of the causes of diabetes, and lncRNA Gm10451 is also a participant in the occurrence and the development of various diseases. This study was carried out to reveal the correlation within β-cells and Gm10451. Our study was started with the cellular cultivation of MIN6 cells in vitro, where this islet β-cell line was randomly divided into the groups of control, hyperglycemia, Gm10451 siRNA tansfection, and Gm10451 tansfection. Of all these treatments, cells in the groups of Gm10451 siRNA tansfection and Gm10451 tansfection were given with lentiviral transfection under hyperglycemia condition. Further explorations were established using PCR assay and MTT method to evaluate Gm10451 expression and estimate cellular proliferation. It ended up with the enzyme-linked immunosorbent assay (ELISA) to assess Caspase 3 activity, superoxide dismutase (SOD) activity, and reactive oxygen species (ROS) content and the secretion of IL-10 and IL-1. It was found that Gm10451 expression in MIN6 cells under hyperglycemia cultivation was notably higher than the control group; likewise, a transfection with the lentivirus of Gm10451 also resulted in the upregulation of Gm10451 expression, succeeded with inhibiting cellular proliferation, enhancing Caspase 3 activity, and decreasing SOD activity. In the lentivirus transfection groups, transfection of Gm10451 elevated the ROS content and promoted IL-1 expression, and it also decreased both IL-10 expression and insulin secretion, leading to a consequence of statistically significant difference in contrast to the high-glucose group; on the contrary, transfection of Gm10451 siRNA in a high-glucose environment downregulated the expression of Gm10451 and inversed those change before, whose results were statistically significant when compared with the high-glucose group. Hyperglycemia promotes the expression of Gm10451. Targeting inhibition toward Gm10451 alleviates cellular apoptosis and the oxidative stress of islet cells, promoting proliferation and insulin secretion of islet cells.
Collapse
Affiliation(s)
- Jiao Wang
- Department of Physiology and Pathophysiology, Xi’an Jiaotong University School of Basic Medical Sciences, Xi’an, China
- The First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang, China
| | - Li-hai Zhang
- Department of Physiology and Pathophysiology, Xi’an Jiaotong University School of Basic Medical Sciences, Xi’an, China
- The First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang, China
| | - Yu-ming Kang
- Department of Physiology and Pathophysiology, Xi’an Jiaotong University School of Basic Medical Sciences, Xi’an, China
- *Correspondence: Yu-ming Kang,
| | - Xian-he Wang
- The First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang, China
| | - Chun-yu Jiang
- The First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang, China
| |
Collapse
|
35
|
Denecke KM, McBain CA, Hermes BG, Teertam SK, Farooqui M, Virumbrales-Muñoz M, Panackal J, Beebe DJ, Famakin B, Ayuso JM. Microfluidic Model to Evaluate Astrocyte Activation in Penumbral Region following Ischemic Stroke. Cells 2022; 11:cells11152356. [PMID: 35954200 PMCID: PMC9367413 DOI: 10.3390/cells11152356] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/25/2022] [Accepted: 07/28/2022] [Indexed: 11/16/2022] Open
Abstract
Stroke is one of the main causes of death in the US and post-stroke treatment options remain limited. Ischemic stroke is caused by a blood clot that compromises blood supply to the brain, rapidly leading to tissue death at the core of the infarcted area surrounded by a hypoxic and nutrient-starved region known as the penumbra. Recent evidence suggests that astrocytes in the penumbral region play a dual role in stroke response, promoting further neural and tissue damage or improving tissue repair depending on the microenvironment. Thus, astrocyte response in the hypoxic penumbra could promote tissue repair after stroke, salvaging neurons in the affected area and contributing to cognitive recovery. However, the complex microenvironment of ischemic stroke, characterized by gradients of hypoxia and nutrients, poses a unique challenge for traditional in vitro models, which in turn hinders the development of novel therapies. To address this challenge, we have developed a novel, polystyrene-based microfluidic device to model the necrotic and penumbral region induced by an ischemic stroke. We demonstrated that when subjected to hypoxia, and nutrient starvation, astrocytes within the penumbral region generated in the microdevice exhibited long-lasting, significantly altered signaling capacity including calcium signaling impairment.
Collapse
Affiliation(s)
- Kathryn M. Denecke
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA; (K.M.D.); (B.G.H.); (M.F.); (M.V.-M.); (D.J.B.)
- Department of Neurology, University of Wisconsin-Madison, Madison, WI 53705, USA; (S.K.T.); (J.P.)
| | - Catherine A. McBain
- Department of Dermatology, University of Wisconsin-Madison, Madison, WI 53705, USA;
| | - Brock G. Hermes
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA; (K.M.D.); (B.G.H.); (M.F.); (M.V.-M.); (D.J.B.)
| | - Sireesh Kumar Teertam
- Department of Neurology, University of Wisconsin-Madison, Madison, WI 53705, USA; (S.K.T.); (J.P.)
| | - Mehtab Farooqui
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA; (K.M.D.); (B.G.H.); (M.F.); (M.V.-M.); (D.J.B.)
| | - María Virumbrales-Muñoz
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA; (K.M.D.); (B.G.H.); (M.F.); (M.V.-M.); (D.J.B.)
| | - Jennifer Panackal
- Department of Neurology, University of Wisconsin-Madison, Madison, WI 53705, USA; (S.K.T.); (J.P.)
| | - David J. Beebe
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA; (K.M.D.); (B.G.H.); (M.F.); (M.V.-M.); (D.J.B.)
- UW Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Bolanle Famakin
- Department of Neurology, University of Wisconsin-Madison, Madison, WI 53705, USA; (S.K.T.); (J.P.)
