1
|
Li YS, Fujisawa K, Kawai K. Diurnal and daily fluctuations in levels of the urinary oxidative stress marker 8-hydroxyguanosine in spot urine samples. Genes Environ 2025; 47:1. [PMID: 39844253 PMCID: PMC11752967 DOI: 10.1186/s41021-025-00324-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 01/14/2025] [Indexed: 01/24/2025] Open
Abstract
BACKGROUND Urinary 8-hydroxyguanosine (8-OHGuo) levels serve as a biomarker for oxidative stress and hydroxyl radical-induced RNA damage. Evaluating the diurnal and daily fluctuations in urinary 8-OHGuo excretion levels is essential for understanding its implications. However, research in this area remains limited. In this study, we aim to investigate the diurnal and daily fluctuations in 8-OHGuo levels as well as the factors that influence these variations, using spot urine samples. METHODS Urine samples were collected from seven healthy participants during each urination from the time of awakening until 24:00 h to evaluate diurnal variations. To assess daily fluctuations, urine samples were collected from 18 healthy participants at the time of awakening for 23 consecutive days. The urinary 8-OHGuo levels were measured using an HPLC-ECD method. RESULTS No significant variations were observed in the diurnal levels of urinary 8-OHGuo among non-smokers. Conversely, the daily variation of 8-OHGuo in the urine of the smoker was significant, with a coefficient of variation of 18.71%. Each individual maintained a characteristic value despite some diurnal fluctuations. Furthermore, the daily levels of 8-OHGuo exhibited a range of variations influenced by lifestyle factors, including mental state, sleep duration, smoking, menstrual cycle, and dietary habits. CONCLUSION As a specific marker of RNA oxidation, 8-OHGuo provides unique insights distinct from those provided by the widely used DNA oxidation marker 8-hydroxydeoxyguanosine as an indicator of oxidative stress. Urinary 8-OHGuo could serve as a valuable biomarker for managing and preventing oxidative stress-related diseases, provided that the specific range of daily variations is established. The high daily variation in urinary 8-OHGuo levels necessitates the use of multiple samples to accurately determine individual levels. However, further research with large sample sizes will help to validate these findings.
Collapse
Affiliation(s)
- Yun-Shan Li
- Department of Environmental Oncology, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan.
- Center for Stress-Related Disease Control and Prevention, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan.
| | - Koichi Fujisawa
- Department of Environmental Oncology, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan
| | - Kazuaki Kawai
- Department of Environmental Oncology, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan
| |
Collapse
|
2
|
Möller C, Virzi J, Chang YJ, Keidel A, Chao MR, Hu CW, Cooke MS. DNA modifications: Biomarkers for the exposome? ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 108:104449. [PMID: 38636743 DOI: 10.1016/j.etap.2024.104449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/25/2024] [Accepted: 04/12/2024] [Indexed: 04/20/2024]
Abstract
The concept of the exposome is the encompassing of all the environmental exposures, both exogenous and endogenous, across the life course. Many, if not all, of these exposures can result in the generation of reactive species, and/or the modulation of cellular processes, that can lead to a breadth of modifications of DNA, the nature of which may be used to infer their origin. Because of their role in cell function, such modifications have been associated with various major human diseases, including cancer, and so their assessment is crucial. Historically, most methods have been able to only measure one or a few DNA modifications at a time, limiting the information available. With the development of DNA adductomics, which aims to determine the totality of DNA modifications, a far more comprehensive picture of the DNA adduct burden can be gained. Importantly, DNA adductomics can facilitate a "top-down" investigative approach whereby patterns of adducts may be used to trace and identify the originating exposure source. This, together with other 'omic approaches, represents a major tool for unraveling the complexities of the exposome and hence allow a better a understanding of the environmental origins of disease.
Collapse
Affiliation(s)
- Carolina Möller
- Oxidative Stress Group, Department of Molecular Biosciences, University of South Florida, Tampa, FL 33620, USA.
| | - Jazmine Virzi
- Oxidative Stress Group, Department of Molecular Biosciences, University of South Florida, Tampa, FL 33620, USA
| | - Yuan-Jhe Chang
- Department of Occupational Safety and Health, Chung Shan Medical University, Taichung 402, Taiwan
| | - Alexandra Keidel
- Oxidative Stress Group, Department of Molecular Biosciences, University of South Florida, Tampa, FL 33620, USA
| | - Mu-Rong Chao
- Department of Occupational Safety and Health, Chung Shan Medical University, Taichung 402, Taiwan; Department of Occupational Medicine, Chung Shan Medical University Hospital, Taichung 402, Taiwan
| | - Chiung-Wen Hu
- Department of Public Health, Chung Shan Medical University, Taichung 402, Taiwan
| | - Marcus S Cooke
- Oxidative Stress Group, Department of Molecular Biosciences, University of South Florida, Tampa, FL 33620, USA; College of Public Health, University of South Florida, Tampa, FL 33620, USA; Cancer Biology and Evolution Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA.
| |
Collapse
|
3
|
Rahimpoor R, Jalilian H, Mohammadi H, Rahmani A. Biological exposure indices of occupational exposure to benzene: A systematic review. Heliyon 2023; 9:e21576. [PMID: 38027568 PMCID: PMC10660043 DOI: 10.1016/j.heliyon.2023.e21576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 10/19/2023] [Accepted: 10/24/2023] [Indexed: 12/01/2023] Open
Abstract
The current study aimed to systematically review the studies concerning the biological monitoring of benzene exposure in occupational settings. A systematic literature review was conducted in Scopus, EMBASE, Web of Science, and Medline from 1985 through July 2021. We included peer-reviewed original articles that investigated the association between occupational exposure to benzene and biological monitoring. We identified 4786 unique citations, of which 64 cross-sectional, one case-control, and one cohort study met our inclusion criteria. The most studied biomarkers were urinary trans-trans muconic acid, S- phenyl mercapturic acid, and urinary benzene, respectively. We found the airborne concentration of benzene as a key indicator for choosing a suitable biomarker. We suggest considering urinary benzene at low (0.5-5.0 TLV), urinary SPMA and TTMA at medium (5.0-25 and 25-50 TLV, respectively), and urinary phenol and hydroquinone and catechol at very high concentrations (500 and 1000 TLV ≤, respectively). Genetic polymorphism of glutathione S-transferase and oral intake of sorbic acid have confounding effects on the level of U-SPMA and U-TTMA, respectively. The airborne concentration, smoking habit, oral consumption of sorbic acid, and genetic polymorphism of workers should be considered in order to choose the appropriate indicator for biological monitoring of benzene exposure.
