1
|
Lin SL, Yang SY, Tsai CH, Fong YC, Chen WL, Liu JF, Lin CY, Tang CH. Nerve growth factor promote VCAM-1-dependent monocyte adhesion and M2 polarization in osteosarcoma microenvironment: Implications for larotrectinib therapy. Int J Biol Sci 2024; 20:4114-4127. [PMID: 39247831 PMCID: PMC11379077 DOI: 10.7150/ijbs.95463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 07/09/2024] [Indexed: 09/10/2024] Open
Abstract
Osteosarcoma is the most prevalent form of primary malignant bone tumor, primarily affecting children and adolescents. The nerve growth factors (NGF) referred to as neurotrophins have been associated with cancer-induced bone pain; however, the role of NGF in osteosarcoma has yet to be elucidated. In osteosarcoma samples from the Genomic Data Commons data portal, we detected higher levels of NGF and M2 macrophage markers, but not M1 macrophage markers. In cellular experiments, NGF-stimulated osteosarcoma conditional medium was shown to facilitate macrophage polarization from the M0 to the M2 phenotype. NGF also enhanced VCAM-1-dependent monocyte adhesion within the osteosarcoma microenvironment by down-regulating miR-513c-5p levels through the FAK and c-Src cascades. In in vivo xenograft models, the overexpression of NGF was shown to enhance tumor growth, while the oral administration of the TrK inhibitor larotrectinib markedly antagonized NGF-promoted M2 macrophage expression and tumor progression. These results suggest that larotrectinib could potentially be used as a therapeutic agent aimed at mitigating NGF-mediated osteosarcoma progression.
Collapse
Affiliation(s)
- Syuan-Ling Lin
- Translational Medicine Research Center, China Medical University Hospital, Taichung, Taiwan
| | - Shang-Yu Yang
- Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung, Taiwan
| | - Chun-Hao Tsai
- Department of Sports Medicine, College of Health Care, China Medical University, Taichung, Taiwan
- Department of Orthopedic Surgery, China Medical University Hospital, Taichung, Taiwan
| | - Yi-Chin Fong
- Department of Sports Medicine, College of Health Care, China Medical University, Taichung, Taiwan
- Department of Orthopedic Surgery, China Medical University Hospital, Taichung, Taiwan
- Department of Orthopedic Surgery, China Medical University Beigang Hospital, Yunlin, Taiwan
| | - Wei-Li Chen
- Translational Medicine Center, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
| | - Ju-Fang Liu
- School of Oral Hygiene, College of Oral Medicine, Taipei Medical University, Taipei City, Taiwan
| | - Chih-Yang Lin
- Translational Medicine Center, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
| | - Chih-Hsin Tang
- Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung, Taiwan
- Department of Pharmacology, School of Medicine, China Medical University, Taichung, Taiwan
- Chinese Medicine Research Center, China Medical University, Taichung, Taiwan
- Department of Medical Research, China Medical University Hsinchu Hospital, Hsinchu, Taiwan
| |
Collapse
|
2
|
Arrieche D, Olea AF, Jara-Gutiérrez C, Villena J, Pardo-Baeza J, García-Davis S, Viteri R, Taborga L, Carrasco H. Ethanolic Extract from Fruits of Pintoa chilensis, a Chilean Extremophile Plant. Assessment of Antioxidant Activity and In Vitro Cytotoxicity. PLANTS (BASEL, SWITZERLAND) 2024; 13:1409. [PMID: 38794478 PMCID: PMC11125100 DOI: 10.3390/plants13101409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/08/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024]
Abstract
Pintoa chilensis is a shrub with yellow flowers that reach up to two meters high, endemic of the Atacama Region in Chile. This species grows under special environmental conditions such as low altitude, arid areas, and directly sun-exposed habitats. In the present study, ethanolic extract was obtained from fruits of P. chilensis, and then partitioned in solvents of increasing polarity to obtain five fractions: hexane (HF), dichloromethane (DF), ethyl acetate (AF), and the residual water fraction (QF). The antioxidant activity of extracts was evaluated by using the DPPH, ABTS, and FRAP methods. The results show that the antioxidant capacity of P. chilensis is higher than that reported for other plants growing in similar environments. This effect is attributed to the highest content of flavonoids and total phenols found in P. chilensis. On the other hand, the cell viability of a breast cancer cell line (MCF-7) and a non-tumor cell line (MCF-10A) was assessed in the presence of different extract fractions. The results indicate that the hexane fraction (HF) exhibits the highest cytotoxicity on both cell lines (IC50 values equal to 35 and 45 µg/mL), whereas the dichloromethane fraction (DF) is the most selective one. The GC-MS analysis of the dichloromethane fraction (DF) shows the presence of fatty acids, sugars, and polyols as major components.
Collapse
Affiliation(s)
- Dioni Arrieche
- Laboratorio de Productos Naturales, Departamento de Química, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2340000, Chile;
| | - Andrés F. Olea
- Grupo QBAB, Instituto de Ciencias Aplicadas, Facultad de Ingeniería, Universidad Autónoma de Chile, San Miguel, Santiago 8900000, Chile;
| | - Carlos Jara-Gutiérrez
- Centro Interdisciplinario de Investigación Biomédica e Ingeniería para la Salud (MEDING), Escuela de Kinesiología, Facultad de Medicina, Universidad de Valparaíso, Valparaíso 2362905, Chile; (C.J.-G.); (J.V.)
| | - Joan Villena
- Centro Interdisciplinario de Investigación Biomédica e Ingeniería para la Salud (MEDING), Escuela de Kinesiología, Facultad de Medicina, Universidad de Valparaíso, Valparaíso 2362905, Chile; (C.J.-G.); (J.V.)
| | - Javier Pardo-Baeza
- Programa de Conservación de Flora Nativa del Norte de Chile, Biorestauración Consultores, Copiapó 1530000, Chile;
| | - Sara García-Davis
- Instituto Universitario de Bio—Orgánica “Antonio González” (IUBO-AG), Universidad de La Laguna (ULL), 38200 San Cristóbal de La Laguna, Spain;
| | - Rafael Viteri
- Escuela de Ciencias Ambientales, Universidad Espíritu Santo, Guayaquil 092301, Ecuador;
| | - Lautaro Taborga
- Laboratorio de Productos Naturales, Departamento de Química, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2340000, Chile;
| | - Héctor Carrasco
- Grupo QBAB, Instituto de Ciencias Aplicadas, Facultad de Ingeniería, Universidad Autónoma de Chile, San Miguel, Santiago 8900000, Chile;
| |
Collapse
|
3
|
Chen R, Lo HH, Yang C, Law BYK, Chen X, Lam CCI, Ho C, Cheong HL, Li Q, Zhong C, Ng JPL, Peter CKF, Wong VKW. Natural small-molecules reverse Xeroderma Pigmentosum Complementation Group C (XPC) deficient-mediated drug-resistance in renal cell carcinoma. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 124:155310. [PMID: 38215574 DOI: 10.1016/j.phymed.2023.155310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/15/2023] [Accepted: 12/19/2023] [Indexed: 01/14/2024]
Abstract
BACKGROUND Renal cancer is insensitive to radiotherapy or most chemotherapies. While the loss of the XPC gene was correlated with drug resistance in colon cancer, the expression of XPC and its role in the drug resistance of renal cancer have not yet been elucidated. With the fact that natural small-molecules have been adopted in combinational therapy with classical chemotherapeutic agents to increase the drug sensitivity and reduce adverse effects, the use of herbal compounds to tackle drug-resistance in renal cancer is advocated. PURPOSE To correlate the role of XPC gene deficiency to drug-resistance in renal cancer, and to identify natural small-molecules that can reverse drug-resistance in renal cancer via up-regulation of XPC. METHODS IHC was adopted to analyze the XPC expression in human tumor and adjacent tissues. Clinical data extracted from The Cancer Genome Atlas (TCGA) database were further analysed to determine the relationship between XPC gene expression and tumor staging of renal cancer. Two types of XPC-KD renal cancer cell models were established to investigate the drug-resistant phenotype and screen XPC gene enhancers from 134 natural small-molecules derived from herbal plants. Furthermore, the identified XPC enhancers were verified in single or in combination with FDA-approved chemotherapy drugs for reversing drug-resistance in renal cancer using MTT cytotoxicity assay. Drug resistance gene profiling, ROS detection assay, immunocytochemistry and cell live-dead imaging assay were adopted to characterize the XPC-related drug resistant mechanism. RESULTS XPC gene expression was significantly reduced in renal cancer tissue compared with its adjacent tissue. Clinical analysis of TCGA database also identified the downregulated level of XPC gene in renal tumor tissue of stage IV patients with cancer metastasis, which was also correlated with their lower survival rate. 6 natural small-molecules derived from herbal plants including tectorigenin, pinostilbene, d-pinitol, polygalasaponin F, atractylenolide III and astragaloside II significantly enhanced XPC expression in two renal cancer cell types. Combinational treatment of the identified natural compound with the treatment of FDA-approved drug, further confirmed the up-regulation of XPC gene expression can sensitize the two types of XPC-KD drug-resistant renal cancer cells towards the FDA-approved drugs. Mechanistic study confirmed that GSTP1/ROS axis was activated in drug resistant XPC-KD renal cancer cells. CONCLUSION XPC gene deficiency was identified in patient renal tumor samples, and knockdown of the XPC gene was correlated with a drug-resistant phenotype in renal cancer cells via activation of the GSTP1/ROS axis. The 6 identified natural small molecules were confirmed to have drug sensitizing effects via upregulation of the XPC gene. Therefore, the identified active natural small molecules may work as an adjuvant therapy for circumventing the drug-resistant phenotype in renal cancer via enhancement of XPC expression.
