1
|
Zhou L, Iqbal A, Yang M, Yang Y. Research Progress on Gene Regulation of Plant Floral Organogenesis. Genes (Basel) 2025; 16:79. [PMID: 39858626 PMCID: PMC11765145 DOI: 10.3390/genes16010079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 12/27/2024] [Accepted: 12/29/2024] [Indexed: 01/27/2025] Open
Abstract
Flowers, serving as the reproductive structures of angiosperms, perform an integral role in plant biology and are fundamental to understanding plant evolution and taxonomy. The growth and organogenesis of flowers are driven by numerous factors, such as external environmental conditions and internal physiological processes, resulting in diverse traits across species or even within the same species. Among these factors, genes play a central role, governing the entire developmental process. The regulation of floral genesis by these genes has become a significant focus of research. In the AE model of floral development, the five structural whorls (calyx, corolla, stamens, pistils, and ovules) are controlled by five groups of genes: A, B, C, D, and E. These genes interact to give rise to a complex control system that governs the floral organsgenesis. The activation or suppression of specific gene categories results in structural modifications to floral organs, with variations observed across different species. The present article examines the regulatory roles of key genes, including genes within the MADS-box and AP2/ERF gene clusters, such as AP1, AP2, AP3, AG, STK, SHP, SEP, PI, and AGL6, as well as other genes, like NAP, SPL, TGA, PAN, and WOX, in shaping floral organ genesis. In addition, it analyzes the molecular-level effects of these genes on floral organ formation. The findings offer a deeper understanding of the genetic governance of floral organ genesis across plant species.
Collapse
Affiliation(s)
- Lixia Zhou
- National Key Laboratory for Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China;
- Hainan Key Laboratory of Tropical Oil Crops Biology, Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, China;
| | - Amjad Iqbal
- Hainan Key Laboratory of Tropical Oil Crops Biology, Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, China;
- Department of Food Science & Technology, Abdul Wali Khan University, Mardan 23200, Pakistan
| | - Mengdi Yang
- Qionghai Tropical Crops Service Center, Qionghai 571400, China;
| | - Yaodong Yang
- National Key Laboratory for Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China;
- Hainan Key Laboratory of Tropical Oil Crops Biology, Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, China;
| |
Collapse
|
2
|
Kumari D, Prasad BD, Dwivedi P. Genome-wide analysis of calmodulin binding Protein60 candidates in the important crop plants. Mol Biol Rep 2024; 51:1105. [PMID: 39476040 DOI: 10.1007/s11033-024-10032-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 10/15/2024] [Indexed: 11/07/2024]
Abstract
BACKGROUND Efficient management of environmental stresses is essential for sustainable crop production. Calcium (Ca²⁺) signaling plays a crucial role in regulating responses to both biotic and abiotic stresses, particularly during host-pathogen interactions. In Arabidopsis thaliana, calmodulin-binding protein 60 (CBP60) family members, such as AtCBP60g, AtCBP60a, and AtSARD1, have been well characterized for their involvement in immune regulation. However, a comprehensive understanding of CBP60 genes in major crops remains limited. METHODS In this study, we utilized the Phytozome v12.1 database to identify and analyze CBP60 genes in agriculturally important crops. Expression patterns of a Oryza sativa (rice) CBP60 gene, OsCBP60bcd-1, were assessed in resistant and susceptible rice genotypes in response to infection by the bacterial pathogen Xanthomonas oryzae. Localization of CBP60 proteins was analyzed to predict their functional roles, and computational promoter analysis was performed to identify stress-responsive cis-regulatory elements. RESULTS Phylogenetic analysis revealed that most CBP60 genes in crops belong to the immune-related clade. Expression analysis showed that OsCBP60bcd-1 was significantly upregulated in the resistant rice genotype upon pathogen infection. Subcellular localization studies suggested that the majority of CBP60 proteins are nuclear-localized, indicating a potential role as transcription factors. Promoter analysis identified diverse stress-responsive cis-regulatory elements in the promoters of CBP60 genes, highlighting their regulatory potential under stress conditions. CONCLUSION The upregulation of OsCBP60bcd-1 in response to Xanthomonas oryzae and the presence of stress-responsive elements in its promoter underscore the importance of CBP60 genes in pathogen defense. These findings provide a basis for further investigation into the functional roles of CBP60 genes in crop disease resistance, with implications for enhancing stress resilience in agricultural species.
Collapse
Affiliation(s)
- Diksha Kumari
- Department of Plant Physiology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India
| | - Bishun Deo Prasad
- Department of Agricultural Biotechnology & Molecular Biology, College of Basic Sciences & Humanities, Dr. Rajendra Prasad Central Agricultural University, Pusa, Samastipur, India.
| | - Padmanabh Dwivedi
- Department of Plant Physiology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India.
| |
Collapse
|
3
|
Kumari D, Prasad BD, Dwivedi P, Sahni S, Kumar M, Alamri S, Adil MF, Alakeel KA. Comprehensive analysis of transcription factor binding sites and expression profiling of rice pathogenesis related genes ( OsPR1). FRONTIERS IN PLANT SCIENCE 2024; 15:1463147. [PMID: 39524559 PMCID: PMC11543534 DOI: 10.3389/fpls.2024.1463147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 09/10/2024] [Indexed: 11/16/2024]
Abstract
Pathogenesis-related (PR) proteins, found in plants, play a crucial role in responding to both biotic and abiotic stresses and are categorized into 17 distinct families based on their properties and functions. We have conducted a phylogenetic analysis of OsPR1 genes (rice PR1 genes) in conjunction with 58 putative PR1 genes identified in Brachypodium distachyon, Hordeum vulgare, Brassica rapa, and Zea mays through BLASTP predictions. We extensively investigated the responses of the remaining 11 rice PR1 genes, using OsPR1a as a reference, under various stress conditions, including phytohormone treatments (salicylic acid and brassinosteroid [BR]), wounding, and heat stress (HS). In rice, of the 32 predicted OsPR1 genes, 12 have been well-characterized for their roles in disease resistance, while the functions of the remaining genes have not been studied extensively. In our study, we selected an additional 11 OsPR1 genes for further analysis and constructed a phylogenetic tree based on the presence of a 10-amino-acid-long conserved motif within these proteins. The phylogenetic analysis revealed that both OsPR1a from earlier studies and OsPR1-74 from our current study belong to the same clade. These genes consistently exhibit upregulation in response to diverse stress treatments such as biotic stress and abiotic stresses such as heat, drought, and salinity, indicating their potential roles in enhancing stress tolerance in rice. Significantly, this study delves into the previously unexplored role of OsPR1 genes in responding to Brassinosteroid (BR) and heat stress (HS) treatments, confirming their involvement in stress responses through qRT-PCR analysis. We found that seven genes were upregulated by EBR treatment. During heat stress (HS), six and seven genes were upregulated at 1hand 4h HS, respectively. The remaining genes OsPR1-22 and OsPR1-75 were upregulated at 1h but downregulated at 4h HS and under EBR treatment. In contrast, OsPR1-76 was upregulated at both 1h and 4h HS, but downregulated under EBR treatment. Promoters of PR1 genes in rice and other crops are rich in transcription factor binding sites (TFBSs) and feature a conserved Cysteine-rich secretory protein (SCP or CAP) motif. This study advances our understanding of PR1 gene regulation and its potential to enhance stress tolerance in rice.
Collapse
Affiliation(s)
- Diksha Kumari
- Department of Plant Physiology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, UP, India
| | - Bishun Deo Prasad
- Department of Agricultural Biotechnology & Molecular Biology, College of Basic Sciences and Humanities (CBS&H), Dr. Rajendra Prasad Central Agricultural University, Pusa, Samastipur, Bihar, India
| | - Padmanabh Dwivedi
- Department of Plant Physiology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, UP, India
| | - Sangita Sahni
- Department of Plant Pathology, Tirhut College of Agriculture (TCA), Dr. Rajendra Prasad Central Agricultural University, Pusa, Samastipur, Bihar, India
| | - Mankesh Kumar
- Department of Plant Breeding & Genetics, Bihar Agricultural University, Sabour, Bhagalpur, Bihar, India
| | - Saud Alamri
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Muhammad Faheem Adil
- Zhejiang Key Laboratory of Crop Germplasm Resource, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Khaled A. Alakeel
- Department: Advanced Agricultural & Food Technologies Institute, Sustainability and Environment Sector, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| |
Collapse
|
4
|
Huang H, Zheng M, Jenks MA, Yang P, Zhao H, Lü S. SQUAMOSA PROMOTER BINDING PROTEIN-LIKE 13 (SLP13) together with SPL9 redundantly regulates wax biosynthesis under drought stress. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:4978-4992. [PMID: 38706401 DOI: 10.1093/jxb/erae202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 05/02/2024] [Indexed: 05/07/2024]
Abstract
Wax biosynthesis is closely controlled by many regulators under different environmental conditions. We have previously shown that the module miR156-SQUAMOSA PROMOTER BINDING PROTEIN-LIKE9 (SPL9)-DEWAX is involved in the diurnal regulation of wax production; however, it was not determined whether other SPLs are also involved in wax synthesis. Here, we report that SPL13 also regulates drought-induced wax production, by directly and indirectly affecting the expression of the two wax biosynthesis genes ECERIFERUM1 (CER1) and CER4, respectively. In addition, we show that SPL13 together with SPL9 redundantly regulates wax accumulation under both normal and drought stress conditions, and that simultaneous mutation of both genes additively increases cuticle permeability and decreases drought tolerance. However, in contrast to SPL9, SPL13 does not seem to participate in the DEWAX-mediated diurnal regulation of wax production.
Collapse
Affiliation(s)
- Haodong Huang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Minglü Zheng
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Matthew A Jenks
- School of Plant Sciences, College of Agriculture and Life Sciences, The University of Arizona, Tucson, Arizona 85721, USA
| | - Pingfang Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Huayan Zhao
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Shiyou Lü
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| |
Collapse
|
5
|
Wan X, Zou LH, Pan X, Ge Y, Jin L, Cao Q, Shi J, Tian D. Auxin and carbohydrate control flower bud development in Anthurium andraeanum during early stage of sexual reproduction. BMC PLANT BIOLOGY 2024; 24:159. [PMID: 38429715 PMCID: PMC10908059 DOI: 10.1186/s12870-024-04869-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 02/27/2024] [Indexed: 03/03/2024]
Abstract
BACKGROUND Flower buds of Anthurium andraeanum frequently cease to grow and abort during the early flowering stage, resulting in prolonged planting times and increased commercialization costs. Nevertheless, limited knowledge exists of the mechanism of flower development after initiation in A. andraeanum. RESULTS In this study, the measurement of carbohydrate flow and intensity between leaves and flowers during different growth stages showed that tender leaves are strong sinks and their concomitant flowers are weak ones. This suggested that the tender leaves compete with their concomitant flower buds for carbohydrates during the early growth stages, potentially causing the abortion of the flower buds. The analysis of transcriptomic differentially expressed genes suggested that genes related to sucrose metabolism and auxin response play an important role during flower bud development. Particularly, co-expression network analysis found that AaSPL12 is a hub gene engaged in flower development by collaborating carbohydrate and auxin signals. Yeast Two Hybrid assays revealed that AaSPL12 can interact with AaARP, a protein that serves as an indicator of dormancy. Additionally, the application of exogenous IAA and sucrose can suppress the expression of AaARP, augment the transcriptional abundance of AaSPL12, and consequently expedite flower development in Anthurium andraeanum. CONCLUSIONS Collectively, our findings indicated that the combination of auxin and sugar signals could potentially suppress the repression of AaARP protein to AaSPL12, thus advancing the development of flower buds in Anthurium andraeanum.
