1
|
Liu M, Fan R, Wang C, Dai L, Chu S. Complete analysis and phylogenetic analysis of Polygonatum sibiricum mitochondria. BMC PLANT BIOLOGY 2025; 25:471. [PMID: 40229680 PMCID: PMC11998138 DOI: 10.1186/s12870-025-06510-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 04/04/2025] [Indexed: 04/16/2025]
Abstract
In this project, we studied the complete mitogenome of the liliaceae medicinal plant Polygonatum sibiricum. The genome is represented by a circular ring molecule with a length of 691,910 bp and a GC content of 46.33%. Mitochondrial genome composition is slightly biased towards A+T, with AT accounting for 53.67%, and AT skewness slightly positive (0.092%). The complete mitogenome has a total of sixty-three unique genes, including thirty-nine protein-coding genes, twenty-one transfer RNAs (tRNAs) and three ribosomal RNAs (rRNAs). We examined codon use, repeat sequence, RNA editing in the mitogenome of P. sibiricum, and elucidated species classification based on phylogenetic trees of mitogenome of twenty-three species. Our results provide comprehensive information on the mitogenome of P. sibiricum and show for the first time the evolutionary relationship between the mitogenome of P. sibiricum and Chlorophytum comosum in the Asparagales family.
Collapse
Affiliation(s)
- Min Liu
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, School of Pharmacy, Shihezi University, Shihezi, 832003, P.R. China
| | - Ruike Fan
- School of Traditional Chinese Medicine, Wenzhou Medical University, Wenzhou, 325035, P.R. China
| | - Chen Wang
- School of Traditional Chinese Medicine, Wenzhou Medical University, Wenzhou, 325035, P.R. China
| | - Lishang Dai
- School of Traditional Chinese Medicine, Wenzhou Medical University, Wenzhou, 325035, P.R. China.
| | - Shenghui Chu
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, School of Pharmacy, Shihezi University, Shihezi, 832003, P.R. China.
| |
Collapse
|
2
|
Gao C, Wang S, Huang Y, Deng Y. Assembly and comparative analysis of the complete mitochondrial genome of Echinacanthus longipes (Acanthaceae), endemic to the Sino-Vietnamese karst flora. BMC Genomics 2025; 26:251. [PMID: 40087565 PMCID: PMC11908007 DOI: 10.1186/s12864-025-11448-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 03/05/2025] [Indexed: 03/17/2025] Open
Abstract
BACKGROUND Echinacanthus longipes is an endemic species in the Sino-Vietnamese karst flora in the family Acanthaceae. It displays distinctive environmental adaptation characteristics in karst regions. Although it provides an important model for understanding the role of limestone karst in speciation and endemism, the mitochondrial genome (mtDNA) of E. longipes has not been fully characterized. RESULTS Here, the mtDNA of E. longipes was successfully assembled as a complex structure in the form of two small circular and three linear molecules with a total length of 810,200 bp. The annotated results revealed 36 protein-coding genes (PCGs), 22 tRNA genes, and three rRNA genes in this mtDNA. Notably, substantial sequence repeats and more tRNAs translocations from the chloroplast to the mtDNA were identified. Among the PCGs of E. longipes, the majority of 401 RNA editing sites were involved in amino acid transitions to hydrophobic sites. The current phylogenetic analysis based on PCGs revealed the evolution of Lamiales and a close relationship between E. longipes and Avicennia marina. However, comparative analyses, including size, structure, GC contents, and genes, reflected the variation in the mitogenomes within Acanthaceae, and the collinearity analysis confirmed the low level of conservation in the genomes of related species in Lamiales. Moreover, the Ka/Ks analysis revealed that negative selection occurred on most PCGs, with the notable exception of ccmB, which underwent positive selection. Interestingly, the ccmB gene had the most protein editing sites. CONCLUSIONS This study will be invaluable for the mitochondrial study of Acanthaceae. It also provides extensive information for functional genetic and adaptive studies of Echinacanthus in karst regions in the future.
Collapse
Affiliation(s)
- Chunming Gao
- College of Biological and Environmental Engineering, Shandong University of Aeronautics, Binzhou, 256600, China
| | - Shu Wang
- State Key Laboratory of Plant Diversity and Specialty Crops, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, Guangdong, 510650, China
- Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, Guangzhou, 510650, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Yusong Huang
- State Key Laboratory of Plant Diversity and Specialty Crops, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, Guangdong, 510650, China
- Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, Guangzhou, 510650, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
- Guangxi Key Laboratory of Functional Phytochemicals Research and Utilization, Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and the Chinese Academy of Sciences, Guilin, Guangxi, 541006, China
| | - Yunfei Deng
- State Key Laboratory of Plant Diversity and Specialty Crops, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, Guangdong, 510650, China.
- Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, Guangzhou, 510650, China.
- Southeast Asia Bioaffiliationersity Research Institute, Chinese Academy of Sciences, Yezin, Nay Pyi Taw, 05282, Myanmar.
| |
Collapse
|
3
|
Gatica-Soria LM, Roulet ME, Tulle WD, Sato HA, Barrandeguy ME, Sanchez-Puerta MV. Highly variable mitochondrial chromosome content in a holoparasitic plant due to recurrent gains of foreign circular DNA. PHYSIOLOGIA PLANTARUM 2025; 177:e70231. [PMID: 40259521 DOI: 10.1111/ppl.70231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 03/07/2025] [Accepted: 03/20/2025] [Indexed: 04/23/2025]
Abstract
Multichromosomal mitochondrial genomes (mtDNAs) in eukaryotes exhibit remarkable structural diversity, yet intraspecific variability and the origin of the individual chromosomes remain poorly understood. We focus on a holoparasitic angiosperm with an mtDNA consisting of 65 chromosomes largely composed of foreign DNA acquired by horizontal gene transfer (HGT) from its mimosoid hosts. The frequency, timing and population dynamics of these HGT events have not been examined. Here, we sampled different individuals of the holoparasite Lophophytum mirabile, along with their host plants, to assess mtDNA intraspecific variability and capture recent events that may bring insights into the HGT process. We also gathered mitochondrial data from 43 mimosoids to identify older and recent HGT events and assess precisely the proportion of foreign DNA. Through comparative genomic and evolutionary analyses, we uncovered great intraspecific variability in chromosome content and defined the mitochondrial pangenome of L. mirabile with 105 distinct chromosomes. The estimated foreign content reaches 93.5% of the mtDNA, including 73 fully foreign chromosomes that support the circle-mediated HGT model as a key mechanism for their acquisition. We inferred recurrent DNA transfers from the host plants, leading to new mitochondrial chromosomes that replicate autonomously. Our results emphasize the importance of adopting a pangenomic approach to fully capture the genetic diversity and evolution of multichromosomal mitochondrial genomes. This study shows that HGT can strongly influence the mtDNA content and generate enormous intraspecific variability even in geographically close individuals.
Collapse
Affiliation(s)
- Leonardo Martin Gatica-Soria
- IBAM, Universidad Nacional de Cuyo, CONICET, Facultad de Ciencias Agrarias, Chacras de Coria, Argentina
- Facultad de Ciencias Exactas y Naturales, Padre Jorge Contreras 1300, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - M Emilia Roulet
- IBAM, Universidad Nacional de Cuyo, CONICET, Facultad de Ciencias Agrarias, Chacras de Coria, Argentina
| | - Walter D Tulle
- IBAM, Universidad Nacional de Cuyo, CONICET, Facultad de Ciencias Agrarias, Chacras de Coria, Argentina
| | - Hector A Sato
- Facultad de Ciencias Agrarias (UNJu), Catedra de Botanica General-Herbario JUA, Jujuy, CP, Argentina
| | - M Eugenia Barrandeguy
- Universidad Nacional de Misiones, Facultad de Ciencias Exactas, Químicas y Naturales. Laboratorio de Genética de Poblaciones y del Paisaje, Posadas, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Biología Subtropical-Nodo Posadas (UNaM- CONICET), Argentina
| | - M Virginia Sanchez-Puerta
- IBAM, Universidad Nacional de Cuyo, CONICET, Facultad de Ciencias Agrarias, Chacras de Coria, Argentina
- Facultad de Ciencias Exactas y Naturales, Padre Jorge Contreras 1300, Universidad Nacional de Cuyo, Mendoza, Argentina
| |
Collapse
|
4
|
Wang M, Yang J, Hou Z, Li C, Niu Z, Zhang B, Xue Q, Liu W, Ding X. The multi-chromosomal structure of mitogenomes provided new insights into the accurate authentication of medicinal Dendrobium species. BMC PLANT BIOLOGY 2025; 25:202. [PMID: 39955482 PMCID: PMC11829489 DOI: 10.1186/s12870-025-06240-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 02/11/2025] [Indexed: 02/17/2025]
Abstract
BACKGROUND The global prevalence of herbal-based health care rapidly promoted requirements for medicinal plant resources. Accurate classification and identification are crucial to assuring the safety of these herbal sources. RESULTS Here, we took Dendrobium (Orchidaceae), a famous horticultural and medicinal plant taxon, as the study focus to establish an effective authentication approach for medicinal plants based on new mtDNA barcodes. We first de novo assembled three complete mitogenomes using Illumina and Nanopore data. These three mitogenomes were 635,454 bp-831,745 bp long with multichromosomal structures. Moreover, the three mitogenomes were compared to the other four published Dendrobium mitogenomes. The results revealed great variations of the structure and repeat contents among these mitogenomes, while gene contents and genomic sequences were relatively conserved. The analysis of mutational hotspots showed eight mitochondrial DNA regions with high sequence variability (> 5%) at the interspecific level, which could provide abundant informatic loci for phylogeny, genetic diversity, and identification analyses. We also newly obtained mitochondrial sequences of 45 individuals from 15 Dendrobium species for authentication analysis. These 15 Dendrobium species were successfully identified by the whole mitogenome sequences and the isoform combination (Mt17 + Mt19) respectively. CONCLUSIONS Our findings revealed that mitochondrial isoforms (chromosomes) could be used as super-barcodes for Dendrobium species authentication. The multi-chromosomal structure of mitogenomes provided new insights into the accurate authentication of medical plants.
Collapse
Affiliation(s)
- Mengting Wang
- College of Life Sciences, Nanjing Normal University, Wen Yuan Road No.1, Nanjing, China
- Ningbo Key Laboratory of Agricultural Germplasm Resources Mining and Environmental Regulation, College of Science and Technology, Ningbo University, Cixi, China
| | - Jiapeng Yang
- College of Life Sciences, Nanjing Normal University, Wen Yuan Road No.1, Nanjing, China
| | - Zhenyu Hou
- College of Life Sciences, Nanjing Normal University, Wen Yuan Road No.1, Nanjing, China
| | - Chao Li
- College of Life Sciences, Nanjing Normal University, Wen Yuan Road No.1, Nanjing, China
| | - Zhitao Niu
- College of Life Sciences, Nanjing Normal University, Wen Yuan Road No.1, Nanjing, China
| | - Benhou Zhang
- College of Life Sciences, Nanjing Normal University, Wen Yuan Road No.1, Nanjing, China
| | - Qingyun Xue
- College of Life Sciences, Nanjing Normal University, Wen Yuan Road No.1, Nanjing, China
| | - Wei Liu
- College of Life Sciences, Nanjing Normal University, Wen Yuan Road No.1, Nanjing, China
| | - Xiaoyu Ding
- College of Life Sciences, Nanjing Normal University, Wen Yuan Road No.1, Nanjing, China.
| |
Collapse
|
5
|
Krutovsky KV, Popova AA, Yakovlev IA, Yanbaev YA, Matveev SM. Response of Pedunculate Oak ( Quercus robur L.) to Adverse Environmental Conditions in Genetic and Dendrochronological Studies. PLANTS (BASEL, SWITZERLAND) 2025; 14:109. [PMID: 39795368 PMCID: PMC11723010 DOI: 10.3390/plants14010109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/27/2024] [Accepted: 12/31/2024] [Indexed: 01/13/2025]
Abstract
Pedunculate oak (Quercus robur L.) is widely distributed across Europe and serves critical ecological, economic, and recreational functions. Investigating its responses to stressors such as drought, extreme temperatures, pests, and pathogens provides valuable insights into its capacity to adapt to climate change. Genetic and dendrochronological studies offer complementary perspectives on this adaptability. Tree-ring analysis (dendrochronology) reveals how Q. robur has historically responded to environmental stressors, linking growth patterns to specific conditions such as drought or temperature extremes. By examining tree-ring width, density, and dynamics, researchers can identify periods of growth suppression or enhancement and predict forest responses to future climatic events. Genetic studies further complement this by uncovering adaptive genetic diversity and inheritance patterns. Identifying genetic markers associated with stress tolerance enables forest managers to prioritize the conservation of populations with higher adaptive potential. These insights can guide reforestation efforts and support the development of climate-resilient oak populations. By integrating genetic and dendrochronological data, researchers gain a holistic understanding of Q. robur's mechanisms of resilience. This knowledge is vital for adaptive forest management and sustainable planning in the face of environmental challenges, ultimately helping to ensure the long-term viability of oak populations and their ecosystems. The topics covered in this review are very broad. We tried to include the most relevant, important, and significant studies, but focused mainly on the relatively recent Eastern European studies because they include the most of the species' area. However, although more than 270 published works have been cited in this review, we have, of course, missed some published studies. We apologize in advance to authors of those relevant works that have not been cited.