Collapse
Affiliation(s)
- Ruihong Chen
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China; Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China; Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan, China
| | - Hang Hong Lo
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Chenxu Yang
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Betty Yuen Kwan Law
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Xi Chen
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Calista Chi In Lam
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Charles Ho
- University Hospital, Macau University of Science and Technology, Macao, China
| | - Hio Lam Cheong
- University Hospital, Macau University of Science and Technology, Macao, China
| | - Qianzi Li
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Chenyu Zhong
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Jerome Pak Lam Ng
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | | | - Vincent Kam Wai Wong
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, China.
| |
Collapse
|
4
|
Aziz Ibrahim IA, Alzahrani AR, Alanazi IM, Shahzad N, Shahid I, Falemban AH, Nur Azlina MF, Arulselvan P. Bioactive compound D-Pinitol-loaded graphene oxide-chitosan-folic acid nanocomposite induced apoptosis in human hepatoma HepG-2 cells. J Drug Deliv Sci Technol 2024; 92:105282. [DOI: 10.1016/j.jddst.2023.105282] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
5
|
Tan X, Yan Y, Song B, Zhu S, Mei Q, Wu K. Focal adhesion kinase: from biological functions to therapeutic strategies. Exp Hematol Oncol 2023; 12:83. [PMID: 37749625 PMCID: PMC10519103 DOI: 10.1186/s40164-023-00446-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 09/11/2023] [Indexed: 09/27/2023] Open
Abstract
Focal adhesion kinase (FAK), a nonreceptor cytoplasmic tyrosine kinase, is a vital participant in primary cellular functions, such as proliferation, survival, migration, and invasion. In addition, FAK regulates cancer stem cell activities and contributes to the formation of the tumor microenvironment (TME). Importantly, increased FAK expression and activity are strongly associated with unfavorable clinical outcomes and metastatic characteristics in numerous tumors. In vitro and in vivo studies have demonstrated that modulating FAK activity by application of FAK inhibitors alone or in combination treatment regimens could be effective for cancer therapy. Based on these findings, several agents targeting FAK have been exploited in diverse preclinical tumor models. This article briefly describes the structure and function of FAK, as well as research progress on FAK inhibitors in combination therapies. We also discuss the challenges and future directions regarding anti-FAK combination therapies.
Collapse
Affiliation(s)
- Ximin Tan
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yuheng Yan
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Bin Song
- Cancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China
| | - Shuangli Zhu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Qi Mei
- Cancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China.
| | - Kongming Wu
- Cancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China.
- Cancer Center, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
6
|
Mao L, Wang L, Xu J, Zou J. The role of integrin family in bone metabolism and tumor bone metastasis. Cell Death Discov 2023; 9:119. [PMID: 37037822 PMCID: PMC10086008 DOI: 10.1038/s41420-023-01417-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 03/21/2023] [Accepted: 03/24/2023] [Indexed: 04/12/2023] Open
Abstract
Integrins have been the research focus of cell-extracellular matrix adhesion (ECM) and cytokine receptor signal transduction. They are involved in the regulation of bone metabolism of bone precursor cells, mesenchymal stem cells (MSCs), osteoblasts (OBs), osteoclasts (OCs), and osteocytes. Recent studies expanded and updated the role of integrin in bone metabolism, and a large number of novel cytokines were found to activate bone metabolism pathways through interaction with integrin receptors. Integrins act as transducers that mediate the regulation of bone-related cells by mechanical stress, fluid shear stress (FSS), microgravity, hypergravity, extracellular pressure, and a variety of physical factors. Integrins mediate bone metastasis of breast, prostate, and lung cancer by promoting cancer cell adhesion, migration, and survival. Integrin-mediated targeted therapy showed promising prospects in bone metabolic diseases. This review emphasizes the latest research results of integrins in bone metabolism and bone metastasis and provides a vision for treatment strategies.
Collapse
Affiliation(s)
- Liwei Mao
- School of Kinesiology, Shanghai University of Sport, 200438, Shanghai, China
| | - Lian Wang
- School of Kinesiology, Shanghai University of Sport, 200438, Shanghai, China
| | - Jiake Xu
- School of Biomedical Sciences, The University of Western Australia, WA, 6009, Perth, Australia
| | - Jun Zou
- School of Kinesiology, Shanghai University of Sport, 200438, Shanghai, China.
| |
Collapse
|
7
|
Jing H, Wu X, Xiang M, Wang C, Novakovic VA, Shi J. Microparticle Phosphatidylserine Mediates Coagulation: Involvement in Tumor Progression and Metastasis. Cancers (Basel) 2023; 15:cancers15071957. [PMID: 37046617 PMCID: PMC10093313 DOI: 10.3390/cancers15071957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/17/2023] [Accepted: 03/17/2023] [Indexed: 04/14/2023] Open
Abstract
Tumor progression and cancer metastasis has been linked to the release of microparticles (MPs), which are shed upon cell activation or apoptosis and display parental cell antigens, phospholipids such as phosphatidylserine (PS), and nucleic acids on their external surfaces. In this review, we highlight the biogenesis of MPs as well as the pathophysiological processes of PS externalization and its involvement in coagulation activation. We review the available evidence, suggesting that coagulation factors (mainly tissue factor, thrombin, and fibrin) assist in multiple steps of tumor dissemination, including epithelial-mesenchymal transition, extracellular matrix remodeling, immune escape, and tumor angiogenesis to support the formation of the pre-metastatic niche. Platelets are not just bystander cells in circulation but are functional players in primary tumor growth and metastasis. Tumor-induced platelet aggregation protects circulating tumor cells (CTCs) from the blood flow shear forces and immune cell attack while also promoting the binding of CTCs to endothelial cells and extravasation, which activates tumor invasion and sustains metastasis. Finally, in terms of therapy, lactadherin can inhibit coagulation by competing effectively with coagulation factors for PS binding sites and may similarly delay tumor progression. Furthermore, we also investigate the therapeutic potential of coagulation factor inhibitors within the context of cancer treatment. The development of multiple therapies targeting platelet activation and platelet-tumor cell interactions may not only reduce the lethal consequences of thrombosis but also impede tumor growth and spread.
Collapse
Affiliation(s)
- Haijiao Jing
- Department of Hematology, The First Hospital, Harbin Medical University, Harbin 150001, China
| | - Xiaoming Wu
- Department of Hematology, The First Hospital, Harbin Medical University, Harbin 150001, China
| | - Mengqi Xiang
- Department of Hematology, The First Hospital, Harbin Medical University, Harbin 150001, China
| | - Chengyue Wang
- Department of Hematology, The First Hospital, Harbin Medical University, Harbin 150001, China
| | - Valerie A Novakovic
- Department of Research, VA Boston Healthcare System, Harvard Medical School, Boston, MA 02132, USA
| | - Jialan Shi
- Department of Hematology, The First Hospital, Harbin Medical University, Harbin 150001, China
- Department of Research, VA Boston Healthcare System, Harvard Medical School, Boston, MA 02132, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02132, USA
| |
Collapse
|
8
|
Flockerzi FA, Hohneck J, Saar M, Bohle RM, Stahl PR. THSD7A Positivity Is Associated with High Expression of FAK in Prostate Cancer. Diagnostics (Basel) 2023; 13:diagnostics13020221. [PMID: 36673031 PMCID: PMC9857569 DOI: 10.3390/diagnostics13020221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 12/30/2022] [Accepted: 01/05/2023] [Indexed: 01/11/2023] Open
Abstract
Prostate cancer is one of the most common malignancies, and there are a wide range of treatment options after diagnosis. Most prostate cancers behave in an indolent manner. However, a given sub-group has been shown to exhibit aggressive behavior; therefore, it is desirable to find novel prognostic and predictive (molecular) markers. THSD7A expression is significantly associated with unfavorable prognostic parameters in prostate cancer. FAK is overexpressed in several tumor types and is believed to play a role in tumor progression and metastasis. Furthermore, there is evidence that THSD7A might affect FAK-dependent signaling pathways. To examine whether THSD7A expression has an impact on the expression level of FAK in its unphosphorylated form, a total of 461 prostate cancers were analyzed by immunohistochemistry using tissue microarrays. THSD7A positivity and low FAK expression were associated with adverse pathological features. THSD7A positivity was significantly associated with high FAK expression. To our knowledge we are the first to show that THSD7A positivity is associated with high FAK expression in prostate cancer. This might be proof of the actual involvement of THSD7A in FAK-dependent signaling pathways. This is of special importance because THSD7A might also serve as a putative therapeutic target in cancer therapy.