Collapse
Affiliation(s)
- Xiao Wan
- Zhejiang Institute of Landscape Plants and Flowers, Zhejiang Academy of Agricultural Sciences, Hangzhou, 311251, Zhejiang, China.
| | - Long-Hai Zou
- State Key Laboratory of Subtropical Silviculture, Bamboo Industry Institute, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China
| | - Xiaoyun Pan
- Zhejiang Institute of Landscape Plants and Flowers, Zhejiang Academy of Agricultural Sciences, Hangzhou, 311251, Zhejiang, China
| | - Yaying Ge
- Zhejiang Institute of Landscape Plants and Flowers, Zhejiang Academy of Agricultural Sciences, Hangzhou, 311251, Zhejiang, China
| | - Liang Jin
- Zhejiang Institute of Landscape Plants and Flowers, Zhejiang Academy of Agricultural Sciences, Hangzhou, 311251, Zhejiang, China
| | - Qunyang Cao
- Zhejiang Institute of Landscape Plants and Flowers, Zhejiang Academy of Agricultural Sciences, Hangzhou, 311251, Zhejiang, China
| | - Jiewei Shi
- Zhejiang Institute of Landscape Plants and Flowers, Zhejiang Academy of Agricultural Sciences, Hangzhou, 311251, Zhejiang, China
| | - Danqing Tian
- Zhejiang Institute of Landscape Plants and Flowers, Zhejiang Academy of Agricultural Sciences, Hangzhou, 311251, Zhejiang, China.
| |
Collapse
|
6
|
Jadhao KR, Kale SS, Chavan NS, Janjal PH. Genome-wide analysis of the SPL transcription factor family and its response to water stress in sunflower (Helianthus annuus). Cell Stress Chaperones 2023; 28:943-958. [PMID: 37938528 PMCID: PMC10746691 DOI: 10.1007/s12192-023-01388-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/10/2023] [Accepted: 10/11/2023] [Indexed: 11/09/2023] Open
Abstract
SPL (SQUAMOSA promoter binding proteins-like) are plant-specific transcription factors that play essential roles in a variety of developmental processes as well as the ability to withstand biotic and abiotic stresses. To date, numerous species have been investigated for the SPL gene family, but so far, no SPL family genes have been thoroughly identified and characterized in the sunflower (Helianthus annuus). In this study, 25 SPL genes were identified in the sunflower genome and were unevenly distributed on 11 chromosomes. According to phylogeny analysis, 59 SPL genes from H. annuus, O. sativa, and A. thaliana were clustered into seven groups. Furthermore, the SPL genes in groups-I and II were demonstrated to be potential targets of miR156. Synteny analysis showed that 7 paralogous gene pairs exist in HaSPL genes and 26 orthologous gene pairs exist between sunflower and rice, whereas 21 orthologous gene pairs were found between sunflower and Arabidopsis. Segmental duplication appears to have played a vital role in the expansion processes of sunflower SPL genes, and because of selection pressure, all duplicated genes have undergone purifying selection. Tissue-specific gene expression analysis of the HaSBP genes proved their diverse spatiotemporal expression patterns, which were predominantly expressed in floral organs and differentially expressed in stem, axil, and root tissues. The expression pattern of HaSPL genes under water stress showed broad involvement of HaSPLs in the response to flood and drought stresses. This genome-wide identification investigation provides detailed information on the sunflower SPL transcription factor gene family and establishes a strong platform for future research on sunflower responses to abiotic stress tolerance.
Collapse
Affiliation(s)
- Kundansing R Jadhao
- Department of Bioinformatics, MGM College of Agricultural Biotechnology, Aurangabad, 431007, India.
| | - Sonam S Kale
- Department of Plant Biotechnology, MGM College of Agricultural Biotechnology, Aurangabad, 431003, India
| | - Nilesh S Chavan
- Department of Microbiology and Environmental Biotechnology, MGM College of Agricultural Biotechnology, Aurangabad, 431003, India
| | - Pandharinath H Janjal
- Department of Bioinformatics, MGM College of Agricultural Biotechnology, Aurangabad, 431007, India
| |
Collapse
|
7
|
Mohanan MV, Pushpanathan A, Jayanarayanan AN, Selvarajan D, Ramalingam S, Govind H, Chinnaswamy A. Isolation of 5' regulatory region of COLD1 gene and its functional characterization through transient expression analysis in tobacco and sugarcane. 3 Biotech 2023; 13:228. [PMID: 37304407 PMCID: PMC10256666 DOI: 10.1007/s13205-023-03650-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 05/23/2023] [Indexed: 06/13/2023] Open
Abstract
Chilling Tolerant Divergence 1 (COLD1) gene consists of Golgi pH Receptor (GPHR) as well as Abscisic Acid-linked G Protein-Coupled Receptor (ABA_GPCR), which are the major transmembrane proteins in plants. This gene expression has been found to be differentially regulated, under various stress conditions, in wild Saccharum-related genera, Erianthus arundinaceus, compared to commercial sugarcane variety. In this study, Rapid Amplification of Genomic Ends (RAGE) technique was employed to isolate the 5' upstream region of COLD1 gene to gain knowledge about the underlying stress regulatory mechanism. The current study established the cis-acting elements, main promoter regions, and Transcriptional Start Site (TSS) present within the isolated 5' upstream region (Cold1P) of COLD1, with the help of specific bioinformatics techniques. Phylogenetic analysis results revealed that the isolated Cold1P promoter is closely related to the species, Sorghum bicolor. Cold1P promoter-GUS gene construct was generated in pCAMBIA 1305.1 vector that displayed a constitutive expression of the GUS reporter gene in both monocot as well as dicot plants. The histochemical GUS assay outcomes confirmed that Cold1P can drive expression in both monocot as well as dicot plants. Cold1P's activities under several abiotic stresses such as cold, heat, salt, and drought, revealed its differential expression profile in commercial sugarcane variety. The highest activity of the GUS gene was found after 24 h of cold stress, driven by the isolated Cold1P promoter. The outcomes from GUS fluorimetric assay correlated with that of the GUS expression findings. This is the first report on Cold1P isolated from the species, E. arundinaceus. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-023-03650-8.
Collapse
Affiliation(s)
| | | | | | - Dharshini Selvarajan
- Division of Crop Improvement, ICAR-Sugarcane Breeding Institute, Coimbatore, Tamil Nadu 641007 India
| | | | - Hemaprabha Govind
- Division of Crop Improvement, ICAR-Sugarcane Breeding Institute, Coimbatore, Tamil Nadu 641007 India
| | - Appunu Chinnaswamy
- Division of Crop Improvement, ICAR-Sugarcane Breeding Institute, Coimbatore, Tamil Nadu 641007 India
| |
Collapse
|
8
|
Feng X, Zhou B, Wu X, Wu H, Zhang S, Jiang Y, Wang Y, Zhang Y, Cao M, Guo B, Su S, Hou Z. Molecular characterization of SPL gene family during flower morphogenesis and regulation in blueberry. BMC PLANT BIOLOGY 2023; 23:40. [PMID: 36650432 PMCID: PMC9847132 DOI: 10.1186/s12870-023-04044-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 01/03/2023] [Indexed: 06/17/2023]
Abstract
The SPL gene is a plant-specific transcription factor involved in the regulation of plant growth and development, which have been identified in woody plants. The process of floral bud differentiation affects the timing of flowering and fruit set and regulates plant growth, however, the mechanism of regulation of flower development by SPL genes is less studied. In this study, 56 VcSPL genes were identified in the tetraploid blueberry. The VcSPL gene family was classified into six subfamilies, and analysis of cis-elements showed that VcSPL genes were regulated by light, phytohormones (abscisic acid, MeJA), and low temperature. In the evolutionary analysis, segmental replication may play an important role in VcSPL gene amplification. Interestingly, we also studied diploid blueberry (Bilberry), in which 24 SPL genes were identified, and 36 homologous pairs were found, suggesting a high degree of convergence in the syntenic relationship between blueberry (Vaccinium corymbosum L) and bilberry (Vaccinium darrowii). Based on the expression profile, VcSPL genes were expressed at high levels in flowers, shoots, and roots, indicating a diversity of gene functions. Then we selected 20 differentially-expressed SPL genes to further investigate the role of VcSPL in floral induction and initiation. It showed that the genes VcSPL40, VcSPL35, VcSPL45, and VcSPL53 may play a crucial role in the blueberry floral transition phase (from vegetative growth to flower initiation). These results provided important information for understanding and exploring the role of VcSPLs in flower morphogenesis and plant growth.
Collapse
Affiliation(s)
- Xin Feng
- Key Laboratory for Silviculture and Conservation of Ministry of Education, Research and Development Center of Blueberry, Beijing Forestry University, Beijing, 100083, China
| | - Bingjie Zhou
- Key Laboratory for Silviculture and Conservation of Ministry of Education, Research and Development Center of Blueberry, Beijing Forestry University, Beijing, 100083, China
| | - Xinliang Wu
- Key Laboratory for Silviculture and Conservation of Ministry of Education, Research and Development Center of Blueberry, Beijing Forestry University, Beijing, 100083, China
| | - Huiling Wu
- Key Laboratory for Silviculture and Conservation of Ministry of Education, Research and Development Center of Blueberry, Beijing Forestry University, Beijing, 100083, China
| | - Suilin Zhang
- Key Laboratory for Silviculture and Conservation of Ministry of Education, Research and Development Center of Blueberry, Beijing Forestry University, Beijing, 100083, China
| | - Ying Jiang
- Key Laboratory for Silviculture and Conservation of Ministry of Education, Research and Development Center of Blueberry, Beijing Forestry University, Beijing, 100083, China
| | - Yaping Wang
- Key Laboratory for Silviculture and Conservation of Ministry of Education, Research and Development Center of Blueberry, Beijing Forestry University, Beijing, 100083, China
| | - Yaqian Zhang
- Key Laboratory for Silviculture and Conservation of Ministry of Education, Research and Development Center of Blueberry, Beijing Forestry University, Beijing, 100083, China
| | - Man Cao
- Key Laboratory for Silviculture and Conservation of Ministry of Education, Research and Development Center of Blueberry, Beijing Forestry University, Beijing, 100083, China
| | - Baoshi Guo
- Key Laboratory for Silviculture and Conservation of Ministry of Education, Research and Development Center of Blueberry, Beijing Forestry University, Beijing, 100083, China
| | - Shuchai Su
- Key Laboratory for Silviculture and Conservation of Ministry of Education, Research and Development Center of Blueberry, Beijing Forestry University, Beijing, 100083, China
| | - Zhixia Hou
- Key Laboratory for Silviculture and Conservation of Ministry of Education, Research and Development Center of Blueberry, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
9
|
Cao L, Li T, Geng S, Zhang Y, Pan Y, Zhang X, Wang F, Hao C. TaSPL14-7A is a conserved regulator controlling plant architecture and yield traits in common wheat ( Triticum aestivum L.). FRONTIERS IN PLANT SCIENCE 2023; 14:1178624. [PMID: 37089636 PMCID: PMC10113487 DOI: 10.3389/fpls.2023.1178624] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 03/22/2023] [Indexed: 05/03/2023]
Abstract
Plant architecture is a crucial influencing factor of wheat yield and adaptation. In this study, we cloned and characterized TaSPL14, a homologous gene of the rice ideal plant architecture gene OsSPL14 in wheat. TaSPL14 homoeologs (TaSPL14-7A, TaSPL14-7B and TaSPL14-7D) exhibited similar expression patterns, and they were all preferentially expressed in stems at the elongation stage and in young spikes. Moreover, the expression level of TaSPL14-7A was higher than that of TaSPL14-7B and TaSPL14-7D. Overexpression of TaSPL14-7A in wheat resulted in significant changes in plant architecture and yield traits, including decreased tiller number and increased kernel size and weight. Three TaSPL14-7A haplotypes were identified in Chinese wheat core collection, and haplotype-based association analysis showed that TaSPL14-7A-Hap1/2 were significantly correlated with fewer tillers, larger kernels and higher kernel weights in modern cultivars. The haplotype effect resulted from a difference in TaSPL14-7A expression levels among genotypes, with TaSPL14-7A-Hap1/2 leading to higher expression levels than TaSPL14-7A-Hap3. As favorable haplotypes, TaSPL14-7A-Hap1/2 underwent positive selection during global wheat breeding over the last century. Together, the findings of our study provide insight into the function and genetic effects of TaSPL14 and provide a useful molecular marker for wheat breeding.