- Correspondence: (B.F.); (J.M.A.)
| | - Jose M. Ayuso
- Department of Dermatology, University of Wisconsin-Madison, Madison, WI 53705, USA;
- UW Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI 53705, USA
- Correspondence: (B.F.); (J.M.A.)
| |
Collapse
|
36
|
Cui J, Li H, Chen Z, Dong T, He X, Wei Y, Li Z, Duan J, Cao T, Chen Q, Ma D, Zhou Y, Wang B, Shi M, Zhang Q, Xiong L, Qin D. Thrombo-Inflammation and Immunological Response in Ischemic Stroke: Focusing on Platelet-Tregs Interaction. Front Cell Neurosci 2022; 16:955385. [PMID: 35846566 PMCID: PMC9278516 DOI: 10.3389/fncel.2022.955385] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 06/13/2022] [Indexed: 02/05/2023] Open
Abstract
Strokes are mainly caused by thromboembolic obstruction of a major cerebral artery. Major clinical manifestations include paralysis hemiplegia, aphasia, memory, and learning disorders. In the case of ischemic stroke (IS), hyperactive platelets contribute to advancing an acute thrombotic event progression. Therefore, the principal goal of treatment is to recanalize the occluded vessel and restore cerebral blood flow by thrombolysis or mechanical thrombectomy. However, antiplatelets or thrombolytic therapy may increase the risk of bleeding. Beyond the involvement in thrombosis, platelets also contribute to the inflammatory process induced by cerebral ischemia. Platelet-mediated thrombosis and inflammation in IS lie primarily in the interaction of platelet receptors with endothelial cells and immune cells, including T-cells, monocytes/macrophages, and neutrophils. Following revascularization, intervention with conventional antiplatelet medicines such as aspirin or clopidogrel does not substantially diminish infarct development, most likely due to the limited effects on the thrombo-inflammation process. Emerging evidence has shown that T cells, especially regulatory T cells (Tregs), maintain immune homeostasis and suppress immune responses, playing a critical immunomodulatory role in ischemia-reperfusion injury. Hence, considering the deleterious effects of inflammatory and immune responses, there is an urgent need for more targeted agents to limit the thrombotic-inflammatory activity of platelets and minimize the risk of a cerebral hemorrhage. This review highlights the involvement of platelets in neuroinflammation and the evolving role of Tregs and platelets in IS. In response to all issues, preclinical and clinical strategies should generate more viable therapeutics for preventing and managing IS with immunotherapy targeting platelets and Tregs.
Collapse
Affiliation(s)
- Jieqiong Cui
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, China
- The First School of Clinical Medicine, Yunnan University of Chinese Medicine, Kunming, China
| | - Huayan Li
- The First School of Clinical Medicine, Yunnan University of Chinese Medicine, Kunming, China
| | - Zongning Chen
- Department of General Medicine, Lijiang People’s Hospital, Lijiang, China
| | - Ting Dong
- Department of Laboratory Medicine, The First People’s Hospital of Yunnan Province, Kunming, China
| | - Xiying He
- The First School of Clinical Medicine, Yunnan University of Chinese Medicine, Kunming, China
| | - Yuanyuan Wei
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, China
| | - Zhengkun Li
- The First School of Clinical Medicine, Yunnan University of Chinese Medicine, Kunming, China
| | - Jinfeng Duan
- School of Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, China
| | - Ting Cao
- The First School of Clinical Medicine, Yunnan University of Chinese Medicine, Kunming, China
| | - Qian Chen
- The First School of Clinical Medicine, Yunnan University of Chinese Medicine, Kunming, China
| | - Dongmei Ma
- The First School of Clinical Medicine, Yunnan University of Chinese Medicine, Kunming, China
| | - Yang Zhou
- The First School of Clinical Medicine, Yunnan University of Chinese Medicine, Kunming, China
| | - Bo Wang
- The First School of Clinical Medicine, Yunnan University of Chinese Medicine, Kunming, China
| | - Mingqin Shi
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, China
| | - Qin Zhang
- Department of Laboratory Medicine, The First People’s Hospital of Yunnan Province, Kunming, China
| | - Lei Xiong
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, China
| | - Dongdong Qin
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, China
| |
Collapse
|
37
|
Zhang Y, Lei L, Zhou H, Lu X, Cai F, Li T. Roles of Micro Ribonucleic Acids in Astrocytes After Cerebral Stroke. Front Cell Neurosci 2022; 16:890762. [PMID: 35755778 PMCID: PMC9218061 DOI: 10.3389/fncel.2022.890762] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 05/04/2022] [Indexed: 11/13/2022] Open
Abstract
Cerebral stroke is one of the highest-ranking causes of death and the leading cause of disability globally, particularly with an increasing incidence and prevalence in developing countries. Steadily more evidence has indicated that micro ribonucleic acids (miRNAs) have important regulatory functions in gene transcription and translation in the course of cerebral stroke. It is beyond arduous to understand the pathophysiology of cerebral stroke, due in part to the perplexity of influencing the network of the inflammatory response, brain edema, autophagy and neuronal apoptosis. The recent research shows miRNA plays a key role in regulating aquaporin 4 (AQP4), and many essential pathological processes after cerebral stroke. This article reviews the recent knowledge on how miRNA influences the inflammatory response, brain edema, infarction size, and neuronal injury after cerebral stroke. In addition, some miRNAs may serve as potential biomarkers in stroke diagnosis and therapy since the expression of some miRNAs in the blood is stable after cerebral stroke.