Collapse
Affiliation(s)
| | - Johannes Hohneck
- Department of Pathology, Saarland University Medical Center, 66421 Homburg, Germany
| | - Matthias Saar
- Department of Urology, University Hospital, 52074 Aachen, Germany
| | - Rainer Maria Bohle
- Department of Pathology, Saarland University Medical Center, 66421 Homburg, Germany
| | - Phillip Rolf Stahl
- Department of Pathology, Saarland University Medical Center, 66421 Homburg, Germany
- Correspondence:
| |
Collapse
|
9
|
Hlongwane MM, Mohammed M, Mokgalaka NS, Dakora FD. The Potential of Rhizobacteria to Mitigate Abiotic Stress in Lessertia frutescens. PLANTS (BASEL, SWITZERLAND) 2023; 12:196. [PMID: 36616325 PMCID: PMC9824651 DOI: 10.3390/plants12010196] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 12/15/2022] [Accepted: 12/16/2022] [Indexed: 06/17/2023]
Abstract
Lessertia frutescens is a multipurpose medicinal plant indigenous to South Africa. The curative ability of the medicinal plant is attributed to its rich phytochemical composition, including amino acids, triterpenoids, and flavonoids. A literature review of some of the phytochemical compounds, particularly amino acids, in L. frutescens shows a steady decrease in concentration over the years. The reduction of the phytochemical compounds and diminishing biological activities may be attributed to drought and salt stress, which South Africa has been grappling with over the years. Canavanine, a phytochemical which is associated with the anticancer activity of L. frutescens, reduced slightly when the plant was subjected to salt stress. Like other legumes, L. frutescens forms a symbiotic relationship with plant-growth-promoting rhizobacteria, which facilitate plant growth and development. Studies employing commercial plant-growth-promoting rhizobacteria to enhance growth and biological activities in L. frutescens have been successfully carried out. Furthermore, alleviation of drought and salt stress in medicinal plants through inoculation with plant growth-promoting-rhizobacteria is well documented and effective. Therefore, this review seeks to highlight the potential of plant-growth-promoting rhizobacteria to alleviate the effect of salt and drought in Lessertia frutescens.
Collapse
Affiliation(s)
- Mokgadi M. Hlongwane
- Department of Chemistry, Tshwane University of Technology, Private Bag X680, Pretoria 0001, South Africa
| | - Mustapha Mohammed
- Department of Crop Science, University for Development Studies, Tamale P.O. Box TL1882, Ghana
| | - Ntebogeng S. Mokgalaka
- Department of Chemistry, Tshwane University of Technology, Private Bag X680, Pretoria 0001, South Africa
- Mamelodi Campus, University of Pretoria, Private Bag X20, Hatfield, Pretoria 0028, South Africa
| | - Felix D. Dakora
- Department of Chemistry, Tshwane University of Technology, Private Bag X680, Pretoria 0001, South Africa
| |
Collapse
|
10
|
Liu F, Ye F, Cheng C, Kang Z, Kou H, Sun J. Symbiotic microbes aid host adaptation by metabolizing a deterrent host pine carbohydrate d-pinitol in a beetle-fungus invasive complex. SCIENCE ADVANCES 2022; 8:eadd5051. [PMID: 36563163 PMCID: PMC9788770 DOI: 10.1126/sciadv.add5051] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 11/23/2022] [Indexed: 06/17/2023]
Abstract
The red turpentine beetle (RTB) is one of the most destructive invasive pests in China and solely consumes pine phloem containing high amounts of d-pinitol. Previous studies reported that d-pinitol exhibits deterrent effects on insects. However, it remains unknown how insects overcome d-pinitol during their host plant adaptation. We found that d-pinitol had an antagonistic effect on RTB, which mainly relied on gallery microbes to degrade d-pinitol to enhance host adaptation with mutualistic Leptographium procerum and two symbiotic bacteria, Erwinia and Serratia, responsible for this degradation. Genomic, transcriptomic, and functional investigations revealed that all three microbes can metabolize d-pinitol via different branches of the inositol pathway. Our results collectively highlight the contributions of symbiotic microbes in RTB's adaptation to living on pine, thereby facilitating outbreaks of RTB in China. These findings further enrich our knowledge of symbiotic invasions and contribute to the further understanding of plant-insect interactions.
Collapse
Affiliation(s)
- Fanghua Liu
- School of Life Sciences, Institutes of Life Science and Green Development, Hebei University, Baoding 071002, China
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing 100101, China
| | - Fangyuan Ye
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chihang Cheng
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, Huzhou University, No. 759, East 2nd Road, Huzhou 313000, China
| | - Zhiwei Kang
- School of Life Sciences, Institutes of Life Science and Green Development, Hebei University, Baoding 071002, China
| | - Hongru Kou
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianghua Sun
- School of Life Sciences, Institutes of Life Science and Green Development, Hebei University, Baoding 071002, China
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
11
|
Pandi A, Sattu K, Kalappan VM, Lal V, Varikasuvu SR, Ganguly A, Prasad J. Pharmacological effects of D-Pinitol - A comprehensive review. J Food Biochem 2022; 46:e14282. [PMID: 35735162 DOI: 10.1111/jfbc.14282] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/07/2022] [Accepted: 05/17/2022] [Indexed: 11/27/2022]
Abstract
In recent years, the application of phytochemicals to prevent or treat diseases has received greater attention. These phytochemicals have little or no toxicity against healthy tissues and are thus considered as ideal compounds. An impressive number of modern drugs are obtained from natural sources based on their traditional value. D-Pinitol is a natural compound that is derived from soy and soy products. It is a potentially active molecule that belongs to the class of inositols. D-pinitol has been pharmacologically evaluated for its potent antioxidant, anti-diabetic, anti-inflammatory, anti-cancer, hepatoprotective, cardioprotective, renoprotective, neuroprotective, immunosuppressive, and anti-osteoporotic efficacies. This review is an attempt to validate the plausible pharmacological effects of D-pinitol using various in vivo and in vitro studies. PRACTICAL IMPLICATIONS: The consumption of plant-based products has been significantly increased all over the world. The active phytochemicals that are found in plants are stated to have numerous health promoting functions for the treatment of diabetes, cancer, inflammation, cardiac diseases, liver dysfunction, and many other. D-Pinitol is abundantly present in soybeans that possess notable therapeutic activities. Understanding the effects of D-Pinitol would potentially help in applying this compound in clinical research for the treatment of different disorders.
Collapse
Affiliation(s)
- Anandakumar Pandi
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS)-Deoghar, Deoghar, Jharkhand, India
| | - Kamaraj Sattu
- Department of Biotechnology, Periyar University, PG Extension centre, Dharmapuri, Tamilnadu, India
| | - Vanitha M Kalappan
- Formerly, Department of Medical Biochemistry, University of Madras, Taramani campus, Chennai, Tamilnadu, India
| | - Vanita Lal
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS)-Deoghar, Deoghar, Jharkhand, India
| | - Seshadri R Varikasuvu
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS)-Deoghar, Deoghar, Jharkhand, India
| | - Anirban Ganguly
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS)-Deoghar, Deoghar, Jharkhand, India
| | - Jitender Prasad
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS)-Deoghar, Deoghar, Jharkhand, India
| |
Collapse
|
12
|
Tai HC, Wang SW, Swain S, Lin LW, Tsai HC, Liu SC, Wu HC, Guo JH, Liu CL, Lai YW, Lin TH, Yang SF, Tang CH. Melatonin suppresses the metastatic potential of osteoblastic prostate cancers by inhibiting integrin α 2 β 1 expression. J Pineal Res 2022; 72:e12793. [PMID: 35174530 DOI: 10.1111/jpi.12793] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 01/17/2022] [Accepted: 02/12/2022] [Indexed: 11/27/2022]
Abstract
Advanced prostate cancer often develops into bone metastasis, which is characterized by aberrant bone formation with chronic pain and lower chances of survival. No treatment exists as yet for osteoblastic bone metastasis in prostate cancer. The indolamine melatonin (N-acetyl-5-methoxytryptamine) is a major regulator of the circadian rhythm. Melatonin has shown antiproliferative and antimetastatic activities but has not yet been shown to be active in osteoblastic bone lesions of prostate cancer. Our study investigations reveal that melatonin concentration-dependently decreases the migratory and invasive abilities of two osteoblastic prostate cancer cell lines by inhibiting FAK, c-Src, and NF-κB transcriptional activity via the melatonin MT1 receptor, which effectively inhibits integrin α2 β1 expression. Melatonin therapy appears to offer therapeutic possibilities for reducing osteoblastic bone lesions in prostate cancer.