Collapse
Affiliation(s)
- Konstantin V. Krutovsky
- Department of Forest Genetics and Forest Tree Breeding, Georg-August University of Göttingen, 37077 Göttingen, Germany
- Center for Integrated Breeding Research, Georg-August University of Göttingen, 37075 Göttingen, Germany
- Laboratory of Forest Genomics, Genome Research and Education Center, Institute of Fundamental Biology and Biotechnology, Siberian Federal University, 660041 Krasnoyarsk, Russia
- Department of Genomics and Bioinformatics, Institute of Fundamental Biology and Biotechnology, Siberian Federal University, 660041 Krasnoyarsk, Russia
- Laboratory of Population Genetics, N. I. Vavilov Institute of General Genetics, Russian Academy of Sciences, 119333 Moscow, Russia
- Scientific and Methodological Center, G. F. Morozov Voronezh State University of Forestry and Technologies, 394087 Voronezh, Russia
| | - Anna A. Popova
- Department of Forest Genetics, Biotechnology and Plant Physiology, G.F. Morozov Voronezh State University of Forestry and Technologies, 394087 Voronezh, Russia;
| | - Igor A. Yakovlev
- Division of Biotechnology and Plant Health, Norwegian Institute of Bioeconomy Research, NO-1431 Ås, Norway;
| | - Yulai A. Yanbaev
- Department of Forestry and Landscape Design, Bashkir State Agrarian University, 450001 Ufa, Russia;
- Ufa Institute of Biology, Ufa Federal Research Center, Russian Academy of Sciences, 450054 Ufa, Russia
| | - Sergey M. Matveev
- Department of Silviculture, Forest Inventory and Forest Management, G.F. Morozov Voronezh State University of Forestry and Technologies, 394087 Voronezh, Russia;
| |
Collapse
|
6
|
Zuo W, Li H. Assemble and comparative analysis of the mitochondrial genome of Rhododendron delavayi: Insights into phylogenetic relationships and genomic variations. Gene 2024; 927:148741. [PMID: 38969246 DOI: 10.1016/j.gene.2024.148741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 04/07/2024] [Accepted: 06/28/2024] [Indexed: 07/07/2024]
Abstract
Rhododendron delavayi, a notable ornamental plant primarily found in regions of China like Yunnan and Guizhou provinces, holds substantial horticultural value. To elucidate the systematic phylogenetic relationships and organelle genomic differences within R. delavayi and related Rhododendron species, we conducted sequencing and assembly of the complete mitochondrial genome of R. delavayi. The full-length mitochondrial genome of it was a singular circular molecule spanning 1,009,263 bp, comprising 53 protein-coding genes, including 18 transfer RNA (tRNA) genes, 3 ribosomal RNA (rRNA) genes, and 32 protein-coding genes. A total of 1,182 simple sequence repeats (SSRs) loci were identified in the R. delavayi mitochondrial genome, primarily consisting of single nucleotide, dinucleotide, and trinucleotide repeats. Nucleotide diversity analysis highlighted five genes (atp6, atp9, cox2, nad1, and rpl10) with the highest diversity within the mitochondrial genomes of Rhododendron genus. Comparative analysis of the mitochondrial genome of R. delavayi with those of four other Rhododendron species indicated complex rearrangements in 21 genes, including rps4, nad6, rps3, atp6, cob, atp9, nad7, among others. The mitochondrial phylogenetic tree revealed a close relationship between R. delavayi and R. decorum, forming a sister clade to R. × pulchrum and R. simsii. Furthermore, 126 plastid-to-mitochondrial gene transfers in R. delavayi were identified, ranging from 30 bp to 19,385 bp. These fragments collectively constituted 47.54 % and 9.52 % of the chloroplast and mitochondrial genomes (202,169 bp), respectively. Complex mitochondrial-to-mitochondrial transfers were also observed, with 843 identified fragments totaling 312,036 bp (30.92 % of the mitochondrial genome). Segments exceeding 10 kb may mediate homologous recombination within the mitochondrial molecules. Remarkably, our study underscores that the mitochondrial genome of R. delavayi was the largest reported within the Rhododendron genus to date. The intricate rearrangements observed in the mitochondrial genomes of Rhododendron species, alone with the identification of five potential molecular marker sites, provided valuable insights for species classification and parentage identification within the Rhododendron genus.
Collapse
Affiliation(s)
- Weiwei Zuo
- College of Agriculture, Guizhou University, Guiyang 550025, China.
| | - Huie Li
- College of Agriculture, Guizhou University, Guiyang 550025, China.
| |
Collapse
|
7
|
Zhou P, Li F, Zhang Q, Zhang M. Complete Mitogenome Assembly and Comparative Analysis of Vaccinium bracteatum (Ericaceae), a Rich Source of Health-Promoting Molecules. Int J Mol Sci 2024; 25:12027. [PMID: 39596097 PMCID: PMC11593731 DOI: 10.3390/ijms252212027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 11/06/2024] [Accepted: 11/07/2024] [Indexed: 11/28/2024] Open
Abstract
Vaccinium bracteatum is a valuable plant used both as food and medicine in China, but low production limits the development of its industry. As such, it is important to develop genetic resources for the high-value species for preservation of wild populations and utilization. The complete chloroplast and nuclear genomes have already been available; however, its mitogenome has not yet been characterized. Here, the V. bracteatum mitogenome was assembled using HiFi reads, and a comparative analysis was conducted. The mitogenome was a circular sequence of 708,384 bp with a GC content of 45.28%, in which 67 genes were annotated, including 36 protein-coding genes, 26 tRNA genes, 3 rRNA genes, and 2 pseudogenes. Overall, 370 dispersed repeats, 161 simple repeats, and 42 tandem repeats were identified, and 360 RNA editing sites were predicted. There was extensive DNA migration among the three genomes. In addition, most of the protein-coding genes underwent purifying selection throughout evolution, and the nucleotide diversity was highly variable. In addition, comparative analysis indicated that the sizes, structures, and gene contents of the mitogenomes differed significantly, but the GC contents and functional genes were relatively conserved among the Ericales species. Mitogenome-based phylogenetic analysis indicated the precise. evolutionary and taxonomic status of V. bracteatum. The complete mitogenome represents the last link of the reference genome of V. bracteatum and lays the foundation for effective utilization and molecular breeding of this plant.
Collapse
Affiliation(s)
- Peng Zhou
- Jiangsu Academy of Forestry, 109 Danyang Road, Dongshanqiao, Nanjing 211153, China; (P.Z.); (F.L.)
| | - Fei Li
- Jiangsu Academy of Forestry, 109 Danyang Road, Dongshanqiao, Nanjing 211153, China; (P.Z.); (F.L.)
| | - Qiang Zhang
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of State Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Life Sciences, Nanjing Forestry University, Nanjing 210037, China
| | - Min Zhang
- Jiangsu Academy of Forestry, 109 Danyang Road, Dongshanqiao, Nanjing 211153, China; (P.Z.); (F.L.)
| |
Collapse
|
8
|
Chen S, Pan Y, Qiu S, Qiu G. Assembly and comparative analysis of the multichromosomal mitochondrial genome of globally endangered seagrass Halophila beccarii. BMC PLANT BIOLOGY 2024; 24:1040. [PMID: 39491042 PMCID: PMC11533286 DOI: 10.1186/s12870-024-05765-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 10/30/2024] [Indexed: 11/05/2024]
Abstract
BACKGROUND Halophila beccarii is one of the oldest two generations of seagrass plants and one of the 10 species of seagrass currently at risk of extinction worldwide. Therefore, how to effectively protect the H. beccarii resources from extinction is a huge challenge. Molecular biology research can provide a scientific basis for species conservation. So far, there has been no detailed analysis of the mitochondrial genome of the genus Halophila. RESULTS The mitochondrial genome of H. beccarii was assembled into 28 circular chromosomes, ranging in length from 41,738 bp to 104,744 bp, with a total length of 1,964,072 bp and a GC content of 46.71%. It contains 39 genes, including 26 protein coding genes, 10 tRNA genes, and 3 rRNA genes. Repeat sequence analysis and prediction of RNA editing sites revealed a total of 850 dispersed repeats, 1,205 simple repeats, 61 tandem repeats, and 120 RNA editing sites. Analysis of codon usage indicates that codons ending in A/U are preferred. Gene migration between the mitochondrial genome and the chloroplast genome was observed through homologous fragment detection. In addition, Ka/Ks analysis showed that most protein coding genes in the mitochondrial genome experienced negative selection, while only the nad3 gene experienced potential positive selection in most Alismatales. Nucleotide polymorphism analysis revealed variations in each gene, with rpl10 being the most significant. In addition, comparative analysis shows that the GC content is conserved, but there are significant differences in the size and structure of mitochondrial genomes among different species of Alismatales. The phylogenetic analysis based on the mitochondrial genome reflects the exact evolutionary and taxonomic status of H. beccarii. CONCLUSION In this study, we sequenced and annotated the mitochondrial genome of H. beccarii, and compared it with the mitochondrial genomes of other plants in Alismatales. Our findings enrich the mitogenome database of seagrass plants and highlight the potential for mitochondrial genes to help decipher plant evolutionary history.
Collapse
Affiliation(s)
- Siting Chen
- Guangxi Key Lab of Mangrove Conservation and Utilization, Guangxi Academy of Marine Sciences (Guangxi Mangrove Research Center), Guangxi Academy of Sciences, Beihai, Guangxi, 536007, China
| | - Yuanfang Pan
- Guangxi Key Lab of Mangrove Conservation and Utilization, Guangxi Academy of Marine Sciences (Guangxi Mangrove Research Center), Guangxi Academy of Sciences, Beihai, Guangxi, 536007, China
| | - Siting Qiu
- Guangxi Key Lab of Mangrove Conservation and Utilization, Guangxi Academy of Marine Sciences (Guangxi Mangrove Research Center), Guangxi Academy of Sciences, Beihai, Guangxi, 536007, China
| | - Guanglong Qiu
- Guangxi Key Lab of Mangrove Conservation and Utilization, Guangxi Academy of Marine Sciences (Guangxi Mangrove Research Center), Guangxi Academy of Sciences, Beihai, Guangxi, 536007, China.
| |
Collapse
|
9
|
Wang Z, Wang R, Sang Y, Wang T, Su Y, Liao W. Comparative analysis of mitochondrial genomes of invasive weed Mikania micrantha and its indigenous congener Mikania cordata. Int J Biol Macromol 2024; 281:136357. [PMID: 39378918 DOI: 10.1016/j.ijbiomac.2024.136357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 07/21/2024] [Accepted: 10/04/2024] [Indexed: 10/10/2024]
Abstract
Mikania micrantha and Mikania cordata are two distinct species in China. The former is notorious as one of the top 100 worst invasive species, whereas the latter is an indigenous species harmless to native plants or the environment. They form an ideal congener pair for comparative studies aimed at deeply understanding the invasion mechanisms of the exotic weed. In this study, we have assembled and annotated the mitogenomes of both species using Illumina and PacBio sequencing data and compared their characteristic differences. The complete mitogenome of M. micrantha is a double-stranded DNA with a length of 336,564 bp, while the mitogenome of M. cordata exhibits a branching structure, consisting of two small circular molecules and six linear molecules, with a combined length totaling 335,444 bp. Compared to M. cordata, M. micrantha has less SSRs, tandem repeats, dispersed repeats, mitochondrial protein coding genes (PCGs). The two plants show similar codon usage patterns. This comparative study has revealed the structure and function of the mitogenomes of the two species and laid a solid foundation for investigating the effects of gene loss and duplication on the development of invasive traits in M. micrantha.
Collapse
Affiliation(s)
- Zhen Wang
- School of Life Sciences, Sun Yat-sen University, 510275 Guangzhou, China
| | - Ruonan Wang
- School of Life Sciences, Sun Yat-sen University, 510275 Guangzhou, China
| | - Yatong Sang
- School of Life Sciences, Sun Yat-sen University, 510275 Guangzhou, China
| | - Ting Wang
- College of Life Sciences, South China Agricultural University, 510642 Guangzhou, China; Research Institute of Sun Yat-sen University in Shenzhen, 518057 Shenzhen, China
| | - Yingjuan Su
- School of Life Sciences, Sun Yat-sen University, 510275 Guangzhou, China; Research Institute of Sun Yat-sen University in Shenzhen, 518057 Shenzhen, China.
| | - Wenbo Liao
- School of Life Sciences, Sun Yat-sen University, 510275 Guangzhou, China.
| |
Collapse
|
10
|
Sun M, Wang J, Smagghe G, Dai R, Wang X, Yang Y, Li M, You S. Description of mitochondrial genomes and phylogenetic analysis of Megophthalminae (Hemiptera: Cicadellidae). JOURNAL OF INSECT SCIENCE (ONLINE) 2024; 24:9. [PMID: 39657582 PMCID: PMC11631095 DOI: 10.1093/jisesa/ieae109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/20/2024] [Accepted: 10/30/2024] [Indexed: 12/12/2024]
Abstract
To elucidate phylogenetic relationships within the leafhopper's subfamily Megophthalminae (Hemiptera: Cicadellidae), mitogenomes of 12 species of the subfamily were sequenced and assembled. These were added to the mitogenomes of the eight other species that are currently available. Mitogenome size ranged from 15,193 bp in Onukigallia onukii (Matsumura, 1912) to 15,986 bp in Multinervis guangxiensis (Li and Li, 2013), they all contained 37 genes, and gene order was similar to that in other leafhoppers. Nucleotide composition analysis showed that the AT content was higher than that of GC, and the protein-coding genes usually ended with A/T at the 3rd codon position. The Ka/Ks ratio showed that the CYTB gene has the slowest evolutionary rate, while ND4 is the gene with the fastest evolutionary rate. Relative synonymous codon usage analysis revealed the most frequently used codon was UUA (L), followed by CGA (R), and the least frequently used codon was CCG (P). Parity plot and neutrality plot analyses showed that the codon usage bias of mitochondrial genes was influenced by natural selection and mutation pressure. However, natural selection plays a major role, while the effect of mutation pressure was small. Effective number of codons values were 40.15-49.17, which represented relatively low codon bias. Phylogenetic analyses based on three datasets (AA, 13PCG, 13PCG_2rRNA) using two methods (maximum likelihood and Bayesian inference). In the obtained topology, the Megophthalminae species were clustered into a monophyletic group. In conclusion, our results clarify structural modules of the mitochondrial genes and confirm the monophyly of Megophthalminae within Cicadellidae.