Collapse
Affiliation(s)
- Razzagh Rahimpoor
- Department of Occupational Health and Safety, Research Center for Health Sciences, School of Health, Larestan University of Medical Sciences, Larestan, Iran
| | - Hamed Jalilian
- School of Architecture, Planning and Environmental Policy, University College Dublin, Dublin, Ireland
| | - Heidar Mohammadi
- Department of Occupational Health and Safety, Research Center for Health Sciences, School of Health, Larestan University of Medical Sciences, Larestan, Iran
| | - Abdulrasoul Rahmani
- Department of Occupational Health and Safety, Research Center for Health Sciences, School of Health, Larestan University of Medical Sciences, Larestan, Iran
| |
Collapse
|
4
|
Tavares A, Aimonen K, Ndaw S, Fučić A, Catalán J, Duca RC, Godderis L, Gomes BC, Janasik B, Ladeira C, Louro H, Namorado S, Nieuwenhuyse AV, Norppa H, Scheepers PTJ, Ventura C, Verdonck J, Viegas S, Wasowicz W, Santonen T, Silva MJ. HBM4EU Chromates Study-Genotoxicity and Oxidative Stress Biomarkers in Workers Exposed to Hexavalent Chromium. TOXICS 2022; 10:483. [PMID: 36006162 PMCID: PMC9412464 DOI: 10.3390/toxics10080483] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/13/2022] [Accepted: 08/17/2022] [Indexed: 06/15/2023]
Abstract
A study was conducted within the European Human Biomonitoring Initiative (HBM4EU) to characterize occupational exposure to Cr(VI). Herein we present the results of biomarkers of genotoxicity and oxidative stress, including micronucleus analysis in lymphocytes and reticulocytes, the comet assay in whole blood, and malondialdehyde and 8-oxo-2′-deoxyguanosine in urine. Workers from several Cr(VI)-related industrial activities and controls from industrial (within company) and non-industrial (outwith company) environments were included. The significantly increased genotoxicity (p = 0.03 for MN in lymphocytes and reticulocytes; p < 0.001 for comet assay data) and oxidative stress levels (p = 0.007 and p < 0.001 for MDA and 8-OHdG levels in pre-shift urine samples, respectively) that were detected in the exposed workers over the outwith company controls suggest that Cr(VI) exposure might still represent a health risk, particularly, for chrome painters and electrolytic bath platers, despite the low Cr exposure. The within-company controls displayed DNA and chromosomal damage levels that were comparable to those of the exposed group, highlighting the relevance of considering all industry workers as potentially exposed. The use of effect biomarkers proved their capacity to detect the early biological effects from low Cr(VI) exposure, and to contribute to identifying subgroups that are at higher risk. Overall, this study reinforces the need for further re-evaluation of the occupational exposure limit and better application of protection measures. However, it also raised some additional questions and unexplained inconsistencies that need follow-up studies to be clarified.
Collapse
Affiliation(s)
- Ana Tavares
- Department of Human Genetics, National Institute of Health Dr. Ricardo Jorge (INSA), Av. Padre Cruz, 1649-016 Lisbon, Portugal
| | - Kukka Aimonen
- Finnish Institute of Occupational Health, 00250 Helsinki, Finland
| | - Sophie Ndaw
- French National Research and Safety Institute, 54500 Vandœuvre-lès-Nancy, France
| | - Aleksandra Fučić
- Institute for Medical Research and Occupational Health, Ksaverska Cesta 2, HR-10001 Zagreb, Croatia
| | - Julia Catalán
- Finnish Institute of Occupational Health, 00250 Helsinki, Finland
- Department of Anatomy Embryology and Genetics, University of Zaragoza, 50013 Zaragoza, Spain
| | - Radu Corneliu Duca
- Centre for Environment and Health, Department of Public Health and Primary Care, KU Leuven (University of Leuven), O&N 5b, Herestraat 49, P.O. Box 952, 3000 Leuven, Belgium
- Department of Health Protection, Laboratoire National de Santé (LNS), 3555 Dudelange, Luxembourg
| | - Lode Godderis
- Centre for Environment and Health, Department of Public Health and Primary Care, KU Leuven (University of Leuven), O&N 5b, Herestraat 49, P.O. Box 952, 3000 Leuven, Belgium
- IDEWE, External Service for Prevention and Protection at Work, 3001 Heverlee, Belgium
| | - Bruno C. Gomes
- Centre for Toxicogenomics and Human Health (Toxomics), NOVA Medical School, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056 Lisbon, Portugal
| | - Beata Janasik
- Department of Environmental and Biological Monitoring, Nofer Institute of Occupational Medicine, 91348 Lodz, Poland
| | - Carina Ladeira
- HTRC—Health & Technology Research Center, ESTeSL—Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, 1549-020 Lisbon, Portugal
| | - Henriqueta Louro
- Department of Human Genetics, National Institute of Health Dr. Ricardo Jorge (INSA), Av. Padre Cruz, 1649-016 Lisbon, Portugal
- Centre for Toxicogenomics and Human Health (Toxomics), NOVA Medical School, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056 Lisbon, Portugal
| | - Sónia Namorado
- Department of Human Genetics, National Institute of Health Dr. Ricardo Jorge (INSA), Av. Padre Cruz, 1649-016 Lisbon, Portugal
| | - An Van Nieuwenhuyse
- Centre for Environment and Health, Department of Public Health and Primary Care, KU Leuven (University of Leuven), O&N 5b, Herestraat 49, P.O. Box 952, 3000 Leuven, Belgium
- Department of Health Protection, Laboratoire National de Santé (LNS), 3555 Dudelange, Luxembourg
| | - Hannu Norppa
- Finnish Institute of Occupational Health, 00250 Helsinki, Finland
| | - Paul T. J. Scheepers
- Radboud Institute for Health Sciences, Radboudumc, 6500 HB Nijmegen, The Netherlands
| | - Célia Ventura
- Department of Human Genetics, National Institute of Health Dr. Ricardo Jorge (INSA), Av. Padre Cruz, 1649-016 Lisbon, Portugal
- Centre for Toxicogenomics and Human Health (Toxomics), NOVA Medical School, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056 Lisbon, Portugal
| | - Jelle Verdonck
- Centre for Environment and Health, Department of Public Health and Primary Care, KU Leuven (University of Leuven), O&N 5b, Herestraat 49, P.O. Box 952, 3000 Leuven, Belgium
| | - Susana Viegas
- NOVA National School of Public Health, Universidade NOVA de Lisboa, 1600-560 Lisbon, Portugal
- Comprehensive Health Research Center (CHRC), 1169-056 Lisbon, Portugal
| | - Wojciech Wasowicz
- Department of Environmental and Biological Monitoring, Nofer Institute of Occupational Medicine, 91348 Lodz, Poland
| | - Tiina Santonen
- Finnish Institute of Occupational Health, 00250 Helsinki, Finland
| | - Maria João Silva
- Department of Human Genetics, National Institute of Health Dr. Ricardo Jorge (INSA), Av. Padre Cruz, 1649-016 Lisbon, Portugal
- Centre for Toxicogenomics and Human Health (Toxomics), NOVA Medical School, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056 Lisbon, Portugal
| | | |
Collapse
|
5
|
Cavallo D, Ursini CL, Fresegna AM, Ciervo A, Boccuni F, Ferrante R, Tombolini F, Maiello R, Chiarella P, Buresti G, Del Frate V, Poli D, Andreoli R, Di Cristo L, Sabella S, Iavicoli S. A follow-up study on workers involved in the graphene production process after the introduction of exposure mitigation measures: evaluation of genotoxic and oxidative effects. Nanotoxicology 2022; 16:776-790. [PMID: 36427224 DOI: 10.1080/17435390.2022.2149359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
During nanomaterial (NM) production, workers could be exposed, particularly by inhalation, to NMs and other chemicals used in the synthesis process, so it is important to have suitable biomarkers to monitor potential toxic effects. Aim of this study was to evaluate the effectiveness of the introduction of exposure mitigation measures on workers unintentionally exposed to graphene co-pollutants during production process monitoring the presumable reduction of workplace NM contamination and of early genotoxic and oxidative effects previously found on these workers. We used Buccal Micronucleus Cytome (BMCyt) assay and Fpg-comet test, resulted the most sensitive biomarkers on our first biomonitoring work, to measure the genotoxic effects. We also detected urinary oxidized nucleic acid bases 8-oxoGua, 8-oxoGuo and 8-oxodGuo to evaluate oxidative damage. The genotoxic and oxidative effects were assessed on the same graphene workers (N = 6) previously studied, comparing the results with those found in the first biomonitoring and with the control group (N = 11). This was achieved 6 months after the installation of a special filter hood (where to perform the phases at higher risk of NM emission) and the improvement of environmental and personal protective equipment. Particle number concentration decreased after the mitigation measures. We observed reduction of Micronucleus (MN) frequency and oxidative DNA damage and increase of 8-oxodGuo excretion compared to the first biomonitoring. These results, although limited by the small subject number, showed the efficacy of adopted exposure mitigation measures and the suitability of used sensitive and noninvasive biomarkers to bio-monitor over time workers involved in graphene production process.