Collapse
Affiliation(s)
- Huai-Ching Tai
- School of Medicine, Fu-Jen Catholic University, New Taipei City, Taiwan
- Department of Urology, Fu-Jen Catholic University Hospital, New Taipei City, Taiwan
| | - Shih-Wei Wang
- Department of Medicine, MacKay Medical College, New Taipei City, Taiwan
- Institute of Biomedical Sciences, Mackay Medical College, Taipei, Taiwan
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Sanskruti Swain
- International Master Program of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - Liang-Wei Lin
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - Hsiao-Chi Tsai
- Department of Pharmacology, School of Medicine, China Medical University, Taichung, Taiwan
- Department of Internal Medicine, Division of Hematology and Oncology, China Medical University Hospital, Taichung, Taiwan
| | - Shan-Chi Liu
- Department of Medical Education and Research, China Medical University Beigang Hospital, Beigang, Yunlin, Taiwan
| | - Hsi-Chin Wu
- Department of Medical Education and Research, China Medical University Beigang Hospital, Beigang, Yunlin, Taiwan
- Department of Urology, China Medical University Hospital, Taichung, Taiwan
- Department of Urology, China Medical University Beigang Hospital, Beigang, Yunlin, Taiwan
| | - Jeng-Hung Guo
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Department of Neurosurgery, China Medical University Hospital, Taichung, Taiwan
| | - Chun-Lin Liu
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Department of Neurosurgery, China Medical University Hospital, Taichung, Taiwan
| | - Yu-Wei Lai
- Division of Urology, Taipei City Hospital Renai Branch, Taipei, Taiwan
- Department of Urology, College of Medicine and Shu-Tien Urological Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Tien-Huang Lin
- Department of Urology, Buddhist Tzu Chi General Hospital Taichung Branch, Taichung, Taiwan
- School of Post-Baccalaureate Chinese Medicine, Tzu Chi University, Hualien, Taiwan
| | - Shun-Fa Yang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Chih-Hsin Tang
- International Master Program of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Department of Pharmacology, School of Medicine, China Medical University, Taichung, Taiwan
- Chinese Medicine Research Center, China Medical University, Taichung, Taiwan
- Department of Biotechnology, College of Health Science, Asia University, Taichung, Taiwan
| |
Collapse
|
13
|
Azab A. D-Pinitol-Active Natural Product from Carob with Notable Insulin Regulation. Nutrients 2022; 14:nu14071453. [PMID: 35406064 PMCID: PMC9003036 DOI: 10.3390/nu14071453] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/28/2022] [Accepted: 03/29/2022] [Indexed: 02/06/2023] Open
Abstract
Carob is one of the major food trees for peoples of the Mediterranean basin, but it has also been traditionally used for medicinal purposes. Carob contains many nutrients and active natural products, and D-Pinitol is clearly one of the most important of these. D-Pinitol has been reported in dozens of scientific publications and its very diverse medicinal properties are still being studied. Presently, more than thirty medicinal activities of D-Pinitol have been reported. Among these, many publications have reported the strong activities of D-Pinitol as a natural antidiabetic and insulin regulator, but also as an active anti-Alzheimer, anticancer, antioxidant, and anti-inflammatory, and is also immune- and hepato-protective. In this review, we will present a brief introduction of the nutritional and medicinal importance of Carob, both traditionally and as found by modern research. In the introduction, we will present Carob’s major active natural products. The structures of inositols will be presented with a brief literature summary of their medicinal activities, with special attention to those inositols in Carob, as well as D-Pinitol’s chemical structure and its medicinal and other properties. D-Pinitol antidiabetic and insulin regulation activities will be extensively presented, including its proposed mechanism of action. Finally, a discussion followed by the conclusions and future vision will summarize this article.
Collapse
|
14
|
Sun CY, Mi YY, Ge SY, Hu QF, Xu K, Guo YJ, Tan YF, Zhang Y, Zhong F, Xia GW. Tumor- and Osteoblast-Derived Periostin in Prostate Cancer bone Metastases. Front Oncol 2022; 11:795712. [PMID: 35087756 PMCID: PMC8787093 DOI: 10.3389/fonc.2021.795712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 12/13/2021] [Indexed: 11/24/2022] Open
Abstract
Exploring the biological function of periostin (POSTN) in prostate cancer (PCa) bone metastasis is of importance. It was observed that the expression of POSTN was high in PCa, especially highest in PCa metastasized to bone. In this study, we found that inhibiting POSTN in PCa cells could significantly alleviate PCa bone metastasis in vivo, suggesting POSTN is a promising therapeutic target. Since, due to the secreted expression of POSTN in osteoblasts and PCa, we hypothesized the positive feedback loop between osteoblasts and PCa mediated by POSTN in PCa bone metastasis. The in vitro experiments demonstrated that osteoblast-derived POSTN promoted PCa cell proliferation and invasion and PCa cell-derived POSTN promotes proliferation of osteoblasts. Furthermore, we found that POSTN regulated PCa and osteoblast function through integrin receptors. Finally, 18F-Alfatide II was used as the molecule probe of integrin αvβ3 in PET-CT, revealing high intake in metastatic lesions. Our findings together indicate that targeting POSTN in PCa cells as well as in the osteoblastic may be an effective treatment for PCa bone metastasis.
Collapse
Affiliation(s)
- Chuan-Yu Sun
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Yuan-Yuan Mi
- Department of Urology, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Sheng-Yang Ge
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Qing-Feng Hu
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Ke Xu
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Yi-Jun Guo
- Department of Urology, Jing'an District Central Hospital, Fudan University, Shanghai, China
| | - Yi-Fan Tan
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Yang Zhang
- Department of Systems Biology for Medicine, Shanghai Medical College, Fudan University, Shanghai, China.,Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Fan Zhong
- Department of Systems Biology for Medicine, Shanghai Medical College, Fudan University, Shanghai, China.,Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Guo-Wei Xia
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
15
|
Razali S, Firus Khan AY, Khatib A, Ahmed QU, Abdul Wahab R, Zakaria ZA. An In Vitro Anticancer Activity Evaluation of Neolamarckia cadamba (Roxb.) Bosser Leaves' Extract and its Metabolite Profile. Front Pharmacol 2021; 12:741683. [PMID: 34721030 PMCID: PMC8548635 DOI: 10.3389/fphar.2021.741683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 09/13/2021] [Indexed: 12/09/2022] Open
Abstract
The leaves of Neolamarckia cadamba (NC) (Roxb.) Bosser (family: Rubiaceae) are traditionally used to treat breast cancer in Malaysia; however, this traditional claim is yet to be scientifically verified. Hence, this study was aimed to evaluate the anticancer effect of NC leaves' ethanol extract against breast cancer cell line (MCF-7 cells) using an in vitro cell viability, cytotoxicity, and gene expression assays followed by the gas chromatography analysis to further confirm active principles. Results revealed 0.2 mg/ml as the half maximal inhibitory concentration (IC50) against MCF-7. The extract exerted anticancer effect against MCF-7 cells in a dose- and time-dependent manner. The cell cycle assay showed that the extract arrested MCF-7 cells in the G0/G1 phase, and apoptosis was observed after 72 h by the Annexin-V assay. The gene expression assay revealed that the cell cycle arrest was associated with the downregulation of CDK2 and subsequent upregulation of p21 and cyclin E. The extract induced apoptosis via the mediation of the mitochondrial cell death pathways. A chromatography analysis revealed the contribution of D-pinitol and myo-inositol as the two major bioactive compounds to the activity observed. Overall, the study demonstrated that NC leaves' ethanol extract exerts anticancer effect against MCF-7 human breast cancer cells through the induction of apoptosis and cell cycle arrest, thereby justifying its traditional use for the treatment of breast cancer in Malaysia.