Collapse
Affiliation(s)
- Mingming Sun
- Department of Institute of Entomology, Guizhou University, The Provincial Key Laboratory for Agricultural Pest Management Mountainous Region, Guiyang, Guizhou, China
| | - Jiajia Wang
- Department of Institute of Entomology, Guizhou University, The Provincial Key Laboratory for Agricultural Pest Management Mountainous Region, Guiyang, Guizhou, China
- Department of College of Biology and Food Engineering, Chuzhou University, Chuzhou, Anhui, China
| | - Guy Smagghe
- Department of Institute of Entomology, Guizhou University, The Provincial Key Laboratory for Agricultural Pest Management Mountainous Region, Guiyang, Guizhou, China
- Department of Plants and Crops, Ghent University, Ghent, Belgium
- Department of Biology, Vrije Universiteit Brussels (VUB), Brussels, Belgium
| | - RenHuai Dai
- Department of Institute of Entomology, Guizhou University, The Provincial Key Laboratory for Agricultural Pest Management Mountainous Region, Guiyang, Guizhou, China
| | - Xianyi Wang
- Department of Institute of Entomology, Guizhou University, The Provincial Key Laboratory for Agricultural Pest Management Mountainous Region, Guiyang, Guizhou, China
- Department of Engineering Research Center of Medical Biotechnology, School of Biology and Engineering, Guizhou Medical University, Guiyang, Guizhou, China
| | - Yanqiong Yang
- Department of Institute of Entomology, Guizhou University, The Provincial Key Laboratory for Agricultural Pest Management Mountainous Region, Guiyang, Guizhou, China
| | - Min Li
- Department of Institute of Entomology, Guizhou University, The Provincial Key Laboratory for Agricultural Pest Management Mountainous Region, Guiyang, Guizhou, China
| | - Siying You
- Department of Institute of Entomology, Guizhou University, The Provincial Key Laboratory for Agricultural Pest Management Mountainous Region, Guiyang, Guizhou, China
| |
Collapse
|
11
|
Xie Z, Zhang Y, Wu L, Li G. Mitochondrial Genome Assembly and Structural Characteristics Analysis of Gentiana rigescens. Int J Mol Sci 2024; 25:11428. [PMID: 39518981 PMCID: PMC11546909 DOI: 10.3390/ijms252111428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/18/2024] [Accepted: 10/19/2024] [Indexed: 11/16/2024] Open
Abstract
Gentiana rigescens, an alpine plant with significant medicinal value, possesses a complex genetic background. However, comprehensive genomic research on G. rigescens is still lacking, particularly concerning its organelle genome. In this study, G. rigescens was studied to sequence the mitochondrial genome (mitogenome) and ascertain the assembly, informational content, and developmental expression of the mitogenome. The mitogenome of G. rigescens was 393,595 bp in length and comprised four circular chromosomes ranging in size from 6646 bp to 362,358 bp. The GC content was 43.73%. The mitogenome featured 30 distinct protein-coding genes, 26 tRNA genes, and 3 rRNA genes. The mitogenome of G. rigescens also revealed 70 SSRs, which were mostly tetra-nucleotides. In addition, 48 homologous fragments were found between the mitogenome and the chloroplast genome, with the longest measuring 23,330 bp. The documentation of the mitochondrial genome of G. rigescens is instrumental in advancing the understanding of its physiological development. Decoding the G. rigescens mitogenome will offer valuable genetic material for phylogenetic research on Gentianaceae and enhance the use of species germplasm resources.
Collapse
Affiliation(s)
- Zongyi Xie
- College of Chinese Medicine, Yunnan University of Chinese Medicine, Kunming 650500, China
| | - Yingmin Zhang
- College of Chinese Medicine, Yunnan University of Chinese Medicine, Kunming 650500, China
| | - Lixin Wu
- College of Chinese Medicine, Yunnan University of Chinese Medicine, Kunming 650500, China
| | - Guodong Li
- College of Chinese Medicine, Yunnan University of Chinese Medicine, Kunming 650500, China
- Yunnan Key Laboratory of Dai and Yi Medicines, Yunnan University of Chinese Medicine, Kunming 650500, China
| |
Collapse
|
12
|
Tu XD, Xin YX, Fu HH, Zhou CY, Liu QL, Tang XH, Zou LH, Liu ZJ, Chen SP, Lin WJ, Li MH. The complete mitochondrial genome of Castanopsis carlesii and Castanea henryi reveals the rearrangement and size differences of mitochondrial DNA molecules. BMC PLANT BIOLOGY 2024; 24:988. [PMID: 39428457 PMCID: PMC11492686 DOI: 10.1186/s12870-024-05618-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 09/23/2024] [Indexed: 10/22/2024]
Abstract
BACKGROUND Castanopsis carlesii is a dominant tree species in subtropical evergreen broad-leaved forests and holds significant ecological value. It serves as an excellent timber tree species and raw material for cultivating edible fungi. Henry Chinquapin (Castanea henryi) wood is known for its hardness and resistance to water and moisture, making it an exceptional timber species. Additionally, its fruit has a sweet and fruity taste, making it a valuable food source. However, the mitogenomes of these species have not been previously reported. To gain a better understanding of them, this study successfully assembled high-quality mitogenomes of C. carlesii and Ca. henryi for the first time. RESULTS Our research reveals that the mitochondrial DNA (mtDNA) of C. carlesii exhibits a unique multi-branched conformation, while Ca. henryi primarily exists in the form of two independent molecules that can be further divided into three independent molecules through one pair of long repetitive sequences. The size of the mitogenomes of C. carlesii and Ca. henryi are 592,702 bp and 379,929 bp respectively, which are currently the largest and smallest Fagaceae mitogenomes recorded thus far. The primary factor influencing mitogenome size is dispersed repeats. Comparison with published mitogenomes from closely related species highlights differences in size, gene loss patterns, codon usage preferences, repetitive sequences, as well as mitochondrial plastid DNA segments (MTPTs). CONCLUSIONS Our study enhances the understanding of mitogenome structure and evolution in Fagaceae, laying a crucial foundation for future research on cell respiration, disease resistance, and other traits in this family.
Collapse
Affiliation(s)
- Xiong-De Tu
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Ya-Xuan Xin
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Hou-Hua Fu
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Cheng-Yuan Zhou
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Qing-Long Liu
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xing-Hao Tang
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Long-Hai Zou
- State Key Laboratory of Subtropical Silviculture, Bamboo Industry Institute, Zhejiang A&F University, Lin'an, Hangzhou, 311300, China
| | - Zhong-Jian Liu
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Shi-Pin Chen
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Wen-Jun Lin
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Ming-He Li
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
13
|
Ou T, Wu Z, Tian C, Yang Y, Li Z. Complete mitochondrial genome of Agropyron cristatum reveals gene transfer and RNA editing events. BMC PLANT BIOLOGY 2024; 24:830. [PMID: 39232676 PMCID: PMC11373303 DOI: 10.1186/s12870-024-05558-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 08/30/2024] [Indexed: 09/06/2024]
Abstract
BACKGROUND As an important forage in arid and semi-arid regions, Agropyron cristatum provides livestock with exceptionally high nutritional value. Additionally, A. cristatum exhibits outstanding genetic characteristics to endure drought and disease. Therefore, rich genetic diversity serves as a cornerstone for the improvement of major food crops. The purposes of this study were to systematically describe mitogenome of A.cristatum and preliminarily analyze its internal variations. RESULT The A. cristatum mitogenome was a single-ring molecular structure of 381,065 bp that comprised 52 genes, including 35 protein-coding, 3 rRNA and 14 tRNA genes. Among these, two pseudoprotein-coding genes and multiple copies of tRNA genes were observed. A total of 320 repetitive sequences was found to cover more than 10% of the mitogenome (105 simple sequences, 185 dispersed and 30 tandem repeats), which led to a large number of fragment rearrangements in the mitogenome of A. cristatum. Leucine was the most frequent amino acid (n = 1087,10.8%) in the protein-coding genes of A. cristatum mitogenome, and the highest usage codon was ATG (initiation codon). The number of A/T changes at the third base of the codon was much higher than that of G/C. Among 23 PCGs, the range of Pi values is from 0.0021 to 0.0539, with an average of 0.013. Additionally, 81 RNA editing sites were predicted, which were considerably fewer than those reported in other plant mitogenomes. Most of the RNA editing site base positions were concentrated at the first and second codon bases, which were C to T transitions. Moreover, we identified 95 sequence fragments (total length of 34, 343 bp) that were transferred from the chloroplast to mitochondria genes, introns, and intergenic regions. The stability of the tRNA genes was maintained during this process. Selection pressure analysis of 23 protein-coding genes shared by 15 Poaceae plants, showed that most genes were subjected to purifying selection during evolution, whereas rps4, cob, mttB, and ccmB underwent positive selection in different plants. Finally, a phylogenetic tree was constructed based on 22 plant mitogenomes, which showed that Agropyron plants have a high degree of independent heritability in Triticeae. CONCLUSION The findings of this study provide new data for a better understanding of A. cristatum genes, and demonstrate that mitogenomes are suitable for the study of plant classifications, such as those of Agropyron. Moreover, it provides a reference for further exploration of the phylogenetic relationships within Agropyron species, and establishes a theoretical basis for the subsequent development and utilization of A. cristatum plant germplasm resources.
Collapse
Affiliation(s)
- Taiyou Ou
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot, China
- Key Laboratory of Grassland Resources and Utilization of Ministry of Agriculture, Hohhot, China
| | - Zinian Wu
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot, China.
- Key Laboratory of Grassland Resources and Utilization of Ministry of Agriculture, Hohhot, China.
| | - Chunyu Tian
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot, China
- Key Laboratory of Grassland Resources and Utilization of Ministry of Agriculture, Hohhot, China
| | - Yanting Yang
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot, China
- Key Laboratory of Grassland Resources and Utilization of Ministry of Agriculture, Hohhot, China
| | - Zhiyong Li
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot, China
- Key Laboratory of Grassland Resources and Utilization of Ministry of Agriculture, Hohhot, China
| |
Collapse
|
14
|
Qu K, Liu D, Sun L, Li M, Xia T, Sun W, Xia Y. De novo assembly and comprehensive analysis of the mitochondrial genome of Taxus wallichiana reveals different repeats mediate recombination to generate multiple conformations. Genomics 2024; 116:110900. [PMID: 39067796 DOI: 10.1016/j.ygeno.2024.110900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 07/09/2024] [Accepted: 07/20/2024] [Indexed: 07/30/2024]
Abstract
Taxus plants are the exclusive source of paclitaxel, an anticancer drug with significant medicinal and economic value. Interspecies hybridization and gene introgression during evolution have obscured distinctions among Taxus species, complicating their phylogenetic classification. While the chloroplast genome of Taxus wallichiana, a widely distributed species in China, has been sequenced, its mitochondrial genome (mitogenome) remains uncharacterized.We sequenced and assembled the T. wallichiana mitogenome using BGI short reads and Nanopore long reads, facilitating comparisons with other gymnosperm mitogenomes. The T. wallichiana mitogenome spanning 469,949 bp, predominantly forms a circular configuration with a GC content of 50.51%, supplemented by 3 minor configurations mediated by one pair of LRs and two pairs of IntRs. It includes 32 protein-coding genes, 7 tRNA genes, and 3 rRNA genes, several of which exist in multiple copies.We detailed the mitogenome's structure, codon usage, RNA editing, and sequence migration between organelles, constructing a phylogenetic tree to elucidate evolutionary relationships. Unlike typical gymnosperm mitochondria, T. wallichiana shows no evidence of mitochondrial-plastid DNA transfer (MTPT), highlighting its unique genomic architecture. Synteny analysis indicated extensive genomic rearrangements in T. wallichiana, likely driven by recombination among abundant repetitive sequences. This study offers a high-quality T. wallichiana mitogenome, enhancing our understanding of gymnosperm mitochondrial evolution and supporting further cultivation and utilization of Taxus species.
Collapse
Affiliation(s)
- Kai Qu
- Shandong Provincial Center of Forest and Grass Germplasm Resources, Jinan 250102, China; National Engineering Laboratory of Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Dan Liu
- Shandong Provincial Center of Forest and Grass Germplasm Resources, Jinan 250102, China; National Engineering Laboratory of Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China.
| | - Limin Sun
- Forestry College of Shandong Agricultural University, Taian 271018, China
| | - Meng Li
- Shandong Provincial Center of Forest and Grass Germplasm Resources, Jinan 250102, China
| | - Tiantian Xia
- Shandong Jianzhu University, Jinan 250101, China
| | - Weixia Sun
- Shandong Provincial Center of Forest and Grass Germplasm Resources, Jinan 250102, China
| | - Yufei Xia
- National Engineering Laboratory of Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
15
|
Li Y, Zheng S, Wang T, Liu M, Kozlowski G, Yi L, Song Y. New insights on the phylogeny, evolutionary history, and ecological adaptation mechanism in cycle-cup oaks based on chloroplast genomes. Ecol Evol 2024; 14:e70318. [PMID: 39290669 PMCID: PMC11407850 DOI: 10.1002/ece3.70318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 08/28/2024] [Accepted: 09/03/2024] [Indexed: 09/19/2024] Open
Abstract
Cycle-cup oaks (Quercus section Cyclobalanopsis) are one of the principal components of forests in the tropical and subtropical climates of East and Southeast Asia. They have experienced relatively recent increases in the diversification rate, driven by changing climates and the Himalayan orogeny. However, the evolutionary history and adaptive mechanisms at the chloroplast genome level in cycle-cup oaks remain largely unknown. Therefore, we studied this problem by conducting chloroplast genomics on 50 of the ca. 90 species. Comparative genomics and other analyses showed that Quercus section Cyclobalanopsis had a highly conserved chloroplast genome structure. Highly divergent regions, such as the ndhF and ycf1 gene regions and the petN-psbM and rpoB-trnC-GCA intergenic spacer regions, provided potential molecular markers for subsequent analysis. The chloroplast phylogenomic tree indicated that Quercus section Cyclobalanopsis was not monophyletic, which mixed with the other two sections of subgenus Cerris. The reconstruction of ancestral aera inferred that Palaeotropics was the most likely ancestral range of Quercus section Cyclobalanopsis, and then dispersed to Sino-Japan and Sino-Himalaya. Positive selection analysis showed that the photosystem genes had the lowest ω values among the seven functional gene groups. And nine protein-coding genes containing sites for positive selection: ndhA, ndhD, ndhF, ndhH, rbcL, rpl32, accD, ycf1, and ycf2. This series of analyses together revealed the phylogeny, evolutionary history, and ecological adaptation mechanism of the chloroplast genome of Quercus section Cyclobalanopsis in the long river of earth history. These chloroplast genome data provide valuable information for deep insights into phylogenetic relationships and intraspecific diversity in Quercus.
