1
|
Jing Y, Liu X, Zhu Y, Wu L, Nong W. Metal-organic framework microneedles for precision transdermal drug delivery: design strategy and therapeutic potential. NANOSCALE 2025; 17:5571-5604. [PMID: 39918280 DOI: 10.1039/d4nr03898c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/08/2025]
Abstract
Metal-organic frameworks (MOFs) are porous materials renowned for their high porosity, large specific surface area, biocompatibility, and biodegradability. Hydrogel microneedles (MNs) is an emerging technology that minimally disrupts the skin or mucosal membranes, bypassing gastrointestinal absorption and the rapid metabolism typical of oral drug delivery. Over the past few decades, both MOFs and MNs have found applications across a range of fields. However, MOFs alone cannot penetrate the skin or mucosal barrier to deliver drugs effectively, and MNs have limited direct loading capacity. When combined, MOFs enhance the loading efficiency of therapeutic agents in hydrogel MNs and optimize their release kinetics. Additionally, the incorporation of MOFs improves the mechanical properties of hydrogel MNs, increasing their permeability to the skin. In turn, hydrogel MNs enable MOFs-whether therapeutically active or drug-loaded-to bypass the skin or mucosal barrier and deliver active compounds directly to the target site for localized treatment. This review discusses the structural features and preparation methods of MOFs and MOF-based MNs, explores their synergistic potential, and highlights strategies for integrating MOFs with MNs to enhance transdermal drug delivery in applications such as wound healing, scar management, acne treatment, and tumor suppression. Finally, we examine the challenges and future potential of MOF-based MNs and offer insights into their role in advancing transdermal therapies.
Collapse
Affiliation(s)
- Yutong Jing
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning 530004, China.
| | - Xueting Liu
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning 530004, China.
| | - Yajing Zhu
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning 530004, China.
| | - Lichuan Wu
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning 530004, China.
| | - Wenqian Nong
- Institute of Oncology, Guangxi Academy of Medical Sciences and the People's Hospital of Guangxi Zhuang Autonomous Region, Nanning 530021, China.
| |
Collapse
|
2
|
Jiang E, Jamali A, List M, Mishra DB, Sheikholeslami SA, Goldschmidtboeing F, Woias P, Baretzky C, Fischer O, Zimmermann B, Glunz SW, Würfel U. Organic photovoltaic mini-module providing more than 5000 V for energy autonomy of dielectric elastomer actuators. Nat Commun 2025; 16:2048. [PMID: 40021621 PMCID: PMC11871061 DOI: 10.1038/s41467-025-57226-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 02/12/2025] [Indexed: 03/03/2025] Open
Abstract
Dielectric elastomer actuators (DEAs) are widely used for soft robotics. The required voltages of over 1000 V are usually supplied by amplifiers with batteries or power grids which however have limited operation time or mobility. This problem also exists for other advanced mobile devices such as electroaerodynamic thrusters. This work reports on the development of high-voltage organic photovoltaic mini-modules (HV-OPMs) comprising 5024 individual sub-cells on an area of 3.8 × 3.9 cm2. Under 100 klux white LED illumination, an open-circuit voltage (VOC) of 5534 V and an efficiency of 6.4% is achieved with the photoactive material PM6:GS-ISO whereas with PV-X plus a VOC of 3970 V and an efficiency of 19.0% is obtained. Furthermore, a soft suction cup based on DEA was built and could successfully be powered with one of these modules. These results show that HV-OPMs are very promising to realize energy autonomy of low-power high-voltage devices.
Collapse
Affiliation(s)
- Ershuai Jiang
- Cluster of Excellence livMatS, University of Freiburg, Georges-Köhler-Allee 105, Freiburg, Germany
- Fraunhofer Institute for Solar Energy Systems ISE, Heidenhofstr. 2, Freiburg, Germany
| | - Armin Jamali
- Cluster of Excellence livMatS, University of Freiburg, Georges-Köhler-Allee 105, Freiburg, Germany
- Faculty of Engineering, Department of Microsystems Engineering (IMTEK), University of Freiburg, Georges-Köhler-Allee 101, Freiburg, Germany
| | - Mathias List
- Fraunhofer Institute for Solar Energy Systems ISE, Heidenhofstr. 2, Freiburg, Germany
- Freiburg Materials Research Center FMF, University of Freiburg, Stefan-Meier-Str. 21, Freiburg, Germany
| | - Dushyant Bhagwan Mishra
- Cluster of Excellence livMatS, University of Freiburg, Georges-Köhler-Allee 105, Freiburg, Germany
- Faculty of Engineering, Department of Microsystems Engineering (IMTEK), University of Freiburg, Georges-Köhler-Allee 101, Freiburg, Germany
| | - Seyed Alireza Sheikholeslami
- Cluster of Excellence livMatS, University of Freiburg, Georges-Köhler-Allee 105, Freiburg, Germany
- Faculty of Engineering, Department of Microsystems Engineering (IMTEK), University of Freiburg, Georges-Köhler-Allee 101, Freiburg, Germany
| | - Frank Goldschmidtboeing
- Cluster of Excellence livMatS, University of Freiburg, Georges-Köhler-Allee 105, Freiburg, Germany
- Faculty of Engineering, Department of Microsystems Engineering (IMTEK), University of Freiburg, Georges-Köhler-Allee 101, Freiburg, Germany
| | - Peter Woias
- Cluster of Excellence livMatS, University of Freiburg, Georges-Köhler-Allee 105, Freiburg, Germany
- Faculty of Engineering, Department of Microsystems Engineering (IMTEK), University of Freiburg, Georges-Köhler-Allee 101, Freiburg, Germany
| | - Clemens Baretzky
- Fraunhofer Institute for Solar Energy Systems ISE, Heidenhofstr. 2, Freiburg, Germany
- Freiburg Materials Research Center FMF, University of Freiburg, Stefan-Meier-Str. 21, Freiburg, Germany
| | - Oliver Fischer
- Fraunhofer Institute for Solar Energy Systems ISE, Heidenhofstr. 2, Freiburg, Germany
- Chair of Phototovoltaic Energy Conversion, Department of Sustainable Systems Engineering INATECH, University of Freiburg, Emmy-Noether-Str. 2, Freiburg, Germany
| | - Birger Zimmermann
- Fraunhofer Institute for Solar Energy Systems ISE, Heidenhofstr. 2, Freiburg, Germany
| | - Stefan W Glunz
- Cluster of Excellence livMatS, University of Freiburg, Georges-Köhler-Allee 105, Freiburg, Germany
- Fraunhofer Institute for Solar Energy Systems ISE, Heidenhofstr. 2, Freiburg, Germany
- Chair of Phototovoltaic Energy Conversion, Department of Sustainable Systems Engineering INATECH, University of Freiburg, Emmy-Noether-Str. 2, Freiburg, Germany
| | - Uli Würfel
- Cluster of Excellence livMatS, University of Freiburg, Georges-Köhler-Allee 105, Freiburg, Germany.
- Fraunhofer Institute for Solar Energy Systems ISE, Heidenhofstr. 2, Freiburg, Germany.
- Freiburg Materials Research Center FMF, University of Freiburg, Stefan-Meier-Str. 21, Freiburg, Germany.
| |
Collapse
|
3
|
Wang W, Su W, Han J, Song W, Li X, Xu C, Sun Y, Wang L. Microfluidic platforms for monitoring cardiomyocyte electromechanical activity. MICROSYSTEMS & NANOENGINEERING 2025; 11:4. [PMID: 39788940 PMCID: PMC11718118 DOI: 10.1038/s41378-024-00751-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 06/04/2024] [Accepted: 06/26/2024] [Indexed: 01/12/2025]
Abstract
Cardiovascular diseases account for ~40% of global deaths annually. This situation has revealed the urgent need for the investigation and development of corresponding drugs for pathogenesis due to the complexity of research methods and detection techniques. An in vitro cardiomyocyte model is commonly used for cardiac drug screening and disease modeling since it can respond to microphysiological environmental variations through mechanoelectric feedback. Microfluidic platforms are capable of accurate fluid control and integration with analysis and detection techniques. Therefore, various microfluidic platforms (i.e., heart-on-a-chip) have been applied for the reconstruction of the physiological environment and detection of signals from cardiomyocytes. They have demonstrated advantages in mimicking the cardiovascular structure and function in vitro and in monitoring electromechanical signals. This review presents a summary of the methods and technologies used to monitor the contractility and electrophysiological signals of cardiomyocytes within microfluidic platforms. Then, applications in common cardiac drug screening and cardiovascular disease modeling are presented, followed by design strategies for enhancing physiology studies. Finally, we discuss prospects in the tissue engineering and sensing techniques of microfluidic platforms.
Collapse
Affiliation(s)
- Wei Wang
- School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), 250353, Jinan, China
- Shandong Institute of Mechanical Design and Research, 250353, Jinan, China
| | - Weiguang Su
- School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), 250353, Jinan, China
- Shandong Institute of Mechanical Design and Research, 250353, Jinan, China
| | - Junlei Han
- School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), 250353, Jinan, China
- Shandong Institute of Mechanical Design and Research, 250353, Jinan, China
| | - Wei Song
- Department of Minimally Invasive Comprehensive Treatment of Cancer, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 250021, Jinan, China
| | - Xinyu Li
- Department of Minimally Invasive Comprehensive Treatment of Cancer, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 250021, Jinan, China
| | - Chonghai Xu
- School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), 250353, Jinan, China
- Shandong Institute of Mechanical Design and Research, 250353, Jinan, China
| | - Yu Sun
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON, M5S3G8, Canada.
| | - Li Wang
- School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), 250353, Jinan, China.
- Shandong Institute of Mechanical Design and Research, 250353, Jinan, China.
| |
Collapse
|
4
|
Nguyen TD, Nguyen TH, Vo VT, Nguyen TQ. Panoramic review on polymeric microneedle arrays for clinical applications. Biomed Microdevices 2024; 26:41. [PMID: 39312013 DOI: 10.1007/s10544-024-00724-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/12/2024] [Indexed: 11/01/2024]
Abstract
Transdermal drug delivery (TDD) has significantly advanced medical practice in recent years due to its ability to prevent the degradation of substances in the gastrointestinal tract and avoid hepatic metabolism. Among different available approaches, microneedle arrays (MNAs) technology represents a fascinating delivery tool for enhancing TDD by penetrating the stratum corneum painless and minimally invasive for delivering antibacterial, antifungal, and antiviral medications. Polymeric MNAs are extensively utilized among many available materials due to their biodegradability, biocompatibility, and low toxicity. Therefore, this review provides a comprehensive discussion of polymeric MNAs, starting with understanding stratum corneum and developing MNA technology. Furthermore, the engineering concepts, fundamental considerations, challenges, and future perspectives of polymeric MNAs in clinical applications are properly outlined, offering a comprehensive and unique overview of polymeric MNAs and their potential for a broad spectrum of clinical applications.
Collapse
Affiliation(s)
- Tien Dat Nguyen
- School of Biomedical Engineering, International University, Ho Chi Minh City, 700000 HCMC, Viet Nam
- Vietnam National University, Ho Chi Minh City, 700000 HCMC, Vietnam
| | - Thi-Hiep Nguyen
- School of Biomedical Engineering, International University, Ho Chi Minh City, 700000 HCMC, Viet Nam
- Vietnam National University, Ho Chi Minh City, 700000 HCMC, Vietnam
| | - Van Toi Vo
- School of Biomedical Engineering, International University, Ho Chi Minh City, 700000 HCMC, Viet Nam
- Vietnam National University, Ho Chi Minh City, 700000 HCMC, Vietnam
| | - Thanh-Qua Nguyen
- School of Biomedical Engineering, International University, Ho Chi Minh City, 700000 HCMC, Viet Nam.