Collapse
Affiliation(s)
- Yuansheng Zhang
- Department of Neurosurgery, The Affiliated Hospital of Medical College, Kunming University of Science and Technology, The First People's Hospital of Yunnan Province, Kunming, China
| | - Li Lei
- Department of Neurosurgery, The Affiliated Hospital of Medical College, Kunming University of Science and Technology, The First People's Hospital of Yunnan Province, Kunming, China
| | - Hu Zhou
- Department of Neurosurgery, The Affiliated Hospital of Medical College, Kunming University of Science and Technology, The First People's Hospital of Yunnan Province, Kunming, China
| | - Xiaoyang Lu
- Translational Neurosurgery and Neurobiology, University Hospital Aachen, RWTH Aachen, Aachen, Germany
| | - Feifei Cai
- Department of Radiology, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, China
| | - Tao Li
- Department of Neurosurgery, The Affiliated Hospital of Medical College, Kunming University of Science and Technology, The First People's Hospital of Yunnan Province, Kunming, China
| |
Collapse
|
38
|
Gallego-Fabrega C, Muiño E, Cárcel-Márquez J, Llucià-Carol L, Lledós M, Martín-Campos JM, Cullell N, Fernández-Cadenas I. Genome-Wide Studies in Ischaemic Stroke: Are Genetics Only Useful for Finding Genes? Int J Mol Sci 2022; 23:6840. [PMID: 35743317 PMCID: PMC9224543 DOI: 10.3390/ijms23126840] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/31/2022] [Accepted: 06/01/2022] [Indexed: 02/07/2023] Open
Abstract
Ischaemic stroke is a complex disease with some degree of heritability. This means that heritability factors, such as genetics, could be risk factors for ischaemic stroke. The era of genome-wide studies has revealed some of these heritable risk factors, although the data generated by these studies may also be useful in other disciplines. Analysis of these data can be used to understand the biological mechanisms associated with stroke risk and stroke outcome, to determine the causality between stroke and other diseases without the need for expensive clinical trials, or to find potential drug targets with higher success rates than other strategies. In this review we will discuss several of the most relevant studies regarding the genetics of ischaemic stroke and the potential use of the data generated.
Collapse
Affiliation(s)
- Cristina Gallego-Fabrega
- Stroke Pharmacogenomics and Genetics Group, Institut de Recerca de l’Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain; (C.G.-F.); (E.M.); (J.C.-M.); (L.L.-C.); (M.L.); (J.M.M.-C.); (N.C.)
| | - Elena Muiño
- Stroke Pharmacogenomics and Genetics Group, Institut de Recerca de l’Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain; (C.G.-F.); (E.M.); (J.C.-M.); (L.L.-C.); (M.L.); (J.M.M.-C.); (N.C.)
| | - Jara Cárcel-Márquez
- Stroke Pharmacogenomics and Genetics Group, Institut de Recerca de l’Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain; (C.G.-F.); (E.M.); (J.C.-M.); (L.L.-C.); (M.L.); (J.M.M.-C.); (N.C.)
| | - Laia Llucià-Carol
- Stroke Pharmacogenomics and Genetics Group, Institut de Recerca de l’Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain; (C.G.-F.); (E.M.); (J.C.-M.); (L.L.-C.); (M.L.); (J.M.M.-C.); (N.C.)
- Institute for Biomedical Research of Barcelona (IIBB), National Spanish Research Council (CSIC), 08036 Barcelona, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Miquel Lledós
- Stroke Pharmacogenomics and Genetics Group, Institut de Recerca de l’Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain; (C.G.-F.); (E.M.); (J.C.-M.); (L.L.-C.); (M.L.); (J.M.M.-C.); (N.C.)
| | - Jesús M. Martín-Campos
- Stroke Pharmacogenomics and Genetics Group, Institut de Recerca de l’Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain; (C.G.-F.); (E.M.); (J.C.-M.); (L.L.-C.); (M.L.); (J.M.M.-C.); (N.C.)
| | - Natalia Cullell
- Stroke Pharmacogenomics and Genetics Group, Institut de Recerca de l’Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain; (C.G.-F.); (E.M.); (J.C.-M.); (L.L.-C.); (M.L.); (J.M.M.-C.); (N.C.)
| | - Israel Fernández-Cadenas
- Stroke Pharmacogenomics and Genetics Group, Institut de Recerca de l’Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain; (C.G.-F.); (E.M.); (J.C.-M.); (L.L.-C.); (M.L.); (J.M.M.-C.); (N.C.)
- Stroke Pharmacogenomics and Genetics Group, Fundació MútuaTerrassa per la Docència i la Recerca, 08221 Terrassa, Spain
| |
Collapse
|
39
|
Genetics and Epigenetics of Spontaneous Intracerebral Hemorrhage. Int J Mol Sci 2022; 23:ijms23126479. [PMID: 35742924 PMCID: PMC9223468 DOI: 10.3390/ijms23126479] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/03/2022] [Accepted: 06/07/2022] [Indexed: 12/15/2022] Open
Abstract
Intracerebral hemorrhage (ICH) is a complex and heterogeneous disease, and there is no effective treatment. Spontaneous ICH represents the final manifestation of different types of cerebral small vessel disease, usually categorized as: lobar (mostly related to cerebral amyloid angiopathy) and nonlobar (hypertension-related vasculopathy) ICH. Accurate phenotyping aims to reflect these biological differences in the underlying mechanisms and has been demonstrated to be crucial to the success of genetic studies in this field. This review summarizes how current knowledge on genetics and epigenetics of this devastating stroke subtype are contributing to improve the understanding of ICH pathophysiology and their potential role in developing therapeutic strategies.