Collapse
Affiliation(s)
- Shakirah Razali
- Department of Biomedical Science, Kulliyyah of Allied Health Sciences, International Islamic University Malaysia, Kuantan, Malaysia
| | - Al'aina Yuhainis Firus Khan
- Department of Biomedical Science, Kulliyyah of Allied Health Sciences, International Islamic University Malaysia, Kuantan, Malaysia
| | - Alfi Khatib
- Pharmacognosy Research Group, Department of Pharmaceutical Chemistry, Kulliyyah of Pharmacy, International Islamic University Malaysia, Kuantan, Malaysia.,Faculty of Pharmacy, Airlangga University, Surabaya, Indonesia
| | - Qamar Uddin Ahmed
- Pharmacognosy Research Group, Department of Pharmaceutical Chemistry, Kulliyyah of Pharmacy, International Islamic University Malaysia, Kuantan, Malaysia
| | - Ridhwan Abdul Wahab
- Department of Biomedical Science, Kulliyyah of Allied Health Sciences, International Islamic University Malaysia, Kuantan, Malaysia
| | - Zainul Amiruddin Zakaria
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Kota Kinabalu, Malaysia.,Laboratory of Halal Science Research, Halal Products Research Institute, Universiti Putra Malaysia, Serdang, Malaysia
| |
Collapse
|
16
|
Xiong J, Yan L, Zou C, Wang K, Chen M, Xu B, Zhou Z, Zhang D. Integrins regulate stemness in solid tumor: an emerging therapeutic target. J Hematol Oncol 2021; 14:177. [PMID: 34715893 PMCID: PMC8555177 DOI: 10.1186/s13045-021-01192-1] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 10/14/2021] [Indexed: 02/08/2023] Open
Abstract
Integrins are the adhesion molecules and transmembrane receptors that consist of α and β subunits. After binding to extracellular matrix components, integrins trigger intracellular signaling and regulate a wide spectrum of cellular functions, including cell survival, proliferation, differentiation and migration. Since the pattern of integrins expression is a key determinant of cell behavior in response to microenvironmental cues, deregulation of integrins caused by various mechanisms has been causally linked to cancer development and progression in several solid tumor types. In this review, we discuss the integrin signalosome with a highlight of a few key pro-oncogenic pathways elicited by integrins, and uncover the mutational and transcriptomic landscape of integrin-encoding genes across human cancers. In addition, we focus on the integrin-mediated control of cancer stem cell and tumor stemness in general, such as tumor initiation, epithelial plasticity, organotropic metastasis and drug resistance. With insights into how integrins contribute to the stem-like functions, we now gain better understanding of the integrin signalosome, which will greatly assist novel therapeutic development and more precise clinical decisions.
Collapse
Affiliation(s)
- Jiangling Xiong
- School of Biomedical Sciences, Hunan University, Changsha, 410082, Hunan Province, China.,College of Biology, Hunan University, Changsha, 410082, Hunan Province, China
| | - Lianlian Yan
- School of Biomedical Sciences, Hunan University, Changsha, 410082, Hunan Province, China.,College of Biology, Hunan University, Changsha, 410082, Hunan Province, China
| | - Cheng Zou
- School of Biomedical Sciences, Hunan University, Changsha, 410082, Hunan Province, China.,College of Biology, Hunan University, Changsha, 410082, Hunan Province, China
| | - Kai Wang
- Department of Urology, School of Medicine, Affiliated Zhongda Hospital of Southeast University, Nanjing, 210009, Jiangsu Province, China
| | - Mengjie Chen
- School of Biomedical Sciences, Hunan University, Changsha, 410082, Hunan Province, China.,College of Biology, Hunan University, Changsha, 410082, Hunan Province, China
| | - Bin Xu
- Department of Urology, School of Medicine, Affiliated Zhongda Hospital of Southeast University, Nanjing, 210009, Jiangsu Province, China.
| | - Zhipeng Zhou
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China.
| | - Dingxiao Zhang
- School of Biomedical Sciences, Hunan University, Changsha, 410082, Hunan Province, China. .,College of Biology, Hunan University, Changsha, 410082, Hunan Province, China.
| |
Collapse
|
17
|
Gambioli R, Montanino Oliva M, Nordio M, Chiefari A, Puliani G, Unfer V. New Insights into the Activities of D-Chiro-Inositol: A Narrative Review. Biomedicines 2021; 9:biomedicines9101378. [PMID: 34680494 PMCID: PMC8533370 DOI: 10.3390/biomedicines9101378] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 09/29/2021] [Accepted: 09/30/2021] [Indexed: 12/14/2022] Open
Abstract
D-chiro-inositol (DCI) is a natural compound detectable in cell membranes, which is highly conserved as a biological signaling molecule. In mammals, its function is primarily characterized in the intracellular transduction cascade of insulin. In particular, insulin signal promotes the release of pivotal DCI-containing molecules. In fact, impaired release of DCI is a common feature of insulin-resistant tissues, and insulin-sensitizing pharmaceuticals induce higher concentrations of free DCI. Moreover, it also plays important roles in several other processes. DCI is involved in the regulation of steroidogenesis, due to its regulatory effects on steroidogenic enzymes, including 17α-hydroxylase, 3β-hydroxysteroid dehydrogenase, and aromatase. Such regulation of various enzymes indicates a mechanism by which the body regulates different processes via a single molecule, depending on its concentration. DCI also reduces the expression of integrin β3, which is an adhesion molecule involved in embryo implantation and cellular phenomena such as survival, stemness, and invasiveness. In addition, DCI seems to have important anti-inflammatory activities, like its 3-O-methyl-ether, called pinitol. In vitro evidence demonstrates that treatment with both compounds induces a reduction in pro-inflammatory factors—such as Nf-κB—and cytokines—such as TNF-α. DCI then plays important roles in several fundamental processes in physiology. Therefore, research on such molecule is of primary importance.
Collapse
Affiliation(s)
| | - Mario Montanino Oliva
- The Experts Group on Inositol in Basic and Clinical Research (EGOI), 00161 Rome, Italy; (M.M.O.); (M.N.)
- Department of Obstetrics and Gynecology, Santo Spirito Hospital, 00193 Rome, Italy
| | - Maurizio Nordio
- The Experts Group on Inositol in Basic and Clinical Research (EGOI), 00161 Rome, Italy; (M.M.O.); (M.N.)
- Department of Experimental Medicine, Sapienza University, 00185 Rome, Italy
| | - Alfonsina Chiefari
- Oncological Endocrinology Unit, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy; (A.C.); (G.P.)
| | - Giulia Puliani
- Oncological Endocrinology Unit, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy; (A.C.); (G.P.)
| | - Vittorio Unfer
- The Experts Group on Inositol in Basic and Clinical Research (EGOI), 00161 Rome, Italy; (M.M.O.); (M.N.)
- System Biology Group Lab, 00161 Rome, Italy
- Correspondence:
| |
Collapse
|
18
|
Wiśniewski K, Jozwik M, Wojtkiewicz J. Cancer Prevention by Natural Products Introduced into the Diet-Selected Cyclitols. Int J Mol Sci 2020; 21:E8988. [PMID: 33256104 PMCID: PMC7729485 DOI: 10.3390/ijms21238988] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 11/24/2020] [Accepted: 11/24/2020] [Indexed: 12/23/2022] Open
Abstract
Cancer is now the second leading cause of death worldwide. It is estimated that every year, approximately 9.6 million people die of oncologic diseases. The most common origins of malignancy are the lungs, breasts, and colorectum. Even though in recent years, many new drugs and therapeutic options have been introduced, there are still no safe, effective chemopreventive agents. Cyclitols seem poised to improve this situation. There is a body of evidence that suggests that their supplementation can decrease the incidence of colorectal cancer, lower the risk of metastasis occurrence, lower the proliferation index, induce apoptosis in malignant cells, enhance natural killer (NK) cell activity, protect cells from free radical damage, and induce positive molecular changes, as well as reduce the side effects of anticancer treatments such as chemotherapy or surgery. Cyclitol supplementation appears to be both safe and well-tolerated. This review focuses on presenting, in a comprehensive way, the currently available knowledge regarding the use of cyclitols in the treatment of different malignancies, particularly in lung, breast, colorectal, and prostate cancers.