Collapse
Affiliation(s)
- Yu Li
- Eastern China Conservation Centre for Wild Endangered Plant ResourcesShanghai Chenshan Botanical GardenShanghaiChina
- College of Forestry and BiotechnologyZhejiang A&F UniversityHangzhouChina
| | - Si‐Si Zheng
- Eastern China Conservation Centre for Wild Endangered Plant ResourcesShanghai Chenshan Botanical GardenShanghaiChina
| | - Tian‐Rui Wang
- Eastern China Conservation Centre for Wild Endangered Plant ResourcesShanghai Chenshan Botanical GardenShanghaiChina
| | - Mei‐Hua Liu
- College of Forestry and BiotechnologyZhejiang A&F UniversityHangzhouChina
| | - Gregor Kozlowski
- Eastern China Conservation Centre for Wild Endangered Plant ResourcesShanghai Chenshan Botanical GardenShanghaiChina
- Department of Biology and Botanic GardenUniversity of FribourgFribourgSwitzerland
- Natural History Museum FribourgFribourgSwitzerland
| | - Li‐Ta Yi
- College of Forestry and BiotechnologyZhejiang A&F UniversityHangzhouChina
| | - Yi‐Gang Song
- Eastern China Conservation Centre for Wild Endangered Plant ResourcesShanghai Chenshan Botanical GardenShanghaiChina
- College of Forestry and BiotechnologyZhejiang A&F UniversityHangzhouChina
| |
Collapse
|
16
|
Luo X, Gu C, Gao S, Li M, Zhang H, Zhu S. Complete mitochondrial genome assembly of Zizania latifolia and comparative genome analysis. FRONTIERS IN PLANT SCIENCE 2024; 15:1381089. [PMID: 39184575 PMCID: PMC11341417 DOI: 10.3389/fpls.2024.1381089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 06/26/2024] [Indexed: 08/27/2024]
Abstract
Zizania latifolia (Griseb.) Turcz. ex Stapf has been cultivated as a popular aquatic vegetable in China due to its important nutritional, medicinal, ecological, and economic values. The complete mitochondrial genome (mitogenome) of Z. latifolia has not been previously studied and reported, which has hindered its molecular systematics and understanding of evolutionary processes. Here, we assembled the complete mitogenome of Z. latifolia and performed a comprehensive analysis including genome organization, repetitive sequences, RNA editing event, intercellular gene transfer, phylogenetic analysis, and comparative mitogenome analysis. The mitogenome of Z. latifolia was estimated to have a circular molecule of 392,219 bp and 58 genes consisting of three rRNA genes, 20 tRNA genes, and 35 protein-coding genes (PCGs). There were 46 and 20 simple sequence repeats (SSRs) with different motifs identified from the mitogenome and chloroplast genome of Z. latifolia, respectively. Furthermore, 49 homologous fragments were observed to transfer from the chloroplast genome to the mitogenome of Z. latifolia, accounting for 47,500 bp, presenting 12.1% of the whole mitogenome. In addition, there were 11 gene-containing homologous regions between the mitogenome and chloroplast genome of Z. latifolia. Also, approximately 85% of fragments from the mitogenome were duplicated in the Z. latifolia nuclear genome. Selection pressure analysis revealed that most of the mitochondrial genes were highly conserved except for ccmFc, ccmFn, matR, rps1, and rps3. A total of 93 RNA editing sites were found in the PCGs of the mitogenome. Z. latifolia and Oryza minuta are the most closely related, as shown by collinear analysis and the phylogenetic analysis. We found that repeat sequences and foreign sequences in the mitogenomes of Oryzoideae plants were associated with genome rearrangements. In general, the availability of the Z. latifolia mitogenome will contribute valuable information to our understanding of the molecular and genomic aspects of Zizania.
Collapse
Affiliation(s)
| | | | | | | | | | - Shidong Zhu
- College of Horticulture, Anhui Agricultural University, Hefei, China
| |
Collapse
|
17
|
Xie P, Wu J, Lu M, Tian T, Wang D, Luo Z, Yang D, Li L, Yang X, Liu D, Cheng H, Tan J, Yang H, Zhu D. Assembly and comparative analysis of the complete mitochondrial genome of Fritillaria ussuriensis Maxim. (Liliales: Liliaceae), an endangered medicinal plant. BMC Genomics 2024; 25:773. [PMID: 39118028 PMCID: PMC11312713 DOI: 10.1186/s12864-024-10680-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 08/01/2024] [Indexed: 08/10/2024] Open
Abstract
BACKGROUND Fritillaria ussuriensis is an endangered medicinal plant known for its notable therapeutic properties. Unfortunately, its population has drastically declined due to the destruction of forest habitats. Thus, effectively protecting F. ussuriensis from extinction poses a significant challenge. A profound understanding of its genetic foundation is crucial. To date, research on the complete mitochondrial genome of F. ussuriensis has not yet been reported. RESULTS The complete mitochondrial genome of F. ussuriensis was sequenced and assembled by integrating PacBio and Illumina sequencing technologies, revealing 13 circular chromosomes totaling 737,569 bp with an average GC content of 45.41%. A total of 55 genes were annotated in this mitogenome, including 2 rRNA genes, 12 tRNA genes, and 41 PCGs. The mitochondrial genome of F. ussuriensis contained 192 SSRs and 4,027 dispersed repeats. In the PCGs of F. ussuriensis mitogenome, 90.00% of the RSCU values exceeding 1 exhibited a preference for A-ended or U-ended codons. In addition, 505 RNA editing sites were predicted across these PCGs. Selective pressure analysis suggested negative selection on most PCGs to preserve mitochondrial functionality, as the notable exception of the gene nad3 showed positive selection. Comparison between the mitochondrial and chloroplast genomes of F. ussuriensis revealed 20 homologous fragments totaling 8,954 bp. Nucleotide diversity analysis revealed the variation among genes, and gene atp9 was the most notable. Despite the conservation of GC content, mitogenome sizes varied significantly among six closely related species, and colinear analysis confirmed the lack of conservation in their genomic structures. Phylogenetic analysis indicated a close relationship between F. ussuriensis and Lilium tsingtauense. CONCLUSIONS In this study, we sequenced and annotated the mitogenome of F. ussuriensis and compared it with the mitogenomes of other closely related species. In addition to genomic features and evolutionary position, this study also provides valuable genomic resources to further understand and utilize this medicinal plant.
Collapse
Affiliation(s)
- Ping Xie
- College of Biology and Agriculture, Jiamusi University, Jiamusi, 154007, Heilongjiang, China
| | - Jingru Wu
- Affiliated Stomatological Hospital, Jiamusi University, Jiamusi, 154002, Heilongjiang, China
| | - Mengyue Lu
- College of Biology and Agriculture, Jiamusi University, Jiamusi, 154007, Heilongjiang, China
| | - Tongxin Tian
- College of Biology and Agriculture, Jiamusi University, Jiamusi, 154007, Heilongjiang, China
| | - Dongmei Wang
- College of Biology and Agriculture, Jiamusi University, Jiamusi, 154007, Heilongjiang, China
| | - Zhiwen Luo
- College of Biology and Agriculture, Jiamusi University, Jiamusi, 154007, Heilongjiang, China
| | - Donghong Yang
- Affiliated Stomatological Hospital, Jiamusi University, Jiamusi, 154002, Heilongjiang, China
| | - Lili Li
- College of Biology and Agriculture, Jiamusi University, Jiamusi, 154007, Heilongjiang, China
| | - Xuewen Yang
- College of Biology and Agriculture, Jiamusi University, Jiamusi, 154007, Heilongjiang, China
| | - Decai Liu
- College of Biology and Agriculture, Jiamusi University, Jiamusi, 154007, Heilongjiang, China
| | - Haitao Cheng
- College of Biology and Agriculture, Jiamusi University, Jiamusi, 154007, Heilongjiang, China
| | - Jiaxin Tan
- College of Biology and Agriculture, Jiamusi University, Jiamusi, 154007, Heilongjiang, China
| | - Hongsheng Yang
- College of Biology and Agriculture, Jiamusi University, Jiamusi, 154007, Heilongjiang, China.
| | - Dequan Zhu
- School of Chinese Ethnic Medicine, Guizhou Minzu University, Guiyang, 550025, Guizhou, China.
| |
Collapse
|
18
|
Yang LM, Xue JF, Zhao XM, Ding K, Liu ZW, Wang ZSY, Chen JB, Huang YK. Mitochondrial Genome Characteristics Reveal Evolution of Acanthopsetta nadeshnyi (Jordan and Starks, 1904) and Phylogenetic Relationships. Genes (Basel) 2024; 15:893. [PMID: 39062672 PMCID: PMC11276143 DOI: 10.3390/genes15070893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/02/2024] [Accepted: 07/04/2024] [Indexed: 07/28/2024] Open
Abstract
In the present study, the mitochondrial genomic characteristics of Acanthopsetta nadeshnyi have been reported and have depicted the phylogenetic relationship among Pleuronectidae. Combined with a comparative analysis of 13 PCGs, the TN93 model was used to review the neutral evolution and habitat evolution catalysis of the mitogenome to verify the distancing and purification selectivity of the mitogenome in Pleuronectidae. At the same time, a species differentiation and classification model based on mitogenome analysis data was established. This study is expected to provide a new perspective on the phylogenetic relationship and taxonomic status of A. nadeshnyi and lay a foundation for further exploration of environmental and biological evolutionary mechanisms.
Collapse
Affiliation(s)
- Li-min Yang
- School of Materials and Environmental Engineering, Chizhou University, Chizhou 247000, China; (L.-m.Y.); (Z.-w.L.); (Z.-s.-y.W.); (J.-b.C.)
| | - Jing-feng Xue
- Anhui Provincial Key Laboratory for Quality and Safety of Agri-Products, School of Resource and Environment, Anhui Agricultural University, Hefei 230036, China; (J.-f.X.); (X.-m.Z.)
| | - Xiao-man Zhao
- Anhui Provincial Key Laboratory for Quality and Safety of Agri-Products, School of Resource and Environment, Anhui Agricultural University, Hefei 230036, China; (J.-f.X.); (X.-m.Z.)
| | - Ke Ding
- State Key Laboratory of Mining Response and Disaster Prevention and Control in Deep Coal Mines, Anhui University of Science and Technology, Huainan 232001, China;
- State Key Laboratory for Geomechanics and Deep Underground Engineering, China University of Mining and Technology, Xuzhou 221116, China
| | - Zhao-wen Liu
- School of Materials and Environmental Engineering, Chizhou University, Chizhou 247000, China; (L.-m.Y.); (Z.-w.L.); (Z.-s.-y.W.); (J.-b.C.)
- Anhui Provincial Key Laboratory for Quality and Safety of Agri-Products, School of Resource and Environment, Anhui Agricultural University, Hefei 230036, China; (J.-f.X.); (X.-m.Z.)
| | - Zhou-si-yu Wang
- School of Materials and Environmental Engineering, Chizhou University, Chizhou 247000, China; (L.-m.Y.); (Z.-w.L.); (Z.-s.-y.W.); (J.-b.C.)
| | - Jian-bing Chen
- School of Materials and Environmental Engineering, Chizhou University, Chizhou 247000, China; (L.-m.Y.); (Z.-w.L.); (Z.-s.-y.W.); (J.-b.C.)
| | - You-kun Huang
- Anhui Provincial Key Laboratory for Quality and Safety of Agri-Products, School of Resource and Environment, Anhui Agricultural University, Hefei 230036, China; (J.-f.X.); (X.-m.Z.)
| |
Collapse
|
19
|
Wang H, Wu Z, Li T, Zhao J. Highly active repeat-mediated recombination in the mitogenome of the aquatic grass Hygroryza aristata. BMC PLANT BIOLOGY 2024; 24:644. [PMID: 38973002 PMCID: PMC11229283 DOI: 10.1186/s12870-024-05331-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 06/24/2024] [Indexed: 07/09/2024]
Abstract
BACKGROUND Floating bamboo (Hygroryza aristata) is an endangered species with a narrow native distribution and is renowned for its unique aesthetic qualities, which holds significant ecological and ornamental value. However, the lack of genetic information research, with only one complete plastome available, significantly hampers conservation efforts and further research for this species. RESULTS In this research, we sequenced and assembled the organelle genomes of floating bamboo, including the mitogenome (587,847 bp) and plastome (135,675 bp). The mitogenome can recombine into various configurations, which are mediated by 25 repeat pairs (13 SRs, 6 MRs, 1 LR, and 5 CRs). LR1 and SR5 are particularly notable as they have the ability to combine with other contigs, forming complex repeat units that facilitate further homologous recombination. The rate of homologous recombination varies significantly among species, yet there is still a pronounced positive correlation observed between the length of these repeat pairs and the rate of recombination they mediate. The mitogenome integrates seven intact protein-coding genes from the chloroplast. The codon usage patterns in both organelles are similar, with a noticeable bias towards C and T on the third codon. The gene map of Poales shows the entire loss of rpl6, succinate dehydrogenase subunits (sdh3 and sdh4). Additionally, the BOP clade retained more variable genes compared to the PACMAD clade. CONCLUSIONS We provided a high-quality and well-annotated mitogenome for floating bamboo and demonstrated the presence of diverse configurations. Our study has revealed the correlation between repeat length and their corresponding recombination rate despite variations among species. Although the mitogenome can potentially exist in the form of a unicircular in vivo, this occurrence is rare and may not be stable.