Collapse
|
40
|
Peng H, Fan Y, Li J, Zheng X, Zhong C, Zhu Z, He Y, Zhang M, Zhang Y. DNA Methylation of the Natriuretic Peptide System Genes and Ischemic Stroke: Gene-Based and Gene Set Analyses. Neurol Genet 2022; 8:e679. [PMID: 35620136 PMCID: PMC9128040 DOI: 10.1212/nxg.0000000000000679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 03/18/2022] [Indexed: 11/15/2022]
Abstract
Background and Objectives The natriuretic peptide (NP) system has been considered an important regulator for ischemic stroke (IS) with a limited clinical implication. A better understanding of the underlying molecular mechanisms is urgent. Here, we aimed to examine the role of DNA methylation of NP system genes in IS. Methods DNA methylation at promoter regions of 4 core NP system genes, e.g., CORIN, FURIN, NPPA, and NPPB, was measured by targeted bisulfite sequencing in 853 patients with IS and 918 controls. We first examined the association between DNA methylation at each single CpG and IS, followed by gene-based and gene set analyses to examine the joint associations of DNA methylation at multiple CpGs in a gene or all 4 genes as a pathway with IS. Results After control of covariates and multiple testing, DNA methylation at 19 of the 36 assayed CpGs was individually associated with IS at q < 0.05. Higher average methylation levels at the targeted regions of CORIN (odds ratio [OR] = 0.64, 95% confidence interval [CI]: 0.56–0.73), FURIN (OR = 0.78, 95% CI: 0.69–0.88), and NPPA (OR = 0.78, 95% CI: 0.69–0.88) were associated with a lower odds of IS (all q < 0.05). The truncated product method revealed the same gene-based associations (all q < 0.05) and found that DNA methylation at all 4 NP system genes together was jointly associated with IS (p = 0.0001). Discussion DNA methylation at NP system genes was downregulated in patients with IS. Our results may unravel a molecular mechanism underlying the regulating effect of the NP system on IS and highlight the relevance of testing the joint effect of multiple CpGs in the epigenetic analysis.
Collapse
Affiliation(s)
- Hao Peng
- Department of Epidemiology (H.P., J.L., X.Z., C.Z., Z.Z., Y.H., M.Z., Y.Z.), School of Public Health, Medical College of Soochow University; Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases (H.P.); and Medical College of Soochow University (Y.F.), Suzhou, China
| | - Yiming Fan
- Department of Epidemiology (H.P., J.L., X.Z., C.Z., Z.Z., Y.H., M.Z., Y.Z.), School of Public Health, Medical College of Soochow University; Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases (H.P.); and Medical College of Soochow University (Y.F.), Suzhou, China
| | - Jing Li
- Department of Epidemiology (H.P., J.L., X.Z., C.Z., Z.Z., Y.H., M.Z., Y.Z.), School of Public Health, Medical College of Soochow University; Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases (H.P.); and Medical College of Soochow University (Y.F.), Suzhou, China
| | - Xiaowei Zheng
- Department of Epidemiology (H.P., J.L., X.Z., C.Z., Z.Z., Y.H., M.Z., Y.Z.), School of Public Health, Medical College of Soochow University; Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases (H.P.); and Medical College of Soochow University (Y.F.), Suzhou, China
| | - Chongke Zhong
- Department of Epidemiology (H.P., J.L., X.Z., C.Z., Z.Z., Y.H., M.Z., Y.Z.), School of Public Health, Medical College of Soochow University; Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases (H.P.); and Medical College of Soochow University (Y.F.), Suzhou, China
| | - Zhengbao Zhu
- Department of Epidemiology (H.P., J.L., X.Z., C.Z., Z.Z., Y.H., M.Z., Y.Z.), School of Public Health, Medical College of Soochow University; Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases (H.P.); and Medical College of Soochow University (Y.F.), Suzhou, China
| | - Yan He
- Department of Epidemiology (H.P., J.L., X.Z., C.Z., Z.Z., Y.H., M.Z., Y.Z.), School of Public Health, Medical College of Soochow University; Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases (H.P.); and Medical College of Soochow University (Y.F.), Suzhou, China
| | - Mingzhi Zhang
- Department of Epidemiology (H.P., J.L., X.Z., C.Z., Z.Z., Y.H., M.Z., Y.Z.), School of Public Health, Medical College of Soochow University; Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases (H.P.); and Medical College of Soochow University (Y.F.), Suzhou, China
| | - Yonghong Zhang
- Department of Epidemiology (H.P., J.L., X.Z., C.Z., Z.Z., Y.H., M.Z., Y.Z.), School of Public Health, Medical College of Soochow University; Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases (H.P.); and Medical College of Soochow University (Y.F.), Suzhou, China
| |
Collapse
|
41
|
Deng Y, Huang P, Zhang F, Chen T. Association of MicroRNAs With Risk of Stroke: A Meta-Analysis. Front Neurol 2022; 13:865265. [PMID: 35665049 PMCID: PMC9160310 DOI: 10.3389/fneur.2022.865265] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 04/19/2022] [Indexed: 11/16/2022] Open
Abstract
Objectives Altered expression of microRNAs (miRNAs) may contribute to disease vulnerability. Studies have reported the involvement of miRNA in the pathophysiology of ischemic stroke. Methods We performed a meta-analysis of data from 6 studies that used a panel of miRNAs with altered expressions to diagnose ischemic stroke with the Bayesian framework. The I2 test and Cochran's Q-statistic were used to assess heterogeneity. Funnel plots were generated and publication bias was assessed using Begg and Egger tests. Results On summary receiver operating characteristics (SROC) curve analysis, the pooled sensitivity and specificity of altered miRNA expressions for diagnosis of ischemic stroke was 0.92 (95% confidence interval [CI] 0.80–0.97) and 0.83 (95% CI 0.71–0.90), respectively; the diagnostic odds ratio was 54.35 (95% CI 20.39–144.92), and the area under the SROC curve was 0.93 (95% CI 0.90–0.95). Conclusions Our results showed a link between dysregulation of miRNAs and the occurrence of ischemic stroke. Abnormal miRNA expression may be a potential biomarker for ischemic stroke.