Collapse
Affiliation(s)
- Delia Cavallo
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, Italian Workers' Compensation Authority-INAIL, Rome, Italy
| | - Cinzia Lucia Ursini
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, Italian Workers' Compensation Authority-INAIL, Rome, Italy
| | - Anna Maria Fresegna
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, Italian Workers' Compensation Authority-INAIL, Rome, Italy
| | - Aureliano Ciervo
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, Italian Workers' Compensation Authority-INAIL, Rome, Italy
| | - Fabio Boccuni
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, Italian Workers' Compensation Authority-INAIL, Rome, Italy
| | - Riccardo Ferrante
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, Italian Workers' Compensation Authority-INAIL, Rome, Italy
| | - Francesca Tombolini
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, Italian Workers' Compensation Authority-INAIL, Rome, Italy
| | - Raffaele Maiello
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, Italian Workers' Compensation Authority-INAIL, Rome, Italy
| | - Pieranna Chiarella
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, Italian Workers' Compensation Authority-INAIL, Rome, Italy
| | - Giuliana Buresti
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, Italian Workers' Compensation Authority-INAIL, Rome, Italy
| | - Valentina Del Frate
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, Italian Workers' Compensation Authority-INAIL, Rome, Italy
| | - Diana Poli
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, Italian Workers' Compensation Authority-INAIL, Rome, Italy
| | - Roberta Andreoli
- Department of Medicine and Surgery, Laboratory of Industrial Toxicology, University of Parma, Parma, Italy
| | | | | | - Sergio Iavicoli
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, Italian Workers' Compensation Authority-INAIL, Rome, Italy
| |
Collapse
|
6
|
Buonaurio F, Borra F, Pigini D, Paci E, Spagnoli M, Astolfi ML, Giampaoli O, Sciubba F, Miccheli A, Canepari S, Ancona C, Tranfo G. Biomonitoring of Exposure to Urban Pollutants and Oxidative Stress during the COVID-19 Lockdown in Rome Residents. TOXICS 2022; 10:toxics10050267. [PMID: 35622680 PMCID: PMC9143243 DOI: 10.3390/toxics10050267] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/19/2022] [Accepted: 05/20/2022] [Indexed: 02/01/2023]
Abstract
Background: The objective of this study is to evaluate the effects of traffic on human health comparing biomonitoring data measured during the COVID-19 lockdown, when restrictions led to a 40% reduction in airborne benzene in Rome and a 36% reduction in road traffic, to the same parameters measured in 2021. Methods: Biomonitoring was performed on 49 volunteers, determining the urinary metabolites of the most abundant traffic pollutants, such as benzene and PAHs, and oxidative stress biomarkers by HPLC/MS-MS, 28 elements by ICP/MS and metabolic phenotypes by NMR. Results: Means of s-phenylmercaputric acid (SPMA), metabolites of naphthalene and nitropyrene in 2020 are 20% lower than in 2021, while 1-OH-pyrene was 30% lower. A reduction of 40% for 8-oxo-7,8-dihydroguanosine (8-oxoGuo) and 8-oxo-7,8-dihydro-2-deoxyguanosine (8-oxodGuo) and 60% for 8-oxo-7,8-dihydroguanine (8-oxoGua) were found in 2020 compared to 2021. The concentrations of B, Co, Cu and Sb in 2021 are significantly higher than in the 2020. NMR untargeted metabolomic analysis identified 35 urinary metabolites. Results show in 2021 a decrease in succinic acid, a product of the Krebs cycle promoting inflammation. Conclusions: Urban pollution due to traffic is partly responsible for oxidative stress of nucleic acids, but other factors also have a role, enhancing the importance of communication about a healthy lifestyle in the prevention of cancer diseases.
Collapse
Affiliation(s)
- Flavia Buonaurio
- Department of Chemistry, Sapienza University of Rome, 00185 Rome, Italy; (F.B.); (F.B.); (M.L.A.)
| | - Francesca Borra
- Department of Chemistry, Sapienza University of Rome, 00185 Rome, Italy; (F.B.); (F.B.); (M.L.A.)
| | - Daniela Pigini
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, INAIL, Monte Porzio Catone, 00144 Rome, Italy; (D.P.); (E.P.); (M.S.)
| | - Enrico Paci
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, INAIL, Monte Porzio Catone, 00144 Rome, Italy; (D.P.); (E.P.); (M.S.)
| | - Mariangela Spagnoli
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, INAIL, Monte Porzio Catone, 00144 Rome, Italy; (D.P.); (E.P.); (M.S.)
| | - Maria Luisa Astolfi
- Department of Chemistry, Sapienza University of Rome, 00185 Rome, Italy; (F.B.); (F.B.); (M.L.A.)
| | - Ottavia Giampaoli
- Department of Environmental Biology, Sapienza University of Rome, 00185 Rome, Italy; (O.G.); (F.S.); (A.M.); (S.C.)
- NMR-Based Metabolomics Laboratory (NMLab), Sapienza University of Rome, 00185 Rome, Italy
| | - Fabio Sciubba
- Department of Environmental Biology, Sapienza University of Rome, 00185 Rome, Italy; (O.G.); (F.S.); (A.M.); (S.C.)
- NMR-Based Metabolomics Laboratory (NMLab), Sapienza University of Rome, 00185 Rome, Italy
| | - Alfredo Miccheli
- Department of Environmental Biology, Sapienza University of Rome, 00185 Rome, Italy; (O.G.); (F.S.); (A.M.); (S.C.)