Collapse
Affiliation(s)
- Lina Cao
- College of Agronomy, Gansu Agricultural University, Lanzhou, China
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, China
- Gansu Key Laboratory of Crop Improvement & Germplasm Enhancement, Gansu Agricultural University, Lanzhou, China
| | - Tian Li
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- *Correspondence: Tian Li, ; Fang Wang, ; Chenyang Hao,
| | - Shuaifeng Geng
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yinhui Zhang
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yuxue Pan
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xueyong Zhang
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Fang Wang
- College of Agronomy, Gansu Agricultural University, Lanzhou, China
- Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, China
- Gansu Key Laboratory of Crop Improvement & Germplasm Enhancement, Gansu Agricultural University, Lanzhou, China
- *Correspondence: Tian Li, ; Fang Wang, ; Chenyang Hao,
| | - Chenyang Hao
- College of Agronomy, Gansu Agricultural University, Lanzhou, China
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- *Correspondence: Tian Li, ; Fang Wang, ; Chenyang Hao,
| |
Collapse
|
10
|
Li Z, Yang Y, Chen B, Xia B, Li H, Zhou Y, He M. Genome-wide identification and expression analysis of SBP-box gene family reveal their involvement in hormone response and abiotic stresses in Chrysanthemum nankingense. PeerJ 2022; 10:e14241. [PMID: 36320567 PMCID: PMC9618261 DOI: 10.7717/peerj.14241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 09/23/2022] [Indexed: 01/24/2023] Open
Abstract
SQUAMOSA promoter-binding-protein (SBP)-box family proteins are a class of plant-specific transcription factors, and widely regulate the development of floral and leaf morphology in plant growth and involve in environment and hormone signal response. In this study, we isolated and identified 21 non-redundant SBP-box genes in Chrysanthemum nankingense with bioinformatics analysis. Sequence alignments of 21 CnSBP proteins discovered a highly conserved SBP domain including two zinc finger-like structures and a nuclear localization signal region. According to the amino acid sequence alignments, 67 SBP-box genes from Arabidopsis thaliana, rice, Artemisia annua and C. nankingense were clustered into eight groups, and the motif and gene structure analysis also sustained this classification. The gene evolution analysis indicated the CnSBP genes experienced a duplication event about 10 million years ago (Mya), and the CnSBP and AtSPL genes occurred a divergence at 24 Mya. Transcriptome data provided valuable information for tissue-specific expression profiles of the CnSBPs, which highly expressed in floral tissues and differentially expressed in leaf, root and stem organs. Quantitative Real-time Polymerase Chain Reaction data showed expression patterns of the CnSBPs under exogenous hormone and abiotic stress treatments, separately abscisic acid, salicylic acid, gibberellin A3, methyl jasmonate and ethylene spraying as well as salt and drought stresses, indicating that the candidate CnSBP genes showed differentiated spatiotemporal expression patterns in response to hormone and abiotic stresses. Our study provides a systematic genome-wide analysis of the SBP-box gene family in C. nankingense. In general, it provides a fundamental theoretical basis that SBP-box genes may regulate the resistance of stress physiology in chrysanthemum via exogenous hormone pathways.
Collapse
Affiliation(s)
- Ziwei Li
- College of Landscape Architecture, Northeast Forestry University, Harbin, Heilongjiang, China
| | - Yujia Yang
- College of Landscape Architecture, Northeast Forestry University, Harbin, Heilongjiang, China
| | - Bin Chen
- College of Landscape Architecture, Northeast Forestry University, Harbin, Heilongjiang, China
| | - Bin Xia
- College of Landscape Architecture, Northeast Forestry University, Harbin, Heilongjiang, China
| | - Hongyao Li
- College of Landscape Architecture, Northeast Forestry University, Harbin, Heilongjiang, China
| | - Yunwei Zhou
- College of Horticulture, Jilin Agricultural University, Jilin, China
| | - Miao He
- College of Landscape Architecture, Northeast Forestry University, Harbin, Heilongjiang, China
| |
Collapse
|
11
|
Gao L, Lyu T, Lyu Y. Genome-Wide Analysis of the SPL Gene Family and Expression Analysis during Flowering Induction in Prunus × yedoensis 'Somei-yoshino'. Int J Mol Sci 2022; 23:ijms231710052. [PMID: 36077445 PMCID: PMC9456211 DOI: 10.3390/ijms231710052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 08/26/2022] [Accepted: 08/30/2022] [Indexed: 11/29/2022] Open
Abstract
SQUAMOSA Promoter-Binding Protein-Like (SPL) genes encode plant-specific transcription factors which bind to the SQUAMOSA promoter of the MADS-box genes to regulate its expression. It plays important regulatory roles in floral induction and development, fertility, light signals and hormonal transduction, and stress response in plants. In this study, 32 PySPL genes with complete SBP (squamosa promoter binding protein) conserved domain were identified from the genome of Prunus × yedoensis ‘Somei-yoshino’ and analyzed by bioinformatics. 32 PySPLs were distributed on 13 chromosomes, encoding 32 PySPL proteins with different physical and chemical properties. The phylogenetic tree constructed with Arabidopsis thaliana and Oryza sativa can be divided into 10 subtribes, indicating PySPLs of different clusters have different biological functions. The conserved motif prediction showed that the number and distribution of motifs on each PySPL is varied. The gene structure analysis revealed that PySPLs harbored exons ranging from 2 to 10. The predictive analysis of acting elements showed that the promoter of PySPLs contain a large number of light-responsive elements, as well as response elements related to hormone response, growth and development and stress response. The analysis of the PySPLs expressions in flower induction and flower organs based on qRT-PCR showed that PySPL06/22 may be the key genes of flower development, PySPL01/06 and PySPL22 may play a role in the development of sepal and pistil, respectively. The results provide a foundation for the study of SPL transcription factors of Prunus × yedoensis ‘Somei-yoshino’ and provide more reference information of the function of SPL gene in flowering.
Collapse
Affiliation(s)
- Lan Gao
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, China National Engineering Research Center for Floriculture, College of Landscape Architecture, Beijing Forestry University, Beijing 100083, China
| | - Tong Lyu
- Beijing Flower Engineering Technology Research Center, Plant Institute, China National Botanical Garden North Park, Beijing 100093, China
| | - Yingmin Lyu
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, China National Engineering Research Center for Floriculture, College of Landscape Architecture, Beijing Forestry University, Beijing 100083, China
- Correspondence:
| |
Collapse
|
12
|
Feng G, Xiao P, Wang X, Huang L, Nie G, Li Z, Peng Y, Li D, Zhang X. Comprehensive Transcriptome Analysis Uncovers Distinct Expression Patterns Associated with Early Salinity Stress in Annual Ryegrass ( Lolium Multiflorum L.). Int J Mol Sci 2022; 23:3279. [PMID: 35328700 PMCID: PMC8948850 DOI: 10.3390/ijms23063279] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 03/15/2022] [Indexed: 02/07/2023] Open
Abstract
Soil salination is likely to reduce crop production worldwide. Annual ryegrass (Lolium multiflorum L.) is one of the most important forages cultivated in temperate and subtropical regions. We performed a time-course comparative transcriptome for salinity-sensitive (SS) and salinity-insensitive (SI) genotypes of the annual ryegrass at six intervals post-stress to describe the transcriptional changes and identify the core genes involved in the early responses to salt stress. Our study generated 215.18 Gb of clean data and identified 7642 DEGs in six pairwise comparisons between the SS and SI genotypes of annual ryegrass. Function enrichment of the DEGs indicated that the differences in lipid, vitamins, and carbohydrate metabolism are responsible for variation in salt tolerance of the SS and SI genotypes. Stage-specific profiles revealed novel regulation mechanisms in salinity stress sensing, phytohormones signaling transduction, and transcriptional regulation of the early salinity responses. High-affinity K+ (HAKs) and high-affinity K1 transporter (HKT1) play different roles in the ionic homeostasis of the two genotypes. Moreover, our results also revealed that transcription factors (TFs), such as WRKYs, ERFs, and MYBs, may have different functions during the early signaling sensing of salt stress, such as WRKYs, ERFs, and MYBs. Generally, our study provides insights into the mechanisms of the early salinity response in the annual ryegrass and accelerates the breeding of salt-tolerant forage.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Xinquan Zhang
- Department of Forage Science, College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (G.F.); (P.X.); (X.W.); (L.H.); (G.N.); (Z.L.); (Y.P.); (D.L.)
| |
Collapse
|
13
|
Tripathi RK, Aguirre JA, Singh J. Genome-wide analysis of wall associated kinase (WAK) gene family in barley. Genomics 2020; 113:523-530. [PMID: 32987151 DOI: 10.1016/j.ygeno.2020.09.045] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 09/08/2020] [Accepted: 09/21/2020] [Indexed: 11/15/2022]
Abstract
In plants, wall associated kinases (WAKs) form a unique subfamily of receptor like-kinases (RLKs). In Arabidopsis thaliana, WAK-RLKs are known to regulate biotic stress, cell expansion, and metal tolerance, but their detailed characterization in barley is lacking. In this study, we identified a total of 91 WAK genes in the barley genome and classified them into five groups. Evolutionary analysis of HvWAKs with AtWAKs revealed their species-specific expansion. The maximum number (19 to 20) of WAK genes were located on chromosomes 3, 5 and 6. WAK proteins exhibited similar types of motif distribution in their group. Characterization of a Ds transposon insertion mutant of the wak1 revealed differences in the root length. Further, HvSPL23 transcription factor was identified as a positive co-expressing gene with HvWAK1, suggesting its possible upstream regulator. Taken together, our study provides a base for the functional characterization of WAK family members in the future.
Collapse
Affiliation(s)
- Rajiv K Tripathi
- Plant Science Department, McGill University, 21111 Rue Lakeshore, Quebec H9X 3V9, Canada
| | - John A Aguirre
- Plant Science Department, McGill University, 21111 Rue Lakeshore, Quebec H9X 3V9, Canada
| | - Jaswinder Singh
- Plant Science Department, McGill University, 21111 Rue Lakeshore, Quebec H9X 3V9, Canada.
| |
Collapse
|
14
|
Tripathi RK, Overbeek W, Singh J. Global analysis of SBP gene family in Brachypodium distachyon reveals its association with spike development. Sci Rep 2020; 10:15032. [PMID: 32929136 PMCID: PMC7490389 DOI: 10.1038/s41598-020-72005-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 06/19/2020] [Indexed: 12/20/2022] Open
Abstract
SQUAMOSA-promoter binding like proteins (SBPs/SPLs) are plant specific transcription factors targeted by miR156 and involved in various biological pathways, playing multi-faceted developmental roles. This gene family is not well characterized in Brachypodium. We identified a total of 18 SBP genes in B. distachyon genome. Phylogenetic analysis revealed that SBP gene family in Brachypodium expanded through large scale duplication. A total of 10 BdSBP genes were identified as targets of miR156. Transcript cleavage analysis of selected BdSBPs by miR156 confirmed their antagonistic connection. Alternative splicing was observed playing an important role in BdSBPs and miR156 interaction. Characterization of T-DNA Bdsbp9 mutant showed reduced plant growth and spike length, reflecting its involvement in the spike development. Expression of a majority of BdSBPs elevated during spikelet initiation. Specifically, BdSBP1 and BdSBP3 differentially expressed in response to vernalization. Differential transcript abundance of BdSBP1, BdSBP3, BdSBP8, BdSBP9, BdSBP14, BdSBP18 and BdSBP23 genes was observed during the spike development under high temperature. Co-expression network, protein-protein interaction and biological pathway analysis indicate that BdSBP genes mainly regulate transcription, hormone, RNA and transport pathways. Our work reveals the multi-layered control of SBP genes and demonstrates their association with spike development and temperature sensitivity in Brachypodium.
Collapse
Affiliation(s)
- Rajiv K Tripathi
- Plant Science Department, McGill University, 21111 Rue Lakeshore, Quebec, H9X 3V9, Canada.
| | - William Overbeek
- Plant Science Department, McGill University, 21111 Rue Lakeshore, Quebec, H9X 3V9, Canada
| | - Jaswinder Singh
- Plant Science Department, McGill University, 21111 Rue Lakeshore, Quebec, H9X 3V9, Canada.
| |
Collapse
|
15
|
Pandey AK, Gedda MR, Verma AK. Effect of Arsenic Stress on Expression Pattern of a Rice Specific miR156j at Various Developmental Stages and Their Allied Co-expression Target Networks. FRONTIERS IN PLANT SCIENCE 2020; 11:752. [PMID: 32612618 PMCID: PMC7308582 DOI: 10.3389/fpls.2020.00752] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 05/12/2020] [Indexed: 05/28/2023]
Abstract
In plants, arsenic (As) stress modulates metabolic cascades at various developmental stages by influencing the pattern of gene expressions mediated by small non-coding RNAs, especially Micro-RNAs, involved in the moderation of a myriad of cellular processes needed for plant adaptation upon oxidative stress. miR156j of miR156 gene family, involved mainly in the regulation of growth and development in plants. This study was designed to find out the role of arsenic toxicity on Osa-miR156j expression in all physiological growth stages. To better understand the functional role of Osa-miR156j in rice, we observed the expression in different developmental stages (seedlings, tillering and flowering) and various tissues of leaf, stem and root tissues (at 0, 24, 48, and 72 h) under 25 μM arsenite [As (III)] exposure. Additionally, using bioinformatic tools to target genes of Osa-miR156j and the potential co-expressed genes were explored at different development stages in the various tissues of rice under stress conditions. The expression of Osa-miR156j showed its temporal downregulation in various tissues in different developmental stages. Of note, the downregulation was more pronounced in root tissues at seedlings, tillering, and flowering stages during 0-72 h under arsenite exposure as compared to other tissues. Overall, the As stress altered the gene expression more prominently at seedlings developmental stage followed by flowering and tillering. Additionally, through the In silico approach, the target functions and presence of oxidative stress-responsive cis-acting regulatory elements/motifs also confirmed Osa-miR156j involvement in the regulation of arsenic stress in rice. The findings of this study demonstrate the prominent role of Osa-miR156j in rice under arsenite stress, which was found to modulate the metabolic activities in rice plants at different developmental stages, and thus it might be useful for the development of arsenic tolerant varieties.