Collapse
Affiliation(s)
- Karol Wiśniewski
- Department Pathophysiology, School of Medicine, University of Warmia and Mazury, 10-082 Olsztyn, Poland;
| | - Marcin Jozwik
- Department of Gynecology and Obstetrics, School of Medicine, Collegium Medicum University of Warmia and Mazury, 10-561 Olsztyn, Poland;
| | - Joanna Wojtkiewicz
- Department Pathophysiology, School of Medicine, University of Warmia and Mazury, 10-082 Olsztyn, Poland;
| |
Collapse
|
19
|
Khazaei H, Pesce M, Patruno A, Aneva IY, Farzaei MH. Medicinal plants for diabetes associated neurodegenerative diseases: A systematic review of preclinical studies. Phytother Res 2020; 35:1697-1718. [DOI: 10.1002/ptr.6903] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 08/24/2020] [Accepted: 09/20/2020] [Indexed: 12/13/2022]
Affiliation(s)
- Hosna Khazaei
- Pharmaceutical Sciences Research Center Health Institute, Kermanshah University of Medical Sciences Kermanshah Iran
| | - Mirko Pesce
- Department of Medicine and Aging Sciences University G. d'Annunzio Chieti Italy
| | - Antonia Patruno
- Department of Medicine and Aging Sciences University G. d'Annunzio Chieti Italy
| | - Ina Y. Aneva
- Institute of Biodiversity and Ecosystem Research Bulgarian Academy of Sciences Sofia Bulgaria
| | - Mohammad H. Farzaei
- Pharmaceutical Sciences Research Center Health Institute, Kermanshah University of Medical Sciences Kermanshah Iran
| |
Collapse
|
20
|
Kayed AM, Genady EAM, Kadry HA, Elghaly ESM. New phytoconstituents, anti-microbial and cytotoxic activities of Acacia etbaica Schweinf. Nat Prod Res 2020; 35:5571-5580. [PMID: 32700973 DOI: 10.1080/14786419.2020.1797725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Acacia etbaica is wild plant growing in the desert of Egypt, and it has folkloric medicinal uses. Phytochemical investigation of Acacia etbaica extracts led to the isolation and identification of seven compounds. Among these compounds are three new simple phenolics: Resacetophenone-6-methyl [1], Resorcinol [2], Resorcinol-O- β -Glucoside [3]; phenolic ester; and other four known compounds: Methylparaben [4]; two chromones, Noreugenin [5], Eugenin [6]; and one cyclitol: pinitol [7]. Compounds [1-3] isolated and identified for the first time from natural origin. In contrast, compounds [4-6] isolated for the first time from the family Fabaceae. The biological investigation was conducted on plant extracts and showed that the methylene chloride extract had a strong efficacy against Bacillus subtilis and good activity against Candida albicans. In contrast, the n-butanol extract showed extreme cytotoxic activity against Mammary gland breast cancer (MCF-7), and strong activity against Hepatocellular carcinoma (HEPG-2), and Colorectal carcinoma (HCT-116) cell lines.
Collapse
Affiliation(s)
- Akram M Kayed
- Faculty of Pharmacy, Department of Pharmacognosy, El-Menoufia University, El-Menoufia, Egypt
| | - Ezzat A M Genady
- Faculty of Pharmacy, Department of Pharmacognosy, Al-Azhar University, Cairo, Egypt
| | - Hazem A Kadry
- Faculty of Pharmacy, Department of Pharmacognosy, Al-Azhar University, Cairo, Egypt
| | - El-Sayed M Elghaly
- Faculty of Pharmacy, Department of Pharmacognosy, Al-Azhar University, Cairo, Egypt
| |
Collapse
|
21
|
Inhibitory activity of traditional plants against Mycobacterium smegmatis and their action on Filamenting temperature sensitive mutant Z (FtsZ)-A cell division protein. PLoS One 2020; 15:e0232482. [PMID: 32357366 PMCID: PMC7195194 DOI: 10.1371/journal.pone.0232482] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 04/15/2020] [Indexed: 11/19/2022] Open
Abstract
The study was designed to assess whether plant extracts / phytochemical (D-Pinitol) synergistically combine with antituberculosis drugs and act on Mycobacterium smegmatis (M. smegmatis) as well as assess their mode of action on Mycobacterium tuberculosis (M.tb) Filamenting temperature sensitive mutant Z (FtsZ) protein. Resazurin microtitre plate assay (Checker board) was performed to analyze the activity of plant extracts against M. smegmatis. Synergistic behaviour of plant extracts / D-Pinitol with Isoniazid (INH) and Rifampicin (RIF) were determined by time–kill and checker board assays. Elongation of M. smegmatis cells due to this treatment was determined by light microscopy. The effect of Hexane methanol extract (HXM) plant extracts on cell viability was determined using PI/SYTO9 dual dye reporter Live/Dead assay. Action of HXM plant extracts / D-Pinitol on inhibition of FtsZ protein was done using Guanosine triphosphatase (GTPase) light scattering assay and quantitative Polymerase Chain Reaction (qPCR). The Hexane-methanolic plant extract of Acacia nilotica, Aegle marmelos and Glycyrrhiza glabra showed antimycobacterial activity at 1.56 ± 0.03, 1.32 ± 0.02 and 1.25 ± 0.03 mg/mL respectively and that of INH and RIF were 4.00 ± 0.06 μg/mL and 2.00 ± 0.04 μg/mL respectively. These plant extracts and major phytochemical exudate D-Pinitol was found to act synergistically with antimycobacterial drugs INH and RIF with an FIC index ~ 0.20. Time-Kill kinetics studies indicate that, these plant extracts were bacteriostatic in nature. D-Pinitol in conjunction with INH and RIF exhibited a 2 Log reduction in the growth of viable cells compared to untreated. Attempt to elucidate their mode of action through phenotypic analysis indicated that these plant extracts and D-Pinitol was found to interfere in cell division there by leading to an abnormal elongated cellular morphology. HXM extracts and D-Pinitol synergistically combined with the first line tuberculosis drugs, INH and RIF, to act on M. smegmatis. The increase in the length of M. smegmatis cells on treatment with D-Pinitol and HXM extract of the plants indicated that they hinder the cell division mechanism thereby leading to a filamentous phenotype, and finally leading to cell death. In addition, the integrity of the bacterial cell membrane is also altered causing cell death. Further gene expression analysis showed that these plant extracts and D-Pinitol hampers with function of FtsZ protein which was confirmed through in vitro inhibition of FtsZ–GTPase enzymatic activity.
Collapse
|
22
|
Sahin Yaglioglu A, Temirturk M, Ugur E, Dolarslan M, Demirtas I. Metabolomics of endemic six Astragalus species by combined NMR and GC-MS analysis. PHYTOCHEMICAL ANALYSIS : PCA 2020; 31:306-313. [PMID: 31943462 DOI: 10.1002/pca.2896] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 09/24/2019] [Accepted: 10/07/2019] [Indexed: 06/10/2023]
Abstract
INTRODUCTION Astragalus anthylloides, A. dipsaceus, A. karamasicus, A. lycius, A. sigmoideus and A. xylobasis var. angustus are an endemic and generally grow in the Irano-Turanian phytogeographic region of Turkey. Astragalus species contain saponins, polysaccharides, and phenolics, while the toxic compounds include imidazoline alkaloids, nitro toxins, and selenium derivatives. OBJECTIVES To apply a combined metabolomic fingerprinting approach by nuclear magnetic resonance (NMR) and gas chromatography-mass spectrometry (GC-MS) of endemic six Astragalus species extract. METHODOLOGY The whole plant collected in Turkey of six endemic Astragalus subsp. were dried and then extracted with hexane, chloroform, ethylacetate, n-butanol and methanol solvents, respectively. The hexane extracts were analyzed by GC-MS. Carbon-13 (13 C)-NMR analyzes of all extracts were performed. In both analyses, a biomarker was obtained. RESULTS The hexane extracts were determined as palmitic acid, arachidic acid, behenic acid, and linolenic acid as the main components. As a result of 13 C-NMR analyzes, in hexane, chloroform, and ethylacetate the extracts detected were palmitic acid, arachidic acid, behenic acid, and linolenic acid. d-Pinitol was obtained using 13 C-NMR analyzes with n-butanol and methanol extracts. CONCLUSION This study demonstrated that d-pinitol is a biomarker for the endemic six Astragalus subsp.