Collapse
|
42
|
Cheng X, Ye J, Zhang X, Meng K. Longitudinal Variations of CDC42 in Patients With Acute Ischemic Stroke During 3-Year Period: Correlation With CD4 + T Cells, Disease Severity, and Prognosis. Front Neurol 2022; 13:848933. [PMID: 35547377 PMCID: PMC9081787 DOI: 10.3389/fneur.2022.848933] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 03/11/2022] [Indexed: 12/26/2022] Open
Abstract
Objective Cell division cycle 42 (CDC42) modulates CD4+ T-cell differentiation, blood lipids, and neuronal apoptosis and is involved in the pathogenesis of acute ischemic stroke (AIS); however, the clinical role of CDC42 in AIS remains unanswered. This study aimed to evaluate the expression of CDC42 in a 3-year follow-up and its correlation with disease severity, T helper (Th)1/2/17 cells, and the prognosis in patients with AIS. Methods Blood CDC42 was detected in 143 patients with AIS at multiple time points during the 3-year follow-up period and in 70 controls at admission by reverse transcription-quantitative polymerase chain reaction (RT-qPCR). In addition, blood Th1, Th2, and Th17 cells and their secreted cytokines (interferon-γ (IFN-γ), interleukin-4 (IL-4), and interleukin-17A (IL-17A)) in patients with AIS were detected by flow cytometry and enzyme-linked immunosorbent assay (ELISA), respectively. Results Compared with controls (p < 0.001), CDC42 was reduced in patients with AIS. CDC42 was negatively correlated with the National Institutes of Health Stroke Scale (NIHSS) score (p < 0.001), whereas, in patients with AIS (all p < 0.050), it was positively associated with Th2 cells and IL-4 but negatively correlated with Th17 cells and IL-17A. CDC42 was decreased from admission to 3 days and gradually increased from 3 days to 3 years in patients with AIS (P<0.001). In a 3-year follow-up, 24 patients with AIS recurred and 8 patients died. On the 3rd day, 7th day, 1st month, 3rd month, 6th month, 1st year, 2nd year, and 3rd year, CDC42 was decreased in recurrent patients than that in non-recurrent patients (all p < 0.050). CDC42 at 7 days (p = 0.033) and 3 months (p = 0.023) was declined in reported deceased patients than in survived patients. Conclusion CDC42 is used as a biomarker to constantly monitor disease progression and recurrence risk of patients with AIS.
Collapse
Affiliation(s)
- Xiao Cheng
- Department of Neurology, ShanXi Province People's Hospital of Shanxi Medical University, Taiyuan, China.,Shanxi Key Laboratory of Brain Disease Control, Shanxi Provincial People's Hospital, Taiyuan, China
| | - Jianxin Ye
- Department of Neurology, The 900th Hospital of the Joint Logistics Support Force of the Chinese People's Liberation Army, Fuzhou, China
| | - Xiaolei Zhang
- Department of Neurology, ShanXi Province People's Hospital of Shanxi Medical University, Taiyuan, China
| | - Kun Meng
- Department of Neurology, ShanXi Province People's Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
43
|
Li S, Zhang L, Lin J, Su A, Liu X, Zhang J, Xian X, Hu Y, Li W, Sun S, Zhang M. LncRNA BIRF Promotes Brain Ischemic Tolerance Induced By Cerebral Ischemic Preconditioning Through Upregulating GLT-1 via Sponging miR-330-5p. Mol Neurobiol 2022; 59:3996-4014. [PMID: 35451738 PMCID: PMC9167204 DOI: 10.1007/s12035-022-02841-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 04/04/2022] [Indexed: 10/24/2022]
Abstract
Long noncoding RNAs (lncRNAs) play an important regulatory role in various diseases. However, the role of lncRNAs in brain ischemic tolerance (BIT) induced by cerebral ischemic preconditioning (CIPC) is still unknown. The lncRNA profile of rat cortical astrocytes pretreated with ischemic preconditioning was analyzed by high-throughput sequencing. The results of Cell-Counting Kit-8 (CCK-8) assay showed that a novel lncRNA, NONRATT009133.2, which we referred to as brain ischemia-related factor (BIRF), was highly correlated with BIT. Through bioinformatics analysis, we predicted that BIRF, miR-330-5p, and GLT-1 (also named Slc1a2) might constitute a ceRNA regulatory network in the induction of BIT. We found that BIRF was upregulated by CIPC, which promoted GLT-1 expression and BIT induction. BIRF could directly bind to miR-330-5p. Furthermore, miR-330-5p directly targeted GLT-1, and miR-330-5p inhibited both GLT-1 expression and BIT induction in vitro and in vivo. Moreover, BIRF acts as a molecular sponge to competitively bind to miR-330-5p with GLT-1 mRNA, while the miR-330-5p inhibitor reversed all the effects of BIRF siRNA on GLT-1 expression and neuronal vitality. Taken together, our results demonstrate the important roles of the BIRF/miR-330-5p/GLT-1 axis in the induction of BIT by CIPC. BIRF may be a potentially effective therapeutic strategy against stroke injury.