Collapse
Affiliation(s)
- Akhilesh Kumar Pandey
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Mallikarjuna Rao Gedda
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Ashok K. Verma
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, India
- Biotechnology Laboratory, U.P. Council of Sugarcane Research, Shahjahanpur, India
| |
Collapse
|
16
|
Genome-Wide Characterization and Expression Profiling of Squamosa Promoter Binding Protein-like (SBP) Transcription Factors in Wheat (Triticum aestivum L.). AGRONOMY-BASEL 2019. [DOI: 10.3390/agronomy9090527] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Transcription factors (TFs) play fundamental roles in the developmental processes of all living organisms. Squamosa Promoter Binding Protein-like (SBP/SBP-Box) is a major family of plant-specific TFs, which plays important roles in multiple processes involving plant growth and development. While some work has been done, there is a lot more that is yet to be discovered in the hexaploid wheat SBP (TaSBP) family. With the completion of whole genome sequencing, genome-wide analysis of SBPs in common hexaploid wheat is now possible. In this study, we used protein–protein Basic Local Alignment Search Tool (BLASTp) to hunt the newly released reference genome sequence of hexaploid wheat (Chinese spring). Seventy-four TaSBP proteins (belonging to 56 genes) were identified and clustered into five groups. Gene structure and motif analysis indicated that most TaSBPs have relatively conserved exon–intron arrangements and motif composition. Analysis of transcriptional data showed that many TaSBP genes responded to some biological and abiotic stresses with different expression patterns. Moreover, three TaSBP genes were generally expressed in the majority of tissues throughout the wheat growth and also responded to many environmental biotic and abiotic stresses. Collectively, the detailed analyses presented here will help in understanding the roles of the TaSBP and also provide a reference for the further study of its biological function in wheat.
Collapse
|
17
|
Ma YQ, Li Q, Pu ZQ, Lu MX, Yao JW, Feng JC, Xu ZQ. Constitutive expression of NtabSPL6-1 in tobacco and Arabidopsis could change the structure of leaves and promote the development of trichomes. JOURNAL OF PLANT PHYSIOLOGY 2019; 240:152991. [PMID: 31207459 DOI: 10.1016/j.jplph.2019.152991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 06/04/2019] [Accepted: 06/04/2019] [Indexed: 06/09/2023]
Abstract
The coding sequence of NtabSPL6-1 was cloned by high-fidelity PCR with specific primers and was used in construction of a binary vector for overexpression. Wild-type Col-0 Arabidopsis plants and Qinyan95 tobacco leaves were transformed using floral dip and leaf disc methods, respectively. Phenotypic observation showed that constitutive expression of NtabSPL6-1 in Arabidopsis could promote the development of trichomes on leaf epidermis and influence the growth pattern of cauline leaves. In tobacco, ectopic expression of NtabSPL6-1 led to dwarfism of the plants and alteration of the leaf structure, accompanied by changes of the glandular trichomes in development. At the same time, the self-regulation capability of NtabSPL6-1 was determined by yeast two-hybrid system. The results indicated that SBP-C terminal domain and C terminal domain of NtabSPL6-1 possessed strong transcriptional activation ability; the intact protein, N terminal domain, and the first peptide fragment in N terminal domain possessed weak transcriptional activation ability; and the second and the third peptide fragments in N terminal domain had no transcriptional activation ability, suggesting the N terminal domain of NtabSPL6-1 could block the activity of the C terminal domain. NtabSPL6-1 may affect the resistance of plants to biotic stress factors indirectly by regulation of the trichome growth.
Collapse
Affiliation(s)
- Yan-Qin Ma
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), Shaanxi Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an, Shaanxi 710069, People's Republic of China
| | - Qi Li
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), Shaanxi Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an, Shaanxi 710069, People's Republic of China
| | - Zuo-Qian Pu
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), Shaanxi Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an, Shaanxi 710069, People's Republic of China
| | - Meng-Xin Lu
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), Shaanxi Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an, Shaanxi 710069, People's Republic of China
| | - Jing-Wen Yao
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), Shaanxi Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an, Shaanxi 710069, People's Republic of China
| | - Jia-Chun Feng
- Key Laboratory of Molecular Engineering of Polymers of Ministry of Education, Department of Macromolecular Science and Laboratory of Advanced Materials, Fudan University, Shanghai 200433, People's Republic of China
| | - Zi-Qin Xu
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), Shaanxi Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an, Shaanxi 710069, People's Republic of China.
| |
Collapse
|
18
|
Wang P, Chen D, Zheng Y, Jin S, Yang J, Ye N. Identification and Expression Analyses of SBP-Box Genes Reveal Their Involvement in Abiotic Stress and Hormone Response in Tea Plant ( Camellia sinensis). Int J Mol Sci 2018; 19:ijms19113404. [PMID: 30380795 PMCID: PMC6274802 DOI: 10.3390/ijms19113404] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 10/26/2018] [Accepted: 10/28/2018] [Indexed: 11/23/2022] Open
Abstract
The SQUAMOSA promoter binding protein (SBP)-box gene family is a plant-specific transcription factor family. This family plays a crucial role in plant growth and development. In this study, 20 SBP-box genes were identified in the tea plant genome and classified into six groups. The genes in each group shared similar exon-intron structures and motif positions. Expression pattern analyses in five different tissues demonstrated that expression in the buds and leaves was higher than that in other tissues. The cis-elements and expression patterns of the CsSBP genes suggested that the CsSBP genes play active roles in abiotic stress responses; these responses may depend on the abscisic acid (ABA), gibberellic acid (GA), and methyl jasmonate (MeJA) signaling pathways. Our work provides a comprehensive understanding of the CsSBP family and will aid in genetically improving tea plants.
Collapse
Affiliation(s)
- Pengjie Wang
- College of Horticulture, Key Laboratory of Tea Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Di Chen
- College of Horticulture, Key Laboratory of Tea Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Yucheng Zheng
- College of Horticulture, Key Laboratory of Tea Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Shan Jin
- College of Horticulture, Key Laboratory of Tea Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Jiangfan Yang
- College of Horticulture, Key Laboratory of Tea Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Naixing Ye
- College of Horticulture, Key Laboratory of Tea Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
19
|
Elasad M, Ondati E, Wei H, Wang H, Su J, Fan S, Pang C, Yu S. Functional analysis of nine cotton genes related to leaf senescence in Gossypium hirsutum L. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2018; 24:729-739. [PMID: 30150850 PMCID: PMC6103938 DOI: 10.1007/s12298-018-0561-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 11/14/2017] [Accepted: 05/21/2018] [Indexed: 05/06/2023]
Abstract
Leaf senescence is defined as a deterioration process that continues to the final developmental stage of leaf. This process is usually regulated by both external and internal factors. There are about 5356 senescence associated genes belonging to 44 plant species. A great number of these genes were identified in Arabidopsis. Leaf senescence can be regulated by many transcription factors. In this study, nine gene families were selected according to their expression levels during leaf senescence from our laboratory database. Phylogenetic tree was constructed by MEGA6. Cultivated cotton CCRI-10 seeds were sown in the experimental field of Institute of Cotton Research of CAAS for profiling and leaf development stages analysis. For abiotic (drought and salt) stress and phytohormone (ABA, SA, ET and JA) treatments, CCRI-10 seeds were sown in potting soil at 25 °C in a chamber room. Total RNA was isolated from various samples and the cDNA prepared for qRT-PCR. The comparative CT method was applied to calculate the relative expression levels of genes. For phylogenetic tree, nine cotton genes were divided into two groups, most of homologous genes in previous studies showed roles in phytohormones and abiotic stress. Expression profiling of the nine genes showed different patterns of tissue specific expression. In leaf development stages, majority of cotton genes showed high expression in early and complete senescence stage. Furthermore, most of cotton genes have positive or negative response to phytohormones and abiotic stress. Based on the results of this study, we found four cotton genes CotAD_07559, CotAD_37422, CotAD_21204 and CotAD_54353 as candidate genes for leaves senescence and abiotic stress.
Collapse
Affiliation(s)
- Mohammed Elasad
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, 455000 Henan Province China
| | - Evans Ondati
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, 455000 Henan Province China
| | - Hengling Wei
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, 455000 Henan Province China
| | - Hantao Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, 455000 Henan Province China
| | - Junji Su
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, 455000 Henan Province China
| | - Shuli Fan
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, 455000 Henan Province China
| | - Chaoyou Pang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, 455000 Henan Province China
| | - Shuxun Yu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, 455000 Henan Province China
| |
Collapse
|
20
|
Overexpression of a SBP-Box Gene (VpSBP16) from Chinese Wild Vitis Species in Arabidopsis Improves Salinity and Drought Stress Tolerance. Int J Mol Sci 2018; 19:ijms19040940. [PMID: 29565279 PMCID: PMC5979544 DOI: 10.3390/ijms19040940] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Revised: 03/15/2018] [Accepted: 03/19/2018] [Indexed: 11/16/2022] Open
Abstract
Salinity and drought are two major abiotic stresses that limit grape productivity. Responses to stress in grape are known to be regulated by several families of transcription factors. However, little is known about the role of grape Squamosa promoter binding protein (SBP)-box transcription factor genes in response to abiotic stress. To better understand the functions of the grape SBP-box genes in abiotic stress tolerance, a full-length complementary DNA (cDNA) sequence of the putative SBP-box transcription factor gene, VpSBP16 was amplified from Chinese wild grapevine Vitis pseudoreticulata clone "Baihe-35-1". We observed that the VpSBP16 protein fused to the green fluorescent protein (GFP) reporter accumulated in the nucleus when transiently expressed in onion epidermal cells. Moreover, VpSBP16 was shown to have transcriptional activation activity using a yeast trans-activation assay. We performed a VpSBP16 functional analysis through the characterization of transgenic Arabidopsis thaliana plants constitutively over-expressing VpSBP16. The transgenic lines had longer roots and the seeds had a higher germination rate than the wild type (WT) under osmotic stress. In addition, the accumulation of reactive oxygen species (ROS) of transgenic seedlings was significantly lower than WT in the transgenic lines, as was electrolyte leakage. VpSBP16 overexpression also elevated expression levels of stress-response genes involved in the salt overly sensitive (SOS) pathway. These results indicate that overexpression VpSBP16 in A. thaliana enhances tolerance of salt and drought stress during seed germination, as well in seedlings and mature plants, by regulating SOS and ROS signaling cascades.
Collapse
|
21
|
Tripathi A, Goswami K, Tiwari M, Mukherjee SK, Sanan-Mishra N. Identification and comparative analysis of microRNAs from tomato varieties showing contrasting response to ToLCV infections. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2018; 24:185-202. [PMID: 29515314 PMCID: PMC5834980 DOI: 10.1007/s12298-017-0482-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Revised: 10/24/2017] [Accepted: 10/25/2017] [Indexed: 05/04/2023]
Abstract
Increasing incidence of viral infections in crop plants adversely affects their growth and yield. Tomato (Solanum lycopersicum) is considered to be a favorite host for viruses with over 50 species of begomoviruses naturally infecting this crop. Tomato leaf curl virus (ToLCV) is among the most widespread and devastating begomoviruses affecting tomato production. microRNAs (miRs) have been established as key regulators of gene expression and plant development. The miR pathways are disturbed during infection by viruses. Thus, comprehension of regulatory miR networks is crucial in understanding the effect of viral pathogenicity. To identify key miRs involved in ToLCV infection, a high throughput approach involving next generation sequencing was employed. Healthy and infected leaf tissues of two tomato varieties, differing in their susceptibility to ToLCV infection were analyzed. NGS data analysis followed by computational predictions, led to identification of 91 known miRs, 15 novel homologs and 53 novel miRs covering two different varieties of tomato, susceptible (Pusa Ruby) and tolerant (LA1777) to ToLCV infection. The cleaved targets of these miRs were identified using online available degradome libraries from leaf, flower and fruit of tomato and showed their involvement in various biological pathways through KEGG Orthology. With detailed comparative profiling of expression pattern of these miRs, we could associate the specific miRs with the resistant and infected genotypes. This study depicted that in depth analysis of miR expression patterns and their functions will help in identification of molecules that can be used for manipulation of gene expression to increase crop production and developing resistance against diseases.