Collapse
Affiliation(s)
| | - Murat Temirturk
- Department of Chemistry, Cankiri Karatekin Universitesi, Cankiri, Turkey
| | - Emic Ugur
- Department of Chemistry, Cankiri Karatekin Universitesi, Cankiri, Turkey
| | - Melda Dolarslan
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK
| | - Ibrahim Demirtas
- Department of Chemistry, Cankiri Karatekin Universitesi, Cankiri, Turkey
| |
Collapse
|
23
|
Lee HP, Wang SW, Wu YC, Lin LW, Tsai FJ, Yang JS, Li TM, Tang CH. Soya-cerebroside inhibits VEGF-facilitated angiogenesis in endothelial progenitor cells. FOOD AGR IMMUNOL 2020. [DOI: 10.1080/09540105.2020.1713055] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
- Hsiang-Ping Lee
- School of Chinese Medicine, China Medical University, Taichung, Taiwan
- Department of Chinese Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Shih-Wei Wang
- Department of Medicine, Mackay Medical College, New Taipei City, Taiwan
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yang-Chang Wu
- Graduate Institute of Integrated Medicine, China Medical University, Taichung, Taiwan
| | - Liang-Wei Lin
- Department of Pharmacology, School of Medicine, China Medical University, Taichung, Taiwan
| | - Fuu-Jen Tsai
- School of Chinese Medicine, China Medical University, Taichung, Taiwan
- China Medical University Children’s Hospital, China Medical University, Taichung, Taiwan
| | - Jai-Sing Yang
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Te-Mao Li
- School of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Chih-Hsin Tang
- Department of Pharmacology, School of Medicine, China Medical University, Taichung, Taiwan
- Chinese Medicine Research Center, China Medical University, Taichung, Taiwan
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
| |
Collapse
|
24
|
Shakeel-u-Rehman, Bhat KA, Lone SH, Malik FA. Click chemistry inspired facile synthesis and bioevaluation of novel triazolyl analogs of D-(+)-pinitol. ARAB J CHEM 2019. [DOI: 10.1016/j.arabjc.2015.10.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|
25
|
Halophyte Common Ice Plants: A Future Solution to Arable Land Salinization. SUSTAINABILITY 2019. [DOI: 10.3390/su11216076] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The problems associated with the salinization of soils and water bodies and the increasing competition for scarce freshwater resources are increasing. Current attempts to adapt to these conditions through sustainable agriculture involves searching for new highly salt-tolerant crops, and wild species that have potential as saline crops are particularly suitable. The common ice plant (Mesembryanthemum crystallinum L.) is an edible halophyte member of the Aizoaceae family, which switches from C3 photosynthesis to crassulacean acid metabolism (CAM) when exposed to salinity or water stress. The aim of this review was to examine the potential of using the ice plant in both the wild and as a crop, and to describe its ecology and morphology, environmental and agronomic requirements, and physiology. The antioxidant properties and mineral composition of the ice plant are also beneficial to human health and have been extensively examined.
Collapse
|
26
|
Li ZH, Zhou Y, Ding YX, Guo QL, Zhao L. Roles of integrin in tumor development and the target inhibitors. Chin J Nat Med 2019; 17:241-251. [PMID: 31076128 DOI: 10.1016/s1875-5364(19)30028-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Indexed: 01/05/2023]
Abstract
Integrin is a large family of cell adhesion molecules (CAMs) which involves in the interaction of cells/cells and cells/ extracellular matrix (ECM) to mediate cell proliferation, differentiation, adhesion, migration, etc. In recent years, aberrant expression of integrin has been clearly found in many tumor studies, indicating that integrin is closely related to tumor formation and development. Meanwhile, it has effects on tumor cell differentiation, cell migration, proliferation and tumor neovascularization. The study of drugs targeting integrins is of great significance for the clinical treatment of tumors. Because of its important role in tumorigenesis and development, integrin has become a promising target for the treatment of cancer. This review summarizes the role of integrin in tumor development and the current state of integrin inhibitors to provide a valuable reference for subsequent research.
Collapse
Affiliation(s)
- Zhao-He Li
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing 210009, China
| | - You Zhou
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing 210009, China
| | - You-Xiang Ding
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing 210009, China
| | - Qing-Long Guo
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing 210009, China
| | - Li Zhao
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
27
|
Lee HP, Wang SW, Wu YC, Tsai CH, Tsai FJ, Chung JG, Huang CY, Yang JS, Hsu YM, Yin MC, Li TM, Tang CH. Glucocerebroside reduces endothelial progenitor cell-induced angiogenesis. FOOD AGR IMMUNOL 2019. [DOI: 10.1080/09540105.2019.1660623] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
- Hsiang-Ping Lee
- School of Chinese Medicine, China Medical University, Taichung, Taiwan
- Department of Chinese Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Shih-Wei Wang
- Department of Medicine, Mackay Medical College, New Taipei City, Taiwan
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yang-Chang Wu
- Graduate Institute of Natural Products and Research Center for Natural Products & Drug Development, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Chang-Hai Tsai
- China Medical University Children’s Hospital, China Medical University, Taichung, Taiwan
- Department of Healthcare Administration, Asia University, Taichung, Taiwan
| | - Fuu-Jen Tsai
- School of Chinese Medicine, China Medical University, Taichung, Taiwan
- China Medical University Children’s Hospital, China Medical University, Taichung, Taiwan
| | - Jing-Gung Chung
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
- Department of Biotechnology, Asia University, Taichung, Taiwan
| | - Chih-Yang Huang
- Department of Biotechnology, Asia University, Taichung, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Graduate Institute of Chinese Medical Science, China Medical University, Taichung, Taiwan
| | - Jai-Sing Yang
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Yuan-Man Hsu
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
| | - Mei-Chin Yin
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
- Department of Food Nutrition and Health Biotechnology, Asia University, Taichung, Taiwan
| | - Te-Mao Li
- School of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Chih-Hsin Tang
- Department of Biotechnology, Asia University, Taichung, Taiwan
- Department of Pharmacology, School of Medicine, China Medical University, Taichung, Taiwan
- Chinese Medicine Research Center, China Medical University, Taichung, Taiwan
| |
Collapse
|
28
|
Sökeland G, Schumacher U. The functional role of integrins during intra- and extravasation within the metastatic cascade. Mol Cancer 2019; 18:12. [PMID: 30657059 PMCID: PMC6337777 DOI: 10.1186/s12943-018-0937-3] [Citation(s) in RCA: 133] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 12/27/2018] [Indexed: 02/07/2023] Open
Abstract
Formation of distant metastases is by far the most common cause of cancer-related deaths. The process of metastasis formation is complex, and within this complex process the formation of migratory cells, the so called epithelial mesenchymal transition (EMT), which enables cancer cells to break loose from the primary tumor mass and to enter the bloodstream, is of particular importance. To break loose from the primary cancer, cancer cells have to down-regulate the cell-to-cell adhesion molecuIes (CAMs) which keep them attached to neighboring cancer cells. In contrast to this downregulation of CAMS in the primary tumor, cancer cells up-regulate other types of CAMs, that enable them to attach to the endothelium in the organ of the future metastasis. During EMT, the expression of cell-to-cell and cell-to-matrix adhesion molecules and their down- and upregulation is therefore critical for metastasis formation. Tumor cells mimic leukocytes to enable transmigration of the endothelial barrier at the metastatic site. The attachment of leukocytes/cancer cells to the endothelium are mediated by several CAMs different from those at the site of the primary tumor. These CAMs and their ligands are organized in a sequential row, the leukocyte adhesion cascade. In this adhesion process, integrins and their ligands are centrally involved in the molecular interactions governing the transmigration. This review discusses the integrin expression patterns found on primary tumor cells and studies whether their expression correlates with tumor progression, metastatic capacity and prognosis. Simultaneously, further possible, but so far unclearly characterized, alternative adhesion molecules and/or ligands, will be considered and emerging therapeutic possibilities reviewed.
Collapse
Affiliation(s)
- Greta Sökeland
- Institute of Anatomy and Experimental Morphology, University Cancer Center, University Medical Center Hamburg Eppendorf, Martinistraße 52, 20246, Hamburg, Germany.
| | - Udo Schumacher
- Institute of Anatomy and Experimental Morphology, University Cancer Center, University Medical Center Hamburg Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| |
Collapse
|
29
|
Owczarczyk-Saczonek A, Lahuta LB, Ligor M, Placek W, Górecki RJ, Buszewski B. The Healing-Promoting Properties of Selected Cyclitols-A Review. Nutrients 2018; 10:nu10121891. [PMID: 30513929 PMCID: PMC6316775 DOI: 10.3390/nu10121891] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Revised: 11/19/2018] [Accepted: 11/29/2018] [Indexed: 12/16/2022] Open
Abstract
INTRODUCTION Myo-inositol and its derivatives cyclitols play an important role in the processes of cell regulation, signal transduction, osmoregulation, and ion channel physiology, and are a component of the cell membrane. Free cyclitols present in food or released during the degradation of galactosyl cyclitols by bacteria (in digestive tract) show some physiological benefits. AIM The aim of this paper is to present and analyze the documented data about curative and healing properties of cyclitols. RESULTS AND DISCUSSION Cyclitols are well known compounds in the treatment of an accompanied diabetes insulin resistance, and also obesity and polycystic ovarian syndrome. d-chiro-Inositol deficiency exacerbates insulin resistance in the liver, muscles, and fat, while depletion of myo-inositol results in the development of diabetic complications. Cyclitols are successfully applied in treatment of polycystic ovarian syndrome, simultaneous are observed effective reducing of BMI, improving the hormonal profile, and increasing fertility. Moreover, cyclitols have anti-atherogenic, anti-oxidative, anti-inflammatory, and anti-cancer properties. CONCLUSION The properties of cyclitols may be a good therapeutic option in the reduction of metabolically induced inflammation. Due to well drugs tolerance and low toxicity of these compounds, cyclitols are recommend for pregnant women and also for children. Another advantage is their widespread presence and easy availability, which encourages their use in medicine.