- Vietnam National University, Ho Chi Minh City, 700000 HCMC, Vietnam.
| |
Collapse
|
5
|
Rasekh M, Harrison S, Schobesberger S, Ertl P, Balachandran W. Reagent storage and delivery on integrated microfluidic chips for point-of-care diagnostics. Biomed Microdevices 2024; 26:28. [PMID: 38825594 DOI: 10.1007/s10544-024-00709-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/02/2024] [Indexed: 06/04/2024]
Abstract
Microfluidic-based point-of-care diagnostics offer several unique advantages over existing bioanalytical solutions, such as automation, miniaturisation, and integration of sensors to rapidly detect on-site specific biomarkers. It is important to highlight that a microfluidic POC system needs to perform a number of steps, including sample preparation, nucleic acid extraction, amplification, and detection. Each of these stages involves mixing and elution to go from sample to result. To address these complex sample preparation procedures, a vast number of different approaches have been developed to solve the problem of reagent storage and delivery. However, to date, no universal method has been proposed that can be applied as a working solution for all cases. Herein, both current self-contained (stored within the chip) and off-chip (stored in a separate device and brought together at the point of use) are reviewed, and their merits and limitations are discussed. This review focuses on reagent storage devices that could be integrated with microfluidic devices, discussing further issues or merits of these storage solutions in two different sections: direct on-chip storage and external storage with their application devices. Furthermore, the different microvalves and micropumps are considered to provide guidelines for designing appropriate integrated microfluidic point-of-care devices.
Collapse
Affiliation(s)
- Manoochehr Rasekh
- College of Engineering, Design and Physical Sciences, Brunel University London, Uxbridge, UB8 3PH, UK.
| | - Sam Harrison
- College of Engineering, Design and Physical Sciences, Brunel University London, Uxbridge, UB8 3PH, UK
| | - Silvia Schobesberger
- Faculty of Technical Chemistry, Institute of Applied Synthetic Chemistry, Vienna University of Technology, Getreidemarkt 9, 1060, Vienna, Austria
| | - Peter Ertl
- Faculty of Technical Chemistry, Institute of Applied Synthetic Chemistry, Vienna University of Technology, Getreidemarkt 9, 1060, Vienna, Austria
| | - Wamadeva Balachandran
- College of Engineering, Design and Physical Sciences, Brunel University London, Uxbridge, UB8 3PH, UK.
| |
Collapse
|
6
|
Bohm S, Phi HB, Dittrich L, Runge E. Chip-integrated non-mechanical microfluidic pump driven by electrowetting on dielectrics. LAB ON A CHIP 2024; 24:2893-2905. [PMID: 38656325 DOI: 10.1039/d4lc00178h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
A microfluidic pump is presented that generates its pumping action via the EWOD (electrowetting-on-dielectric) effect. The flow is generated by the periodic movement of liquid-vapor interfaces in a large number (≈106) of microcavities resulting in a volume change of approx. 0.5 pl per cavity per pump stroke. The total flow resulting from all microcavities adds up to a few hundred nanolitres per cycle. Passive, topologically optimized, non-mechanical Tesla valves are used to rectify the flow. As a result, the micropump operates without any moving components. The dimensioning, fabrication, and characterization process of the micropump are described. Device fabrication is done using conventional manufacturing processes from microsystems technology, enabling cost-effective mass production on wafer-level without additional assembly steps like piezo chip-level bonding, etc. This allows for direct integration into wafer-based microfluidic or lab-on-a-chip applications. Furthermore, first measurement results obtained with prototypes of the micropump are presented. The voltage- and frequency-dependent pump performance is determined. The measurements show that a continuous flow rate larger than 0.2 ml min-1 can be achieved at a maximum pump pressure larger than 12 mbar.
Collapse
Affiliation(s)
- Sebastian Bohm
- Institute of Physics, Group 'Theoretical Physics I', Technische Universität Ilmenau, Weimarer Straße 25, 98693 Ilmenau, Germany.
- Institute of Micro- and Nanotechnologies, Technische Universität Ilmenau, Gustav-Kirchhoff-Straße 7, 98693 Ilmenau, Germany
- 5microns GmbH, Margarethenstraße 6, 98693 Ilmenau, Germany
| | - Hai Binh Phi
- Institute of Micro- and Nanotechnologies, Technische Universität Ilmenau, Gustav-Kirchhoff-Straße 7, 98693 Ilmenau, Germany
- 5microns GmbH, Margarethenstraße 6, 98693 Ilmenau, Germany
| | - Lars Dittrich
- Institute of Micro- and Nanotechnologies, Technische Universität Ilmenau, Gustav-Kirchhoff-Straße 7, 98693 Ilmenau, Germany
- 5microns GmbH, Margarethenstraße 6, 98693 Ilmenau, Germany
| | - Erich Runge
- Institute of Physics, Group 'Theoretical Physics I', Technische Universität Ilmenau, Weimarer Straße 25, 98693 Ilmenau, Germany.
- Institute of Micro- and Nanotechnologies, Technische Universität Ilmenau, Gustav-Kirchhoff-Straße 7, 98693 Ilmenau, Germany
| |
Collapse
|
7
|
Wu Z, Huang D, Wang J, Zhao Y, Sun W, Shen X. Engineering Heterogeneous Tumor Models for Biomedical Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2304160. [PMID: 37946674 PMCID: PMC10767453 DOI: 10.1002/advs.202304160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 09/16/2023] [Indexed: 11/12/2023]
Abstract
Tumor tissue engineering holds great promise for replicating the physiological and behavioral characteristics of tumors in vitro. Advances in this field have led to new opportunities for studying the tumor microenvironment and exploring potential anti-cancer therapeutics. However, the main obstacle to the widespread adoption of tumor models is the poor understanding and insufficient reconstruction of tumor heterogeneity. In this review, the current progress of engineering heterogeneous tumor models is discussed. First, the major components of tumor heterogeneity are summarized, which encompasses various signaling pathways, cell proliferations, and spatial configurations. Then, contemporary approaches are elucidated in tumor engineering that are guided by fundamental principles of tumor biology, and the potential of a bottom-up approach in tumor engineering is highlighted. Additionally, the characterization approaches and biomedical applications of tumor models are discussed, emphasizing the significant role of engineered tumor models in scientific research and clinical trials. Lastly, the challenges of heterogeneous tumor models in promoting oncology research and tumor therapy are described and key directions for future research are provided.
Collapse
Affiliation(s)
- Zhuhao Wu
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096China
| | - Danqing Huang
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096China
| | - Jinglin Wang
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096China
| | - Yuanjin Zhao
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096China
- Department of Gastrointestinal SurgeryThe First Affiliated HospitalWenzhou Medical UniversityWenzhou325035China
| | - Weijian Sun
- Department of Gastrointestinal SurgeryThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhou325027China
| | - Xian Shen
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096China
- Department of Gastrointestinal SurgeryThe First Affiliated HospitalWenzhou Medical UniversityWenzhou325035China
| |
Collapse
|
8
|
Palmer GA, Tomkin G, Martín-Alcalá HE, Mendizabal-Ruiz G, Cohen J. The Internet of Things in assisted reproduction. Reprod Biomed Online 2023; 47:103338. [PMID: 37757612 DOI: 10.1016/j.rbmo.2023.103338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/06/2023] [Accepted: 08/07/2023] [Indexed: 09/29/2023]
Abstract
The Internet of Things (IoT) is a network connecting physical objects with sensors, software and internet connectivity for data exchange. Integrating the IoT with medical devices shows promise in healthcare, particularly in IVF laboratories. By leveraging telecommunications, cybersecurity, data management and intelligent systems, the IoT can enable a data-driven laboratory with automation, improved conditions, personalized treatment and efficient workflows. The integration of 5G technology ensures fast and reliable connectivity for real-time data transmission, while blockchain technology secures patient data. Fog computing reduces latency and enables real-time analytics. Microelectromechanical systems enable wearable IoT and miniaturized monitoring devices for tracking IVF processes. However, challenges such as security risks and network issues must be addressed through cybersecurity measures and networking advancements. Clinical embryologists should maintain their expertise and knowledge for safety and oversight, even with IoT in the IVF laboratory.
Collapse
Affiliation(s)
- Giles A Palmer
- IVF2.0 Ltd, London, UK; International IVF Initiative, New York, New York, USA
| | | | | | - Gerardo Mendizabal-Ruiz
- Conceivable Life Sciences, New York, New York, USA; Departamento de Bioingeniería Traslacional, Universidad de Guadalajara, Guadalajara, Mexico
| | - Jacques Cohen
- IVF2.0 Ltd, London, UK; International IVF Initiative, New York, New York, USA; Althea Science Inc, New York, New York, USA; Conceivable Life Sciences, New York, New York, USA.
| |
Collapse
|
9
|
Escobar A, Diab-Liu A, Bosland K, Xu CQ. Microfluidic Device-Based Virus Detection and Quantification in Future Diagnostic Research: Lessons from the COVID-19 Pandemic. BIOSENSORS 2023; 13:935. [PMID: 37887128 PMCID: PMC10605122 DOI: 10.3390/bios13100935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/19/2023] [Accepted: 09/21/2023] [Indexed: 10/28/2023]
Abstract
The global economic and healthcare crises experienced over the past three years, as a result of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has significantly impacted the commonplace habits of humans around the world. SARS-CoV-2, the virus responsible for the coronavirus 2019 (COVID-19) phenomenon, has contributed to the deaths of millions of people around the world. The potential diagnostic applications of microfluidic devices have previously been demonstrated to effectively detect and quasi-quantify several different well-known viruses such as human immunodeficiency virus (HIV), influenza, and SARS-CoV-2. As a result, microfluidics has been further explored as a potential alternative to our currently available rapid tests for highly virulent diseases to better combat and manage future potential outbreaks. The outbreak management during COVID-19 was initially hindered, in part, by the lack of available quantitative rapid tests capable of confirming a person's active infectiousness status. Therefore, this review will explore the use of microfluidic technology, and more specifically RNA-based virus detection methods, as an integral part of improved diagnostic capabilities and will present methods for carrying the lessons learned from COVID-19 forward, toward improved diagnostic outcomes for future pandemic-level threats. This review will first explore the context of the COVID-19 pandemic and how diagnostic technology was shown to have required even greater advancements to keep pace with the transmission of such a highly infectious virus. Secondly, the historical significance of integrating microfluidic technology in diagnostics and how the different types of genetic-based detection methods may vary in their potential practical applications. Lastly, the review will summarize the past, present, and future potential of RNA-based virus detection/diagnosis and how it might be used to better prepare for a future pandemic.
Collapse
Affiliation(s)
- Andres Escobar
- School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L8, Canada;
| | - Alex Diab-Liu
- Department of Engineering Physics, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L8, Canada; (A.D.-L.); (K.B.)
| | - Kamaya Bosland
- Department of Engineering Physics, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L8, Canada; (A.D.-L.); (K.B.)
| | - Chang-qing Xu
- School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L8, Canada;
- Department of Engineering Physics, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L8, Canada; (A.D.-L.); (K.B.)
| |
Collapse
|
10
|
Stella GM, Lettieri S, Piloni D, Ferrarotti I, Perrotta F, Corsico AG, Bortolotto C. Smart Sensors and Microtechnologies in the Precision Medicine Approach against Lung Cancer. Pharmaceuticals (Basel) 2023; 16:1042. [PMID: 37513953 PMCID: PMC10385174 DOI: 10.3390/ph16071042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 06/23/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
BACKGROUND AND RATIONALE The therapeutic interventions against lung cancer are currently based on a fully personalized approach to the disease with considerable improvement of patients' outcome. Alongside continuous scientific progresses and research investments, massive technologic efforts, innovative challenges, and consolidated achievements together with research investments are at the bases of the engineering and manufacturing revolution that allows a significant gain in clinical setting. AIM AND METHODS The scope of this review is thus to focus, rather than on the biologic traits, on the analysis of the precision sensors and novel generation materials, as semiconductors, which are below the clinical development of personalized diagnosis and treatment. In this perspective, a careful revision and analysis of the state of the art of the literature and experimental knowledge is presented. RESULTS Novel materials are being used in the development of personalized diagnosis and treatment for lung cancer. Among them, semiconductors are used to analyze volatile cancer compounds and allow early disease diagnosis. Moreover, they can be used to generate MEMS which have found an application in advanced imaging techniques as well as in drug delivery devices. CONCLUSIONS Overall, these issues represent critical issues only partially known and generally underestimated by the clinical community. These novel micro-technology-based biosensing devices, based on the use of molecules at atomic concentrations, are crucial for clinical innovation since they have allowed the recent significant advances in cancer biology deciphering as well as in disease detection and therapy. There is an urgent need to create a stronger dialogue between technologists, basic researchers, and clinicians to address all scientific and manufacturing efforts towards a real improvement in patients' outcome. Here, great attention is focused on their application against lung cancer, from their exploitations in translational research to their application in diagnosis and treatment development, to ensure early diagnosis and better clinical outcomes.