Collapse
Affiliation(s)
- Anita Tripathi
- Plant RNAi Biology Group, International Center for Genetic Engineering and Biotechnology, New Delhi, India
| | - Kavita Goswami
- Plant RNAi Biology Group, International Center for Genetic Engineering and Biotechnology, New Delhi, India
| | - Manish Tiwari
- Plant RNAi Biology Group, International Center for Genetic Engineering and Biotechnology, New Delhi, India
| | - Sunil K. Mukherjee
- Plant RNAi Biology Group, International Center for Genetic Engineering and Biotechnology, New Delhi, India
| | - Neeti Sanan-Mishra
- Plant RNAi Biology Group, International Center for Genetic Engineering and Biotechnology, New Delhi, India
| |
Collapse
|
22
|
Genomic Survey, Characterization, and Expression Profile Analysis of the SBP Genes in Pineapple ( Ananas comosus L.). Int J Genomics 2017; 2017:1032846. [PMID: 29104869 PMCID: PMC5643045 DOI: 10.1155/2017/1032846] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 07/30/2017] [Accepted: 09/06/2017] [Indexed: 12/22/2022] Open
Abstract
Gene expression is regulated by transcription factors, which play many significant developmental processes. SQUAMOSA promoter-binding proteins (SBP) perform a variety of regulatory functions in leaf, flower, and fruit development, plant architecture, and sporogenesis. 16 SBP genes were identified in pineapple and were divided into four groups on basis of phylogenetic analysis. Five paralogs in pineapple for SBP genes were identified with Ka/Ks ratio varied from 0.20 for AcSBP14 and AcSBP15 to 0.36 for AcSBP6 and AcSBP16, respectively. 16 SBP genes were located on 12 chromosomes out of 25 pineapple chromosomes with highly conserved protein sequence structures. The isoionic points of SBP ranged from 6.05 to 9.57, while molecular weight varied from 22.7 to 121.9 kD. Expression profiles of SBP genes revealed that AcSBP7 and AcSBP15 (leaf), AcSBP13, AcSBP12, AcSBP8, AcSBP16, AcSBP9, and AcSBP11 (sepal), AcSBP6, AcSBP4, and AcSBP10 (stamen), AcSBP14, AcSBP1, and AcSBP5 (fruit) while the rest of genes showed low expression in studied tissues. Four genes, that is, AcSBP11, AcSBP6, AcSBP4, and AcSBP12, were highly expressed at 4°C, while AcSBP16 were upregulated at 45°C. RNA-Seq was validated through qRT-PCR for some genes. Salt stress-induced expression of two genes, that is, AcSBP7 and AcSBP14, while in drought stress, AcSBP12 and AcSBP15 were highly expressed. Our study lays a foundation for further gene function and expression studies of SBP genes in pineapple.
Collapse
|
23
|
Connectivity in gene coexpression networks negatively correlates with rates of molecular evolution in flowering plants. PLoS One 2017; 12:e0182289. [PMID: 28759647 PMCID: PMC5536297 DOI: 10.1371/journal.pone.0182289] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 07/14/2017] [Indexed: 12/22/2022] Open
Abstract
Gene coexpression networks are a useful tool for summarizing transcriptomic data and providing insight into patterns of gene regulation in a variety of species. Though there has been considerable interest in studying the evolution of network topology across species, less attention has been paid to the relationship between network position and patterns of molecular evolution. Here, we generated coexpression networks from publicly available expression data for seven flowering plant taxa (Arabidopsis thaliana, Glycine max, Oryza sativa, Populus spp., Solanum lycopersicum, Vitis spp., and Zea mays) to investigate the relationship between network position and rates of molecular evolution. We found a significant negative correlation between network connectivity and rates of molecular evolution, with more highly connected (i.e., “hub”) genes having significantly lower nonsynonymous substitution rates and dN/dS ratios compared to less highly connected (i.e., “peripheral”) genes across the taxa surveyed. These findings suggest that more centrally located hub genes are, on average, subject to higher levels of evolutionary constraint than are genes located on the periphery of gene coexpression networks. The consistency of this result across disparate taxa suggests that it holds for flowering plants in general, as opposed to being a species-specific phenomenon.
Collapse
|
24
|
Hou H, Yan X, Sha T, Yan Q, Wang X. The SBP-Box Gene VpSBP11 from Chinese Wild Vitis Is Involved in Floral Transition and Affects Leaf Development. Int J Mol Sci 2017; 18:ijms18071493. [PMID: 28703739 PMCID: PMC5535983 DOI: 10.3390/ijms18071493] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 07/03/2017] [Accepted: 07/06/2017] [Indexed: 12/20/2022] Open
Abstract
Flowering occurs in angiosperms during a major developmental transition from vegetative growth to the reproductive phase. Squamosa promoter binding protein (SBP)-box genes have been found to play critical roles in regulating flower and fruit development, but their roles in grapevine have remained unclear. To better understand the functions of the grape SBP-box genes in both vegetative and reproductive growth phases, a full-length complementary DNA (cDNA) sequence of the putative SBP-box transcription factor gene, VpSBP11, was obtained from Chinese wild grapevine Vitis pseudoreticulata Wen Tsai Wang (W. T. Wang) clone ‘Baihe-35-1’. VpSBP11 encoded a putative polypeptide of 170 amino acids with a highly conserved SBP-domain with two zinc-binding sites of the Cx2C-x3-H-x11-C-x6-H (C2HCH) type and a nuclear localization signal. We confirmed that the VpSBP11 protein was targeted to the nucleus and possessed transcriptional activation activity by subcellular localization and trans-activation assay. Over-expression of VpSBP11 in Arabidopsis thaliana was shown to activate the FUL gene, and subsequently the AP1 and LFY genes, all of which were floral meristem identity genes, and to cause earlier flowering than in wild type (WT) plants. The pattern of vegetative growth was also different between the transgenic and WT plants. For example, in the VpSBP11 over-expressing transgenic plants, the number of rosette leaves was less than that of WT; the petiole was significantly elongated; and the rosette and cauline leaves curled upwards or downwards. These results were consistent with VpSBP11 acting as a transcription factor during the transition from the vegetative stage to the reproductive stage.
Collapse
Affiliation(s)
- Hongmin Hou
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, China.
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling 712100, China.
- College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China.
| | - Xiaoxiao Yan
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, China.
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling 712100, China.
| | - Ting Sha
- College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China.
| | - Qin Yan
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, China.
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling 712100, China.
| | - Xiping Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, China.
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling 712100, China.
| |
Collapse
|
25
|
Yue E, Liu Z, Li C, Li Y, Liu Q, Xu JH. Overexpression of miR529a confers enhanced resistance to oxidative stress in rice (Oryza sativa L.). PLANT CELL REPORTS 2017; 36:1171-1182. [PMID: 28451819 DOI: 10.1007/s00299-017-2146-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 04/18/2017] [Indexed: 05/23/2023]
Abstract
Overexpressing miR529a can enhance oxidative stress resistance by targeting OsSPL2 and OsSPL14 genes that can regulate the expression of their downstream SOD and POD related genes. MicroRNAs are involved in the regulation of plant developmental and physiological processes, and their expression can be altered when plants suffered environment stresses, including salt, oxidative, drought and Cadmium. The expression of microRNA529 (miR529) can be induced under oxidative stress. However, its biological function under abiotic stress responses is still unclear. In this study, miR529a was overexpressed to investigate the function of miR529a under oxidative stress in rice. Our results demonstrated that the expression of miR529a can be induced by exogenous H2O2, and overexpressing miR529a can increase plant tolerance to high level of H2O2, resulting in increased seed germination rate, root tip cell viability, reduced leaf rolling rate and chlorophyll retention. The expression of oxidative stress responsive genes and the activities of superoxide dismutase (SOD) and peroxidase (POD) were increased in miR529a overexpression plant, which could help to reduce redundant reactive oxygen species (ROS). Furthermore, only OsSPL2 and OsSPL14 were targeted by miR529a in rice seedlings, repressing their expression in miR529aOE plants could lead to strengthen plant tolerance to oxidation stress. Our study provided the evidence that overexpression of miR529a could strengthen oxidation resistance, and its target genes OsSPL2 and OsSPL14 were responsible for oxidative tolerance, implied the manipulation of miR529a and its target genes regulation on H2O2 related response genes could improve oxidative stress tolerance in rice.
Collapse
Affiliation(s)
- Erkui Yue
- Zhejiang Key Laboratory of Crop Germplasm, Institute of Crop Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, Zhejiang, China
| | - Zhen Liu
- Zhejiang Key Laboratory of Crop Germplasm, Institute of Crop Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, Zhejiang, China
| | - Chao Li
- Zhejiang Key Laboratory of Crop Germplasm, Institute of Crop Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, Zhejiang, China
| | - Yu Li
- Zhejiang Key Laboratory of Crop Germplasm, Institute of Crop Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, Zhejiang, China
| | - Qiuxiang Liu
- Zhejiang Key Laboratory of Crop Germplasm, Institute of Crop Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, Zhejiang, China
| | - Jian-Hong Xu
- Zhejiang Key Laboratory of Crop Germplasm, Institute of Crop Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, Zhejiang, China.
| |
Collapse
|
26
|
Chen ZY, Guo XJ, Chen ZX, Chen WY, Wang JR. Identification and positional distribution analysis of transcription factor binding sites for genes from the wheat fl-cDNA sequences. Biosci Biotechnol Biochem 2017; 81:1125-1135. [PMID: 28485207 DOI: 10.1080/09168451.2017.1295803] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The binding sites of transcription factors (TFs) in upstream DNA regions are called transcription factor binding sites (TFBSs). TFBSs are important elements for regulating gene expression. To date, there have been few studies on the profiles of TFBSs in plants. In total, 4,873 sequences with 5' upstream regions from 8530 wheat fl-cDNA sequences were used to predict TFBSs. We found 4572 TFBSs for the MADS TF family, which was twice as many as for bHLH (1951), B3 (1951), HB superfamily (1914), ERF (1820), and AP2/ERF (1725) TFs, and was approximately four times higher than the remaining TFBS types. The percentage of TFBSs and TF members showed a distinct distribution in different tissues. Overall, the distribution of TFBSs in the upstream regions of wheat fl-cDNA sequences had significant difference. Meanwhile, high frequencies of some types of TFBSs were found in specific regions in the upstream sequences. Both TFs and fl-cDNA with TFBSs predicted in the same tissues exhibited specific distribution preferences for regulating gene expression. The tissue-specific analysis of TFs and fl-cDNA with TFBSs provides useful information for functional research, and can be used to identify relationships between tissue-specific TFs and fl-cDNA with TFBSs. Moreover, the positional distribution of TFBSs indicates that some types of wheat TFBS have different positional distribution preferences in the upstream regions of genes.
Collapse
Affiliation(s)
- Zhen-Yong Chen
- a Triticeae Research Institute , Sichuan Agricultural University , Chengdu , China.,b College of Life Science , China West Normal University , Nanchong , China
| | - Xiao-Jiang Guo
- a Triticeae Research Institute , Sichuan Agricultural University , Chengdu , China
| | - Zhong-Xu Chen
- a Triticeae Research Institute , Sichuan Agricultural University , Chengdu , China
| | - Wei-Ying Chen
- b College of Life Science , China West Normal University , Nanchong , China
| | - Ji-Rui Wang
- a Triticeae Research Institute , Sichuan Agricultural University , Chengdu , China
| |
Collapse
|
27
|
Integrated mRNA and miRNA transcriptome reveal a cross-talk between developing response and hormone signaling for the seed kernels of Siberian apricot. Sci Rep 2016; 6:35675. [PMID: 27762296 PMCID: PMC5071837 DOI: 10.1038/srep35675] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 10/04/2016] [Indexed: 11/29/2022] Open
Abstract
Recently, our transcriptomic analysis has identified some functional genes responsible for oil biosynthesis in developing SASK, yet miRNA-mediated regulation for SASK development and oil accumulation is poorly understood. Here, 3 representative periods of 10, 30 and 60 DAF were selected for sRNA sequencing based on the dynamic patterns of growth tendency and oil content of developing SASK. By miRNA transcriptomic analysis, we characterized 296 known and 44 novel miRNAs in developing SASK, among which 36 known and 6 novel miRNAs respond specifically to developing SASK. Importantly, we performed an integrated analysis of mRNA and miRNA transcriptome as well as qRT-PCR detection to identify some key miRNAs and their targets (miR156-SPL, miR160-ARF18, miR164-NAC1, miR171h-SCL6, miR172-AP2, miR395-AUX22B, miR530-P2C37, miR393h-TIR1/AFB2 and psi-miRn5-SnRK2A) potentially involved in developing response and hormone signaling of SASK. Our results provide new insights into the important regulatory function of cross-talk between development response and hormone signaling for SASK oil accumulation.