Collapse
Affiliation(s)
- Huijun Wang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhigang Wu
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.
- University of Chinese Academy of Sciences, Beijing, China.
| | - Tao Li
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.
- University of Chinese Academy of Sciences, Beijing, China.
| | - Jindong Zhao
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- State Key Laboratory of Protein and Plant Genetic Engineering, College of Life Sciences, Peking University, Beijing, China
| |
Collapse
|
20
|
Xie Y, Liu W, Guo L, Zhang X. Mitochondrial genome complexity in Stemona sessilifolia: nanopore sequencing reveals chloroplast gene transfer and DNA rearrangements. Front Genet 2024; 15:1395805. [PMID: 38903753 PMCID: PMC11188483 DOI: 10.3389/fgene.2024.1395805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 05/17/2024] [Indexed: 06/22/2024] Open
Abstract
Mitochondria are semi-autonomous organelles in eukaryotic cells with their own genome. Plant mitogenomes differ from animal mitogenomes in size, structure, and repetitive DNA sequences. Despite larger sizes, plant mitogenomes do not have significantly more genes. They exhibit diverse structures due to variations in size, repetitive DNA, recombination frequencies, low gene densities, and reduced nucleotide substitution rates. In this study, we analyzed the mitochondrial genome of Stemona sessilifolia using Nanopore and Illumina sequencing. De-novo assembly and annotation were conducted using Unicycler, Geseq, tRNAscan-SE and BLASTN, followed by codon usage, repeat sequence, RNA-editing, synteny, and phylogenetic analyses. S. sessilifolia's mitogenome consisted of one linear contig and six circular contigs totaling 724,751 bp. It had 39 protein-coding genes, 27 tRNA genes, and 3 rRNA genes. Transfer of chloroplast sequences accounted for 13.14% of the mitogenome. Various analyses provided insights into genetic characteristics, evolutionary dynamics, and phylogenetic placement. Further investigations can explore transferred genes' functions and RNA-editing's role in mitochondrial gene expression in S. sessilifolia.
Collapse
Affiliation(s)
- Yuning Xie
- School of Public Health, North China University of Science and Technology, Tangshan, China
| | - Wenqiong Liu
- Public Health Department, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Liwen Guo
- College of Life Science, North China University of Science and Technology, Tangshan, China
| | - Xuemei Zhang
- School of Public Health, North China University of Science and Technology, Tangshan, China
- College of Life Science, North China University of Science and Technology, Tangshan, China
| |
Collapse
|
21
|
Qu K, Chen Y, Liu D, Guo H, Xu T, Jing Q, Ge L, Shu X, Xin X, Xie X, Tong B. Comprehensive analysis of the complete mitochondrial genome of Lilium tsingtauense reveals a novel multichromosome structure. PLANT CELL REPORTS 2024; 43:150. [PMID: 38789593 DOI: 10.1007/s00299-024-03232-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 05/06/2024] [Indexed: 05/26/2024]
Abstract
KEY MESSAGE Lilium tsingtauense mitogenome comprises 27 independent chromosome molecules, it undergoes frequent genomic recombination, and the rate of recombination and mutation between different repetitive sequences affects the formation of multichromosomal structures. Given the extremely large genome of Lily, which likely harbors additional genetic resources, it serves as an ideal material for studying the phylogenetic evolution of organisms. Although the Lilium chloroplast genome has been documented, the sequence of its mitochondrial genome (mitogenome) remains uncharted. Using BGI short reads and Nanopore long reads, we sequenced, assembled, and annotated the mitogenome of Lilium tsingtauense. This effort culminated in the characterization of Lilium's first complete mitogenome. Comparative analysis with other angiosperms revealed the unique multichromosomal structure of the L. tsingtauense mitogenome, spanning 1,125,108 bp and comprising 27 independent circular chromosomes. It contains 36 protein-coding genes, 12 tRNA genes, and 3 rRNA genes, with a GC content of 44.90%. Notably, three chromosomes in the L. tsingtauense mitogenome lack identifiable genes, hinting at the potential existence of novel genes and noncoding elements. The high degree of observed genome fragmentation implies frequent reorganization, with recombination and mutation rates among diverse repetitive sequences likely driving the formation of multichromosomal structures. Our comprehensive analysis, covering genome size, coding genes, structure, RNA editing, repetitive sequences, and sequence migration, sheds light on the evolutionary and molecular biology of multichromosomal mitochondria in Lilium. This high-quality mitogenome of L. tsingtauense not only enriches our understanding of multichromosomal mitogenomes but also establishes a solid foundation for future genome breeding and germplasm innovation in Lilium.
Collapse
Affiliation(s)
- Kai Qu
- Shandong Provincial Center of Forest and Grass Germplasm Resources, Jinan, 250102, China
- National Engineering Laboratory of Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Ying Chen
- Forestry Protection and Development Service Center of Shandong Province, Jinan, 250109, China
| | - Dan Liu
- Shandong Provincial Center of Forest and Grass Germplasm Resources, Jinan, 250102, China.
- National Engineering Laboratory of Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China.
| | - Haili Guo
- Shandong Provincial Center of Forest and Grass Germplasm Resources, Jinan, 250102, China
| | - Ting Xu
- Shandong Provincial Center of Forest and Grass Germplasm Resources, Jinan, 250102, China
| | - Qi Jing
- Shandong Provincial Center of Forest and Grass Germplasm Resources, Jinan, 250102, China
| | - Lei Ge
- Shandong Provincial Center of Forest and Grass Germplasm Resources, Jinan, 250102, China
| | - Xiuge Shu
- Shandong Academy of Forestry, Jinan, 250014, China
| | - Xiaowei Xin
- Shandong Drug and Food Vocational College, Weihai, 264210, China
| | - Xiaoman Xie
- Shandong Provincial Center of Forest and Grass Germplasm Resources, Jinan, 250102, China.
| | - Boqiang Tong
- Shandong Provincial Center of Forest and Grass Germplasm Resources, Jinan, 250102, China.
| |
Collapse
|
22
|
Gong Y, Luo X, Zhang T, Zhou G, Li J, Zhang B, Li P, Huang H. Assembly and comparative analysis of the complete mitochondrial genome of white towel gourd (Luffa cylindrica). Genomics 2024; 116:110859. [PMID: 38750703 DOI: 10.1016/j.ygeno.2024.110859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 05/09/2024] [Accepted: 05/12/2024] [Indexed: 05/19/2024]
Abstract
Mitochondria play an important role in the energy production of plant cells through independent genetic systems. This study has aimed to assemble and annotate the functions of the mitochondrial (mt) genome of Luffa cylindrica. The mt genome of L. cylindrica contained two chromosomes with lengths of 380,879 bp and 67,982 bp, respectively. Seventy-seven genes including 39 protein-coding genes, 34 tRNA genes, 3 rRNA genes, and 1 pseudogene, were identified. About 90.63% of the codons ended with A or U bases, and 98.63% of monomers contained A/T, which contributed to the high A/T content (55.91%) of the complete mt genome. Six genes (ATP8, CCMFC, NAD4, RPL10, RPL5 and RPS4) showed positive selection. Phylogenetic analysis indicates that L. cylindrica is closely related to L. acutangula. The present results provide the mt genome of L. cylindrica, which may facilitate possible genetic variation, evolutionary, and molecular breeding studies of L. cylindrica.
Collapse
Affiliation(s)
- Yihui Gong
- Development and Utilization and Quality and Safety Control of Characteristic Agricultural Resources in Central Hunan, College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi 417000, China,.
| | - Xuan Luo
- Development and Utilization and Quality and Safety Control of Characteristic Agricultural Resources in Central Hunan, College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi 417000, China
| | - Ting Zhang
- Development and Utilization and Quality and Safety Control of Characteristic Agricultural Resources in Central Hunan, College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi 417000, China
| | - Guihua Zhou
- Development and Utilization and Quality and Safety Control of Characteristic Agricultural Resources in Central Hunan, College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi 417000, China
| | - Jingyi Li
- Development and Utilization and Quality and Safety Control of Characteristic Agricultural Resources in Central Hunan, College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi 417000, China
| | - Bin Zhang
- Development and Utilization and Quality and Safety Control of Characteristic Agricultural Resources in Central Hunan, College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi 417000, China
| | - Peng Li
- Xiangtan Agricultural Science Research Institute, Xiangtan 411100, China
| | - Hua Huang
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences; Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Tropical and Subtropical, Fruit Tree Research, Guangzhou 510640, China.
| |
Collapse
|
23
|
Gong J, Yang J, Lai Y, Pan T, She W. A High-Quality Assembly and Comparative Analysis of the Mitogenome of Actinidia macrosperma. Genes (Basel) 2024; 15:514. [PMID: 38674448 PMCID: PMC11049864 DOI: 10.3390/genes15040514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/15/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
The mitochondrial genome (mitogenome) of Actinidia macrosperma, a traditional medicinal plant within the Actinidia genus, remains relatively understudied. This study aimed to sequence the mitogenome of A. macrosperma, determining its assembly, informational content, and developmental expression. The results revealed that the mitogenome of A. macrosperma is circular, spanning 752,501 bp with a GC content of 46.16%. It comprises 63 unique genes, including 39 protein-coding genes (PCGs), 23 tRNA genes, and three rRNA genes. Moreover, the mitogenome was found to contain 63 SSRs, predominantly mono-nucleotides, as well as 25 tandem repeats and 650 pairs of dispersed repeats, each with lengths equal to or greater than 60, mainly comprising forward repeats and palindromic repeats. Moreover, 53 homologous fragments were identified between the mitogenome and chloroplast genome (cp-genome), with the longest segment measuring 4296 bp. This study represents the initial report on the mitogenome of the A. macrosperma, providing crucial genetic materials for phylogenetic research within the Actinidia genus and promoting the exploitation of species genetic resources.
Collapse
Affiliation(s)
- Jiangmei Gong
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.G.); (Y.L.); (T.P.)
- Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jun Yang
- College of Food and Bioengineering, Bengbu University, Bengbu 233030, China;
| | - Yan Lai
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.G.); (Y.L.); (T.P.)
- Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Tengfei Pan
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.G.); (Y.L.); (T.P.)
- Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Wenqin She
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.G.); (Y.L.); (T.P.)
- Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
24
|
Chen L, Dong X, Huang H, Xu H, Rono PC, Cai X, Hu G. Assembly and comparative analysis of the initial complete mitochondrial genome of Primulina hunanensis (Gesneriaceae): a cave-dwelling endangered plant. BMC Genomics 2024; 25:322. [PMID: 38561677 PMCID: PMC10983754 DOI: 10.1186/s12864-024-10247-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 03/22/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND Primulina hunanensis, a troglobitic plant within the Primulina genus of Gesneriaceae family, exhibits robust resilience to arid conditions and holds great horticultural potential as an ornamental plant. The work of chloroplast genome (cpDNA) has been recently accomplished, however, the mitochondrial genome (mtDNA) that is crucial for plant evolution has not been reported. RESULTS In this study, we sequenced and assembled the P. hunanensis complete mtDNA, and elucidated its evolutionary and phylogenetic relationships. The assembled mtDNA spans 575,242 bp with 43.54% GC content, encompassing 60 genes, including 37 protein-coding genes (PCGs), 20 tRNA genes, and 3 rRNA genes. Notably, high number of repetitive sequences in the mtDNA and substantial sequence translocation from chloroplasts to mitochondria were observed. To determine the evolutionary and taxonomic positioning of P. hunanensis, a phylogenetic tree was constructed using mitochondrial PCGs from P. hunanensis and 32 other taxa. Furthermore, an exploration of PCGs relative synonymous codon usage, identification of RNA editing events, and an investigation of collinearity with closely related species were conducted. CONCLUSIONS This study reports the initial assembly and annotation of P. hunanensis mtDNA, contributing to the limited mtDNA repository for Gesneriaceae plants and advancing our understanding of their evolution for improved utilization and conservation.
Collapse
Affiliation(s)
- Lingling Chen
- Department of Botany, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Xiang Dong
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hang Huang
- Department of Botany, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Haixia Xu
- Department of Botany, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Peninah Cheptoo Rono
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Xiuzhen Cai
- Department of Botany, College of Life Sciences, Hunan Normal University, Changsha, 410081, China.
| | - Guangwan Hu
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China.