Collapse
Affiliation(s)
- Giulia Maria Stella
- Department of Internal Medicine and Medical Therapeutics, University of Pavia Medical School, 27100 Pavia, Italy
- Cardiothoracic and Vascular Department, Unit of Respiratory Diseases, IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Sara Lettieri
- Department of Internal Medicine and Medical Therapeutics, University of Pavia Medical School, 27100 Pavia, Italy
- Cardiothoracic and Vascular Department, Unit of Respiratory Diseases, IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Davide Piloni
- Department of Internal Medicine and Medical Therapeutics, University of Pavia Medical School, 27100 Pavia, Italy
- Cardiothoracic and Vascular Department, Unit of Respiratory Diseases, IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Ilaria Ferrarotti
- Department of Internal Medicine and Medical Therapeutics, University of Pavia Medical School, 27100 Pavia, Italy
- Cardiothoracic and Vascular Department, Unit of Respiratory Diseases, IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Fabio Perrotta
- Department of Translational Medical Sciences, University of Campania "L. Vanvitelli", 80131 Napoli, Italy
- U.O.C. Clinica Pneumologica "L. Vanvitelli", A.O. dei Colli, Ospedale Monaldi, 80131 Napoli, Italy
| | - Angelo Guido Corsico
- Department of Internal Medicine and Medical Therapeutics, University of Pavia Medical School, 27100 Pavia, Italy
- Cardiothoracic and Vascular Department, Unit of Respiratory Diseases, IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Chandra Bortolotto
- Department of Clinical-Surgical, Diagnostic and Paediatric Sciences, University of Pavia Medical School, 27100 Pavia, Italy
- Department of Diagnostic Services and Imaging, Unit of Radiology, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| |
Collapse
|
11
|
Qu J, Sui M, Li R. Recent advances in in-situ transmission electron microscopy techniques for heterogeneous catalysis. iScience 2023; 26:107072. [PMID: 37534164 PMCID: PMC10391733 DOI: 10.1016/j.isci.2023.107072] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2023] Open
Abstract
The process of heterogeneous catalytic reaction under working conditions has long been considered a "black box", which is mainly because of the difficulties in directly characterizing the structural changes of catalysts at the atomic level during catalytic reactions. The development of in situ transmission electron microscopy (TEM) techniques offers opportunities for introducing a realistic chemical reaction environment in TEM, making it possible to uncover the mystery of catalytic reactions. In this article, we present a comprehensive overview of the application of in situ TEM techniques in heterogeneous catalysis, highlighting its utility for observing gas-solid and liquid-solid reactions during thermal catalysis, electrocatalysis, and photocatalysis. in situ TEM has a unique advantage in revealing the complex structural changes of catalysts during chemical reactions. Revealing the real-time dynamic structure during reaction processes is crucial for understanding the intricate relationship between catalyst structure and its catalytic performance. Finally, we present a perspective on the future challenges and opportunities of in situ TEM in heterogeneous catalysis.
Collapse
Affiliation(s)
- Jiangshan Qu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, The Collaborative Innovation Center of Chemistry for Energy Materials (iChEM-2011), Dalian 116023, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Manling Sui
- Beijing Key Laboratory of Microstructure and Properties of Solids, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, China
| | - Rengui Li
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, The Collaborative Innovation Center of Chemistry for Energy Materials (iChEM-2011), Dalian 116023, China
| |
Collapse
|
12
|
Ahmad NN, Ghazali NNN, Abdul Rani AT, Othman MH, Kee CC, Jiwanti PK, Rodríguez-Gómez A, Wong YH. Finger-Actuated Micropump of Constant Flow Rate without Backflow. MICROMACHINES 2023; 14:881. [PMID: 37421113 DOI: 10.3390/mi14040881] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 04/15/2023] [Accepted: 04/16/2023] [Indexed: 07/09/2023]
Abstract
This paper presents a finger-actuated micropump with a consistent flow rate and no backflow. The fluid dynamics in interstitial fluid (ISF) extraction microfluidics are studied through analytical, simulation, and experimental methods. Head losses, pressure drop, diodocity, hydrogel swelling, criteria for hydrogel absorption, and consistency flow rate are examined in order to access microfluidic performance. In terms of consistency, the experimental result revealed that after 20 s of duty cycles with full deformation on the flexible diaphragm, the output pressure became uniform and the flow rate remained at nearly constant levels of 2.2 μL/min. The flow rate discrepancy between the experimental and predicted flow rates is around 22%. In terms of diodicity, when the serpentine microchannel and hydrogel-assisted reservoir are added to the microfluidic system integration, the diodicity increases by 2% (Di = 1.48) and 34% (Di = 1.96), respectively, compared to when the Tesla integration (Di = 1.45) is used alone. A visual and experimentally weighted analysis finds no signs of backflow. These significant flow characteristics demonstrate their potential usage in many low-cost and portable microfluidic applications.
Collapse
Affiliation(s)
- NurFarrahain Nadia Ahmad
- Department of Mechanical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur 50603, Federal Territory, Malaysia
- School of Mechanical Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310, Johor, Malaysia
| | - Nik Nazri Nik Ghazali
- Department of Mechanical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur 50603, Federal Territory, Malaysia
| | - Ahmad Taufiq Abdul Rani
- Industrial and Mechanical Design, Faculty of Engineering, German-Malaysian Institute, Jalan Ilmiah, Taman Universiti, Kajang 43000, Selangor, Malaysia
| | - Mohammad Hafiz Othman
- Department of Process & Food Engineering, Faculty of Engineering, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Chia Ching Kee
- Centre for Advance Materials and Intelligent Manufacturing, Faculty of Engineering, Built Environment & Information Technology, SEGi University, Petaling Jaya 47810, Selangor, Malaysia
| | - Prastika Krisma Jiwanti
- Nanotechnology Engineering, Faculty of Advanced Technology and Multidiscipline, Universitas Airlangga, Surabaya 60115, Indonesia
| | - Arturo Rodríguez-Gómez
- Instituto de Física, Universidad Nacional Autónoma de México, Circuito de la Investigación Científica s/n, Ciudad Universitaria, A.P. 20-364, Coyoacán, Ciudad de México 04510, Mexico
| | - Yew Hoong Wong
- Department of Mechanical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur 50603, Federal Territory, Malaysia
| |
Collapse
|
13
|
Abouelregal AE, Marin M, Askar SS. Generalized MGT Heat Transfer Model for an Electro-Thermal Microbeam Lying on a Viscous-Pasternak Foundation with a Laser Excitation Heat Source. Symmetry (Basel) 2023. [DOI: 10.3390/sym15040814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023] Open
Abstract
In this study, the effects of laser light on the heat transfer of a thin beam heated by an applied current and voltage are investigated. Laser heating pulses are simulated as endogenous heat sources with discrete temporal properties. The heat conduction equation is developed using the energy conservation equation and the modified Moore–Gibson–Thompson (MGT) heat flow vector. Thermal and structural analysis of Euler–Bernoulli microbeams is provided with the support of visco-Pasternak’s base with three parameters. Using the Laplace transform method, an approximation of an analytical solution is found for the field variables being examined. A comparison was made of the impacts of laser pulse length, the three foundation coefficients, and the thermal parameters on the responses to changes in measured thermophysical fields, such as deflection and temperature.
Collapse
|
14
|
Xu S, Liu Y, Yang Y, Zhang K, Liang W, Xu Z, Wu Y, Luo J, Zhuang C, Cai X. Recent Progress and Perspectives on Neural Chip Platforms Integrating PDMS-Based Microfluidic Devices and Microelectrode Arrays. MICROMACHINES 2023; 14:709. [PMID: 37420942 PMCID: PMC10145465 DOI: 10.3390/mi14040709] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/17/2023] [Accepted: 03/19/2023] [Indexed: 07/09/2023]
Abstract
Recent years have witnessed a spurt of progress in the application of the encoding and decoding of neural activities to drug screening, diseases diagnosis, and brain-computer interactions. To overcome the constraints of the complexity of the brain and the ethical considerations of in vivo research, neural chip platforms integrating microfluidic devices and microelectrode arrays have been raised, which can not only customize growth paths for neurons in vitro but also monitor and modulate the specialized neural networks grown on chips. Therefore, this article reviews the developmental history of chip platforms integrating microfluidic devices and microelectrode arrays. First, we review the design and application of advanced microelectrode arrays and microfluidic devices. After, we introduce the fabrication process of neural chip platforms. Finally, we highlight the recent progress on this type of chip platform as a research tool in the field of brain science and neuroscience, focusing on neuropharmacology, neurological diseases, and simplified brain models. This is a detailed and comprehensive review of neural chip platforms. This work aims to fulfill the following three goals: (1) summarize the latest design patterns and fabrication schemes of such platforms, providing a reference for the development of other new platforms; (2) generalize several important applications of chip platforms in the field of neurology, which will attract the attention of scientists in the field; and (3) propose the developmental direction of neural chip platforms integrating microfluidic devices and microelectrode arrays.
Collapse
Affiliation(s)
- Shihong Xu
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yaoyao Liu
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yan Yang
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kui Zhang
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Liang
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhaojie Xu
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yirong Wu
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinping Luo
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chengyu Zhuang
- Department of Orthopaedics, Rujing Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xinxia Cai
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
15
|
Ba Hashwan SS, Khir MHM, Nawi IM, Ahmad MR, Hanif M, Zahoor F, Al-Douri Y, Algamili AS, Bature UI, Alabsi SS, Sabbea MOB, Junaid M. A review of piezoelectric MEMS sensors and actuators for gas detection application. NANOSCALE RESEARCH LETTERS 2023; 18:25. [PMID: 36847870 DOI: 10.1186/s11671-023-03779-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 01/25/2023] [Indexed: 05/24/2023]
Abstract
Piezoelectric microelectromechanical system (piezo-MEMS)-based mass sensors including the piezoelectric microcantilevers, surface acoustic waves (SAW), quartz crystal microbalance (QCM), piezoelectric micromachined ultrasonic transducer (PMUT), and film bulk acoustic wave resonators (FBAR) are highlighted as suitable candidates for highly sensitive gas detection application. This paper presents the piezo-MEMS gas sensors' characteristics such as their miniaturized structure, the capability of integration with readout circuit, and fabrication feasibility using multiuser technologies. The development of the piezoelectric MEMS gas sensors is investigated for the application of low-level concentration gas molecules detection. In this work, the various types of gas sensors based on piezoelectricity are investigated extensively including their operating principle, besides their material parameters as well as the critical design parameters, the device structures, and their sensing materials including the polymers, carbon, metal-organic framework, and graphene.