- NMR-Based Metabolomics Laboratory (NMLab), Sapienza University of Rome, 00185 Rome, Italy
| | - Silvia Canepari
- Department of Environmental Biology, Sapienza University of Rome, 00185 Rome, Italy; (O.G.); (F.S.); (A.M.); (S.C.)
| | - Carla Ancona
- Department of Epidemiology, Lazio Regional Health Service, 00154 Rome, Italy;
| | - Giovanna Tranfo
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, INAIL, Monte Porzio Catone, 00144 Rome, Italy; (D.P.); (E.P.); (M.S.)
- Correspondence: ; Tel.: +39-0694181436
| |
Collapse
|
7
|
Hyperbaric Exposure of Scuba Divers Affects the Urinary Excretion of Nucleic Acid Oxidation Products and Hypoxanthine. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19053005. [PMID: 35270697 PMCID: PMC8910156 DOI: 10.3390/ijerph19053005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 02/21/2022] [Accepted: 03/02/2022] [Indexed: 12/10/2022]
Abstract
In recent studies, oxidative stress after scuba diving has been explored by measuring urinary biomarkers in volunteers under controlled conditions. Dive depth and duration, water temperature, and workload are all variables that can elicit metabolic responses. A controlled diving experiment was performed in an indoor pool at 20, 30, and 40 m depths at a water temperature of 32 °C, on three different days. Samples of urine from five male scuba divers were taken before diving and at four time points after diving, and then tested for their concentration of five different oxidative stress biomarkers by means of liquid chromatography tandem mass spectrometry and by 1H nuclear magnetic resonance metabolomics analysis. The results showed no variation in the five biomarkers after diving, but a decreasing trend was observed over the three days, with no differences among the three depths. The lack of effect on oxidative stress biomarkers has been attributed to the comfortable water temperature and to the absence of exercise in the divers during the experiment. Instead, an increase in hypoxanthine excretion, which can be considered a biomarker sensitive to hyperbaric exposure, was found after diving. Finally, the results suggest a physiological mechanism of metabolic adaptation to a new condition.
Collapse
|
8
|
Phthalate Exposure and Biomarkers of Oxidation of Nucleic Acids: Results on Couples Attending a Fertility Center. TOXICS 2022; 10:toxics10020061. [PMID: 35202248 PMCID: PMC8876283 DOI: 10.3390/toxics10020061] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/20/2022] [Accepted: 01/25/2022] [Indexed: 11/17/2022]
Abstract
Phthalates are substances used as plasticizing agents and solvents that can increase the risk of infertility and that appear to induce oxidative stress. The aim of the study was to show the possible relationship between urinary concentrations of phthalates metabolites, namely MEP, MBzP, MnBP, MEHP, MEHHP, and MnOP and biomarkers of nucleic acids oxidation, methylation, or protein nitroxidation. The oxidative stress biomarkers measured in human urine were 8-oxo-7,8-dihydroguanine, 8-oxo-7,8-dihydroguanosine, 8-oxo-7,8-dihydro-2′-deoxyguanosine, 3-nitrotyrosine, and 5-methylcytidine. Two hundred and seventy-four couples were enrolled, undergoing an assisted reproduction technology (ART) treatment, urine samples were analyzed in HPLC/MS-MS, and then two sub-groups with urinary concentration > 90th or <10th percentile were identified, reducing the sample size to 112 subjects. The levels of oxidative stress biomarkers were measured in both groups, reduced to 52 men and 60 women. A statistically significantly difference for 8-oxoGuo and 3-NO2Tyr between men and women, with higher levels in men, was found. The levels of oxidative stress biomarkers were directly correlated with some phthalate concentrations in both sexes.
Collapse
|
9
|
Song W, Han Q, Wan Y, Qian X, Wei M, Jiang Y, Wang Q. Repeated measurements of 21 urinary metabolites of volatile organic compounds and their associations with three selected oxidative stress biomarkers in 0-7-year-old healthy children from south and central China. CHEMOSPHERE 2022; 287:132065. [PMID: 34496338 DOI: 10.1016/j.chemosphere.2021.132065] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 08/12/2021] [Accepted: 08/26/2021] [Indexed: 06/13/2023]
Abstract
Human beings are extensively and concurrently exposed to multiple volatile organic compounds (VOCs, including some Class I human carcinogens), which may induce oxidative stress in human body. Data on urinary metabolites of VOCs (mVOCs) among young children are limited. No studies have examined their inter-day variability of mVOCs and their associations with oxidative stress biomarkers (OSBs) using repeated urine samples from children. In this study, we measured twenty one mVOCs and three OSBs [8-hydroxy-2'-deoxyguanosine (8-OHdG; for DNA), 8-hydroxyguanosine (8-OHG; for RNA], and 4-hydroxy nonenal mercapturic acid (HNEMA; for lipid)] in 390 urine samples of 130 children (three samples on three consecutive days provided by each participant) aged 0-7 years from September 2018 to January 2019 in Shenzhen, south China, and Wuhan, central China. HPMMA (3-hydroxypropyl-1-methyl mercapturic acid/N-Acetyl-S-(3-hydroxypropyl-1-methyl)-l-cysteine), 3HPMA (3-hydroxypropyl mercapturic acid/N-Acetyl-S-(3-hydroxypropyl)-l-cysteine), and ATCA (2-aminothiazoline-4-carboxylic acid) had higher specific gravity-adjusted median concentrations (1 383, 286, and 273 μg/L, respectively) than the others. Intraclass correlation coefficients of mVOCs ranged from 0.29 to 0.71. After false-discovery rate (FDR, defined as FDR q-value < 0.05) adjustment, linear mixed-effects models revealed that 14 mVOCs were positively associated with 8-OHdG (β range: 0.09-0.37), 11 mVOCs were positively associated with 8-OHG (β range: 0.08-0.30), and 11 mVOCs were positively associated with HNEMA (β range: 0.21-0.70) in urine. Considering the weight of the mVOC index accounted for the associations, based on the weighted quantile sum regression model, parent compounds of DHBMA (3,4-dihydroxybutyl mercapturic acid/N-Acetyl-S-(3,4-dihydroxybutyl)-l-cysteine) and t,t-MA (trans,trans-muconic acid) should be listed as priority VOCs for management to mitigate health risks. For the first time, this study characterized the inter-day variability of urinary mVOCs and their associations with selected OSBs (8-OHdG, 8-OHG, and NHEMA) in young, healthy Chinese children.