Collapse
|
28
|
Mao HD, Yu LJ, Li ZJ, Yan Y, Han R, Liu H, Ma M. Genome-wide analysis of the SPL family transcription factors and their responses to abiotic stresses in maize. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.plgene.2016.03.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
29
|
Song A, Gao T, Wu D, Xin J, Chen S, Guan Z, Wang H, Jin L, Chen F. Transcriptome-wide identification and expression analysis of chrysanthemum SBP-like transcription factors. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2016; 102:10-6. [PMID: 26897115 DOI: 10.1016/j.plaphy.2016.02.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 02/06/2016] [Accepted: 02/06/2016] [Indexed: 05/09/2023]
Abstract
SQUAMOSA promoter-binding protein (SBP) transcription factors are known to function in a number of processes in plants. Here, we have characterized twelve SBP-like (SPL) genes in the important ornamental species chrysanthemum (Chrysanthemum morifolium). A total of twelve distinct sequences were isolated and amplified based on transcriptomic sequences. Phylogenetic analysis identified two pairs of orthologous proteins for Arabidopsis and chrysanthemum and two pairs of paralogous proteins in chrysanthemum. Conserved motifs in the SPL proteins shared by Arabidopsis and chrysanthemum were scanned using MEME. A bioinformatics analysis revealed that six of these genes contained a miR156 target site, while five CmSPLs were targeted by miR157. Moreover, we used 5' RLM-RACE to map the cleavage sites in CmSPL2 and CmSPL3. The expression of these twelve genes in response to a variety of phytohormone treatments and abiotic stresses was characterized. This work improves our understanding of the various functions of SPL gene family members in the stress response.
Collapse
Affiliation(s)
- Aiping Song
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China; Jiangsu Province Engineering Lab for Modern Facility Agriculture Technology & Equipment, Nanjing, 210095, China.
| | - Tianwei Gao
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Dan Wu
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Jingjing Xin
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Sumei Chen
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Zhiyong Guan
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Haibin Wang
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Lili Jin
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Fadi Chen
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China; Jiangsu Province Engineering Lab for Modern Facility Agriculture Technology & Equipment, Nanjing, 210095, China.
| |
Collapse
|
30
|
Zhang HX, Jin JH, He YM, Lu BY, Li DW, Chai WG, Khan A, Gong ZH. Genome-Wide Identification and Analysis of the SBP-Box Family Genes under Phytophthora capsici Stress in Pepper (Capsicum annuum L.). FRONTIERS IN PLANT SCIENCE 2016; 7:504. [PMID: 27148327 PMCID: PMC4832253 DOI: 10.3389/fpls.2016.00504] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 03/29/2016] [Indexed: 05/05/2023]
Abstract
SQUAMOSA promoter binding protein (SBP)-box genes encode plant-specific transcription factors that are extensively involved in many physiological and biochemical processes, including growth, development, and signal transduction. However, pepper (Capsicum annuum L.) SBP-box family genes have not been well characterized. We investigated SBP-box family genes in the pepper genome and characterized these genes across both compatible and incompatible strain of Phytophthora capsici, and also under different hormone treatments. The results indicated that total 15 members were identified and distributed on seven chromosomes of pepper. Phylogenetic analysis showed that SBP-box genes of pepper can be classified into six groups. In addition, duplication analysis within pepper genome, as well as between pepper and Arabidopsis genomes demonstrated that there are four pairs of homology of SBP-box genes in the pepper genome and 10 pairs between pepper and Arabidopsis genomes. Tissue-specific expression analysis of the CaSBP genes demonstrated their diverse spatiotemporal expression patterns. The expression profiles were similarly analyzed following exposure to P. capsici inoculation and hormone treatments. It was shown that nine of the CaSBP genes (CaSBP01, 02, 03, 04, 05, 06, 11, 12, and 13) exhibited a dramatic up-regulation after compatible HX-9 strain (P. capsici) inoculation, while CaSBP09 and CaSBP15 were down-regulated. In case of PC strain (P. capsici) infection six of the CaSBP genes (CaSBP02, 05, 06, 11, 12, and 13) were arose while CaSBP14 was down regulated. Furthermore, Salicylic acid, Methyl jasmonate and their biosynthesis inhibitors treatment indicated that some of the CaSBP genes are potentially involved in these hormone regulation pathways. This genome-wide identification, as well as characterization of evolutionary relationships and expression profiles of the pepper CaSBP genes, will help to improve pepper stress tolerance in the future.
Collapse
Affiliation(s)
- Huai-Xia Zhang
- College of Horticulture, Northwest A&F UniversityYangling, China
| | - Jing-Hao Jin
- College of Horticulture, Northwest A&F UniversityYangling, China
| | - Yu-Mei He
- College of Horticulture, Northwest A&F UniversityYangling, China
| | - Bo-Ya Lu
- College of Horticulture, Northwest A&F UniversityYangling, China
| | - Da-Wei Li
- College of Horticulture, Northwest A&F UniversityYangling, China
| | - Wei-Guo Chai
- Institute of Vegetables, Hangzhou Academy of Agricultural SciencesHangzhou, China
| | - Abid Khan
- College of Horticulture, Northwest A&F UniversityYangling, China
| | - Zhen-Hui Gong
- College of Horticulture, Northwest A&F UniversityYangling, China
| |
Collapse
|
31
|
Djami-Tchatchou AT, Dubery IA. Lipopolysaccharide perception leads to dynamic alterations in the microtranscriptome of Arabidopsis thaliana cells and leaf tissues. BMC PLANT BIOLOGY 2015; 15:79. [PMID: 25848807 PMCID: PMC4354979 DOI: 10.1186/s12870-015-0465-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 02/20/2015] [Indexed: 05/12/2023]
Abstract
BACKGROUND MicroRNAs (miRNAs) are non-coding RNA molecules which have recently emerged as important gene regulators in plants and their gene expression analysis is becoming increasingly important. miRNAs regulate gene expression at the post-transcriptional level by translational repression or target degradation of specific mRNAs and gene silencing. In order to profile the microtranscriptome of Arabidopsis thaliana leaf and callus tissues in response to bacterial lipopolysaccharide (LPS), small RNA libraries were constructed at 0 and 3 h post induction with LPS and sequenced by Illumina sequencing technology. RESULTS Differential regulation of subset of miRNAs in response to LPS treament was observed. Small RNA reads were mapped to the miRNA database and 358 miRNAs belonging to 49 miRNA families in the callus tissues and 272 miRNAs belonging to 40 miRNA families in the leaf tissues were identified. Moreover, target genes for all the identified miRNAs families in the leaf tissues and 44 of the 49 miRNAs families in the callus tissues were predicted. The sequencing analysis showed that in both callus and leaf tissues, various stress regulated-miRNAs were differentially expressed and real time PCR validated the expression profile of miR156, miR158, miR159, miR169, miR393, miR398, miR399 and miR408 along with their target genes. CONCLUSION A. thaliana callus and leaf callus tissues respond to LPS as a microbe-associated molecular pattern molecule through dynamic changes to the microtranscriptome associated with differential transcriptional regulation in support of immunity and basal resistance.
Collapse
Affiliation(s)
- Arnaud T Djami-Tchatchou
- Department of Biochemistry, University of Johannesburg, P.O. Box 524, Auckland Park, 2006 South Africa
| | - Ian A Dubery
- Department of Biochemistry, University of Johannesburg, P.O. Box 524, Auckland Park, 2006 South Africa
| |
Collapse
|
32
|
Investigating the molecular genetic basis of heterosis for internode expansion in maize by microRNA transcriptomic deep sequencing. Funct Integr Genomics 2014; 15:261-70. [PMID: 25394807 DOI: 10.1007/s10142-014-0411-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Revised: 10/30/2014] [Accepted: 11/03/2014] [Indexed: 01/17/2023]
Abstract
Heterosis has been used widely in the breeding of maize and other crops and plays an important role in increasing yield, improving quality, and enhancing stress resistance, but its molecular mechanism is far from clear. To determine whether microRNA (miRNA)-dependent gene regulation is responsible for heterosis of elongating internodes below the ear and ear height in maize, a deep-sequencing strategy was applied to the elite hybrid Xundan20, which is currently cultivated widely in China, and its two parents. RNA was extracted from the eighth internode because it shows clear internode length heterosis. A total of 99 conserved maize miRNAs were detected in both the hybrid and parental lines. Most of these miRNAs were expressed nonadditively in the hybrid compared with its parental lines. These results indicated that miRNAs might participate in heterosis during internode expansion in maize and exert an influence on ear and plant height via the repression of their target genes. In total, eight novel miRNAs belonging to four miRNA families were predicted in the expanding internode. Global repression of miRNAs in the hybrid, which might result in enhanced gene expression, might be one reason why the hybrid shows longer internodes and taller seedlings compared with its parental lines.
Collapse
|
33
|
Guo K, Zou W, Feng Y, Zhang M, Zhang J, Tu F, Xie G, Wang L, Wang Y, Klie S, Persson S, Peng L. An integrated genomic and metabolomic framework for cell wall biology in rice. BMC Genomics 2014; 15:596. [PMID: 25023612 PMCID: PMC4112216 DOI: 10.1186/1471-2164-15-596] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Accepted: 07/09/2014] [Indexed: 11/21/2022] Open
Abstract
Background Plant cell walls are complex structures that full-fill many diverse functions during plant growth and development. It is therefore not surprising that thousands of gene products are involved in cell wall synthesis and maintenance. However, functional association for the majority of these gene products remains obscure. One useful approach to infer biological associations is via transcriptional coordination, or co-expression of genes. This approach has proved useful for several biological processes. Nevertheless, combining co-expression with other large-scale measurements may improve the biological inferences. Results In this study, we used a combined approach of co-expression and cell wall metabolomics to obtain new insight into cell wall synthesis in rice. We initially created a weighted gene co-expression network from publicly available datasets, and then established a comprehensive cell wall dataset by determining cell wall compositions from 29 tissues that almost cover the whole life cycle of rice. We subsequently combined the datasets through the conversion of co-expressed gene modules into eigen-vectors, representing expression profiles for the genes in the modules, and performed comparative analyses against the cell wall contents. Here, we made three major discoveries. First, we confirmed our approach by finding primary and secondary wall cellulose biosynthesis modules, respectively. Second, we found co-expressed modules that strongly correlated with re-organization of the secondary cell walls and with modifications and degradation of hemicellulosic structures. Third, we inferred that at least one module is likely to play a regulatory role in the production of G-rich lignification. Conclusions Here, we integrated transcriptomic associations and cell wall metabolism and found that certain co-expressed gene modules are positively correlated with distinct cell wall characteristics. We propose that combining multiple data-types, such as coordinated transcription and cell wall analyses, may be a useful approach to glean new insight into biological processes. The combination of multiple datasets, as illustrated here, can further improve the functional inferences that typically are generated via a single type of datasets. In addition, our data extend the typical co-expression approach to allow deeper insight into cell wall biology in rice. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-596) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Liangcai Peng
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, P, R, China.
| |
Collapse
|
34
|
Aftabuddin M, Mal C, Deb A, Kundu S. C2Analyzer: Co-target-co-function analyzer. GENOMICS PROTEOMICS & BIOINFORMATICS 2014; 12:133-6. [PMID: 24862384 PMCID: PMC4411367 DOI: 10.1016/j.gpb.2014.03.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Revised: 03/25/2014] [Accepted: 03/26/2014] [Indexed: 11/04/2022]
Abstract
MicroRNAs (miRNAs) interact with their target mRNAs and regulate biological processes at post-transcriptional level. While one miRNA can target many mRNAs, a single mRNA can also be targeted by a set of miRNAs. The targeted mRNAs may be involved in different biological processes that are described by gene ontology (GO) terms. The major challenges involved in analyzing these multitude regulations include identification of the combinatorial regulation of miRNAs as well as determination of the co-functionally-enriched miRNA pairs. The C2Analyzer: Co-target–Co-function Analyzer, is a Perl-based, versatile and user-friendly web tool with online instructions. Based on the hypergeometric analysis, this novel tool can determine whether given pairs of miRNAs are co-functionally enriched. For a given set of GO term(s), it can also identify the set of miRNAs whose targets are enriched in the given GO term(s). Moreover, C2Analyzer can also identify the co-targeting miRNA pairs, their targets and GO processes, which they are involved in. The miRNA–miRNA co-functional relationship can also be saved as a .txt file, which can be used to further visualize the co-functional network by using other software like Cytoscape. C2Analyzer is freely available at www.bioinformatics.org/c2analyzer.