Collapse
Affiliation(s)
- Saeed S Ba Hashwan
- Department of Electrical and Electronic Engineering, Universiti Teknologi PETRONAS, 32610, Seri Iskandar, Malaysia.
| | - Mohd Haris Md Khir
- Department of Electrical and Electronic Engineering, Universiti Teknologi PETRONAS, 32610, Seri Iskandar, Malaysia
| | - Illani Mohd Nawi
- Department of Electrical and Electronic Engineering, Universiti Teknologi PETRONAS, 32610, Seri Iskandar, Malaysia
| | - Mohamad Radzi Ahmad
- Department of Electrical and Electronic Engineering, Universiti Teknologi PETRONAS, 32610, Seri Iskandar, Malaysia
| | - Mehwish Hanif
- Department of Electrical and Electronic Engineering, Universiti Teknologi PETRONAS, 32610, Seri Iskandar, Malaysia
| | - Furqan Zahoor
- Department of Electrical and Electronic Engineering, Universiti Teknologi PETRONAS, 32610, Seri Iskandar, Malaysia
| | - Y Al-Douri
- Nanotechnology and Catalysis Research Centre (NANOCAT), University of Malaya, Kuala Lumpur, Malaysia
- Department of Mechanical Engineering, Faculty of Engineering, Piri Reis University, Eflatun Sk. No: 8, 34940, Tuzla, Istanbul, Turkey
- Department of Applied Science and Astronomy, College of Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Abdullah Saleh Algamili
- Department of Electrical and Electronic Engineering, Universiti Teknologi PETRONAS, 32610, Seri Iskandar, Malaysia
| | - Usman Isyaku Bature
- Department of Electrical and Electronic Engineering, Universiti Teknologi PETRONAS, 32610, Seri Iskandar, Malaysia
| | - Sami Sultan Alabsi
- Department of Electrical and Electronic Engineering, Universiti Teknologi PETRONAS, 32610, Seri Iskandar, Malaysia
| | - Mohammed O Ba Sabbea
- Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Muhammad Junaid
- Department of Electrical and Electronic Engineering, Universiti Teknologi PETRONAS, 32610, Seri Iskandar, Malaysia
- Department of Electronic Engineering, Balochistan University of Information Technology, Engineering and Management Sciences, Quetta, 87300, Pakistan
| |
Collapse
|
16
|
Remiro PDFR, Nagahara MHT, Azoubel RA, Franz-Montan M, d’Ávila MA, Moraes ÂM. Polymeric Biomaterials for Topical Drug Delivery in the Oral Cavity: Advances on Devices and Manufacturing Technologies. Pharmaceutics 2022; 15:12. [PMID: 36678640 PMCID: PMC9864928 DOI: 10.3390/pharmaceutics15010012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/03/2022] [Accepted: 12/10/2022] [Indexed: 12/24/2022] Open
Abstract
There are several routes of drug administration, and each one has advantages and limitations. In the case of the topical application in the oral cavity, comprising the buccal, sublingual, palatal, and gingival regions, the advantage is that it is painless, non-invasive, allows easy application of the formulation, and it is capable of avoiding the need of drug swallowing by the patient, a matter of relevance for children and the elderly. Another advantage is the high permeability of the oral mucosa, which may deliver very high amounts of medication rapidly to the bloodstream without significant damage to the stomach. This route also allows the local treatment of lesions that affect the oral cavity, as an alternative to systemic approaches involving injection-based methods and oral medications that require drug swallowing. Thus, this drug delivery route has been arousing great interest in the pharmaceutical industry. This review aims to condense information on the types of biomaterials and polymers used for this functionality, as well as on production methods and market perspectives of this topical drug delivery route.
Collapse
Affiliation(s)
- Paula de Freitas Rosa Remiro
- Department of Engineering of Materials and of Bioprocesses, School of Chemical Engineering, University of Campinas, Campinas 13083-852, SP, Brazil
| | - Mariana Harue Taniguchi Nagahara
- Department of Engineering of Materials and of Bioprocesses, School of Chemical Engineering, University of Campinas, Campinas 13083-852, SP, Brazil
| | - Rafael Abboud Azoubel
- Department of Manufacturing and Materials Engineering, School of Mechanical Engineering, University of Campinas, Campinas 13083-860, SP, Brazil
| | - Michelle Franz-Montan
- Department of Biosciences, Piracicaba Dental School, University of Campinas, Piracicaba 13414-903, SP, Brazil
| | - Marcos Akira d’Ávila
- Department of Manufacturing and Materials Engineering, School of Mechanical Engineering, University of Campinas, Campinas 13083-860, SP, Brazil
| | - Ângela Maria Moraes
- Department of Engineering of Materials and of Bioprocesses, School of Chemical Engineering, University of Campinas, Campinas 13083-852, SP, Brazil
| |
Collapse
|
17
|
Konara M, Mudugamuwa A, Dodampegama S, Roshan U, Amarasinghe R, Dao DV. Formation Techniques Used in Shape-Forming Microrobotic Systems with Multiple Microrobots: A Review. MICROMACHINES 2022; 13:1987. [PMID: 36422416 PMCID: PMC9699214 DOI: 10.3390/mi13111987] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/21/2022] [Accepted: 09/22/2022] [Indexed: 05/19/2023]
Abstract
Multiple robots are used in robotic applications to achieve tasks that are impossible to perform as individual robotic modules. At the microscale/nanoscale, controlling multiple robots is difficult due to the limitations of fabrication technologies and the availability of on-board controllers. This highlights the requirement of different approaches compared to macro systems for a group of microrobotic systems. Current microrobotic systems have the capability to form different configurations, either as a collectively actuated swarm or a selectively actuated group of agents. Magnetic, acoustic, electric, optical, and hybrid methods are reviewed under collective formation methods, and surface anchoring, heterogeneous design, and non-uniform control input are significant in the selective formation of microrobotic systems. In addition, actuation principles play an important role in designing microrobotic systems with multiple microrobots, and the various control systems are also reviewed because they affect the development of such systems at the microscale. Reconfigurability, self-adaptable motion, and enhanced imaging due to the aggregation of modules have shown potential applications specifically in the biomedical sector. This review presents the current state of shape formation using microrobots with regard to forming techniques, actuation principles, and control systems. Finally, the future developments of these systems are presented.
Collapse
Affiliation(s)
- Menaka Konara
- Centre for Advanced Mechatronics Systems, University of Moratuwa, Katubedda 10400, Sri Lanka
| | - Amith Mudugamuwa
- Centre for Advanced Mechatronics Systems, University of Moratuwa, Katubedda 10400, Sri Lanka
| | - Shanuka Dodampegama
- Centre for Advanced Mechatronics Systems, University of Moratuwa, Katubedda 10400, Sri Lanka
| | - Uditha Roshan
- Department of Mechanical Engineering, University of Moratuwa, Katubedda 10400, Sri Lanka
| | - Ranjith Amarasinghe
- Centre for Advanced Mechatronics Systems, University of Moratuwa, Katubedda 10400, Sri Lanka
- Department of Mechanical Engineering, University of Moratuwa, Katubedda 10400, Sri Lanka
| | - Dzung Viet Dao
- Queensland Micro- and Nanotechnology Centre (QMNC), Griffith University, Brisbane, QLD 4111, Australia
| |
Collapse
|
18
|
Li X, Fan X, Li Z, Shi L, Liu J, Luo H, Wang L, Du X, Chen W, Guo J, Li C, Liu S. Application of Microfluidics in Drug Development from Traditional Medicine. BIOSENSORS 2022; 12:bios12100870. [PMID: 36291008 PMCID: PMC9599478 DOI: 10.3390/bios12100870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/24/2022] [Accepted: 09/27/2022] [Indexed: 05/08/2023]
Abstract
While there are many clinical drugs for prophylaxis and treatment, the search for those with low or no risk of side effects for the control of infectious and non-infectious diseases is a dilemma that cannot be solved by today's traditional drug development strategies. The need for new drug development strategies is becoming increasingly important, and the development of new drugs from traditional medicines is the most promising strategy. Many valuable clinical drugs have been developed based on traditional medicine, including drugs with single active ingredients similar to modern drugs and those developed from improved formulations of traditional drugs. However, the problems of traditional isolation and purification and drug screening methods should be addressed for successful drug development from traditional medicine. Advances in microfluidics have not only contributed significantly to classical drug development but have also solved many of the thorny problems of new strategies for developing new drugs from traditional drugs. In this review, we provide an overview of advanced microfluidics and its applications in drug development (drug compound synthesis, drug screening, drug delivery, and drug carrier fabrication) with a focus on its applications in conventional medicine, including the separation and purification of target components in complex samples and screening of active ingredients of conventional drugs. We hope that our review gives better insight into the potential of traditional medicine and the critical role of microfluidics in the drug development process. In addition, the emergence of new ideas and applications will bring about further advances in the field of drug development.
Collapse
Affiliation(s)
- Xue Li
- Sichuan Hanyuan County People’s Hospital, Hanyuan 625300, China
| | - Xiaoming Fan
- Department of Laboratory Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Zhu Li
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Lina Shi
- School of Medicine, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Jinkuan Liu
- School of Medicine, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Hongzhi Luo
- Department of Laboratory Medicine, The Third Affiliated Hospital of Zunyi Medical University (The First People’s Hospital of Zunyi), Zunyi 563002, China
| | - Lijun Wang
- Department of Ophthalmology, The Third People’s Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu 610031, China
| | - Xiaoxin Du
- Office of Scientific Research & Development, University of Electronic Science and Technology, Chengdu 610054, China
| | - Wenzhu Chen
- Department of Blood Transfusion, The First People’s Hospital of Longquanyi District, Chengdu 610041, China
| | - Jiuchuan Guo
- The M.O.E. Key Laboratory of Laboratory Medical Diagnostics, The College of Laboratory Medicine, Chongqing Medical University, #1 Yixueyuan Road, Yuzhong District, Chongqing 400016, China
- Correspondence: (J.G.); (C.L.); (S.L.)
| | - Chenzhong Li
- Department of Biochemistry and Molecular Biology, School of Medicine, Tulane University, New Orleans, LA 70112, USA
- Correspondence: (J.G.); (C.L.); (S.L.)
| | - Shan Liu
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Department of Medical Genetics, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China
- Correspondence: (J.G.); (C.L.); (S.L.)
| |
Collapse
|
19
|
Zhang L, Du W, Li X, Ling G, Zhang P. Dissolving microneedles based on polysaccharide for dermatological diseases therapy. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
20
|
Manzoor S, Tayyaba S, Ashraf MW. Simulation, analysis, fabrication and characterization of tunable AAO membrane for microfluidic filtration. JOURNAL OF INTELLIGENT & FUZZY SYSTEMS 2022. [DOI: 10.3233/jifs-219309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Microfluidic filtration is an essential process in many biomedical applications. Micro or nanoporous membranes are used for colloidal retention. During the membrane filtration process visualization of various phenomena is challenging. Theoretical models have been proposed to visualize the transport mechanism. In this work, ANSYS Fluent is used for 3D designing of the microfluidic system and Fuzzy simulations are used to study flow rate and velocity, to get the maximum benefit from Anodized Aluminium oxide membrane in practical applications. The proposed method exploits relations between driving force, membrane area, and fluid flow. After optimization of parameters for the filtration, the AAO membrane with desired pore diameter was fabricated using the two-step anodization method. Scanning electron microscope is used for characterization of fabricated AAO membrane. The simulated and theoretical results using computer-based programs are then compared for manipulation of flow rate during the filtration process. Along with the manipulation of flow rate from nanoporous membrane other challenges faced during the filtration process are also highlighted with possible solutions.
Collapse
Affiliation(s)
- Saher Manzoor
- Department of Physics, GC University Lahore, Lahore, Pakistan
| | - Shahzadi Tayyaba
- Department of Computer Engineering, The University of Lahore, Lahore, Pakistan
| | | |
Collapse
|
21
|
Contactless Micro-Droplet Manipulation of Liquid Released from a Parallel Plate to an Open Region in Electrowetting-on-Dielectric Platform. MICROMACHINES 2022; 13:mi13060898. [PMID: 35744512 PMCID: PMC9227017 DOI: 10.3390/mi13060898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 05/30/2022] [Accepted: 06/03/2022] [Indexed: 02/01/2023]
Abstract
In electrowetting-on-dielectric (EWOD) platform, the transfer of droplets from the EWOD boundary region (top plate and bottom plate) to the open region is challenging. The challenge is due to the resistance-like surface tension, friction from the top-plate edge, and the so-called boundary. For this purpose, we designed the top plate to minimize the friction resistance at the boundary. The experiment focused on Gibb’s formula and successfully transferred the liquid droplet between the top plate and bottom plate boundary region under a high voltage environment. The threshold voltage for the successful transportation of the droplet between the boundary is 250 V which provides strong pressure to drive the droplet.