Collapse
Affiliation(s)
- Wenjing Song
- MOE Key Lab of Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, PR China.
| | - Qing Han
- Institute of Environmental Health, Wuhan Centers for Disease Control & Prevention, Wuhan, Hubei, 430024, PR China.
| | - Yanjian Wan
- Institute of Environmental Health, Wuhan Centers for Disease Control & Prevention, Wuhan, Hubei, 430024, PR China.
| | - Xi Qian
- Key Laboratory of Environment and Health (HUST), Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, PR China.
| | - Muhong Wei
- MOE Key Lab of Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, PR China.
| | - Ying Jiang
- Nanshan District Centers for Disease Control and Prevention, Shenzhen, Guangdong, 518054, PR China.
| | - Qi Wang
- MOE Key Lab of Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, PR China.
| |
Collapse
|
10
|
Oxidative Stress Biomarkers in Urine of Metal Carpentry Workers Can Be Diagnostic for Occupational Exposure to Low Level of Welding Fumes from Associated Metals. Cancers (Basel) 2021; 13:cancers13133167. [PMID: 34202906 PMCID: PMC8268877 DOI: 10.3390/cancers13133167] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/17/2021] [Accepted: 06/19/2021] [Indexed: 12/29/2022] Open
Abstract
Urinary concentrations of 16 different exposure biomarkers to metals were determined at the beginning and at the end of a working shift on a group of workers in the metal carpentry industry. Five different oxidative stress biomarkers were also measured, such as the oxidation products of RNA and DNA metabolized and excreted in the urine. The results of workers exposed to metals were compared to those of a control group. The metal concentrations found in these workers were well below the occupational exposure limit values and exceeded the mean concentrations of the same metals in the urine of the control group by a factor of four at maximum. Barium (Ba), mercury (Hg), lead (Pb) and strontium (Sr) were correlated with the RNA oxidative stress biomarker, 8-oxo-7, 8-dihydroguanosine (8-oxoGuo), which was found able to discriminate exposed workers from controls with a high level of specificity and sensitivity. The power of this early diagnostic technique was assessed by means of the ROC curve. Ba, rubidium (Rb), Sr, tellurium (Te), and vanadium (V) were correlated with the level of the protein oxidation biomarker 3-Nitrotyrosine (3-NO2Tyr), and Ba, beryllium (Be), copper (Cu), and Rb with 5-methylcytidine (5-MeCyt), an epigenetic marker of RNA damage. These effect biomarkers can help in identifying those workers that can be defined as "occupationally exposed" even at low exposure levels, and they can provide information about the impact that such doses have on their health.
Collapse
|
11
|
Jebai R, Ebrahimi Kalan M, Vargas-Rivera M, Osibogun O, Li W, Gautam P, Chao MR, Hu CW, Bursac Z, Maziak W. Markers of oxidative stress and toxicant exposure among young waterpipe smokers in the USA. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:26677-26683. [PMID: 33491143 PMCID: PMC8165017 DOI: 10.1007/s11356-021-12520-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 01/13/2021] [Indexed: 05/05/2023]
Abstract
Waterpipe (aka hookah) tobacco smokers are exposed to toxicants that can lead to oxidative DNA and RNA damage, a precursor to chronic disease formation. This study assessed toxicant exposure and biomarkers of DNA [8-oxo-7, 8-dihydro-2'-deoxyguanosine (8-oxodG)] and RNA [8-oxo-7,8-dihydroguanosine (8-oxoGuo)] oxidative damage during smoking of flavored and non-flavored waterpipe tobacco. Thirty waterpipe smokers completed two counterbalanced 2-h lab waterpipe smoking sessions (flavored vs. non-flavored waterpipe tobacco). Urinary concentrations of 8-oxodG and 8-oxoGuo and expired carbon monoxide (eCO) were measured before and after the smoking sessions. A significant increase in the urinary concentrations of 8-oxodG (from 2.12 ± 0.83 to 2.35 ± 0.91 ng/mg creatinine, p = 0.024) and 8-oxoGuo (from 2.96 ± 0.84 to 3.45 ± 0.76 ng/mg creatinine, p = 0.003) were observed after smoking the non-flavored and flavored waterpipe tobacco, respectively. Our results also showed that the mean ± SD of eCO increased significantly after smoking the flavored (from 1.3 ± 1.1 to 20.3 ± 23.6 ppm, p < 0.001) and non-flavored waterpipe tobacco (from 1.8 ± 1.2 to 24.5 ± 26.1 ppm, p < 0.001). There were no significant differences in the means of 8-oxodG (p = 0.576), 8-oxoGuo (p = 0.108), and eCO (p = 0.170) between the flavored and non-flavored tobacco sessions. Smoking non-flavored and flavored waterpipe tobacco leads to oxidative stress and toxicant exposure. Our findings add to the existing evidence about the adverse effects of waterpipe tobacco smoking (WTS) and the need for strong policies to inform and protect young people from the risks of WTS.
Collapse
Affiliation(s)
- Rime Jebai
- Department of Epidemiology, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL, USA
| | - Mohammad Ebrahimi Kalan
- Department of Epidemiology, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL, USA
| | - Mayra Vargas-Rivera
- Department of Epidemiology, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL, USA
| | - Olatokunbo Osibogun
- Department of Epidemiology, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL, USA
| | - Wei Li
- Department of Epidemiology, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL, USA
| | - Prem Gautam
- Department of Epidemiology, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL, USA
| | - Mu-Rong Chao
- Department of Occupational Safety and Health, Chung Shan Medical University, Taichung, 402, Taiwan
| | - Chiung-Wen Hu
- Department of Public Health, Chung Shan Medical University, Taichung, 402, Taiwan
- Department of Family and Community Medicine, Chung Shan Medical University Hospital, Taichung, 402, Taiwan
| | - Zoran Bursac
- Department of Biostatistics, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL, USA
| | - Wasim Maziak
- Department of Epidemiology, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL, USA.
- Syrian Center for Tobacco Studies, Aleppo, Syria.
| |
Collapse
|
12
|
Occupational Exposure in Industrial Painters: Sensitive and Noninvasive Biomarkers to Evaluate Early Cytotoxicity, Genotoxicity and Oxidative Stress. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18094645. [PMID: 33925554 PMCID: PMC8123868 DOI: 10.3390/ijerph18094645] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/25/2021] [Accepted: 04/16/2021] [Indexed: 11/17/2022]
Abstract
This study aimed to identify sensitive and noninvasive biomarkers of early cyto-genotoxic, oxidative and inflammatory effects for exposure to volatile organic compounds (VOCs) in shipyard painters. On 17 (11 spray and 6 roller) painters (previously characterized for VOCs exposure to toluene, xylenes, ethylbenzene, ethyl acetate) and on 18 controls, we performed buccal micronucleus cytome (BMCyt) assay; Fpg-comet assay on lymphocytes; detection of urinary 8-oxoGua (8-oxo-7,8-dihydroguanine), 8-oxodGuo (8-oxo-7,8-dihydro-2'-deoxyguanosine) and 8-oxoGuo (8-oxo-7,8-dihydroguanosine), and cytokines release on serum. We found induction of cyto-genotoxicity by BMCyt assay and inflammatory effects (IL-6 and TNFα) in roller painters exposed to lower VOC concentrations than spray painters. In contrast, in both worker groups, we found direct and oxidative DNA damage by comet assay (with slightly higher oxidative DNA damage in roller) and significant increase of 8-oxoGuo and decrease of 8-oxodGuo and 8-oxoGua in respect to controls. The cyto-genotoxicity observed only on buccal cells of roller painters could be related to the task's specificity and the different used protective equipment. Although limited by the small number of subjects, the study shows the usefulness of all the used biomarkers in the risk assessment of painters workers exposed to complex mixtures.