Collapse
Affiliation(s)
- Md Aftabuddin
- West Bengal University of Technology, Kolkata 700064, India
| | - Chittabrata Mal
- Department of Biophysics, Molecular Biology & Bioinformatics, University of Calcutta, Kolkata 700009, India
| | - Arindam Deb
- Department of Biophysics, Molecular Biology & Bioinformatics, University of Calcutta, Kolkata 700009, India
| | - Sudip Kundu
- Department of Biophysics, Molecular Biology & Bioinformatics, University of Calcutta, Kolkata 700009, India.
| |
Collapse
|
35
|
Liu W, Yu W, Hou L, Wang X, Zheng F, Wang W, Liang D, Yang H, Jin Y, Xie X. Analysis of miRNAs and their targets during adventitious shoot organogenesis of Acacia crassicarpa. PLoS One 2014; 9:e93438. [PMID: 24718555 PMCID: PMC3981707 DOI: 10.1371/journal.pone.0093438] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2013] [Accepted: 03/03/2014] [Indexed: 12/11/2022] Open
Abstract
Organogenesis is an important process for plant regeneration by tissue or cell mass differentiation to regenerate a complete plant. MicroRNAs (miRNAs) play an essential role in regulating plant development by mediating target genes at transcriptional and post-transcriptional levels, but the diversity of miRNAs and their potential roles in organogenesis of Acacia crassicarpa have rarely been investigated. In this study, approximately 10 million sequence reads were obtained from a small RNA library, from which 189 conserved miRNAs from 57 miRNA families, and 7 novel miRNAs from 5 families, were identified from A. crassicarpa organogenetic tissues. Target prediction for these miRNAs yielded 237 potentially unique genes, of which 207 received target Gene Ontology annotations. On the basis of a bioinformatic analysis, one novel and 13 conserved miRNAs were selected to investigate their possible roles in A. crassicarpa organogenesis by qRT-PCR. The stage-specific expression patterns of the miRNAs provided information on their possible regulatory functions, including shoot bud formation, modulated function after transfer of the culture to light, and regulatory roles during induction of organogenesis. This study is the first to investigate miRNAs associated with A. crassicarpa organogenesis. The results provide a foundation for further characterization of miRNA expression profiles and roles in the regulation of diverse physiological pathways during adventitious shoot organogenesis of A. crassicarpa.
Collapse
Affiliation(s)
- Weina Liu
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, PR China
| | - Wangning Yu
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, PR China
| | - Lingyu Hou
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, PR China
| | - Xiaoyu Wang
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, PR China
| | - Fei Zheng
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, PR China
| | - Weixuan Wang
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, PR China
| | - Di Liang
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, PR China
| | - Hailun Yang
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, PR China
| | - Yi Jin
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, PR China
- * E-mail: (XX); (YJ)
| | - Xiangming Xie
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, PR China
- * E-mail: (XX); (YJ)
| |
Collapse
|
36
|
Li J, Hou H, Li X, Xiang J, Yin X, Gao H, Zheng Y, Bassett CL, Wang X. Genome-wide identification and analysis of the SBP-box family genes in apple (Malus × domestica Borkh.). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2013; 70:100-14. [PMID: 23771035 DOI: 10.1016/j.plaphy.2013.05.021] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2013] [Accepted: 05/16/2013] [Indexed: 05/07/2023]
Abstract
SQUAMOSA promoter binding protein (SBP)-box genes encode a family of plant-specific transcription factors and play many crucial roles in plant development. In this study, 27 SBP-box gene family members were identified in the apple (Malus × domestica Borkh.) genome, 15 of which were suggested to be putative targets of MdmiR156. Plant SBPs were classified into eight groups according to the phylogenetic analysis of SBP-domain proteins. Gene structure, gene chromosomal location and synteny analyses of MdSBP genes within the apple genome demonstrated that tandem and segmental duplications, as well as whole genome duplications, have likely contributed to the expansion and evolution of the SBP-box gene family in apple. Additionally, synteny analysis between apple and Arabidopsis indicated that several paired homologs of MdSBP and AtSPL genes were located in syntenic genomic regions. Tissue-specific expression analysis of MdSBP genes in apple demonstrated their diversified spatiotemporal expression patterns. Most MdmiR156-targeted MdSBP genes, which had relatively high transcript levels in stems, leaves, apical buds and some floral organs, exhibited a more differential expression pattern than most MdmiR156-nontargeted MdSBP genes. Finally, expression analysis of MdSBP genes in leaves upon various plant hormone treatments showed that many MdSBP genes were responsive to different plant hormones, indicating that MdSBP genes may be involved in responses to hormone signaling during stress or in apple development.
Collapse
Affiliation(s)
- Jun Li
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Ficklin SP, Feltus FA. A systems-genetics approach and data mining tool to assist in the discovery of genes underlying complex traits in Oryza sativa. PLoS One 2013; 8:e68551. [PMID: 23874666 PMCID: PMC3713027 DOI: 10.1371/journal.pone.0068551] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Accepted: 05/30/2013] [Indexed: 12/13/2022] Open
Abstract
Many traits of biological and agronomic significance in plants are controlled in a complex manner where multiple genes and environmental signals affect the expression of the phenotype. In Oryza sativa (rice), thousands of quantitative genetic signals have been mapped to the rice genome. In parallel, thousands of gene expression profiles have been generated across many experimental conditions. Through the discovery of networks with real gene co-expression relationships, it is possible to identify co-localized genetic and gene expression signals that implicate complex genotype-phenotype relationships. In this work, we used a knowledge-independent, systems genetics approach, to discover a high-quality set of co-expression networks, termed Gene Interaction Layers (GILs). Twenty-two GILs were constructed from 1,306 Affymetrix microarray rice expression profiles that were pre-clustered to allow for improved capture of gene co-expression relationships. Functional genomic and genetic data, including over 8,000 QTLs and 766 phenotype-tagged SNPs (p-value < = 0.001) from genome-wide association studies, both covering over 230 different rice traits were integrated with the GILs. An online systems genetics data-mining resource, the GeneNet Engine, was constructed to enable dynamic discovery of gene sets (i.e. network modules) that overlap with genetic traits. GeneNet Engine does not provide the exact set of genes underlying a given complex trait, but through the evidence of gene-marker correspondence, co-expression, and functional enrichment, site visitors can identify genes with potential shared causality for a trait which could then be used for experimental validation. A set of 2 million SNPs was incorporated into the database and serve as a potential set of testable biomarkers for genes in modules that overlap with genetic traits. Herein, we describe two modules found using GeneNet Engine, one with significant overlap with the trait amylose content and another with significant overlap with blast disease resistance.
Collapse
Affiliation(s)
- Stephen P Ficklin
- Plant and Environmental Sciences, Clemson University, Clemson, South Carolina, United States of America
| | | |
Collapse
|
38
|
Hou H, Li J, Gao M, Singer SD, Wang H, Mao L, Fei Z, Wang X. Genomic organization, phylogenetic comparison and differential expression of the SBP-box family genes in grape. PLoS One 2013; 8:e59358. [PMID: 23527172 PMCID: PMC3601960 DOI: 10.1371/journal.pone.0059358] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Accepted: 02/13/2013] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The SBP-box gene family is specific to plants and encodes a class of zinc finger-containing transcription factors with a broad range of functions. Although SBP-box genes have been identified in numerous plants including green algae, moss, silver birch, snapdragon, Arabidopsis, rice and maize, there is little information concerning SBP-box genes, or the corresponding miR156/157, function in grapevine. METHODOLOGY/PRINCIPAL FINDINGS Eighteen SBP-box gene family members were identified in Vitis vinifera, twelve of which bore sequences that were complementary to miRNA156/157. Phylogenetic reconstruction demonstrated that plant SBP-domain proteins could be classified into seven subgroups, with the V. vinifera SBP-domain proteins being more closely related to SBP-domain proteins from dicotyledonous angiosperms than those from monocotyledonous angiosperms. In addition, synteny analysis between grape and Arabidopsis demonstrated that homologs of several grape SBP genes were found in corresponding syntenic blocks of Arabidopsis. Expression analysis of the grape SBP-box genes in various organs and at different stages of fruit development in V. quinquangularis 'Shang-24' revealed distinct spatiotemporal patterns. While the majority of the grape SBP-box genes lacking a miR156/157 target site were expressed ubiquitously and constitutively, most genes bearing a miR156/157 target site exhibited distinct expression patterns, possibly due to the inhibitory role of the microRNA. Furthermore, microarray data mining and quantitative real-time RT-PCR analysis identified several grape SBP-box genes that are potentially involved in the defense against biotic and abiotic stresses. CONCLUSION The results presented here provide a further understanding of SBP-box gene function in plants, and yields additional insights into the mechanism of stress management in grape, which may have important implications for the future success of this crop.
Collapse
Affiliation(s)
- Hongmin Hou
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China
| | - Jun Li
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China
| | - Min Gao
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China
| | - Stacy D. Singer
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Hao Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China
| | - Linyong Mao
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, New York, United States of America
| | - Zhangjun Fei
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, New York, United States of America
- USDA Robert W. Holley Center for Agriculture and Health, Ithaca, New York, United States of America
| | - Xiping Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
39
|
Gibson SM, Ficklin SP, Isaacson S, Luo F, Feltus FA, Smith MC. Massive-scale gene co-expression network construction and robustness testing using random matrix theory. PLoS One 2013; 8:e55871. [PMID: 23409071 PMCID: PMC3567026 DOI: 10.1371/journal.pone.0055871] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Accepted: 01/03/2013] [Indexed: 11/18/2022] Open
Abstract
The study of gene relationships and their effect on biological function and phenotype is a focal point in systems biology. Gene co-expression networks built using microarray expression profiles are one technique for discovering and interpreting gene relationships. A knowledge-independent thresholding technique, such as Random Matrix Theory (RMT), is useful for identifying meaningful relationships. Highly connected genes in the thresholded network are then grouped into modules that provide insight into their collective functionality. While it has been shown that co-expression networks are biologically relevant, it has not been determined to what extent any given network is functionally robust given perturbations in the input sample set. For such a test, hundreds of networks are needed and hence a tool to rapidly construct these networks. To examine functional robustness of networks with varying input, we enhanced an existing RMT implementation for improved scalability and tested functional robustness of human (Homo sapiens), rice (Oryza sativa) and budding yeast (Saccharomyces cerevisiae). We demonstrate dramatic decrease in network construction time and computational requirements and show that despite some variation in global properties between networks, functional similarity remains high. Moreover, the biological function captured by co-expression networks thresholded by RMT is highly robust.