Collapse
|
22
|
Kulkarni D, Damiri F, Rojekar S, Zehravi M, Ramproshad S, Dhoke D, Musale S, Mulani AA, Modak P, Paradhi R, Vitore J, Rahman MH, Berrada M, Giram PS, Cavalu S. Recent Advancements in Microneedle Technology for Multifaceted Biomedical Applications. Pharmaceutics 2022; 14:1097. [PMID: 35631683 PMCID: PMC9144002 DOI: 10.3390/pharmaceutics14051097] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/07/2022] [Accepted: 05/17/2022] [Indexed: 02/04/2023] Open
Abstract
Microneedle (MNs) technology is a recent advancement in biomedical science across the globe. The current limitations of drug delivery, like poor absorption, low bioavailability, inadequate skin permeation, and poor biodistribution, can be overcome by MN-based drug delivery. Nanotechnology made significant changes in fabrication techniques for microneedles (MNs) and design shifted from conventional to novel, using various types of natural and synthetic materials and their combinations. Nowadays, MNs technology has gained popularity worldwide in biomedical research and drug delivery technology due to its multifaceted and broad-spectrum applications. This review broadly discusses MN's types, fabrication methods, composition, characterization, applications, recent advancements, and global intellectual scenarios.
Collapse
Affiliation(s)
- Deepak Kulkarni
- Department of Pharmaceutics, Srinath College of Pharmacy, Bajajnagar, Aurangabad 431136, India;
| | - Fouad Damiri
- Laboratory of Biomolecules and Organic Synthesis (BIOSYNTHO), Department of Chemistry, Faculty of Sciences Ben M’Sick, University Hassan II of Casablanca, Casablanca 20000, Morocco; (F.D.); (M.B.)
| | - Satish Rojekar
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai 400019, India;
- Departments of Medicine and Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Mehrukh Zehravi
- Department of Clinical Pharmacy Girls Section, Prince Sattam Bin Abdul Aziz University, Alkharj 11942, Saudi Arabia;
| | - Sarker Ramproshad
- Department of Pharmacy, Ranada Prasad Shaha University, Narayanganj 1400, Bangladesh;
| | - Dipali Dhoke
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur 440033, India;
| | - Shubham Musale
- Department of Pharmaceutics, Dr. DY Patil Institute of Pharmaceutical Sciences and Research, Pimpri, Pune 411018, India; (S.M.); (A.A.M.); (P.M.); (R.P.)
| | - Ashiya A. Mulani
- Department of Pharmaceutics, Dr. DY Patil Institute of Pharmaceutical Sciences and Research, Pimpri, Pune 411018, India; (S.M.); (A.A.M.); (P.M.); (R.P.)
| | - Pranav Modak
- Department of Pharmaceutics, Dr. DY Patil Institute of Pharmaceutical Sciences and Research, Pimpri, Pune 411018, India; (S.M.); (A.A.M.); (P.M.); (R.P.)
| | - Roshani Paradhi
- Department of Pharmaceutics, Dr. DY Patil Institute of Pharmaceutical Sciences and Research, Pimpri, Pune 411018, India; (S.M.); (A.A.M.); (P.M.); (R.P.)
| | - Jyotsna Vitore
- National Institute of Pharmaceutical Education and Research, Ahmedabad 160062, India;
| | - Md. Habibur Rahman
- Department of Global Medical Science, Wonju College of Medicine, Yonsei University, Wonju 26426, Korea
| | - Mohammed Berrada
- Laboratory of Biomolecules and Organic Synthesis (BIOSYNTHO), Department of Chemistry, Faculty of Sciences Ben M’Sick, University Hassan II of Casablanca, Casablanca 20000, Morocco; (F.D.); (M.B.)
| | - Prabhanjan S. Giram
- Department of Pharmaceutics, Dr. DY Patil Institute of Pharmaceutical Sciences and Research, Pimpri, Pune 411018, India; (S.M.); (A.A.M.); (P.M.); (R.P.)
- Department of Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
| | - Simona Cavalu
- Faculty of Medicine and Pharmacy, University of Oradea, P-ta 1 Decembrie 10, 410087 Oradea, Romania
| |
Collapse
|
23
|
Mckee S, Lutey A, Sciancalepore C, Poli F, Selleri S, Cucinotta A. Microfabrication of polymer microneedle arrays using two-photon polymerization. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B: BIOLOGY 2022; 229:112424. [DOI: 10.1016/j.jphotobiol.2022.112424] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 02/22/2022] [Accepted: 02/26/2022] [Indexed: 10/18/2022]
|
24
|
Damiri F, Kommineni N, Ebhodaghe SO, Bulusu R, Jyothi VGSS, Sayed AA, Awaji AA, Germoush MO, Al-malky HS, Nasrullah MZ, Rahman MH, Abdel-Daim MM, Berrada M. Microneedle-Based Natural Polysaccharide for Drug Delivery Systems (DDS): Progress and Challenges. Pharmaceuticals (Basel) 2022; 15:190. [PMID: 35215302 PMCID: PMC8875238 DOI: 10.3390/ph15020190] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/19/2022] [Accepted: 01/28/2022] [Indexed: 12/10/2022] Open
Abstract
In this focused progress review, the most widely accepted methods of transdermal drug delivery are hypodermic needles, transdermal patches and topical creams. However, microneedles (MNs) (or microneedle arrays) are low-invasive 3D biomedical constructs that bypass the skin barrier and produce systemic and localized pharmacological effects. In the past, biomaterials such as carbohydrates, due to their physicochemical properties, have been extensively used to manufacture microneedles (MNs). Due to their wide range of functional groups, carbohydrates enable the design and development of tunable properties and functionalities. In recent years, numerous microneedle products have emerged on the market, although much research needs to be undertaken to overcome the various challenges before the successful introduction of microneedles into the market. As a result, carbohydrate-based microarrays have a high potential to achieve a future step in sensing, drug delivery, and biologics restitution. In this review, a comprehensive overview of carbohydrates such as hyaluronic acid, chitin, chitosan, chondroitin sulfate, cellulose and starch is discussed systematically. It also discusses the various drug delivery strategies and mechanical properties of biomaterial-based MNs, the progress made so far in the clinical translation of carbohydrate-based MNs, and the promotional opportunities for their commercialization. In conclusion, the article summarizes the future perspectives of carbohydrate-based MNs, which are considered as the new class of topical drug delivery systems.
Collapse
Affiliation(s)
- Fouad Damiri
- Laboratory of Biomolecules and Organic Synthesis (BIOSYNTHO), Department of Chemistry, Faculty of Sciences Ben M’Sick, University Hassan II of Casablanca, Casablanca 20000, Morocco;
| | | | | | - Raviteja Bulusu
- Department of Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA;
| | - Vaskuri G. S. Sainaga Jyothi
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad 500037, India;
| | - Amany A. Sayed
- Zoology Department, Faculty of Science, Cairo University, Giza 12613, Egypt;
| | - Aeshah A. Awaji
- Department of Biology, Faculty of Science, University College of Taymaa, University of Tabuk, Tabuk 71491, Saudi Arabia;
| | - Mousa O. Germoush
- Biology Department, College of Science, Jouf University, P.O. Box 2014, Sakaka 72388, Saudi Arabia;
| | - Hamdan S. Al-malky
- Regional Drug Information Center, Ministry of Health, Jeddah 21589, Saudi Arabia;
| | - Mohammed Z. Nasrullah
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Md. Habibur Rahman
- Department of Global Medical Science, Wonju College of Medicine, Yonsei University, Wonju 26426, Korea
| | - Mohamed M. Abdel-Daim
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Mohammed Berrada
- Laboratory of Biomolecules and Organic Synthesis (BIOSYNTHO), Department of Chemistry, Faculty of Sciences Ben M’Sick, University Hassan II of Casablanca, Casablanca 20000, Morocco;
| |
Collapse
|
25
|
Bhovi VK, Melinmath SP, Gowda R. A Review - Biodegradable Polymers and their Applications. Mini Rev Med Chem 2022; 22:2081-2101. [PMID: 35088668 DOI: 10.2174/1389557522666220128152847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/13/2021] [Accepted: 11/16/2021] [Indexed: 12/24/2022]
Abstract
Polymers have an endless scope in the recent era due to their flexibility, amendment, and insertion of organic and inorganic active components into the polymer backbone. There is strong competition between natural and synthetic biodegradable polymers in the sense of biodegradability and compatibility with modern technology. Biodegradable polymers play a significant role in sustaining mankind on the earth due to non-environment hazards. These polymers play a crucial role in the area of biomedicine technology such as tissues engineering, preparation of different scaffolds, drug delivery systems, industrial, agriculture, and food packaging. Here, we probed on an assortment of types of applications, challenges, and limitations of biodegradable polymers in life.
Collapse
Affiliation(s)
- Venkatesh K Bhovi
- PG Studies and research in Chemistry, Vijayanagar College, Hosapete, Vijayanagar, Karnataka, India
| | - Sulochana P Melinmath
- PG Studies and research in Chemistry, Vijayanagar College, Hosapete, Vijayanagar, Karnataka, India
| | - Ranjith Gowda
- PG Studies and research in Chemistry, Vijayanagar College, Hosapete, Vijayanagar, Karnataka, India
| |
Collapse
|
26
|
Bhardwaj H, Rajesh, Sumana G. Recent advances in nanomaterials integrated immunosensors for food toxin detection. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2022; 59:12-33. [PMID: 35068548 PMCID: PMC8758883 DOI: 10.1007/s13197-021-04999-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 01/20/2021] [Accepted: 01/22/2021] [Indexed: 01/03/2023]
Abstract
For the management and prevention of many chronic and acute diseases, the rapid quantification of toxicity in food and feed products have become a significant concern. Technology advancements in the area of biosensors, bioelectronics, miniaturization techniques, and microfluidics have shown a significant impact than conventional methods which have given a boost to improve the sensing performance towards food analyte detection. In this article, recent literature of Aflatoxin B1 (AFB1), worldwide permissible limits, major outbreaks and severe impact on healthy life have been discussed. An improvement achieved in detection range, limit of detection, shelf-life of the biosensor by integrated dimensional nanomaterials such as zero-dimension, one-dimension and two-dimension for AFB1 detection using electrical and optical transduction mechanism has been summarized. A critical overview of the latest trends using paper-based and micro-spotted array integrated with the anisotropic shape of nanomaterials, portable microfluidic devices have also been described together with future perspectives for further advancements.
Collapse
Affiliation(s)
- Hema Bhardwaj
- CSIR-National Physical Laboratory, Dr. KS Krishnan Marg, New Delhi, 110012 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| | - Rajesh
- CSIR-National Physical Laboratory, Dr. KS Krishnan Marg, New Delhi, 110012 India
| | - Gajjala Sumana
- CSIR-National Physical Laboratory, Dr. KS Krishnan Marg, New Delhi, 110012 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| |
Collapse
|
27
|
Miranda I, Souza A, Sousa P, Ribeiro J, Castanheira EMS, Lima R, Minas G. Properties and Applications of PDMS for Biomedical Engineering: A Review. J Funct Biomater 2021; 13:2. [PMID: 35076525 PMCID: PMC8788510 DOI: 10.3390/jfb13010002] [Citation(s) in RCA: 191] [Impact Index Per Article: 47.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/13/2021] [Accepted: 12/16/2021] [Indexed: 12/14/2022] Open
Abstract
Polydimethylsiloxane (PDMS) is an elastomer with excellent optical, electrical and mechanical properties, which makes it well-suited for several engineering applications. Due to its biocompatibility, PDMS is widely used for biomedical purposes. This widespread use has also led to the massification of the soft-lithography technique, introduced for facilitating the rapid prototyping of micro and nanostructures using elastomeric materials, most notably PDMS. This technique has allowed advances in microfluidic, electronic and biomedical fields. In this review, an overview of the properties of PDMS and some of its commonly used treatments, aiming at the suitability to those fields' needs, are presented. Applications such as microchips in the biomedical field, replication of cardiovascular flow and medical implants are also reviewed.