Collapse
Affiliation(s)
- Shichao Li
- Key Laboratory of Critical Disease Mechanism and intervention of Hebei Province, Department of Pathophysiology, Hebei Medical University, Shijiazhuang, China
| | - Lingyan Zhang
- Key Laboratory of Critical Disease Mechanism and intervention of Hebei Province, Department of Pathophysiology, Hebei Medical University, Shijiazhuang, China
| | - Jiajie Lin
- Key Laboratory of Medical Biotechnology of Hebei Province, Hebei Medical University, Department of Biochemistry and Molecular Biology, Cardiovascular Medical Science Center, Shijiazhuang, China
| | - Achou Su
- Key Laboratory of Critical Disease Mechanism and intervention of Hebei Province, Department of Pathophysiology, Hebei Medical University, Shijiazhuang, China
| | - Xiyun Liu
- Key Laboratory of Critical Disease Mechanism and intervention of Hebei Province, Department of Pathophysiology, Hebei Medical University, Shijiazhuang, China
| | - Jingge Zhang
- Key Laboratory of Critical Disease Mechanism and intervention of Hebei Province, Department of Pathophysiology, Hebei Medical University, Shijiazhuang, China
| | - Xiaohui Xian
- Key Laboratory of Critical Disease Mechanism and intervention of Hebei Province, Department of Pathophysiology, Hebei Medical University, Shijiazhuang, China
| | - Yuyan Hu
- Key Laboratory of Critical Disease Mechanism and intervention of Hebei Province, Department of Pathophysiology, Hebei Medical University, Shijiazhuang, China
| | - Wenbin Li
- Key Laboratory of Critical Disease Mechanism and intervention of Hebei Province, Department of Pathophysiology, Hebei Medical University, Shijiazhuang, China
| | - Shaoguang Sun
- Key Laboratory of Medical Biotechnology of Hebei Province, Hebei Medical University, Department of Biochemistry and Molecular Biology, Cardiovascular Medical Science Center, Shijiazhuang, China.
| | - Min Zhang
- Key Laboratory of Critical Disease Mechanism and intervention of Hebei Province, Department of Pathophysiology, Hebei Medical University, Shijiazhuang, China.
| |
Collapse
|
44
|
Wu L, Zhan Q, Liu P, Zheng H, Liu M, Min J, Xie L, Wu W. LncRNA TCONS_00145741 Knockdown Prevents Thrombin-Induced M1 Differentiation of Microglia in Intracerebral Hemorrhage by Enhancing the Interaction Between DUSP6 and JNK. Front Cell Dev Biol 2022; 9:684842. [PMID: 35127692 PMCID: PMC8809462 DOI: 10.3389/fcell.2021.684842] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 12/06/2021] [Indexed: 11/13/2022] Open
Abstract
Background: The differentiation of microglia from M1 to M2 exerts a pivotal role in the aggression of intracerebral hemorrhage (ICH), and long non-coding RNAs (lncRNAs) are associated with the differentiation of microglia. However, the underlying mechanism had not been fully clarified. Methods: The expression profile of lncRNAs in thrombin-induced primary microglia was analyzed by RNA sequencing. Under thrombin treatment, the effect of lncRNA TCONS_00145741 on the differentiation of microglia was determined by immunofluorescence staining, quantitative real-time PCR, and Western blot. The potential mechanism and related signaling pathways of TCONS_00145741 in the M1 and M2 differentiation of microglia in ICH were assessed by Gene Ontology analysis, flow cytometry, RNA pull-down, RNA Immunoprecipitation, and RNA fluorescence in situ hybridization followed by immunofluorescence analysis. Results: LncRNA TCONS_00145741 expression was elevated in the thrombin-induced primary microglia, and the interference with TCONS_00145741 restrained the M1 differentiation of microglia and facilitated the M2 differentiation under thrombin treatment. The interference with TCONS_00145741 restrained the activation of the JNK pathway in microglia under thrombin treatment and repressed the JNK phosphorylation levels by enhancing the interaction between DUSP6 and JNK. In vivo experiments further illustrated that the interference with TCONS_00145741 alleviated ICH. Conclusion: LncRNA TCONS_00145741 knockdown prevented thrombin-induced M1 differentiation of microglia in ICH by enhancing the interaction between DUSP6 and JNK. This study might provide a promising target for the clinical treatment of ICH.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Wei Wu
- Department of Neurology, the Second Affiliated Hospital of Nanchang University, Institute of Neuroscience, Nanchang University, Nanchang, China
| |
Collapse
|
45
|
Relevance of stromal interaction molecule 1 (STIM1) in experimental and human stroke. Pflugers Arch 2021; 474:141-153. [PMID: 34757454 DOI: 10.1007/s00424-021-02636-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 10/20/2021] [Accepted: 10/28/2021] [Indexed: 10/19/2022]
Abstract
Stroke represents a main cause of death and permanent disability worldwide. In the attempt to develop targeted preventive and therapeutic strategies, several efforts were performed over the last decades to identify the specific molecular abnormalities preceding cerebral ischemia and neuronal death. In this regard, mitochondrial dysfunction, autophagy, and intracellular calcium homeostasis appear important contributors to stroke development, as underscored by recent pre-clinical evidence. Intracellular calcium (Ca2+) homeostasis is regulated, among other mechanisms, by the calcium sensor stromal interaction molecule 1 (STIM1) and calcium release-activated calcium modulator (ORAI) members, which mediate the store-operated Ca2+ entry (SOCE). The activity of SOCE is deregulated in animal models of ischemic stroke, leading to ischemic injury exacerbation. We found a different pattern of expression of few SOCE components, dependent from a STIM1 mutation, in cerebral endothelial cells isolated from the stroke-prone spontaneously hypertensive rat (SHRSP), compared to the stroke-resistant (SHRSR) strain, suggesting a potential involvement of this mechanism into the stroke predisposition of SHRSP. In this article, we discuss the relevant role of STIM1 in experimental stroke, as highlighted by the current literature and by our recent experimental findings, and the available evidence in the human disease. We also provide a glance on future perspectives and clinical implications of STIM1.