Collapse
Affiliation(s)
- Scott M. Gibson
- Holcombe Department of Electrical and Computer Engineering, Clemson University, Clemson, South Carolina, United States of America
| | - Stephen P. Ficklin
- Plant and Environmental Sciences, Clemson University, Clemson, South Carolina, United States of America
| | - Sven Isaacson
- Department of Computer Science, Wittenberg University, Springfield, Ohio, United States of America
| | - Feng Luo
- School of Computing, Clemson University, Clemson, South Carolina, United States of America
| | - Frank A. Feltus
- Plant and Environmental Sciences, Clemson University, Clemson, South Carolina, United States of America
- Department of Genetics & Biochemistry, Clemson University, Clemson, South Carolina, United States of America
- * E-mail:
| | - Melissa C. Smith
- Holcombe Department of Electrical and Computer Engineering, Clemson University, Clemson, South Carolina, United States of America
| |
Collapse
|
40
|
De novo sequencing and characterization of the floral transcriptome of Dendrocalamus latiflorus (Poaceae: Bambusoideae). PLoS One 2012; 7:e42082. [PMID: 22916120 PMCID: PMC3419236 DOI: 10.1371/journal.pone.0042082] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Accepted: 07/02/2012] [Indexed: 12/13/2022] Open
Abstract
Background Transcriptome sequencing can be used to determine gene sequences and transcript abundance in non-model species, and the advent of next-generation sequencing (NGS) technologies has greatly decreased the cost and time required for this process. Transcriptome data are especially desirable in bamboo species, as certain members constitute an economically and culturally important group of mostly semelparous plants with remarkable flowering features, yet little bamboo genomic research has been performed. Here we present, for the first time, extensive sequence and transcript abundance data for the floral transcriptome of a key bamboo species, Dendrocalamus latiflorus, obtained using the Illumina GAII sequencing platform. Our further goal was to identify patterns of gene expression during bamboo flower development. Results Approximately 96 million sequencing reads were generated and assembled de novo, yielding 146,395 high quality unigenes with an average length of 461 bp. Of these, 80,418 were identified as putative homologs of annotated sequences in the public protein databases, of which 290 were associated with the floral transition and 47 were related to flower development. Digital abundance analysis identified 26,529 transcripts differentially enriched between two developmental stages, young flower buds and older developing flowers. Unigenes found at each stage were categorized according to their putative functional categories. These sequence and putative function data comprise a resource for future investigation of the floral transition and flower development in bamboo species. Conclusions Our results present the first broad survey of a bamboo floral transcriptome. Although it will be necessary to validate the functions carried out by these genes, these results represent a starting point for future functional research on D. latiflorus and related species.
Collapse
|
41
|
Ding D, Wang Y, Han M, Fu Z, Li W, Liu Z, Hu Y, Tang J. MicroRNA transcriptomic analysis of heterosis during maize seed germination. PLoS One 2012; 7:e39578. [PMID: 22761829 PMCID: PMC3384671 DOI: 10.1371/journal.pone.0039578] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Accepted: 05/23/2012] [Indexed: 12/13/2022] Open
Abstract
Heterosis has been utilized widely in the breeding of maize and other crops, and plays an important role in increasing yield, improving quality and enhancing stresses resistance, but the molecular mechanism responsible for heterosis is far from clear. To illustrate whether miRNA-dependent gene regulation is responsible for heterosis during maize germination, a deep-sequencing technique was applied to germinating embryos of a maize hybrid, Yuyu22, which is cultivated widely in China and its parental inbred lines, Yu87-1 and Zong3. The target genes of several miRNAs showing significant expression in the hybrid and parental lines were predicted and tested using real-time PCR. A total of 107 conserved maize miRNAs were co-detected in the hybrid and parental lines. Most of these miRNAs were expressed non-additively in the hybrid compared to its parental lines. These results indicated that miRNAs might participate in heterosis during maize germination and exert an influence via the decay of their target genes. Novel miRNAs were predicted follow a rigorous criterion and only the miRNAs detected in all three samples were treated as a novel maize miRNA. In total, 34 miRNAs belonged to 20 miRNA families were predicted in germinating maize seeds. Global repression of miRNAs in the hybrid, which might result in enhanced gene expression, might be one reason why the hybrid showed higher embryo germination vigor compared to its parental lines.
Collapse
Affiliation(s)
- Dong Ding
- College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Yinju Wang
- College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Mingshui Han
- College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Zhiyuan Fu
- College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Weihua Li
- College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Zonghua Liu
- College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Yanmin Hu
- College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Jihua Tang
- College of Agronomy, Henan Agricultural University, Zhengzhou, China
- * E-mail:
| |
Collapse
|
42
|
Ficklin SP, Feltus FA. Gene coexpression network alignment and conservation of gene modules between two grass species: maize and rice. PLANT PHYSIOLOGY 2011; 156:1244-56. [PMID: 21606319 PMCID: PMC3135956 DOI: 10.1104/pp.111.173047] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2011] [Accepted: 05/20/2011] [Indexed: 05/17/2023]
Abstract
One major objective for plant biology is the discovery of molecular subsystems underlying complex traits. The use of genetic and genomic resources combined in a systems genetics approach offers a means for approaching this goal. This study describes a maize (Zea mays) gene coexpression network built from publicly available expression arrays. The maize network consisted of 2,071 loci that were divided into 34 distinct modules that contained 1,928 enriched functional annotation terms and 35 cofunctional gene clusters. Of note, 391 maize genes of unknown function were found to be coexpressed within modules along with genes of known function. A global network alignment was made between this maize network and a previously described rice (Oryza sativa) coexpression network. The IsoRankN tool was used, which incorporates both gene homology and network topology for the alignment. A total of 1,173 aligned loci were detected between the two grass networks, which condensed into 154 conserved subgraphs that preserved 4,758 coexpression edges in rice and 6,105 coexpression edges in maize. This study provides an early view into maize coexpression space and provides an initial network-based framework for the translation of functional genomic and genetic information between these two vital agricultural species.
Collapse
|
43
|
Li B, Qin Y, Duan H, Yin W, Xia X. Genome-wide characterization of new and drought stress responsive microRNAs in Populus euphratica. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:3765-79. [PMID: 21511902 PMCID: PMC3134338 DOI: 10.1093/jxb/err051] [Citation(s) in RCA: 187] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2010] [Revised: 01/26/2011] [Accepted: 01/31/2011] [Indexed: 05/18/2023]
Abstract
MicroRNAs (miRNAs) are small, non-coding RNAs that play essential roles in plant growth, development, and stress response. Populus euphratica is a typical abiotic stress-resistant woody species. This study presents an efficient method for genome-wide discovery of new drought stress responsive miRNAs in P. euphratica. High-throughput sequencing of P. euphratica leaves found 197 conserved miRNAs between P. euphratica and Populus trichocarpa. Meanwhile, 58 new miRNAs belonging to 38 families were identified, an increase in the number of P. euphratica miRNAs. Twenty-six new and 21 conserved miRNA targets were verified by degradome sequencing, and target annotation showed that these targets were involved in multiple biological processes, including transcriptional regulation and response to stimulus. Furthermore, comparison of high-throughput sequencing with miRNA microarray profiling data indicated that 104 miRNA sequences were up-regulated, whereas 27 were down-regulated under drought stress. This preliminary characterization provides a framework for future analysis of miRNA genes and their roles in key poplar traits such as stress resistance, and could be useful for plant breeding and environmental protection.
Collapse
Affiliation(s)
| | | | | | - Weilun Yin
- To whom correspondence should be addressed. E-mail: ;
| | - Xinli Xia
- To whom correspondence should be addressed. E-mail: ;
| |
Collapse
|
44
|
LIU YX, HAN YP, CHANG W, ZOU Q, GUO MZ, LI WB. Genomic Analysis of MicroRNA Promoters and Their Cis-Acting Elements in Soybean. ACTA ACUST UNITED AC 2010. [DOI: 10.1016/s1671-2927(09)60252-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
45
|
Chen X, Zhang Z, Liu D, Zhang K, Li A, Mao L. SQUAMOSA promoter-binding protein-like transcription factors: star players for plant growth and development. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2010; 52:946-51. [PMID: 20977652 DOI: 10.1111/j.1744-7909.2010.00987.x] [Citation(s) in RCA: 164] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
SQUAMOSA Promoter-Binding Protein-Like (SPL) genes encode plant-specific transcription factors that play important roles in plant phase transition, flower and fruit development, plant architecture, gibberellins signaling, sporogenesis, and response to copper and fungal toxins. In Arabidopsis, many SPL genes are post-transcriptionally regulated by the microRNA (miRNA) miR156, among which AtSPL9 in turn positively regulates the expression of the second miRNA miR172. This miR156-AtSPL9-miR172 regulatory pathway plays critical roles during juvenile to adult leaf development and the miR156-SPLs feedback interaction persists all through the plant development, which may be conserved in other plants. In the present paper, we provide a concise review on the most recent progress in the regulatory mechanisms associated with plant SPL transcription factors, especially in relation to miRNAs. The potential application of these discoveries in agriculture is briefly discussed.
Collapse
Affiliation(s)
- Xiaobo Chen
- National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), MOA Key Laboratory of Crop Germplasm & Biotechnology, Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
| | | | | | | | | | | |
Collapse
|
46
|
Ficklin SP, Luo F, Feltus FA. The association of multiple interacting genes with specific phenotypes in rice using gene coexpression networks. PLANT PHYSIOLOGY 2010; 154:13-24. [PMID: 20668062 PMCID: PMC2938148 DOI: 10.1104/pp.110.159459] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2010] [Accepted: 07/21/2010] [Indexed: 05/18/2023]
Abstract
Discovering gene sets underlying the expression of a given phenotype is of great importance, as many phenotypes are the result of complex gene-gene interactions. Gene coexpression networks, built using a set of microarray samples as input, can help elucidate tightly coexpressed gene sets (modules) that are mixed with genes of known and unknown function. Functional enrichment analysis of modules further subdivides the coexpressed gene set into cofunctional gene clusters that may coexist in the module with other functionally related gene clusters. In this study, 45 coexpressed gene modules and 76 cofunctional gene clusters were discovered for rice (Oryza sativa) using a global, knowledge-independent paradigm and the combination of two network construction methodologies. Some clusters were enriched for previously characterized mutant phenotypes, providing evidence for specific gene sets (and their annotated molecular functions) that underlie specific phenotypes.
Collapse
|
47
|
Sreekantan L, Mathiason K, Grimplet J, Schlauch K, Dickerson JA, Fennell AY. Differential floral development and gene expression in grapevines during long and short photoperiods suggests a role for floral genes in dormancy transitioning. PLANT MOLECULAR BIOLOGY 2010; 73:191-205. [PMID: 20151315 DOI: 10.1007/s11103-010-9611-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2009] [Accepted: 01/26/2010] [Indexed: 05/20/2023]
Abstract
Daylength is an important environmental cue for synchronizing growth, flowering, and dormancy with seasonality. As many floral development genes are photoperiod regulated, it has been suggested that they could have a regulatory role in bud endodormancy. Therefore, the influence of photoperiod was studied on inflorescence primordia differentiation and floral pathway related gene expression during the development of overwintering buds in Vitis riparia and V. spp. 'Seyval'. Photoperiod treatments were imposed 35 days after budbreak, and histological and transcriptomic analyses were conducted during the subsequent 42 days of bud development. Long day (LD, 15 h) and short day (SD, 13 h) buds were floral competent by 21 days of photoperiod treatment (56 days after budbreak); however, the floral meristem developed faster in LD than in SD buds. Analysis of 132 floral pathway related genes represented on the Affymetrix Grape Genome array indicated 60 were significantly differentially expressed between photoperiod treatments. Genes predominantly related to floral transition or floral meristem development were identified by their association with distinct grape floral meristem development and an expression pattern in LD consistent with their previously identified roles in flowering literature. Genes with a potential dual role in floral development and dormancy transitioning were identified using photoperiod induced differences in floral development between LD and SD buds and uncharacteristic gene expression trends in relation to floral development. Candidate genes with the potential to play a dual role in SD dormancy induction include circadian rhythm or flowering transition related genes: AP2, BT1, COL-13, EIN3, ELF4, DDTR, GAI and HY5.
Collapse
Affiliation(s)
- Lekha Sreekantan
- Horticulture, Forestry, Landscape and Parks Department, South Dakota State University, Brookings, SD 57007, USA
| | | | | | | | | | | |
Collapse
|
48
|
Rolling circle amplification of genomic templates for inverse PCR (RCA-GIP): a method for 5'- and 3'-genome walking without anchoring. Biotechnol Lett 2009; 32:157-61. [PMID: 19760115 DOI: 10.1007/s10529-009-0128-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2009] [Accepted: 08/18/2009] [Indexed: 10/20/2022]
Abstract
We have devised an improved method of genome walking, named rolling circle amplification of genomic templates for Inverse PCR (RCA-GIP). The method is based on the generation of circular genomic DNA fragments, followed by rolling circle amplification of the circular genomic DNA using phi29 DNA polymerase without need for attachment of anchor sequences. In this way from the circular genomic DNA fragments, after RCA amplification, a large amount of linear concatemers is generated suitable for Inverse PCR template that can be amplified, sequenced or cloned allowing the isolation of the 3'- and 5'- of unknown ends of genomic sequences. To prove the concept of the proposed methodology, we used this procedure to isolate the promoter regions from different species. Herein as an example we present the isolation of four promoter regions from Crocus sativus, a crop cultivated for saffron production.
Collapse
|