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Hubei Jiangxia Laboratory, Wuhan, 430200, China.
| |
Collapse
|
25
|
Guo S, Li Z, Li C, Liu Y, Liang X, Qin Y. Assembly and characterization of the complete mitochondrial genome of Ventilago leiocarpa. PLANT CELL REPORTS 2024; 43:77. [PMID: 38386216 DOI: 10.1007/s00299-023-03126-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 12/04/2023] [Indexed: 02/23/2024]
Abstract
KEY MESSAGE We reported the mitochondrial genome of Ventilago leiocarpa for the first time. Two and one sites lead to the generation of stop and stat codon through editing were verified. Ventilago leiocarpa, a member of the Rhamnaceae family, is frequently utilized in traditional medicine due to the medicinal properties of its roots. In this study, we successfully assembled the mitogenome of V. leiocarpa using both BGI short reads and Nanopore long reads. This mitogenome has a total length of 331,839 bp. The annotated results showed 36 unique protein-coding, 16 tRNA and 3 rRNA genes in this mitogenome. Furthermore, we confirmed the presence of a branched structure through the utilization of long reads mapping, PCR amplification, and Sanger sequencing. Specifically, the ctg1 can form a single circular molecule or combine with ctg4 to form a linear molecule. Likewise, ctg2 can form a single circular molecule or can be connected to ctg4 to form a linear molecule. Subsequently, through a comparative analysis of the mitogenome and cpgenome sequences, we identified ten mitochondrial plastid sequences (MTPTs), including two complete protein-coding genes and five complete tRNA genes. The existence of MTPTs was verified by long reads. Colinear analysis showed that the mitogenomes of Rosales were highly divergent in structure. Finally, we identified 545 RNA editing sites involving 36 protein-coding genes by Deepred-mt. To validate our findings, we conducted PCR amplification and Sanger sequencing, which confirmed the generation of stop codons in atp9-223 and rps10-391, as well as the generation of a start codon in nad4L-2. This project reported the complex structure and RNA editing event of the V. Leiocarpa mitogenome, which will provide valuable information for the study of mitochondrial gene expression.
Collapse
Affiliation(s)
- Song Guo
- College of Food and Biochemical Engineering, Guangxi Science and Technology Normal University, Guangxi Laibin, 546199, People's Republic of China
- Key Laboratory for Zhuang and Yao Pharmaceutical Quality Biology, Guangxi Science and Technology Normal University, Laibin, 546199, People's Republic of China
| | - Zeyang Li
- College of Food and Biochemical Engineering, Guangxi Science and Technology Normal University, Guangxi Laibin, 546199, People's Republic of China
- Key Laboratory for Zhuang and Yao Pharmaceutical Quality Biology, Guangxi Science and Technology Normal University, Laibin, 546199, People's Republic of China
| | - Chunlian Li
- College of Food and Biochemical Engineering, Guangxi Science and Technology Normal University, Guangxi Laibin, 546199, People's Republic of China
- Key Laboratory for Zhuang and Yao Pharmaceutical Quality Biology, Guangxi Science and Technology Normal University, Laibin, 546199, People's Republic of China
| | - Yu Liu
- Guangxi Botanical Garden of Medicinal Plants, Nanning, 530010, People's Republic of China
| | - Xianglan Liang
- College of Food and Biochemical Engineering, Guangxi Science and Technology Normal University, Guangxi Laibin, 546199, People's Republic of China
| | - Yiming Qin
- College of Food and Biochemical Engineering, Guangxi Science and Technology Normal University, Guangxi Laibin, 546199, People's Republic of China.
- Key Laboratory for Zhuang and Yao Pharmaceutical Quality Biology, Guangxi Science and Technology Normal University, Laibin, 546199, People's Republic of China.
| |
Collapse
|
26
|
Ha YH, Chang KS, Gil HY. Characteristics of chloroplast and mitochondrial genomes and intracellular gene transfer in the Korean endemic shrub, Sophora koreensis Nakai (Fabaceae). Gene 2024; 894:147963. [PMID: 37926173 DOI: 10.1016/j.gene.2023.147963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/24/2023] [Accepted: 11/01/2023] [Indexed: 11/07/2023]
Abstract
Sophora koreensis Nakai, an endemic species distributed only in the Korean Peninsula, is of great geographical, economic, and taxonomic importance. Although its complete chloroplast (cp) genome sequence has been reported, its mitochondrial (mt) genome sequence has not yet been studied. Therefore, in this study, we aimed to investigate its mt genome sequence and compare it with those reported for other Fabaceae species. Total genomic DNA was extracted from fresh S. koreensis leaves collected from natural habitats in Gangwon-do Province, South Korea. This was followed by polymerase chain reaction (PCR) amplification of cpDNA insertions in the mt genome and the detection of microsatellites and dispersed repeats in the cp and mt genomes. Finally, the cp and mt genomes of S. koreensis were compared with those reported for other Fabaceae species. The cp sequence of S. koreensis showed identical gene orders and contents as those previously reported. Only six substitutions and one deletion were detected with 99 % homology. Conversely, the complete mt genome sequence, which was 517,845 bp in length and encoded 61 genes, including 43 protein-coding, 15 transfer RNAs, and 3 ribosomal RNA genes, was considerably different from that of S. japonica in terms of gene order and composition. Further, the mt genome of S. koreensis included ca. 7 and 3 kb insertions, representing an intracellular gene transfer (IGT) event, and the regions with these insertions were determined to be originally present in the cp genome. This IGT event was also confirmed via PCR amplification. IGT events can be induced via biological gene expression control or the use of repetitive sequences, and they provide important insights into the evolutionary lineage of S. koreensis. However, further studies are needed to clarify the gene transfer mechanisms between the two organelles.
Collapse
Affiliation(s)
- Young-Ho Ha
- Division of Forest Biodiversity, Korea National Arboretum, Pocheon-si, Gyeonggi-do 11186, Republic of Korea
| | - Kae Sun Chang
- DMZ Botanic Garden, Korea National Arboretum, Yanggu-gun, Gangwon-do 24564, Republic of Korea
| | - Hee-Young Gil
- Division of Forest Biodiversity, Korea National Arboretum, Pocheon-si, Gyeonggi-do 11186, Republic of Korea.
| |
Collapse
|
27
|
Tang J, Luo Z, Zhang J, Chen L, Li L. Multi-Chromosomal mitochondrial genome of medicinal plant Acorus tatarinowii (Acoraceae): Firstly reported from Acorales Order. Gene 2024; 892:147847. [PMID: 37774807 DOI: 10.1016/j.gene.2023.147847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 09/21/2023] [Accepted: 09/26/2023] [Indexed: 10/01/2023]
Abstract
Acorus tatarinowii Schott (A. tatarinowii), a well-known traditional Chinese medicinal plant renowned for its high medicinal value, but its mitochondrial genome (mitogenome) is still unexplored. In this study, we meticulously assembled the complete mitochondrial genome of A. tatarinowii using a combination of Illumina short reads and Oxford Nanopore long reads. Our findings revealed that A. tatarinowii possesses a complex chromosomal structural mitogenome, comprising two linear chromosomes and seven circular chromosomes. This mitogenome spans 1.81 Mb in length with a GC content of 38.29 %. Notably, it contained 24 unique mitochondrial core genes, seven unique variable genes, 17 tRNA genes, and three rRNA genes. Analyses of codon usage, most protein-coding genes (PCGs) exhibited a common codon usage preference, with RSCU values greater than 1, and the codon with the highest RSCU value was UAA(End, 1.90). We conducted a thorough analysis of repeat sequences, the distribution of repetitive sequences in nine mitochondrial chromosomes showed distinct patterns. Moreover, we identified 82 and 12 homologous fragments by comparing the sequences of chloroplast and nuclear genomes to the A. tatarinowii mitogenome, respectively. Lastly, We predicted a total of 234 potential RNA editing sites in 28 unique PCGs and discovered that the nad4 gene has been edited the most often, at 26 times. Our results contribute to the enrichment of mitochondrial genome resources for Acoraceae, and the mitogenome also can be used as a reference for other species.
Collapse
Affiliation(s)
- Jianfeng Tang
- Yangtze River Basin Ecological Environment Monitoring and Scientific Research Center, Yangtze River Basin Ecological Environment Supervision and Administration Bureau, Ministry of Ecological and Environment, Wuhan 430010, Hubei, China
| | - Zongkai Luo
- Eco-Environmental Monitoring Station of Pu'er City, Yunnan Provincial Department of Ecology and Environment, Pu'er 665000, Yunnan, China
| | - Jing Zhang
- Yangtze River Basin Ecological Environment Monitoring and Scientific Research Center, Yangtze River Basin Ecological Environment Supervision and Administration Bureau, Ministry of Ecological and Environment, Wuhan 430010, Hubei, China
| | - Liwen Chen
- Yangtze River Basin Ecological Environment Monitoring and Scientific Research Center, Yangtze River Basin Ecological Environment Supervision and Administration Bureau, Ministry of Ecological and Environment, Wuhan 430010, Hubei, China
| | - Li Li
- Qiandongnan Ecological Environment Monitoring Center, Kaili 557314, Guizhou, China.
| |
Collapse
|
28
|
Song Y, Du X, Li A, Fan A, He L, Sun Z, Niu Y, Qiao Y. Assembly and analysis of the complete mitochondrial genome of Forsythia suspensa (Thunb.) Vahl. BMC Genomics 2023; 24:708. [PMID: 37996801 PMCID: PMC10666317 DOI: 10.1186/s12864-023-09821-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 11/20/2023] [Indexed: 11/25/2023] Open
Abstract
BACKGROUND Forsythia suspensa (Thunb.) Vahl is a valuable ornamental and medicinal plant. Although the nuclear and chloroplast genomes of F. suspensa have been published, its complete mitochondrial genome sequence has yet to be reported. In this study, the genomic DNA of F. suspensa yellowish leaf material was extracted, sequenced by using a mixture of Illumina Novaseq6000 short reads and Oxford Nanopore PromethION long reads, and the sequencing data were assembled and annotated. RESULT The F. suspensa mitochondrial genome was obtained in the length of 535,692 bp with a circular structure, and the GC content was 44.90%. The genome contains 60 genes, including 36 protein-coding genes, 21 tRNA genes, and three rRNA genes. We further analyzed RNA editing of the protein-coding genes, relative synonymous codon usage, and sequence repeats based on the genomic data. There were 25 homologous sequences between F. suspensa mitochondria and chloroplast genome, which involved the transfer of 8 mitochondrial genes, and 9473 homologous sequences between mitochondrial and nuclear genomes. Analysis of the nucleic acid substitution rate, nucleic acid diversity, and collinearity of protein-coding genes of the F. suspensa mitochondrial genome revealed that the majority of genes may have undergone purifying selection, exhibiting a slower rate of evolution and a relatively conserved structure. Analysis of the phylogenetic relationships among different species revealed that F. suspensa was most closely related to Olea europaea subsp. Europaea. CONCLUSION In this study, we sequenced, assembled, and annotated a high-quality F. suspensa mitochondrial genome. The results of this study will enrich the mitochondrial genome data of Forsythia, lay a foundation for the phylogenetic development of Forsythia, and promote the evolutionary analysis of Oleaceae species.
Collapse
Affiliation(s)
- Yun Song
- College of Life Sciences, Shanxi Agricultural University, Taigu, Shanxi, 030801, China.
| | - Xiaorong Du
- College of Life Sciences, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Aoxuan Li
- College of Life Sciences, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Amei Fan
- College of Life Sciences, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Longjiao He
- College of Life Sciences, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Zhe Sun
- College of Life Sciences, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Yanbing Niu
- College of Life Sciences, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Yonggang Qiao
- College of Life Sciences, Shanxi Agricultural University, Taigu, Shanxi, 030801, China.
| |
Collapse
|
29
|
Jiang M, Ni Y, Zhang J, Li J, Liu C. Complete mitochondrial genome of Mentha spicata L. reveals multiple chromosomal configurations and RNA editing events. Int J Biol Macromol 2023; 251:126257. [PMID: 37573900 DOI: 10.1016/j.ijbiomac.2023.126257] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/07/2023] [Accepted: 08/08/2023] [Indexed: 08/15/2023]
Abstract
Mentha spicata L. is a valuable plant that yields spearmint oil, widely utilized in the pharmaceutical, chemical, and cosmetic industries. The mitochondrial genome (mitogenome) is an essential material for molecular breeding and evolution studies. Here, the mitogenome of M. spicata was assembled by combining Nanopore and Illumina reads. It consisted of a linear chromosome (Ch1) and two circular chromosomes (Ch2 and Ch3). Furthermore, we showed two pairs of repeats (R1 and R2) mediated recombinations resulting in multiple chromosomal configurations. The R1-mediated-recombination generated a large molecule formed by joining Ch2 and Ch1. Similarly, the R2-mediated-recombination generated a large molecule formed by joining Ch3 and Ch1. Then, we identified 17 mitochondrial plastid DNAs (MTPTs) by comparing the mitogenome and cpgenome. The MTPT14 was conserved in multiple species, which has undergone the same evolutionary process as the two organellar genomes among M. spicata, Hesperelaea palmeri and Castilleja paramensis. Based on the RNA-seq reads, 246 RNA editing sites were predicted, resulting in the conversion of cytosine to uracil bases. Furthermore, we successfully validated 40 out of 43 predicted sites. This project reported a complex structure of the M. spicata mitogenome resulting from repeat-mediated recombinations, which will provide valuable information for gene function study and the breeding of different varieties.