Collapse
|
13
|
Chao MR, Evans MD, Hu CW, Ji Y, Møller P, Rossner P, Cooke MS. Biomarkers of nucleic acid oxidation - A summary state-of-the-art. Redox Biol 2021; 42:101872. [PMID: 33579665 PMCID: PMC8113048 DOI: 10.1016/j.redox.2021.101872] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/12/2021] [Accepted: 01/15/2021] [Indexed: 12/12/2022] Open
Abstract
Oxidatively generated damage to DNA has been implicated in the pathogenesis of a wide variety of diseases. Increasingly, interest is also focusing upon the effects of damage to the other nucleic acids, RNA and the (2′-deoxy-)ribonucleotide pools, and evidence is growing that these too may have an important role in disease. LC-MS/MS has the ability to provide absolute quantification of specific biomarkers, such as 8-oxo-7,8-dihydro-2′-deoxyGuo (8-oxodG), in both nuclear and mitochondrial DNA, and 8-oxoGuo in RNA. However, significant quantities of tissue are needed, limiting its use in human biomonitoring studies. In contrast, the comet assay requires much less material, and as little as 5 μL of blood may be used, offering a minimally invasive means of assessing oxidative stress in vivo, but this is restricted to nuclear DNA damage only. Urine is an ideal matrix in which to non-invasively study nucleic acid-derived biomarkers of oxidative stress, and considerable progress has been made towards robustly validating these measurements, not least through the efforts of the European Standards Committee on Urinary (DNA) Lesion Analysis. For urine, LC-MS/MS is considered the gold standard approach, and although there have been improvements to the ELISA methodology, this is largely limited to 8-oxodG. Emerging DNA adductomics approaches, which either comprehensively assess the totality of adducts in DNA, or map DNA damage across the nuclear and mitochondrial genomes, offer the potential to considerably advance our understanding of the mechanistic role of oxidatively damaged nucleic acids in disease. Oxidatively damaged nucleic acids are implicated in the pathogenesis of disease. LC-MS/MS, comet assay and ELISA are often used to study oxidatively damaged DNA. Urinary oxidatively damaged nucleic acids non-invasively reflect oxidative stress. DNA adductomics will aid understanding the role of ROS damaged DNA in disease.
Collapse
Affiliation(s)
- Mu-Rong Chao
- Department of Occupational Safety and Health, Chung Shan Medical University, Taichung, 402, Taiwan; Department of Occupational Medicine, Chung Shan Medical University Hospital, Taichung, 402, Taiwan
| | - Mark D Evans
- Leicester School of Allied Health Sciences, Faculty of Health & Life Sciences, De Montfort University, The Gateway, Leicester, LE1 9BH, United Kingdom
| | - Chiung-Wen Hu
- Department of Public Health, Chung Shan Medical University, Taichung, 402, Taiwan
| | - Yunhee Ji
- Department of Environmental Health Sciences, Florida International University, Miami, FL, 33199, USA
| | - Peter Møller
- Section of Environmental Health, Department of Public Health, University of Copenhagen, Øster Farimagsgade 5A, DK, 1014, Copenhagen K, Denmark
| | - Pavel Rossner
- Department of Nanotoxicology and Molecular Epidemiology, Institute of Experimental Medicine of the CAS, 142 20, Prague, Czech Republic
| | - Marcus S Cooke
- Oxidative Stress Group, Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL, 33620, USA.
| |
Collapse
|
14
|
Buonaurio F, Astolfi ML, Canepari S, Di Basilio M, Gibilras R, Mecchia M, Papacchini M, Paci E, Pigini D, Tranfo G. Urinary Oxidative Stress Biomarkers in Workers of a Titanium Dioxide Based Pigment Production Plant. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E9085. [PMID: 33291387 PMCID: PMC7730030 DOI: 10.3390/ijerph17239085] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 11/30/2020] [Accepted: 12/03/2020] [Indexed: 12/16/2022]
Abstract
Titanium dioxide is produced or imported into the EU for over one million tons/year. The International Agency for Research on Cancer (IARC) classification is 2B, a possible inhalation carcinogen for humans. This study evaluates urinary biomarkers of oxidative stress in workers of a plant producing TiO2 pigment powder, having 0.25 µm average particle size and an ultrafine fraction, compared to unexposed subjects. Urine samples were collected from forty workers before and after the shift, from six employees of the same company and eighteen volunteers from the same geographical area. Titanium and other metals concentrations were measured by ICP-MS, while DNA, RNA, and protein oxidation products by HPLC/MS-MS. A statistically significant increase was found for the urinary concentration of Al, Cd, Cr, Cu, Fe, Mn, Pb, Ti, and Zr, and for all biomarkers of oxidative stress in post-shift workers' urine samples. Urinary concentrations after the working shift were higher than for employees and volunteers pooled together for Cd, Mn, and Zr, and for the oxidative stress biomarkers 8-oxoGuo, 8-oxodGuo, and 3NO2Tyr. Biomonitoring studies on dose and effect biomarkers for TiO2 occupational exposure provide information useful for protecting workers' health even in conditions that comply with health and safety standards, highlighting reversible effects of chronic exposure at very low doses.
Collapse
Affiliation(s)
- Flavia Buonaurio
- Department of Chemistry, Sapienza University, P.le Aldo Moro 5, 00185 Rome, Italy; (F.B.); (M.L.A.); (S.C.)
| | - Maria Luisa Astolfi
- Department of Chemistry, Sapienza University, P.le Aldo Moro 5, 00185 Rome, Italy; (F.B.); (M.L.A.); (S.C.)
| | - Silvia Canepari
- Department of Chemistry, Sapienza University, P.le Aldo Moro 5, 00185 Rome, Italy; (F.B.); (M.L.A.); (S.C.)
| | - Marco Di Basilio
- Department of Technological Innovations and Safety of Plants, INAIL, Products and Anthropic Settlements, Via di Fontana Candida 1, Monte Porzio Catone, 00078 Rome, Italy; (M.D.B.); (R.G.); (M.P.)
| | - Rocco Gibilras
- Department of Technological Innovations and Safety of Plants, INAIL, Products and Anthropic Settlements, Via di Fontana Candida 1, Monte Porzio Catone, 00078 Rome, Italy; (M.D.B.); (R.G.); (M.P.)
| | - Marco Mecchia
- Department for Risks Assessment and Prevention, INAIL, Central Office, Via R. Ferruzzi 40, 00143 Rome, Italy;
| | - Maddalena Papacchini
- Department of Technological Innovations and Safety of Plants, INAIL, Products and Anthropic Settlements, Via di Fontana Candida 1, Monte Porzio Catone, 00078 Rome, Italy; (M.D.B.); (R.G.); (M.P.)
| | - Enrico Paci
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, INAIL, Via di Fontana Candida 1, Monte Porzio Catone, 00078 Rome, Italy; (E.P.); (D.P.)
| | - Daniela Pigini
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, INAIL, Via di Fontana Candida 1, Monte Porzio Catone, 00078 Rome, Italy; (E.P.); (D.P.)
| | - Giovanna Tranfo
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, INAIL, Via di Fontana Candida 1, Monte Porzio Catone, 00078 Rome, Italy; (E.P.); (D.P.)