Collapse
|
46
|
Forte M, Marchitti S, Cotugno M, Di Nonno F, Stanzione R, Bianchi F, Schirone L, Schiavon S, Vecchio D, Sarto G, Scioli M, Raffa S, Tocci G, Relucenti M, Torrisi MR, Valenti V, Versaci F, Vecchione C, Volpe M, Frati G, Rubattu S, Sciarretta S. Trehalose, a natural disaccharide, reduces stroke occurrence in the stroke-prone spontaneously hypertensive rat. Pharmacol Res 2021; 173:105875. [PMID: 34500062 DOI: 10.1016/j.phrs.2021.105875] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/02/2021] [Accepted: 09/03/2021] [Indexed: 01/18/2023]
Abstract
Cerebrovascular disease, a frequent complication of hypertension, is a major public health issue for which novel therapeutic and preventive approaches are needed. Autophagy activation is emerging as a potential therapeutic and preventive strategy toward stroke. Among usual activators of autophagy, the natural disaccharide trehalose (TRE) has been reported to be beneficial in preclinical models of neurodegenerative diseases, atherosclerosis and myocardial infarction. In this study, we tested for the first time the effects of TRE in the stroke-prone spontaneously hypertensive rat (SHRSP) fed with a high-salt stroke permissive diet (JD). We found that TRE reduced stroke occurrence and renal damage in high salt-fed SHRSP. TRE was also able to decrease systolic blood pressure. Through ex-vivo studies, we assessed the beneficial effect of TRE on the vascular function of high salt-fed SHRSP. At the molecular level, TRE restored brain autophagy and reduced mitochondrial mass, along with the improvement of mitochondrial function. The beneficial effects of TRE were associated with increased nuclear translocation of TFEB, a transcriptional activator of autophagy. Our results suggest that TRE may be considered as a natural compound efficacious for the prevention of hypertension-related target organ damage, with particular regard to stroke and renal damage.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Leonardo Schirone
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy; Department of Internal, Anesthetic and Cardiovascular Clinical Sciences, Sapienza" University of Rome, Roma, Italy
| | - Sonia Schiavon
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
| | - Daniele Vecchio
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
| | - Gianmarco Sarto
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
| | | | - Salvatore Raffa
- Department of Clinical and Molecular Medicine, School of Medicine and Psychology, Sapienza University of Rome, Roma, Italy
| | - Giuliano Tocci
- Department of Clinical and Molecular Medicine, School of Medicine and Psychology, Sapienza University of Rome, Roma, Italy
| | - Michela Relucenti
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Section of Human Anatomy, Sapienza University of Rome, Rome, Italy
| | - Maria Rosaria Torrisi
- Department of Clinical and Molecular Medicine, School of Medicine and Psychology, Sapienza University of Rome, Roma, Italy
| | | | | | - Carmine Vecchione
- IRCCS Neuromed, Pozzilli, Italy; Department of Medicine and Surgery, University of Salerno, 84081 Baronissi, Italy
| | - Massimo Volpe
- Department of Clinical and Molecular Medicine, School of Medicine and Psychology, Sapienza University of Rome, Roma, Italy
| | - Giacomo Frati
- IRCCS Neuromed, Pozzilli, Italy; Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
| | - Speranza Rubattu
- IRCCS Neuromed, Pozzilli, Italy; Department of Clinical and Molecular Medicine, School of Medicine and Psychology, Sapienza University of Rome, Roma, Italy.
| | - Sebastiano Sciarretta
- IRCCS Neuromed, Pozzilli, Italy; Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy.
| |
Collapse
|
47
|
Qiu M, Xu E, Zhan L. Epigenetic Regulations of Microglia/Macrophage Polarization in Ischemic Stroke. Front Mol Neurosci 2021; 14:697416. [PMID: 34707480 PMCID: PMC8542724 DOI: 10.3389/fnmol.2021.697416] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 08/26/2021] [Indexed: 01/04/2023] Open
Abstract
Ischemic stroke is one of the leading causes of death and disability worldwide. Microglia/macrophages (MMs)-mediated neuroinflammation contributes significantly to the pathological process of ischemic brain injury. Microglia, serving as resident innate immune cells in the central nervous system, undergo pro-inflammatory phenotype or anti-inflammatory phenotype in response to the microenvironmental changes after cerebral ischemia. Emerging evidence suggests that epigenetics modifications, reversible modifications of the phenotype without changing the DNA sequence, could play a pivotal role in regulation of MM polarization. However, the knowledge of the mechanism of epigenetic regulations of MM polarization after cerebral ischemia is still limited. In this review, we present the recent advances in the mechanisms of epigenetics involved in regulating MM polarization, including histone modification, non-coding RNA, and DNA methylation. In addition, we discuss the potential of epigenetic-mediated MM polarization as diagnostic and therapeutic targets for ischemic stroke. It is valuable to identify the underlying mechanisms between epigenetics and MM polarization, which may provide a promising treatment strategy for neuronal damage after cerebral ischemia.