Collapse
Affiliation(s)
- Mei Jiang
- Key Laboratory for Natural Active Pharmaceutical Constituents Research in Universities of Shandong Province, School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan, PR China
| | - Yang Ni
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine from Ministry of Education, Engineering Research Center of Chinese Medicine Resources from Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, PR China
| | - Jianjie Zhang
- Key Laboratory for Natural Active Pharmaceutical Constituents Research in Universities of Shandong Province, School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan, PR China
| | - Jingling Li
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine from Ministry of Education, Engineering Research Center of Chinese Medicine Resources from Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, PR China
| | - Chang Liu
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine from Ministry of Education, Engineering Research Center of Chinese Medicine Resources from Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, PR China.
| |
Collapse
|
30
|
Guo H, Liu Q, Chen Y, Niu H, Zhao Q, Song H, Pang R, Huang X, Zhang J, Zhao Z, Liu D, Zhu J. Comprehensive assembly and comparative examination of the full mitochondrial genome in Castanea mollissima Blume. Genomics 2023; 115:110740. [PMID: 37923179 DOI: 10.1016/j.ygeno.2023.110740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/23/2023] [Accepted: 10/31/2023] [Indexed: 11/07/2023]
Abstract
The Chinese chestnut, Castanea mollissima Blume, a nut-bearing tree native to China and North Korea, belongs to the Fagaceae family. As an important genetic resource, C. mollissima is vital in enhancing edible chestnut varieties and offers significant insights into the origin and evolution of chestnut species. While the chloroplast genome of C. mollissima has been sequenced, its mitochondrial genome (mitogenome) remains largely uncharted. In this study, we have characterized the C. mollissima mitogenome, assembling it utilizing reads from both BGI and Nanopore sequencing platforms, and conducted a comparative analysis with the mitochondrial genomes of closely related species. The mitogenome of C. mollissima manifests a polycyclic structure consisting of two circular molecules measuring 363,232 bp and 24,806 bp, respectively. This genome encompasses 35 unique protein-coding genes, 19 tRNA genes, and three rRNA genes. A total of 139 SSRs were identified throughout the entire C. mollissima mitogenome. Furthermore, the combined length of homologous fragments between the chloroplast and mitochondrial genomes was 5766 bp, constituting 1.49% of the mitogenome. We also predicted 484 RNA editing sites in C. mollissima, demonstrating C-to-U RNA editing. Phylogenetic analysis of related species' mitogenomes showed that C. mollissima was closely related to Lithocarpus litseifolius (Hance) Chun and Quercus acutissima Carruth. Interestingly, the mitogenome sequences of C. mollissima, L. litseifolius, Q. acutissima, Fagus sylvatica L., and Juglans mandshurica Maxim did not show conservation in their alignments, indicating frequent genome reorganization. This report marks the inaugural study of the C. mollissima mitogenome, serving as a benchmark genome for economically significant plants within the Castanea genus. Moreover, it supplies invaluable information that can guide future molecular breeding efforts and contribute to the broader understanding of chestnut genomics.
Collapse
Affiliation(s)
- Haili Guo
- Shandong Provincial Center of Forest and Grass Germplasm Resources, Jinan 250102, China
| | - Qiong Liu
- Shandong Refining and Chemical Energy Group Co., Ltd., Jinan 250199, China
| | - Ying Chen
- Shandong Provincial Forestry Protection and Development Service Center, Jinan 250109, China
| | - Hongyun Niu
- Shandong Provincial Center of Aviation Emergency and Rescue, Jinan 250014, China
| | | | - Hui Song
- Shandong Institute of Land Spatial Data and Remote Sensing Technology, Jinan 250002, China
| | - Ruidong Pang
- Shandong Provincial Archives of Natural Resources, Jinan 250013, China
| | - Xiaolu Huang
- Guangxi Forestry Research Institute, Nanning 530002, China
| | - Jingzheng Zhang
- Engineering Research Center of Chestnut Industry Technology, Ministry of Education, Hebei Normal University of Science and Technology, Qinhuangdao 066004, China
| | - Zhiheng Zhao
- Guangxi Forestry Research Institute, Nanning 530002, China; Engineering Research Center of Chestnut Industry Technology, Ministry of Education, Hebei Normal University of Science and Technology, Qinhuangdao 066004, China.
| | - Dan Liu
- Shandong Provincial Center of Forest and Grass Germplasm Resources, Jinan 250102, China.
| | - Jingle Zhu
- Research Institute of Non-Timber Forestry, Chinese Academy of Forestry, Zhengzhou 450003, China.
| |
Collapse
|
31
|
Feng L, Wang Z, Wang C, Yang X, An M, Yin Y. Multichromosomal mitochondrial genome of Punica granatum: comparative evolutionary analysis and gene transformation from chloroplast genomes. BMC PLANT BIOLOGY 2023; 23:512. [PMID: 37880586 PMCID: PMC10598957 DOI: 10.1186/s12870-023-04538-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 10/18/2023] [Indexed: 10/27/2023]
Abstract
BACKGROUND Punica granatum is a fundamentally important fruit tree that has important economic, medicinal and ornamental properties. At present, there are few reports on the mitochondrial genome of pomegranate. Hence, in this study the P. granatum mitogenome was sequenced and assembled to further understanding of organization, variation, and evolution of mitogenomes of this tree species. RESULTS The genome structure was multi-chromosomes with seven circular contigs, measuring 382,774 bp in length with a 45.91% GC content. It contained 74 genes, including 46 protein-coding genes, 25 tRNA genes, and three rRNA genes. There were 188 pairs of dispersed repeats with lengths of 30 or greater, primarily consisting of reverse complementary repeats. The mitogenome analysis identified 114SSRs and 466 RNA editing sites. Analyses of codon usage, nucleotide diversity and gene migration from chloroplast to mitochondrial were also conducted. The collinear and comparative analysis of mitochondrial structures between P. granatum and its proximal species indicated that P. granatum 'Taishanhong' was closely related to P. granatum 'Qingpitian' and Lagerstroemia indica. Phylogenetic examination based on the mitogenome also confirmed the evolutionary relationship. CONCLUSION The results offered crucial information on the evolutionary biology of pomegranate and highlighted ways to promote the utilization of the species' germplasm.
Collapse
Affiliation(s)
- Lijuan Feng
- Shandong Institute of Pomology, Taian, 271000, Shandong, China
| | - Zenghui Wang
- Shandong Institute of Pomology, Taian, 271000, Shandong, China
| | - Chuanzeng Wang
- Shandong Academy of Agricultural Sciences, Jinan, 250100, Shandong, China
| | - Xuemei Yang
- Shandong Institute of Pomology, Taian, 271000, Shandong, China
| | - Mengmeng An
- Zibo Academy of Agricultural Sciences, Zibo, 255000, Shandong, China
| | - Yanlei Yin
- Shandong Institute of Pomology, Taian, 271000, Shandong, China.
| |
Collapse
|
32
|
Zhou P, Zhang Q, Li F, Huang J, Zhang M. Assembly and comparative analysis of the complete mitochondrial genome of Ilex metabaptista (Aquifoliaceae), a Chinese endemic species with a narrow distribution. BMC PLANT BIOLOGY 2023; 23:393. [PMID: 37580695 PMCID: PMC10424370 DOI: 10.1186/s12870-023-04377-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 07/12/2023] [Indexed: 08/16/2023]
Abstract
BACKGROUND Ilex metabaptista is a woody tree species with strong waterlogging tolerance and is also admired as a landscape plant with high development prospects and scientific research value. Unfortunately, populations of this species have declined due to habitat loss. Thus, it is a great challenge for us to efficiently protect I. metabaptista resources from extinction. Molecular biology research can provide the scientific basis for the conservation of species. However, the study of I. metabaptista genetics is still in its infancy. To date, no mitochondrial genome (mitogenome) in the genus Ilex has been analysed in detail. RESULTS The mitogenome of I. metabaptista was assembled based on the reads from Illumina and Nanopore sequencing platforms; it was a typical circular DNA molecule of 529,560 bp with a GC content of 45.61% and contained 67 genes, including 42 protein-coding genes, 22 tRNA genes, and 3 rRNA genes. Repeat sequence analysis and prediction of RNA editing sites revealed a total of 286 dispersed repeats, 140 simple repeats, 18 tandem repeats, and 543 RNA editing sites. Analysis of codon usage showed that codons ending in A/T were preferred. Gene migration was observed to occur between the mitogenome and chloroplast genome via the detection of homologous fragments. In addition, Ka/Ks analysis revealed that most of the protein-coding genes in the mitogenome had undergone negative selection, and only the ccmB gene had undergone potential positive selection in most asterids. Nucleotide polymorphism analysis revealed the variation in each gene, with atp9 being the most notable. Furthermore, comparative analysis showed that the GC contents were conserved, but the sizes and structure of mitogenomes varied greatly among asterids. Phylogenetic analysis based on the mitogenomes reflected the exact evolutionary and taxonomic status of I. metabaptista. CONCLUSION In this study, we sequenced and annotated the mitogenome of I. metabaptista and compared it with the mitogenomes of other asterids, which provided essential background information for further understanding of the genetics of this plant and helped lay the foundation for future studies on molecular breeding of I. metabaptista.
Collapse
Affiliation(s)
- Peng Zhou
- Jiangsu Academy of Forestry, 109 Danyang Road, Dongshanqiao, Nanjing, 211153, China
| | - Qiang Zhang
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of State Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Biology and the Environment, Nanjing Forestry University, 210037, Nanjing, China.
| | - Fei Li
- Jiangsu Academy of Forestry, 109 Danyang Road, Dongshanqiao, Nanjing, 211153, China
| | - Jing Huang
- Jiangsu Academy of Forestry, 109 Danyang Road, Dongshanqiao, Nanjing, 211153, China
| | - Min Zhang
- Jiangsu Academy of Forestry, 109 Danyang Road, Dongshanqiao, Nanjing, 211153, China.
| |
Collapse
|
33
|
Yang Y, Wang J, Dai R, Wang X. Structural Characteristics and Phylogenetic Analysis of the Mitochondrial Genomes of Four Krisna Species (Hemiptera: Cicadellidae: Iassinae). Genes (Basel) 2023; 14:1175. [PMID: 37372355 DOI: 10.3390/genes14061175] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 06/29/2023] Open
Abstract
Krisna species are insects that have piercing-sucking mouthparts and belong to the Krisnini tribe in the Iassinae subfamily of leafhoppers in the Cicadellidae family. In this study, we sequenced and compared the mitochondrial genomes (mitogenomes) of four Krisna species. The results showed that all four mitogenomes were composed of cyclic double-stranded molecules and contained 13 protein-coding genes (PCGs) and 22 and 2 genes coding for tRNAs and rRNAs, respectively. Those mitogenomes exhibited similar base composition, gene size, and codon usage patterns for the protein-coding genes. The analysis of the nonsynonymous substitution rate (Ka)/synonymous substitution rate (Ks) showed that evolution occurred the fastest in ND4 and the slowest in COI. 13 PCGs that underwent purification selection were suitable for studying phylogenetic relationships within Krisna. ND2, ND6, and ATP6 had highly variable nucleotide diversity, whereas COI and ND1 exhibited the lowest diversity. Genes or gene regions with high nucleotide diversity can provide potential marker candidates for population genetics and species delimitation in Krisna. Analyses of parity and neutral plots showed that both natural selection and mutation pressure affected the codon usage bias. In the phylogenetic analysis, all subfamilies were restored to a monophyletic group; the Krisnini tribe is monophyletic, and the Krisna genus is paraphyletic. Our study provides novel insights into the significance of the background nucleotide composition and codon usage patterns in the CDSs of the 13 mitochondrial PCGs of the Krisna genome, which could enable the identification of a different gene organization and may be used for accurate phylogenetic analysis of Krisna species.
Collapse
Affiliation(s)
- Yanqiong Yang
- Provincial Key Laboratory for Agricultural Pest Management of Mountainous Region, Institute of Entomology, Guizhou University, Guiyang 550025, China
| | - Jiajia Wang
- Provincial Key Laboratory for Agricultural Pest Management of Mountainous Region, Institute of Entomology, Guizhou University, Guiyang 550025, China
| | - Renhuai Dai
- Provincial Key Laboratory for Agricultural Pest Management of Mountainous Region, Institute of Entomology, Guizhou University, Guiyang 550025, China
| | - Xianyi Wang
- Engineering Research Center of Medical Biotechnology, School of Biology and Engineering, Guizhou Medical University, Guiyang 550025, China
| |
Collapse
|
34
|
Zhang X, Shan Y, Li J, Qin Q, Yu J, Deng H. Assembly of the Complete Mitochondrial Genome of Pereskia aculeata Revealed That Two Pairs of Repetitive Elements Mediated the Recombination of the Genome. Int J Mol Sci 2023; 24:ijms24098366. [PMID: 37176072 PMCID: PMC10179450 DOI: 10.3390/ijms24098366] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/01/2023] [Accepted: 05/03/2023] [Indexed: 05/15/2023] Open
Abstract
Pereskia aculeata is a potential new crop species that has both food and medicinal (antinociceptive activity) properties. However, comprehensive genomic research on P. aculeata is still lacking, particularly concerning its organelle genome. In this study, P. aculeata was studied to sequence the mitochondrial genome (mitogenome) and to ascertain the assembly, informational content, and developmental expression of the mitogenome. The findings revealed that the mitogenome of P. aculeata is circular and measures 515,187 bp in length with a GC content of 44.05%. It contains 52 unique genes, including 33 protein-coding genes, 19 tRNA genes, and three rRNA genes. Additionally, the mitogenome analysis identified 165 SSRs, primarily consisting of tetra-nucleotides, and 421 pairs of dispersed repeats with lengths greater than or equal to 30, which were mainly forward repeats. Based on long reads and PCR experiments, we confirmed that two pairs of long-fragment repetitive elements were highly involved with the mitogenome recombination process. Furthermore, there were 38 homologous fragments detected between the mitogenome and chloroplast genome, and the longest fragment was 3962 bp. This is the first report on the mitogenome in the family Cactaceae. The decoding of the mitogenome of P. aculeata will provide important genetic materials for phylogenetic studies of Cactaceae and promote the utilization of species germplasm resources.