| |
Collapse
|
15
|
Lovreglio P, Stufano A, Andreoli R, Tomasi C, Cagnazzi P, Barbieri A, Soleo L, De Palma G. Urinary biomarkers of nucleic acid oxidation and methylation in workers exposed to low concentrations of benzene. Toxicol Lett 2020; 331:235-241. [PMID: 32562636 DOI: 10.1016/j.toxlet.2020.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 06/10/2020] [Accepted: 06/16/2020] [Indexed: 11/24/2022]
Abstract
The study aims to investigate the influence of exposure to low concentrations of benzene on urinary biomarkers of nucleic acid oxidative damage and methylation. Benzene exposure was characterized for 93 coke production workers by measuring both airborne benzene and S-phenylmercapturic acid (SPMA) and unmodified benzene (U-B) in urine samples, collected at the end of the shift (ES) and at the next morning before shift (next BS). In the same urinary samples, biomarkers of nucleic acid oxidative damage and methylation were determined. Urinary concentrations of cotinine and creatinine were also determined to evaluate the smoking effect and to normalize urinary concentrations of analytes, respectively. The biomarkers of benzene internal dose, of oxidative damage (8-hydroxyy-7,8-dihydroguanine, 8-hydroxy-7,8-dihydroguanosine and 8-hydroxy-7,8-2'deoxyguanosine) and some of the biomarkers of nucleic acid methylation (5-Methyl-Cytosine, 1-Methyl-Guanine and 7-Methyl-Guanine) were higher in the ES than the next BS samples. Positive associations between ES 5-Methyl-Cytosine and both SPMA and U-B were found. In conclusion, occupational exposure to low levels of benzene seems to be related to urinary ES 5-Methyl-Cytosine that could be a possible biomarker to evaluate the changes of the nucleic acid methylation status.
Collapse
Affiliation(s)
- Piero Lovreglio
- Interdisciplinary Department of Medicine, Section of Occupational Medicine, University of Bari Aldo Moro, Bari, Italy.
| | - Angela Stufano
- Interdisciplinary Department of Medicine, Section of Occupational Medicine, University of Bari Aldo Moro, Bari, Italy
| | - Roberta Andreoli
- Department of Medicine and Surgery, Laboratory of Industrial Toxicology, University of Parma, Parma, Italy; Centre for Research in Toxicology (CERT), University of Parma, Parma, Italy
| | - Cesare Tomasi
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, Section of Public Health and Human Sciences, University of Brescia, Brescia, Italy
| | - Paola Cagnazzi
- Interdisciplinary Department of Medicine, Section of Occupational Medicine, University of Bari Aldo Moro, Bari, Italy
| | - Anna Barbieri
- Department of Medical and Surgical Science, Section of Public Health and Human Sciences, University of Bologna, Bologna, Italy
| | - Leonardo Soleo
- Interdisciplinary Department of Medicine, Section of Occupational Medicine, University of Bari Aldo Moro, Bari, Italy
| | - Giuseppe De Palma
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, Section of Public Health and Human Sciences, University of Brescia, Brescia, Italy
| |
Collapse
|
16
|
Sisto R, Cavallo D, Ursini CL, Fresegna AM, Ciervo A, Maiello R, Paci E, Pigini D, Gherardi M, Gordiani A, L'Episcopo N, Tranfo G, Capone P, Carbonari D, Balzani B, Chiarella P. Direct and Oxidative DNA Damage in a Group of Painters Exposed to VOCs: Dose - Response Relationship. Front Public Health 2020; 8:445. [PMID: 32974263 PMCID: PMC7469480 DOI: 10.3389/fpubh.2020.00445] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 07/20/2020] [Indexed: 12/11/2022] Open
Abstract
Volatile organic compounds (VOCs) are present in several working activities. This work is aimed at comparing oxidative stress and DNA damage biomarkers to specific VOCs in the occupational exposure of painters. Dose-response relationships between biomarkers of oxidative stress and of dose were studied. Unmetabolized VOCs and their urinary metabolites were analyzed. Urinary Methylhyppuric acids (MHIPPs, xylenes metabolite), Phenylglyoxylic and Mandelic acid (PGA, MA ethylbenzene metabolites), S-Benzylmercapturic acid (SBMA, toluene metabolite), and S-Phenylmercapturic acid (SPMA, benzene metabolite) were quantified at the end of work-shift. Oxidative stress was determined by: urinary excretion of 8-oxodGuo, 8-oxoGua and 8-oxoGuo and direct/oxidative DNA damage in blood by Fpg-Comet assay. Multivariate linear regression models were used to assess statistical significance of the association between dose and effect biomarkers. The regressions were studied with and without the effect of hOGG1 and XRCC1 gene polymorphisms. Statistically significant associations were found between MHIPPs and both 8-oxoGuo and oxidative DNA damage effect biomarkers measured with the Comet assay. Oxidative DNA damage results significantly associated with airborne xylenes and toluene, whilst 8-oxodGuo was significantly related to urinary xylenes and toluene. Direct DNA damage was significantly associated to SBMA. XRCC1 wild-type gene polymorphism was significantly associated with lower oxidative and total DNA damage with respect to heterozygous and mutant genotypes. The interpretation of the results requires some caution, as the different VOCs are all simultaneously present in the mixture and correlated among them.
Collapse
Affiliation(s)
- Renata Sisto
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, Italian Workers' Compensation Authority (INAIL), Rome, Italy
| | - Delia Cavallo
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, Italian Workers' Compensation Authority (INAIL), Rome, Italy
| | - Cinzia Lucia Ursini
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, Italian Workers' Compensation Authority (INAIL), Rome, Italy
| | - Anna Maria Fresegna
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, Italian Workers' Compensation Authority (INAIL), Rome, Italy
| | - Aureliano Ciervo
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, Italian Workers' Compensation Authority (INAIL), Rome, Italy
| | - Raffaele Maiello
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, Italian Workers' Compensation Authority (INAIL), Rome, Italy
| | - Enrico Paci
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, Italian Workers' Compensation Authority (INAIL), Rome, Italy
| | - Daniela Pigini
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, Italian Workers' Compensation Authority (INAIL), Rome, Italy
| | - Monica Gherardi
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, Italian Workers' Compensation Authority (INAIL), Rome, Italy
| | - Andrea Gordiani
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, Italian Workers' Compensation Authority (INAIL), Rome, Italy
| | - Nunziata L'Episcopo
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, Italian Workers' Compensation Authority (INAIL), Rome, Italy
| | - Giovanna Tranfo
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, Italian Workers' Compensation Authority (INAIL), Rome, Italy
| | - Pasquale Capone
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, Italian Workers' Compensation Authority (INAIL), Rome, Italy
| | - Damiano Carbonari
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, Italian Workers' Compensation Authority (INAIL), Rome, Italy
| | - Barbara Balzani
- Department of Prevention, Prevention and Safety at Workplace, ASUR Marche, Ancona, Italy
| | - Pieranna Chiarella
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, Italian Workers' Compensation Authority (INAIL), Rome, Italy
| |
Collapse
|
17
|
Tranfo G, Marchetti E, Pigini D, Miccheli A, Spagnoli M, Sciubba F, Conta G, Tomassini A, Fattorini L. Targeted and untargeted metabolomics applied to occupational exposure to hyperbaric atmosphere. Toxicol Lett 2020; 328:28-34. [PMID: 32305374 DOI: 10.1016/j.toxlet.2020.03.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 03/27/2020] [Accepted: 03/29/2020] [Indexed: 01/21/2023]
Abstract
Occupational exposure to hyperbaric atmosphere occurs in workers who carry out their activity in environments where breathing air pressure is at least 10% higher than pressure at sea level, and operations can be divided in Dry or Wet activities. The increased air pressure implies the formation of reactive oxygen species (ROS) and reactive nitrogen species (RNS), consumption of antioxidants and reduction of antioxidant enzyme activity, causing lipid peroxidation, DNA and RNA damage. The present study was aimed to establish the relation between hyperbaric exposure and metabolic changes due to ROS unbalance, by means of the determination of urinary biomarkers of oxidatively generated damage to DNA and RNA during a controlled diving session. The investigated biomarkers were 8-oxo-7,8-dihydroguanine (8-oxoGua), 8-oxo-7,8-dihydroguanosine (8-oxoGuo), and 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodGuo). The experimental session involved six experienced divers subjected to 3 atmospheres absolute for 30 minutes in two different experiments, in both dry and wet conditions. Urine samples were collected at t = 0 (before exposure) and 30 (end of exposure),90, 240, 480 and 720 minutes. The concentration of 8-oxoGua, 8-oxoGuo, and 8-oxodGuo was determined by isotopic dilution high performance liquid chromatography (HPLC-MS/MS). In all subjects there is an increase of the urinary excretion of 8oxo-Guo and 8oxo-dGuo, in both conditions, after 1.5 - 4 hours from the start of the experiment, and that the values tend to return to the baseline after 12 hours. Besides that, also the nucleic magnetic resonance (NMR)-based untargeted metabolomics was employed for the same objective on the same samples, confirming a different metabolic response in the subjects exposed to dry or wet conditions. In particular, the observed hypoxanthine urinary level increases during the underwater hyperbaric exposure, in agreement with the trend observed for 8-oxoGuo and 8-oxodGuo levels. Present results confirmed the relationship between exposure and oxidative stress and depicted a clear temporal trend of the investigated biomarkers. Due to the possible negative consequences of oxidative stress on workers, present research shows a new line in term of risk prevention.