Collapse
Affiliation(s)
- Inês Miranda
- Center for MicroElectromechanical Systems (CMEMS-UMinho), Campus de Azurém, University of Minho, 4800-058 Guimaraes, Portugal; (I.M.); (P.S.); (G.M.)
| | - Andrews Souza
- MEtRICs, Mechanical Engineering Department, Campus de Azurém, University of Minho, 4800-058 Guimaraes, Portugal;
| | - Paulo Sousa
- Center for MicroElectromechanical Systems (CMEMS-UMinho), Campus de Azurém, University of Minho, 4800-058 Guimaraes, Portugal; (I.M.); (P.S.); (G.M.)
| | - João Ribeiro
- Centro de Investigação de Montanha (CIMO), Campus de Santa Apolónia, Instituto Politécnico de Bragança, 5300-253 Braganca, Portugal;
| | - Elisabete M. S. Castanheira
- Centre of Physics of Minho and Porto Universities (CF-UM-UP), Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal;
| | - Rui Lima
- MEtRICs, Mechanical Engineering Department, Campus de Azurém, University of Minho, 4800-058 Guimaraes, Portugal;
- CEFT, Faculdade de Engenharia da Universidade do Porto (FEUP), Rua Roberto Frias, 4200-465 Porto, Portugal
| | - Graça Minas
- Center for MicroElectromechanical Systems (CMEMS-UMinho), Campus de Azurém, University of Minho, 4800-058 Guimaraes, Portugal; (I.M.); (P.S.); (G.M.)
| |
Collapse
|
28
|
|
29
|
Modeling programmable drug delivery in bioelectronics with electrochemical actuation. Proc Natl Acad Sci U S A 2021; 118:2026405118. [PMID: 33836613 DOI: 10.1073/pnas.2026405118] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Drug delivery systems featuring electrochemical actuation represent an emerging class of biomedical technology with programmable volume/flowrate capabilities for localized delivery. Recent work establishes applications in neuroscience experiments involving small animals in the context of pharmacological response. However, for programmable delivery, the available flowrate control and delivery time models fail to consider key variables of the drug delivery system--microfluidic resistance and membrane stiffness. Here we establish an analytical model that accounts for the missing variables and provides a scalable understanding of each variable influence in the physics of delivery process (i.e., maximum flowrate, delivery time). This analytical model accounts for the key parameters--initial environmental pressure, initial volume, microfluidic resistance, flexible membrane, current, and temperature--to control the delivery and bypasses numerical simulations allowing faster system optimization for different in vivo experiments. We show that the delivery process is controlled by three nondimensional parameters, and the volume/flowrate results from the proposed analytical model agree with the numerical results and experiments. These results have relevance to the many emerging applications of programmable delivery in clinical studies within the neuroscience and broader biomedical communities.
Collapse
|
30
|
Feng YH, Zhang XP, Hu LF, Chen BZ, Guo XD. Mesoscopic Simulation for the Effect of Cross-Linking Reactions on the Drug Diffusion Properties in Microneedles. J Chem Inf Model 2021; 61:4000-4010. [PMID: 34319097 DOI: 10.1021/acs.jcim.1c00444] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The drug diffusion issue in microneedles is the focus of its medical application. It will not only affect the distribution of drugs in the needle body but will also have an impact on the drug release performance of the microneedle. The utilization of cross-linked polymer materials to obtain the drug diffusion control has been experimentally verified as a feasible method. However, the mechanism research on the molecular level is still incomplete. In this study, the dissipative particle dynamics (DPD) simulation has been applied to study the effect of the cross-linking reaction on drug diffusion in hyaluronic acid microneedles. We have discovered that when the cross-linking degree reaches 90%, the diffusion coefficient of the drug is 6.45 times lower than that of the uncross-linked system. The main reason for the decline in drug diffusion ability is that the cross-linking reaction varies the conformation of the polymer. The amplification in the cross-linking degree makes the polymer coils more compact and approach each other, finally forming a continuously distributed cross-linked network, which reduces its degradation rate in the body. Simultaneously, these cross-linked networks can also hinder the interaction of soluble drugs with water, thereby preventing the premature release of drugs. The simulation results are consistent with the data collected in the previous microneedle experiment. This work will be an extension of DPD simulation in the application of biological materials.
Collapse
Affiliation(s)
- Yun Hao Feng
- Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| | - Xiao Peng Zhang
- Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| | - Liu Fu Hu
- Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| | - Bo Zhi Chen
- Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| | - Xin Dong Guo
- Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| |
Collapse
|
31
|
Liu Y, Sun L, Zhang H, Shang L, Zhao Y. Microfluidics for Drug Development: From Synthesis to Evaluation. Chem Rev 2021; 121:7468-7529. [PMID: 34024093 DOI: 10.1021/acs.chemrev.0c01289] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Drug development is a long process whose main content includes drug synthesis, drug delivery, and drug evaluation. Compared with conventional drug development procedures, microfluidics has emerged as a revolutionary technology in that it offers a miniaturized and highly controllable environment for bio(chemical) reactions to take place. It is also compatible with analytical strategies to implement integrated and high-throughput screening and evaluations. In this review, we provide a comprehensive summary of the entire microfluidics-based drug development system, from drug synthesis to drug evaluation. The challenges in the current status and the prospects for future development are also discussed. We believe that this review will promote communications throughout diversified scientific and engineering communities that will continue contributing to this burgeoning field.
Collapse
Affiliation(s)
- Yuxiao Liu
- Department of Rheumatology and Immunology, Institute of Translational Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China.,State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Lingyu Sun
- Department of Rheumatology and Immunology, Institute of Translational Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China.,State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Hui Zhang
- Department of Rheumatology and Immunology, Institute of Translational Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China.,State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Luoran Shang
- Zhongshan-Xuhui Hospital, and the Shanghai Key Laboratory of Medical Epigenetics, the International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Yuanjin Zhao
- Department of Rheumatology and Immunology, Institute of Translational Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China.,State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| |
Collapse
|
32
|
Rodriguez-Villarreal AI, Tana LO, Cid J, Hernandez-Machado A, Alarcon T, Miribel-Catala P, Colomer-Farrarons J. An Integrated Detection Method for Flow Viscosity Measurements in Microdevices. IEEE Trans Biomed Eng 2021; 68:2049-2057. [PMID: 32746079 DOI: 10.1109/tbme.2020.3013519] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
33
|
Nadia Ahmad NF, Nik Ghazali NN, Wong YH. Wearable patch delivery system for artificial pancreas health diagnostic-therapeutic application: A review. Biosens Bioelectron 2021; 189:113384. [PMID: 34090154 DOI: 10.1016/j.bios.2021.113384] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/22/2021] [Accepted: 05/24/2021] [Indexed: 12/13/2022]
Abstract
The advanced stimuli-responsive approaches for on-demand drug delivery systems have received tremendous attention as they have great potential to be integrated with sensing and multi-functional electronics on a flexible and stretchable single platform (all-in-one concept) in order to develop skin-integration with close-loop sensation for personalized diagnostic and therapeutic application. The wearable patch pumps have evolved from reservoir-based to matrix patch and drug-in-adhesive (single-layer or multi-layer) type. In this review, we presented the basic requirements of an artificial pancreas, surveyed the design and technologies used in commercial patch pumps available on the market and provided general information about the latest wearable patch pump. We summarized the various advanced delivery strategies with their mechanisms that have been developed to date and representative examples. Mechanical, electrical, light, thermal, acoustic and glucose-responsive approaches on patch form have been successfully utilized in the controllable transdermal drug delivery manner. We highlighted key challenges associated with wearable transdermal delivery systems, their research direction and future development trends.
Collapse
Affiliation(s)
- Nur Farrahain Nadia Ahmad
- Department of Mechanical Engineering, Faculty of Engineering, Universiti Malaya, 50603, Kuala Lumpur, Malaysia; School of Mechanical Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, Johor Bahru, Johor, Malaysia
| | - Nik Nazri Nik Ghazali
- Department of Mechanical Engineering, Faculty of Engineering, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Yew Hoong Wong
- Department of Mechanical Engineering, Faculty of Engineering, Universiti Malaya, 50603, Kuala Lumpur, Malaysia.
| |
Collapse
|
34
|
Zhang L, Guo R, Wang S, Yang X, Ling G, Zhang P. Fabrication, evaluation and applications of dissolving microneedles. Int J Pharm 2021; 604:120749. [PMID: 34051319 DOI: 10.1016/j.ijpharm.2021.120749] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 05/20/2021] [Accepted: 05/24/2021] [Indexed: 01/25/2023]
Abstract
In recent years, transdermal preparations have emerged as one of the most promising modes of administration. In particular, dissolving microneedles have attracted extensive attention because of their painlessness, safety, high delivery efficiency and easily operation for patients. This article mainly reviews the preparation methods, the types of matrix polymer materials, the content of dissolving microneedles performance testing, and the applications of dissolving microneedles. It is expected to lay a solid knowledge foundation for the in-depth study of the dissolving microneedles.
Collapse
Affiliation(s)
- Lijing Zhang
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Ranran Guo
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Siqi Wang
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Xiaotong Yang
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Guixia Ling
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China.
| | - Peng Zhang
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China.
| |
Collapse
|
35
|
Heterogeneous Bonding of PMMA and Double-Sided Polished Silicon Wafers through H2O Plasma Treatment for Microfluidic Devices. COATINGS 2021. [DOI: 10.3390/coatings11050580] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In this work we report on a rapid, easy-to-operate, lossless, room temperature heterogeneous H2O plasma treatment process for the bonding of poly(methyl methacrylate) (PMMA) and double-sided polished (DSP) silicon substrates by for utilization in sandwich structured microfluidic devices. The heterogeneous bonding of the sandwich structure produced by the H2O plasma is analyzed, and the effect of heterogeneous bonding of free radicals and high charge electrons (e−) in the formed plasma which causes a passivation phenomenon during the bonding process investigated. The PMMA and silicon surface treatments were performed at a constant radio frequency (RF) power and H2O flow rate. Changing plasma treatment time and powers for both processes were investigated during the experiments. The gas flow rate was controlled to cause ionization of plasma and the dissociation of water vapor from hydrogen (H) atoms and hydroxyl (OH) bonds, as confirmed by optical emission spectroscopy (OES). The OES results show the relative intensity peaks emitted by the OH radicals, H and oxygen (O). The free energy is proportional to the plasma treatment power and gas flow rate with H bonds forming between the adsorbed H2O and OH groups. The gas density generated saturated bonds at the interface, and the discharge energy that strengthened the OH-e− bonds. This method provides an ideal heterogeneous bonding technique which can be used to manufacture new types of microfluidic devices.