Collapse
Affiliation(s)
- Xue Zhang
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400716, China
| | - Yuanyu Shan
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400716, China
| | - Jingling Li
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400716, China
| | - Qiulin Qin
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400716, China
| | - Jie Yu
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400716, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River, Ministry of Education, Southwest University, Chongqing 400715, China
| | - Hongping Deng
- Center for Biodiversity Conservation and Utilization, School of Life Sciences, Southwest University, Chongqing 400715, China
| |
Collapse
|
35
|
Su X, Liu Q, Guo H, Hu D, Liu D, Wang Z, Zhang P. Deciphering the mitochondrial genome of Juglans mandshurica (Juglandaceae). Mitochondrial DNA B Resour 2023; 8:249-254. [PMID: 36816062 PMCID: PMC9930755 DOI: 10.1080/23802359.2023.2172974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023] Open
Abstract
Juglans mandshurica Maxim., 1856 is a second-class, protected, rare tree species of high economic and ecological value. We elucidated the complete mitochondrial (mt) genome of J. mandshurica using the Illumina Novaseq 6000 and Nanopore platforms. The complete sequences of 558,032 and 161,386 bp had an overall GC content of 45.0% and 45.3%, respectively, and 61 genes could be annotated, including 38 protein-coding, 20 tRNA, and 3 rRNA genes. The high-quality J. mandshurica mt genomic sequences presented in this study will serve as a useful resource for a range of genetic, functional, evolutionary, and comparative genomic studies on this species of the Juglandaceae family.
Collapse
Affiliation(s)
- Xun Su
- School of Life Sciences, Ludong University, Yantai, P.R. China
| | - Qiong Liu
- Shandong Refining and Chemical Energy Group Co., Ltd., Jinan, P.R. China
| | - Haili Guo
- Shandong Provincial Center of Forest and Grass Germplasm Resources, Jinan, P.R. China
| | - Dechang Hu
- School of Life Sciences, Ludong University, Yantai, P.R. China,CONTACT Dechang Hu School of Life Sciences, Ludong University, 186# Hongqi Middle Road, Zhifu District, Yantai, Shandong, 264025, P.R. China
| | - Dan Liu
- Shandong Provincial Center of Forest and Grass Germplasm Resources, Jinan, P.R. China,Dan Liu Shandong Provincial Center of Forest and Grass Germplasm Resources, No. 2011, Gangjiu Road, Ganggou Street, Jinan, Shandong, 250102, P.R. China
| | - Zihao Wang
- School of Life Sciences, Ludong University, Yantai, P.R. China
| | - Ping Zhang
- School of Life Sciences, Ludong University, Yantai, P.R. China
| |
Collapse
|
36
|
Cao P, Huang Y, Zong M, Xu Z. De Novo Assembly and Comparative Analysis of the Complete Mitochondrial Genome of Chaenomeles speciosa (Sweet) Nakai Revealed the Existence of Two Structural Isomers. Genes (Basel) 2023; 14:526. [PMID: 36833452 PMCID: PMC9957484 DOI: 10.3390/genes14020526] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 02/01/2023] [Accepted: 02/17/2023] [Indexed: 02/22/2023] Open
Abstract
As a valuable Chinese traditional medicinal species, Chaenomeles speciosa (Sweet) Nakai (C. speciosa) is a natural resource with significant economic and ornamental value. However, its genetic information is not well understood. In this study, the complete mitochondrial genome of C. speciosa was assembled and characterized to explore the repeat sequences, recombination events, rearrangements, and IGT, to predict RNA editing sites, and to clarify the phylogenetic and evolutionary relationship. The C. speciosa mitochondrial genome was found to have two circular chromosomes as its major conformation, with a total length of 436,464 bp and 45.2% GC content. The mitochondrial genome contained 54 genes, including 33 unique protein-coding genes, 18 tRNAs, and 3 rRNA genes. Seven pairs of repeat sequences involving recombination events were analyzed. Both the repeat pairs, R1 and R2, played significant roles in mediating the major and minor conformations. In total, 18 MTPTs were identified, 6 of which were complete tRNA genes. There were 454 RNA editing sites in the 33 protein-coding sequences predicted by the PREPACT3 program. A phylogenetic analysis based on 22 species of mitochondrial genomes was constructed and indicated highly conserved PCG sequences. Synteny analyses showed extensive genomic rearrangements in the mitochondrial genome of C. speciosa and closely related species. This work is the first to report the C. speciosa mitochondrial genome, which is of great significance for conducting additional genetic studies on this organism.
Collapse
Affiliation(s)
- Pei Cao
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Yuan Huang
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Mei Zong
- College of Life Sciences, Anqing Normal University, Anqing 246133, China
| | - Zilong Xu
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| |
Collapse
|
37
|
Xia C, Li J, Zuo Y, He P, Zhang H, Zhang X, Wang B, Zhang J, Yu J, Deng H. Complete mitochondrial genome of Thuja sutchuenensis and its implications on evolutionary analysis of complex mitogenome architecture in Cupressaceae. BMC PLANT BIOLOGY 2023; 23:84. [PMID: 36750935 PMCID: PMC9903464 DOI: 10.1186/s12870-023-04054-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 01/09/2023] [Indexed: 05/27/2023]
Abstract
BACKGROUND The complex physical structure and abundant repeat sequences make it difficult to assemble the mitogenomes of seed plants, especially gymnosperms. Only approximately 33 mitogenomes of gymnosperms have been reported. However, as the most widely distributed and the second largest family among gymnosperms, Cupressaceae has only six assembled mitogenomes, including five draft mitogenomes and one complete mitogenome, which has greatly hindered the understanding of mitogenome evolution within this large family, even gymnosperms. RESULTS In this study, we assembled and validated the complete mitogenome of Thuja sutchuenensis, with a size of 2.4 Mb. Multiple sequence units constituted its complex structure, which can be reduced to three linear contigs and one small circular contig. The analysis of repeat sequences indicated that the numbers of simple sequence repeats increased during the evolutionary history of gymnosperms, and the mitogenome of Thuja sutchuenensis harboured abundant extra-long repeats (more than 5 kb). Additionally, the longest repeat sequence identified in these seven gymnosperms also came from the mitogenome of Thuja sutchuenensis, with a length of up to 47 kb. The analysis of colinear blocks and gene clusters both revealed that the orders of mitochondrial genes within gymnosperms was not conserved. The comparative analysis showed that only four tRNAs were shared by seven gymnosperms, namely, trnD-GUC, trnE-UUC, trnI-CAU and trnY-GUA. Furthermore, four genes have undergone potential positive selection in most gymnosperm species, namely, atp8, ccmB, mttB and sdh4. CONCLUSION We successfully assembled the second complete mitogenome within Cupressaceae and verified that it consisted of multiple sequence units. Our study also indicated that abundant long repeats may contribute to the generation of the complex conformation of the mitogenome of Thuja sutchuenensis. The investigation of Thuja sutchuenensis's mitogenome in our study provides new insight into further understanding the complex mitogenome architecture within gymnosperms.
Collapse
Affiliation(s)
- Changying Xia
- Center for Biodiversity Conservation and Utilization, School of Life Sciences, Southwest University, 400715, Chongqing, China
- Low Carbon and Ecological Environment Protection Research Center, Chongqing Academy of Science and Technology, 400715, Chongqing, China
| | - Jingling Li
- College of Horticulture and Landscape Architecture, Southwest University, 400715, Chongqing, China
| | - Youwei Zuo
- Center for Biodiversity Conservation and Utilization, School of Life Sciences, Southwest University, 400715, Chongqing, China
| | - Ping He
- Low Carbon and Ecological Environment Protection Research Center, Chongqing Academy of Science and Technology, 400715, Chongqing, China
| | - Huan Zhang
- Center for Biodiversity Conservation and Utilization, School of Life Sciences, Southwest University, 400715, Chongqing, China
| | - Xiaoxia Zhang
- State Key Laboratory of Systematic and Evolutionary Botany , Institute of Botany Chinese Academy of Sciences, 100093, Beijing, China
| | - Binru Wang
- Center for Biodiversity Conservation and Utilization, School of Life Sciences, Southwest University, 400715, Chongqing, China
| | - Jiabin Zhang
- Center for Biodiversity Conservation and Utilization, School of Life Sciences, Southwest University, 400715, Chongqing, China
| | - Jie Yu
- College of Horticulture and Landscape Architecture, Southwest University, 400715, Chongqing, China
| | - Hongping Deng
- Center for Biodiversity Conservation and Utilization, School of Life Sciences, Southwest University, 400715, Chongqing, China.
- Low Carbon and Ecological Environment Protection Research Center, Chongqing Academy of Science and Technology, 400715, Chongqing, China.
| |
Collapse
|
38
|
Characterizing the Complete Mitochondrial Genomes of Three Bugs (Hemiptera: Heteroptera) Harming Bamboo. Genes (Basel) 2023; 14:genes14020342. [PMID: 36833269 PMCID: PMC9956975 DOI: 10.3390/genes14020342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 01/20/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023] Open
Abstract
Herein, we report the mitochondrial genomic characteristics of three insect pests, Notobitus meleagris, Macropes harringtonae, and Homoeocerus bipunctatus, collected from bamboo plants in Guizhou Province, China. For the first time, the damaged conditions and life histories of M. harringtonae and H. bipunctatus are described in detail and digital photographs of all their life stages are provided. Simultaneously, the mitochondrial genome sequences of three bamboo pests were sequenced and analyzed. Idiocerus laurifoliae and Nilaparvata lugens were used as outgroups, and the phylogenetic trees were constructed. The mitochondrial genomes of the three bamboo pests contained 37 classical genes, including 13 protein-coding genes (PCGs), two ribosomal RNA genes (rRNAs), 22 transfer RNAs (tRNAs), and a control region, with a total length of 16,199 bp, 15,314 bp, and 16,706 bp, respectively. The A+T values of the three bamboo pests were similar, and trnS1 was a cloverleaf structure with missing arms. The phylogenetic analyses, using the Bayesian inference (BI) and Maximum likelihood (ML), supported that N. meleagris and H. bipunctatus belonged to the Coreoidea family, whereas M. harringtonae belonged to the Lygaeoidea family with high support values. This study involves the first complete sequencing of the mitochondrial genomes of two bamboo pests. By adding these newly sequenced mitochondrial genome data and detailed descriptions of life histories, the database of bamboo pests is improved. These data also provide information for the development of bamboo pest control methods by quick identification techniques and the use of detailed photographs.
Collapse
|
39
|
Liu D, Qu K, Yuan Y, Zhao Z, Chen Y, Han B, Li W, El-Kassaby YA, Yin Y, Xie X, Tong B, Liu H. Complete sequence and comparative analysis of the mitochondrial genome of the rare and endangered Clematis acerifolia, the first clematis mitogenome to provide new insights into the phylogenetic evolutionary status of the genus. Front Genet 2023; 13:1050040. [PMID: 36761694 PMCID: PMC9907779 DOI: 10.3389/fgene.2022.1050040] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 12/05/2022] [Indexed: 01/05/2023] Open
Abstract
Clematis is one of the large worldwide genera of the Ranunculaceae Juss. Family, with high ornamental and medicinal value. China is the modern distribution centre of Clematis with abundant natural populations. Due to the complexity and high morphological diversity of Clematis, the genus is difficult to classify systematically, and in particular, the phylogenetic position of the endangered Clematis acerifolia is highly controversial. The use of the mitochondrial complete genome is a powerful molecular method that is frequently used for inferring plants phylogenies. However, studies on Clematis mitogenome are rare, thus limiting our full understanding of its phylogeny and genome evolution. Here, we sequenced and annotated the C. acerifolia mt genome using Illumina short- and Nanopore long-reads, characterized the species first complete mitogenome, and performed a comparative phylogenetic analysis with its close relatives. The total length of the C. acerifolia mitogenome is 698,247 bp and the main structure is multi-branched (linear molecule 1 and circular molecule 2). We annotated 55 genes, including 35 protein-coding, 17 tRNA, and 3 rRNA genes. The C. acerifolia mitogenome has extremely unconserved structurally, with extensive sequence transfer between the chloroplast and mitochondrial organelles, sequence repeats, and RNA editing. The phylogenetic position of C. acerifolia was determined by constructing the species mitogenome with 24 angiosperms. Further, our C. acerifolia mitogenome characteristics investigation included GC contents, codon usage, repeats and synteny analysis. Overall, our results are expected to provide fundamental information for C. acerifolia mitogenome evolution and confirm the validity of mitochondrial analysis in determining the phylogenetic positioning of Clematis plants.
Collapse
Affiliation(s)
- Dan Liu
- Shandong Provincial Center of Forest and Grass Germplasm Resources, Jinan, China,State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Kai Qu
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Yangchen Yuan
- College of Landscape Architecture and Tourism, Hebei Agricultural University, Baoding, China,Hebei Hongya Mountain State-Owned Forest Farm, Baoding, China
| | - Zhiheng Zhao
- Guangxi Forestry Research Institute, Guangxi Key Laboratory of Special Non-wood Forest Cultivation &; Utilization, Nanning, China
| | - Ying Chen
- Forestry Protection and Development Service Center of Shandong Province, Jinan, China
| | - Biao Han
- Shandong Provincial Center of Forest and Grass Germplasm Resources, Jinan, China
| | - Wei Li
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Yousry A. El-Kassaby
- Department of Forest and Conservation Sciences, The University of British Columbia, Vancouver, BC, Canada
| | | | - Xiaoman Xie
- Shandong Provincial Center of Forest and Grass Germplasm Resources, Jinan, China,*Correspondence: Xiaoman Xie, ; Boqiang Tong, ; Hongshan Liu,
| | - Boqiang Tong
- Shandong Provincial Center of Forest and Grass Germplasm Resources, Jinan, China,*Correspondence: Xiaoman Xie, ; Boqiang Tong, ; Hongshan Liu,
| | - Hongshan Liu
- Hebei Hongya Mountain State-Owned Forest Farm, Baoding, China,*Correspondence: Xiaoman Xie, ; Boqiang Tong, ; Hongshan Liu,
| |
Collapse
|