Collapse
Affiliation(s)
- Giovanna Tranfo
- INAIL, Department of Occupational Medicine, Epidemiology and Hygiene, Monte Porzio Catone, Rome Italy.
| | - Enrico Marchetti
- INAIL, Department of Occupational Medicine, Epidemiology and Hygiene, Monte Porzio Catone, Rome Italy.
| | - Daniela Pigini
- INAIL, Department of Occupational Medicine, Epidemiology and Hygiene, Monte Porzio Catone, Rome Italy.
| | - Alfredo Miccheli
- Department of Environmental Biology, NMR Based Metabolomics Laboratory, Sapienza University of Rome, Rome Italy.
| | - Mariangela Spagnoli
- INAIL, Department of Occupational Medicine, Epidemiology and Hygiene, Monte Porzio Catone, Rome Italy.
| | - Fabio Sciubba
- Department of Chemistry, Sapienza University of Rome, Italy.
| | - Giorgia Conta
- Department of Chemistry, Sapienza University of Rome, Italy.
| | - Alberta Tomassini
- Department of Biology and Biotechnology Charles Darwin, NMR Based Metabolomics Laboratory, Sapienza University of Rome, Italy.
| | - Luigi Fattorini
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Italy.
| |
Collapse
|
18
|
Ultrafine Particle Features Associated with Pro-Inflammatory and Oxidative Responses: Implications for Health Studies. ATMOSPHERE 2020. [DOI: 10.3390/atmos11040414] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Suspected detrimental health effects associated with ultrafine particles (UFPs) are impressive. However, epidemiological evidence is still limited. This is potentially due to challenges related to UFP exposure assessment and the lack of consensus on a standard methodology for UFPs. It is imperative to focus future health studies on those UFP metrics more likely to represent health effects. This is the purpose of this paper, where we extend the results obtained during the CARE (“Carbonaceous Aerosol in Rome and Environs”) experiment started in 2017 in Rome. The major purpose is to investigate features of airborne UFPs associated with pro-inflammatory and oxidative responses. Aerosol chemical, microphysical, and optical properties were measured, together with the oxidative potential, at temporal scales relevant for UFPs (minutes to hours). The biological responses were obtained using both in-vivo and in-vitro tests carried out directly under environmental conditions. Findings indicate that caution should be taken when assessing health-relevant exposure to UFPs through the conventional metrics like total particle number concentration and PM2.5 and Black Carbon (BC) mass concentration. Conversely, we recommend adding to these, a UFP source apportionment analysis and indicators for both ultrafine black carbon and the size of particles providing most of the total surface area to available toxic molecules.
Collapse
|
19
|
Sisto R, Cerini L, Sanjust F, Carbonari D, Gherardi M, Gordiani A, L'Episcopo N, Paci E, Pigini D, Tranfo G, Moleti A. Distortion product otoacoustic emission sensitivity to different solvents in a population of industrial painters. Int J Audiol 2020; 59:443-454. [PMID: 31910691 DOI: 10.1080/14992027.2019.1710776] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Objective: To evaluate the ototoxic effect of the exposure to different organic solvents and noise using distortion product otoacoustic emissions (DPOAEs).Design: The exposure to different solvents was evaluated by measuring, before and at the end of the work-shift, the urinary concentrations of solvent metabolites used as dose biomarkers. The urinary concentrations of DNA and RNA oxidation products were also measured as biomarkers of oxidative damage. The simultaneous exposure to noise was also evaluated. DPOAEs and pure tone audiometry (PTA) were used as outcome variables, and were correlated to the exposure variables using mixed effect linear regression models.Study sample: Seventeen industrial painters exposed to a solvent mixture in a naval industry. A sample size of 15 was estimated from previous studies as sufficient for discriminating small hearing level and DPOAE level differences (5 dB and 2 dB, respectively) at a 95% confidence level.Results: Statistically significant associations were found between the DPOAE level and the urinary dose biomarkers and the oxidative damage biomarkers. DPOAE level and the logarithm of the metabolite concentration showed a significant negative correlation.Conclusions: DPOAE are sensitive biomarkers of exposure to ototoxic substances and can be effectively used for the early detection of hearing dysfunction.
Collapse
Affiliation(s)
- Renata Sisto
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, INAIL Research, Monteporzio Catone, Italy
| | - Luigi Cerini
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, INAIL Research, Monteporzio Catone, Italy
| | - Filippo Sanjust
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, INAIL Research, Monteporzio Catone, Italy
| | - Damiano Carbonari
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, INAIL Research, Monteporzio Catone, Italy
| | - Monica Gherardi
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, INAIL Research, Monteporzio Catone, Italy
| | - Andrea Gordiani
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, INAIL Research, Monteporzio Catone, Italy
| | - Nunziata L'Episcopo
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, INAIL Research, Monteporzio Catone, Italy
| | - Enrico Paci
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, INAIL Research, Monteporzio Catone, Italy
| | - Daniela Pigini
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, INAIL Research, Monteporzio Catone, Italy
| | - Giovanna Tranfo
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, INAIL Research, Monteporzio Catone, Italy
| | - Arturo Moleti
- Department of Physics, University of Roma 'Tor Vergata', Rome, Italy
| |
Collapse
|