Collapse
|
36
|
Ling FW, Heidarinik S, Abdulbari HA. Polymer-surfactant complexes effect on the flow in microchannels: an experimental approach. CHEM ENG COMMUN 2021. [DOI: 10.1080/00986445.2020.1764944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Fiona W.M Ling
- Centre of Excellence for Advanced Research in Fluid Flow (CARIFF), Universiti Malaysia Pahang, Gambang, Pahang, Malaysia
- Faculty of Chemical & Process Engineering Technology, Universiti Malaysia Pahang, Gambang, Pahang, Malaysia
| | - Somaye Heidarinik
- Centre of Excellence for Advanced Research in Fluid Flow (CARIFF), Universiti Malaysia Pahang, Gambang, Pahang, Malaysia
- Faculty of Chemical & Process Engineering Technology, Universiti Malaysia Pahang, Gambang, Pahang, Malaysia
| | - Hayder A. Abdulbari
- Centre of Excellence for Advanced Research in Fluid Flow (CARIFF), Universiti Malaysia Pahang, Gambang, Pahang, Malaysia
- Faculty of Chemical & Process Engineering Technology, Universiti Malaysia Pahang, Gambang, Pahang, Malaysia
| |
Collapse
|
37
|
Bilal M, Mehmood S, Raza A, Hayat U, Rasheed T, Iqbal HM. Microneedles in Smart Drug Delivery. Adv Wound Care (New Rochelle) 2021; 10:204-219. [PMID: 32320365 PMCID: PMC7906867 DOI: 10.1089/wound.2019.1122] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Significance: In biomedical setup, at large, and drug delivery, in particular, transdermal patches, hypodermal needles, and/or dermatological creams with the topical appliance are among the most widely practiced routes for transdermal drug delivery. Owing to the stratum corneum layer of the skin, traditional drug delivery methods are inefficient, and the effect of the administered therapeutic cues is limited. Recent Advances: The current advancement at the microlevel and nanolevel has revolutionized the drug delivery sector. Particularly, various types of microneedles (MNs) are becoming popular for drug delivery applications because of safety, patient compliance, and smart action. Critical Issues: Herein, we reviewed state-of-the-art MNs as a smart and sophisticated drug delivery approach. Following a brief introduction, the drug delivery mechanism of MNs is discussed. Different types of MNs, that is, solid, hollow, coated, dissolving, and hydrogel forming, are discussed with suitable examples. The latter half of the work is focused on the applied perspective and clinical translation of MNs. Furthermore, a detailed overview of clinical applications and future perspectives is also included in this review. Future Directions: Regardless of ongoing technological and clinical advancement, the focus should be diverted to enhance the efficacy and strength of MNs. Besides, the possible immune response or interference should also be avoided for successful clinical translation of MNs as an efficient drug delivery system.
Collapse
Affiliation(s)
- Muhammad Bilal
- Department for Management of Science and Technology Development, Ton Duc Thang University, Ho Chi Minh City, Vietnam
- Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam
- Correspondence: Department for Management of Science and Technology Development, Ton Duc Thang University, Ho Chi Minh City, Vietnam.
| | - Shahid Mehmood
- Key Laboratory of Protein and Peptide Pharmaceuticals, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Ali Raza
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Uzma Hayat
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Tahir Rasheed
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Hafiz M.N. Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, Mexico
| |
Collapse
|
38
|
Miniaturization of liquid chromatography coupled to mass spectrometry. 3. Achievements on chip-based LC–MS devices. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.116003] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
39
|
Woo J, Sohn DK, Ko HS. Analysis of Stiffness Effect on Valve Behavior of a Reciprocating Pump Operated by Piezoelectric Elements. MICROMACHINES 2020; 11:mi11100894. [PMID: 32993189 PMCID: PMC7599901 DOI: 10.3390/mi11100894] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 09/22/2020] [Accepted: 09/25/2020] [Indexed: 11/16/2022]
Abstract
This study analyzed the characteristics of a small reciprocating pump with a cantilever valve driven by a piezo actuator. Three types of valves were fabricated to investigate the effect of the valve stiffness on the pump performance and to measure the variation in the flow rate according to the frequency. The flow rate increased with the driving frequency until a certain frequency was reached, and then it started to decrease. The rise in the pressure of the pump was found to increase as the stiffness decreased. The pump performance could be clearly distinguished according to the stiffness of the valve. The observation of the valve movements revealed that the valve opening time did not change regardless of the operating frequency, but it changed with the valve stiffness. The delay in time for the outlet valve increased significantly with an increase in the frequency. It seems that the overlap of the opening time of the inlet valve and the outlet valve plays an important role in pump performance. Therefore, it is advisable to use different designs for the inlet and outlet valves, where the shape and stiffness of the valve are adjusted.
Collapse
|
40
|
Natu R, Guha S, Dibaji SAR, Herbertson L. Assessment of Flow through Microchannels for Inertia-Based Sorting: Steps toward Microfluidic Medical Devices. MICROMACHINES 2020; 11:E886. [PMID: 32987728 PMCID: PMC7598645 DOI: 10.3390/mi11100886] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/22/2020] [Accepted: 09/22/2020] [Indexed: 11/16/2022]
Abstract
The development of new standardized test methods would allow for the consistent evaluation of microfluidic medical devices and enable high-quality products to reach the market faster. A comprehensive flow characterization study was conducted to identify regulatory knowledge gaps using a generic inertia-based spiral channel model for particle sorting and facilitate standards development in the microfluidics community. Testing was performed using 2-20 µm rigid particles to represent blood elements and flow rates of 200-5000 µL/min to assess the effects of flow-related factors on overall system performance. Two channel designs were studied to determine the variability associated with using the same microchannel multiple times (coefficient of variation (CV) of 27% for Design 1 and 18% for Design 2, respectively). The impact of commonly occurring failure modes on device performance was also investigated by simulating progressive and complete channel outlet blockages. The pressure increased by 10-250% of the normal channel pressure depending on the extent of the blockage. Lastly, two common data analysis approaches were compared-imaging and particle counting. Both approaches were similar in terms of their sensitivity and consistency. Continued research is needed to develop standardized test methods for microfluidic systems, which will improve medical device performance testing and drive innovation in the biomedical field.
Collapse
Affiliation(s)
| | | | | | - Luke Herbertson
- Division of Applied Mechanics, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, MD 20993, USA; (R.N.); (S.G.); (S.A.R.D.)
| |
Collapse
|
41
|
Abstract
Since the discovery of graphene, there has been increasing interest in two-dimensional (2D) materials. To realize practical applications of 2D materials, it is essential to isolate mono- or few-layered 2D nanosheets from unexfoliated counterparts. Liquid phase exfoliation (LPE) is the most common technique to produce atomically thin-layered 2D nanosheets. However, low production yield and prolonged process time remain key challenges. Recently, novel exfoliation processes based on microfluidics have been developed to achieve rapid and high yield production of few-layer 2D nanosheets. We review the primary types of microfluidic-based exfoliation techniques in terms of the underlying process mechanisms and the applications of the 2D nanosheets thus produced. The key challenges and future directions are discussed in the above context to delineate future research directions in this exciting area of materials processing.
Collapse
|
42
|
Aboubakri A, Ahmadi VE, Koşar A. Modeling of a Passive-Valve Piezoelectric Micro-Pump: A Parametric Study. MICROMACHINES 2020; 11:mi11080752. [PMID: 32751989 PMCID: PMC7464695 DOI: 10.3390/mi11080752] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 07/29/2020] [Accepted: 07/30/2020] [Indexed: 06/08/2023]
Abstract
Piezoelectric micro-pumps offer many applications and could provide considerable flow rates in miniature systems. This study parametrically investigates the effects of major parameters, namely the length, width and attack angle of valves, piezoelectric length, and applied voltage. The results show that these parameters significantly affect the performance of the designed micro-pump. Even though increasing the piezoelectric length and operating voltage raise the flow rate, the modification of valve dimensions is more efficient since these parameters do not rely on any external power. According to the obtained results, as the length of the working valves increases, the provided flow rate becomes larger. There is an optimum condition for the width and attack angle of the valves. This optimum width is not dependent on the flow rate. With the use of the attack angle and the length of the valves as design parameters, the studied design shows promising results.
Collapse
Affiliation(s)
- Akam Aboubakri
- Faculty of Engineering and Natural Science, Sabanci University, Istanbul 34956, Turkey; (A.A.); (V.E.A.)
- Sabanci University Nanotechnology and Applications Center (SUNUM), Sabanci University, Tuzla, Istanbul 34956, Turkey
| | - Vahid Ebrahimpour Ahmadi
- Faculty of Engineering and Natural Science, Sabanci University, Istanbul 34956, Turkey; (A.A.); (V.E.A.)
- Sabanci University Nanotechnology and Applications Center (SUNUM), Sabanci University, Tuzla, Istanbul 34956, Turkey
| | - Ali Koşar
- Faculty of Engineering and Natural Science, Sabanci University, Istanbul 34956, Turkey; (A.A.); (V.E.A.)
- Sabanci University Nanotechnology and Applications Center (SUNUM), Sabanci University, Tuzla, Istanbul 34956, Turkey
- Center of Excellence for Functional Surfaces and Interfaces for Nano-Diagnostics (EFSUN), Sabanci University, Istanbul 34956, Turkey
| |
Collapse
|
43
|
Yadav PR, Han T, Olatunji O, Pattanayek SK, Das DB. Mathematical Modelling, Simulation and Optimisation of Microneedles for Transdermal Drug Delivery: Trends and Progress. Pharmaceutics 2020; 12:E693. [PMID: 32707878 PMCID: PMC7464833 DOI: 10.3390/pharmaceutics12080693] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 07/05/2020] [Accepted: 07/17/2020] [Indexed: 01/07/2023] Open
Abstract
In the last two decades, microneedles (MNs) have received significant interest due to their potential for painless transdermal drug delivery (TDD) and minimal skin damage. MNs have found applications in a range of research and development areas in drug delivery. They have been prepared using a variety of materials and fabrication techniques resulting in MN arrays with different dimensions, shapes, and geometries for delivery of a variety of drug molecules. These parameters play crucial roles in determining the drug release profiles from the MNs. Developing mathematical modelling, simulation, and optimisation techniques is vital to achieving the desired MN performances. These will then be helpful for pharmaceutical and biotechnological industries as well as professionals working in the field of regulatory affairs focusing on MN based TDD systems. This is because modelling has a great potential to reduce the financial and time cost of both the MNs' studies and manufacturing. For example, a number of robust mathematical models for predicting the performance of the MNs in vivo have emerged recently which incorporate the roles of the structural and mechanical properties of the skin. In addressing these points, this review paper aims to highlight the current status of the MN modelling research, in particular, the modelling, simulation and optimisation of the systems for drug delivery. The theoretical basis for the simulation of MN enhanced diffusion is discussed within this paper. Thus, this review paper provides a better understanding of the modelling of the MN mediated drug delivery process.
Collapse
Affiliation(s)
- Prateek Ranjan Yadav
- Chemical Engineering Department, Loughborough University, Loughborough LE11 3TU, Leicestershire, UK
- Chemical Engineering Department, Indian Institute of Technology, Delhi 110016, India
| | - Tao Han
- Chemical Engineering Department, Loughborough University, Loughborough LE11 3TU, Leicestershire, UK
| | - Ololade Olatunji
- Department of Chemical and Petroleum Engineering, University of Lagos, Lagos 100213, Nigeria
| | - Sudip K Pattanayek
- Chemical Engineering Department, Indian Institute of Technology, Delhi 110016, India
| | - Diganta Bhusan Das
- Chemical Engineering Department, Loughborough University, Loughborough LE11 3TU, Leicestershire, UK
| |
Collapse
|
44
|
Yunas J, Mulyanti B, Hamidah I, Mohd Said M, Pawinanto RE, Wan Ali WAF, Subandi A, Hamzah AA, Latif R, Yeop Majlis B. Polymer-Based MEMS Electromagnetic Actuator for Biomedical Application: A Review. Polymers (Basel) 2020; 12:E1184. [PMID: 32455993 PMCID: PMC7284590 DOI: 10.3390/polym12051184] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/27/2020] [Accepted: 04/28/2020] [Indexed: 12/22/2022] Open
Abstract
In this study, we present a comprehensive review of polymer-based microelectromechanical systems (MEMS) electromagnetic (EM) actuators and their implementation in the biomedical engineering field. The purpose of this review is to provide a comprehensive summary on the latest development of electromagnetically driven microactuators for biomedical application that is focused on the movable structure development made of polymers. The discussion does not only focus on the polymeric material part itself, but also covers the basic mechanism of the mechanical actuation, the state of the art of the membrane development and its application. In this review, a clear description about the scheme used to drive the micro-actuators, the concept of mechanical deformation of the movable magnetic membrane and its interaction with actuator system are described in detail. Some comparisons are made to scrutinize the advantages and disadvantages of electromagnetic MEMS actuator performance. The previous studies and explanations on the technology used to fabricate the polymer-based membrane component of the electromagnetically driven microactuators system are presented. The study on the materials and the synthesis method implemented during the fabrication process for the development of the actuators are also briefly described in this review. Furthermore, potential applications of polymer-based MEMS EM actuators in the biomedical field are also described. It is concluded that much progress has been made in the material development of the actuator. The technology trend has moved from the use of bulk magnetic material to using magnetic polymer composites. The future benefits of these compact flexible material employments will offer a wide range of potential implementation of polymer composites in wearable and portable biomedical device applications.