Collapse
Affiliation(s)
- Meiqian Qiu
- Institute of Neurosciences and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University and Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China
| | - En Xu
- Institute of Neurosciences and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University and Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China
| | - Lixuan Zhan
- Institute of Neurosciences and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University and Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China
| |
Collapse
|
48
|
Wong LM, Phoon LQ, Wei LK. Epigenetics Modifications in Large-Artery Atherosclerosis: A Systematic Review. J Stroke Cerebrovasc Dis 2021; 30:106033. [PMID: 34598837 DOI: 10.1016/j.jstrokecerebrovasdis.2021.106033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 07/15/2021] [Accepted: 08/01/2021] [Indexed: 01/08/2023] Open
Abstract
OBJECTIVES In recent years, the evidence of the relationship between epigenetics and acute ischemic stroke (AIS) were accumulating, however, the epigenetic characteristics that directs specifically towards the aetiology of large-artery atherosclerosis (LAA) remain ambiguous. The aim of this study was to highlight the overall evidence concerning the epigenetic mechanisms associated with the occurrence of LAA. MATERIALS AND METHODS Studies that involve investigations related to epigenetic markers (DNA methylation and RNA modifications) and LAA were retrieved from eleven scientific publication databases. The studies were screened through the pre-set inclusion and exclusion criteria prior to the NOS evaluation. RESULTS Eligible studies (n=25) were evaluated. Of which, six reported on DNA methylation and 19 studies assessed RNA modifications (16 on miRNAs, two on lncRNAs, and one study on circRNA). Hypomethylation of MTRNR2L8 and ERα promoters; microRNAs (miR-7-2-3p, miR-16, miR-34a-5p, miR-126, miR-143, miR-200b, miR-223, miR-503, miR-1908, miR-146a rs2910164 C/G, miR-149 rs2292832 T/C, miR-200b rs7549819 T/C, miR-34a rs2666433); lncRNA of ZFAS1; and circRNA of hsa_circRNA_102488 were associated with LAA significantly. CONCLUSION Current systematic review highlighted hypomethylation of miRNAs and lncRNA might be the potential biomarkers for LAA.
Collapse
Affiliation(s)
- Li Min Wong
- Department of Biological Science, Faculty of Science, Universiti Tunku Abdul Rahman, Bandar Barat, Kampar, Perak 31900, Malaysia
| | - Lee Quen Phoon
- Department of Allied Health Sciences, Faculty of Science, Universiti Tunku Abdul Rahman, Bandar Barat, Kampar, Perak 31900, Malaysia
| | - Loo Keat Wei
- Department of Biological Science, Faculty of Science, Universiti Tunku Abdul Rahman, Bandar Barat, Kampar, Perak 31900, Malaysia.
| |
Collapse
|
49
|
Shaker O, Sroor W, Ali O, Soliman H, Abdeen M. Association between MEG3 polymorphisms (rs941576 and rs7158663) and risk of acute ischemic stroke in Egyptian patients. GENE REPORTS 2021. [DOI: 10.1016/j.genrep.2021.101286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
50
|
Kumar R, Jain V, Kushwah N, Dheer A, Mishra KP, Prasad D, Singh SB. HDAC inhibition prevents hypobaric hypoxia-induced spatial memory impairment through PΙ3K/GSK3β/CREB pathway. J Cell Physiol 2021; 236:6754-6771. [PMID: 33788269 DOI: 10.1002/jcp.30337] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 02/05/2021] [Accepted: 02/09/2021] [Indexed: 12/14/2022]
Abstract
Hypobaric hypoxia at higher altitudes usually impairs cognitive function. Previous studies suggested that epigenetic modifications are the culprits for this condition. Here, we set out to determine how hypobaric hypoxia mediates epigenetic modifications and how this condition worsens neurodegeneration and memory loss in rats. In the current study, different duration of hypobaric hypoxia exposure showed a discrete pattern of histone acetyltransferases and histone deacetylases (HDACs) gene expression in the hippocampus when compared with control rat brains. The level of acetylation sites in histone H2A, H3 and H4 was significantly decreased under hypobaric hypoxia exposure compared to the control rat's hippocampus. Additionally, inhibiting the HDAC family with sodium butyrate administration (1.2 g/kg body weight) attenuated neurodegeneration and memory loss in hypobaric hypoxia-exposed rats. Moreover, histone acetylation increased at the promoter regions of brain-derived neurotrophic factor (BDNF); thereby its protein expression was enhanced significantly in hypobaric hypoxia exposed rats treated with HDAC inhibitor compared with hypoxic rats. Thus, BDNF expression upregulated cAMP-response element binding protein (CREB) phosphorylation by stimulation of PI3K/GSK3β/CREB axis, which counteracts hypobaric hypoxia-induced spatial memory impairment. In conclusion, these results suggested that sodium butyrate is a novel therapeutic agent for the treatment of spatial memory loss associated with hypobaric hypoxia, and also further studies are warranted to explore specific HDAC inhibitors in this condition.
Collapse
Affiliation(s)
- Rahul Kumar
- Neurobiology Division, Defence Institute of Physiology and Allied Science (DIPAS), DRDO, Timarpur, New Delhi, India
| | - Vishal Jain
- Neurophysiology Division, Defence Institute of Physiology and Allied Science (DIPAS), DRDO, Timarpur, New Delhi, India
| | - Neetu Kushwah
- Neurobiology Division, Defence Institute of Physiology and Allied Science (DIPAS), DRDO, Timarpur, New Delhi, India
| | - Aastha Dheer
- Neurobiology Division, Defence Institute of Physiology and Allied Science (DIPAS), DRDO, Timarpur, New Delhi, India
| | | | - Dipti Prasad
- Neurobiology Division, Defence Institute of Physiology and Allied Science (DIPAS), DRDO, Timarpur, New Delhi, India
| | - Shashi Bala Singh
- National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| |
Collapse
|