Collapse
Affiliation(s)
- Jumril Yunas
- Institute of Microengineering and Nanoelectronics, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia; (W.A.F.W.A.); (A.S.); (A.A.H.); (R.L.); (B.Y.M.)
| | - Budi Mulyanti
- Faculty of Engineering and Vocational Education, Universitas Pendidikan Indonesia, Jl. Dr. Setiabudhi 207, Bandung 40154, Indonesia; (B.M.); (I.H.)
| | - Ida Hamidah
- Faculty of Engineering and Vocational Education, Universitas Pendidikan Indonesia, Jl. Dr. Setiabudhi 207, Bandung 40154, Indonesia; (B.M.); (I.H.)
| | - Muzalifah Mohd Said
- Faculty of Electronics and Computer Engineering (FKEKK), Universiti Teknikal Malaysia Melaka (UTeM), Hang Tuah Jaya, Durian Tunggal 76100, Melaka, Malaysia;
| | - Roer Eka Pawinanto
- Malaysia-Japan International Institute of Technology (MJIIT), Universiti Teknologi Malaysia (UTM), Kuala Lumpur 54100, Malaysia;
| | - Wan Amar Fikri Wan Ali
- Institute of Microengineering and Nanoelectronics, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia; (W.A.F.W.A.); (A.S.); (A.A.H.); (R.L.); (B.Y.M.)
| | - Ayub Subandi
- Institute of Microengineering and Nanoelectronics, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia; (W.A.F.W.A.); (A.S.); (A.A.H.); (R.L.); (B.Y.M.)
| | - Azrul Azlan Hamzah
- Institute of Microengineering and Nanoelectronics, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia; (W.A.F.W.A.); (A.S.); (A.A.H.); (R.L.); (B.Y.M.)
| | - Rhonira Latif
- Institute of Microengineering and Nanoelectronics, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia; (W.A.F.W.A.); (A.S.); (A.A.H.); (R.L.); (B.Y.M.)
| | - Burhanuddin Yeop Majlis
- Institute of Microengineering and Nanoelectronics, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia; (W.A.F.W.A.); (A.S.); (A.A.H.); (R.L.); (B.Y.M.)
| |
Collapse
|
45
|
Eluru G, Adhikari JV, Chanda P, Gorthi SS. Hand-Powered Elastomeric Pump for Microfluidic Point-of-Care Diagnostics. MICROMACHINES 2020; 11:mi11010067. [PMID: 31936146 PMCID: PMC7019644 DOI: 10.3390/mi11010067] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 12/31/2019] [Accepted: 01/03/2020] [Indexed: 01/05/2023]
Abstract
The pumping of fluids into microfluidic channels has become almost an unavoidable operation in all microfluidic applications. Such a need has seen an outburst of several techniques for pumping, out of which the majority of techniques involve complicated fabrication, as they require the introduction of electrodes, valves, piezoelectric materials, acoustic transducers, etc., into the microfluidic device. In addition to the complexity, this also escalates the cost incurred per device. Further, the use of stable external power supplies to produce such a pumping action adds to the bulkiness of the pumps, making them unsuitable for point-of-care diagnostic (POCD) applications. This paper reports a technique of pumping that is simple to realize and does not require external electric/magnetic power, but exploits the elastic properties of materials to achieve the pumping action. This mechanism of pumping ensured the cost per pump to less than 4 USD and can be used for at least 500 times. Several simulations, validation, and characterization experiments were performed on the developed pump to establish its functionality and suitability for use in POCD applications.
Collapse
|
46
|
Basati Y, Mohammadipour OR, Niazmand H. Numerical and analytical analysis of a robust flow regulator in electroosmotic microfluidic networks. Chem Eng Sci 2019. [DOI: 10.1016/j.ces.2019.115232] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
47
|
Salari A, Navi M, Lijnse T, Dalton C. AC Electrothermal Effect in Microfluidics: A Review. MICROMACHINES 2019; 10:E762. [PMID: 31717932 PMCID: PMC6915365 DOI: 10.3390/mi10110762] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 10/27/2019] [Accepted: 10/28/2019] [Indexed: 02/06/2023]
Abstract
The electrothermal effect has been investigated extensively in microfluidics since the 1990s and has been suggested as a promising technique for fluid manipulations in lab-on-a-chip devices. The purpose of this article is to provide a timely overview of the previous works conducted in the AC electrothermal field to provide a comprehensive reference for researchers new to this field. First, electrokinetic phenomena are briefly introduced to show where the electrothermal effect stands, comparatively, versus other mechanisms. Then, recent advances in the electrothermal field are reviewed from different aspects and categorized to provide a better insight into the current state of the literature. Results and achievements of different studies are compared, and recommendations are made to help researchers weigh their options and decide on proper configuration and parameters.
Collapse
Affiliation(s)
- Alinaghi Salari
- Biomedical Engineering Graduate Program, Ryerson University, Toronto, ON M5B 2K3, Canada;
- Institute for Biomedical Engineering, Science and Technology (iBEST), St. Michael’s Hospital, Toronto, ON M5B 1T8, Canada
- Keenan Research Centre, St. Michael’s Hospital, Toronto, ON M5B 1T8, Canada
| | - Maryam Navi
- Biomedical Engineering Graduate Program, Ryerson University, Toronto, ON M5B 2K3, Canada;
- Institute for Biomedical Engineering, Science and Technology (iBEST), St. Michael’s Hospital, Toronto, ON M5B 1T8, Canada
- Keenan Research Centre, St. Michael’s Hospital, Toronto, ON M5B 1T8, Canada
| | - Thomas Lijnse
- Biomedical Engineering Graduate Program, University of Calgary, Calgary, AB T2N 1N4, Canada;
| | - Colin Dalton
- Biomedical Engineering Graduate Program, University of Calgary, Calgary, AB T2N 1N4, Canada;
- Electrical and Computer Engineering Department, University of Calgary, Calgary, AB T2N 1N4, Canada
| |
Collapse
|
48
|
Yeung C, Chen S, King B, Lin H, King K, Akhtar F, Diaz G, Wang B, Zhu J, Sun W, Khademhosseini A, Emaminejad S. A 3D-printed microfluidic-enabled hollow microneedle architecture for transdermal drug delivery. BIOMICROFLUIDICS 2019; 13:064125. [PMID: 31832123 PMCID: PMC6906119 DOI: 10.1063/1.5127778] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 12/02/2019] [Indexed: 05/16/2023]
Abstract
Embedding microfluidic architectures with microneedles enables fluid management capabilities that present new degrees of freedom for transdermal drug delivery. To this end, fabrication schemes that can simultaneously create and integrate complex millimeter/centimeter-long microfluidic structures and micrometer-scale microneedle features are necessary. Accordingly, three-dimensional (3D) printing techniques are suitable candidates because they allow the rapid realization of customizable yet intricate microfluidic and microneedle features. However, previously reported 3D-printing approaches utilized costly instrumentation that lacked the desired versatility to print both features in a single step and the throughput to render components within distinct length-scales. Here, for the first time in literature, we devise a fabrication scheme to create hollow microneedles interfaced with microfluidic structures in a single step. Our method utilizes stereolithography 3D-printing and pushes its boundaries (achieving print resolutions below the full width half maximum laser spot size resolution) to create complex architectures with lower cost and higher print speed and throughput than previously reported methods. To demonstrate a potential application, a microfluidic-enabled microneedle architecture was printed to render hydrodynamic mixing and transdermal drug delivery within a single device. The presented architectures can be adopted in future biomedical devices to facilitate new modes of operations for transdermal drug delivery applications such as combinational therapy for preclinical testing of biologic treatments.
Collapse
Affiliation(s)
| | | | | | - Haisong Lin
- Interconnected & Integrated Bioelectronics Lab (I2BL), Department of Electrical and Computer Engineering, University of California, Los Angeles, California 90095, USA
| | - Kimber King
- Interconnected & Integrated Bioelectronics Lab (I2BL), Department of Electrical and Computer Engineering, University of California, Los Angeles, California 90095, USA
| | - Farooq Akhtar
- Interconnected & Integrated Bioelectronics Lab (I2BL), Department of Electrical and Computer Engineering, University of California, Los Angeles, California 90095, USA
| | - Gustavo Diaz
- Interconnected & Integrated Bioelectronics Lab (I2BL), Department of Electrical and Computer Engineering, University of California, Los Angeles, California 90095, USA
| | - Bo Wang
- Interconnected & Integrated Bioelectronics Lab (I2BL), Department of Electrical and Computer Engineering, University of California, Los Angeles, California 90095, USA
| | | | | | | | | |
Collapse
|
49
|
Spotts I, Leclerc CA, Collier CM. Scalable optical annealing of microfluidic droplets via whispering gallery mode geometry and infrared illumination. APPLIED OPTICS 2019; 58:7904-7908. [PMID: 31674479 DOI: 10.1364/ao.58.007904] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 09/05/2019] [Indexed: 06/10/2023]
Abstract
This work presents a solution to limitations on scalability in traditional on-chip optofluidic polymerase chain reaction (PCR) methods that are based on infrared annealing and droplet-based microfluidics. The scalability in these PCR optofluidic methods is limited by the optical penetration depth of light in a fluid droplet. Traditionally, such an implementation has minimal absorption when the droplet diameter is scaled well below the optical penetration depth due to the small interaction length. In the presented whispering gallery mode (WGM) optofluidic method, a WGM wave is created through total internal reflection, where light is trapped within a droplet. The effect of the trapped light can extend the interaction length beyond the penetration depth, even for small diameter droplets. Thus, this WGM wave permits the use of droplets with diameters scaled below the penetration depth of the light. A theoretical analysis of traditional optical annealing and of the WGM optofluidic method is conducted using finite-difference time-domain analyses. The WGM wave optofluidic method is also demonstrated experimentally, providing higher annealing temperatures than traditional optical annealing. It is envisioned that the presented work will allow for scalable PCR devices implemented on-chip.
Collapse
|
50
|
Box F, Thorogood C, Hui Guan J. Guided droplet transport on synthetic slippery surfaces inspired by a pitcher plant. J R Soc Interface 2019; 16:20190323. [PMID: 31480920 DOI: 10.1098/rsif.2019.0323] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We show how anisotropic, grooved features facilitate the trapping and directed transport of droplets on lubricated, liquid-shedding surfaces. Capillary action pins droplets to topographic surface features, enabling transport along the feature while inhibiting motion across (or detachment from) the feature. We demonstrate the robustness of this capillary-based mechanism for directed droplet transport on slippery surfaces by combining experiments on synthetic, lubricant-infused surfaces with observations on the natural trapping surface of a carnivorous pitcher plant. Controlling liquid navigation on synthetic surfaces promises to unlock significant potential in droplet-based technologies. Our observations also offer novel insight into the evolution of the Nepenthes pitcher plant, indicating that the 'pitfall' trapping mechanism is enhanced by the lubricant-infused, macroscopic grooves on the slippery peristome surface, which guide prey into the trap in a way that is more tightly controlled than previously considered.
Collapse
Affiliation(s)
- Finn Box
- Mathematical Institute, University of Oxford, Woodstock Road, Oxford, UK
| | - Chris Thorogood
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, UK
| | - Jian Hui Guan
- Department of Engineering Science, University of Oxford, Parks Road, Oxford, UK
| |
Collapse
|