Collapse
Affiliation(s)
- Agnieszka Owczarczyk-Saczonek
- Department of Dermatology, Sexually Transmitted Diseases and Clinical Immunology, University of Warmia and Mazury in Olsztyn, 10-229 Olsztyn, Poland.
| | - Lesław Bernard Lahuta
- Department of Plant Physiology, Genetics and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-229 Olsztyn, Poland.
| | - Magdalena Ligor
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, 87-100 Torun, Poland.
| | - Waldemar Placek
- Department of Dermatology, Sexually Transmitted Diseases and Clinical Immunology, University of Warmia and Mazury in Olsztyn, 10-229 Olsztyn, Poland.
| | - Ryszard Józef Górecki
- Department of Plant Physiology, Genetics and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-229 Olsztyn, Poland.
| | - Bogusław Buszewski
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, 87-100 Torun, Poland.
| |
Collapse
|
30
|
López-Domènech S, Bañuls C, de Marañón AM, Abab-Jiménez Z, Morillas C, Gómez-Abril SÁ, Rovira-Llopis S, Víctor VM, Hernández-Mijares A, Rocha M. Pinitol alleviates systemic inflammatory cytokines in human obesity by a mechanism involving unfolded protein response and sirtuin 1. Clin Nutr 2018; 37:2036-2044. [PMID: 29042127 DOI: 10.1016/j.clnu.2017.09.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 07/28/2017] [Accepted: 09/11/2017] [Indexed: 01/08/2023]
Abstract
BACKGROUND & AIMS It is known that pinitol acts as a mediator of the insulin-signaling pathway, though little is known about its anti-inflammatory effect in human obesity. Therefore, this study aimed to evaluate the effect of pinitol on peripheral blood mononuclear cells (PBMCs) and visceral (VAT) and subcutaneous adipose tissues (SAT), focusing on the involvement of endoplasmic reticulum (ER) stress and sirtuin 1 (SIRT1). METHODS In the intervention study, thirteen obese subjects consumed a pinitol-enriched beverage (PEB) for 12 weeks. In the ex vivo study, a biopsy of VAT and SAT was removed from thirty-four obese patients and incubated with D-pinitol for 48 h. RESULTS The consumption of a PEB reduced circulating levels of IL6 and TNFα and increased SIRT1 protein expression in PBMCs. Ex vivo experiments showed a decline in gene expression and protein levels of IL6 and TNFα in SAT and a reduction in ER stress parameters (ATF6 and CHOP), while VAT markers remained unaltered. Differential gene expression profiles revealed an up-regulation of SIRT1 and insulin-signaling pathways in SAT with respect to VAT. CONCLUSIONS Our results suggests that pinitol down-regulates the inflammatory pathway which may lead to novel treatment options for obesity and its metabolic disorders.
Collapse
Affiliation(s)
- Sandra López-Domènech
- Service of Endocrinology and Nutrition, University Hospital Doctor Peset-FISABIO, Avda. Gaspar Aguilar 90, 46017 Valencia, Spain
| | - Celia Bañuls
- Service of Endocrinology and Nutrition, University Hospital Doctor Peset-FISABIO, Avda. Gaspar Aguilar 90, 46017 Valencia, Spain; Institute of Health Research INCLIVA, University of Valencia, Avda. Menéndez Pelayo 4, 46010 Valencia, Spain
| | - Aranzazu M de Marañón
- Service of Endocrinology and Nutrition, University Hospital Doctor Peset-FISABIO, Avda. Gaspar Aguilar 90, 46017 Valencia, Spain
| | - Zaida Abab-Jiménez
- Service of Endocrinology and Nutrition, University Hospital Doctor Peset-FISABIO, Avda. Gaspar Aguilar 90, 46017 Valencia, Spain
| | - Carlos Morillas
- Service of Endocrinology and Nutrition, University Hospital Doctor Peset-FISABIO, Avda. Gaspar Aguilar 90, 46017 Valencia, Spain
| | - Segundo Ángel Gómez-Abril
- Service of General and Digestive Surgery, University Hospital Doctor Peset-FISABIO, Avda. Gaspar Aguilar 90, 46017 Valencia, Spain
| | - Susana Rovira-Llopis
- Service of Endocrinology and Nutrition, University Hospital Doctor Peset-FISABIO, Avda. Gaspar Aguilar 90, 46017 Valencia, Spain; Institute of Health Research INCLIVA, University of Valencia, Avda. Menéndez Pelayo 4, 46010 Valencia, Spain
| | - Víctor Manuel Víctor
- Service of Endocrinology and Nutrition, University Hospital Doctor Peset-FISABIO, Avda. Gaspar Aguilar 90, 46017 Valencia, Spain; Institute of Health Research INCLIVA, University of Valencia, Avda. Menéndez Pelayo 4, 46010 Valencia, Spain; CIBER CB06/04/0071 Research Group, CIBER Hepatic and Digestive Diseases, University of Valencia, Av Blasco Ibáñez 13, 46010 Valencia, Spain; Department of Physiology, Faculty of Medicine, University of Valencia, Av Blasco Ibáñez 13, 46010 Valencia, Spain
| | - Antonio Hernández-Mijares
- Service of Endocrinology and Nutrition, University Hospital Doctor Peset-FISABIO, Avda. Gaspar Aguilar 90, 46017 Valencia, Spain; Institute of Health Research INCLIVA, University of Valencia, Avda. Menéndez Pelayo 4, 46010 Valencia, Spain; Department of Medicine, Faculty of Medicine, University of Valencia, Av Blasco Ibáñez 13, 46010 Valencia, Spain.
| | - Milagros Rocha
- Service of Endocrinology and Nutrition, University Hospital Doctor Peset-FISABIO, Avda. Gaspar Aguilar 90, 46017 Valencia, Spain; Institute of Health Research INCLIVA, University of Valencia, Avda. Menéndez Pelayo 4, 46010 Valencia, Spain; CIBER CB06/04/0071 Research Group, CIBER Hepatic and Digestive Diseases, University of Valencia, Av Blasco Ibáñez 13, 46010 Valencia, Spain.
| |
Collapse
|
31
|
Almeida CMD, Lima RDF, Costa TKVLD, Sousa IMDO, Cabral EC, Basting RT, Torre AD, Cavalcanti YW, Rosalen PL, Duarte MCT, Ruiz ALTG, Foglio MA, Godoy GP, Costa EMMDB. Antifungal, antibiofilm, and antiproliferative activities of Guapira graciliflora Mart. Braz Oral Res 2018; 32:e41. [DOI: 10.1590/1807-3107bor-2018.vol32.0041] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 04/05/2018] [Indexed: 11/21/2022] Open
|
32
|
Lin CY, Tzeng HE, Li TM, Chen HT, Lee Y, Yang YC, Wang SW, Yang WH, Tang CH. WISP-3 inhibition of miR-452 promotes VEGF-A expression in chondrosarcoma cells and induces endothelial progenitor cells angiogenesis. Oncotarget 2018; 8:39571-39581. [PMID: 28465477 PMCID: PMC5503633 DOI: 10.18632/oncotarget.17142] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 03/29/2017] [Indexed: 12/24/2022] Open
Abstract
Chondrosarcoma is the second most prevalent general primary tumor of bone following osteosarcoma. Chondrosarcoma development may be linked to angiogenesis, which is principally elicited by vascular endothelial growth factor-A (VEGF-A). VEGF-A level has been recognized as a prognostic marker in angiogenesis. WNT1-inducible signaling pathway protein-3 (WISP)-3/CCN6 belongs to the CCN family and is involved in regulating several cellular functions, including cell proliferation, differentiation, and migration. Nevertheless, the effect of WISP-3 on VEGF-A production and angiogenesis in human chondrosarcoma remains largely unknown. This current study shows that WISP-3 promoted VEGF-A production and induced angiogenesis of human endothelial progenitor cells. Moreover, WISP-3-enhanced VEGF-A expression and angiogenesis involved the c-Src and p38 signaling pathways, while miR-452 expression was negatively affected by WISP-3 via the c-Src and p38 pathways. Our results illustrate the clinical significance of WISP-3, VEGF-A and miR-452 in human chondrosarcoma patients. WISP-3 may illustrate a novel therapeutic target in the metastasis and angiogenesis of chondrosarcoma.
Collapse
Affiliation(s)
- Chih-Yang Lin
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan
| | - Huey-En Tzeng
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan.,Department of Internal Medicine, Division of Hematology and Oncology, Taipei Medical University Hospital, Taipei, Taiwan
| | - Te-Mao Li
- School of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Hsien-Te Chen
- School of Chinese Medicine, China Medical University, Taichung, Taiwan.,Department of Orthopedic Surgery, China Medical University Hospital, Taichung, Taiwan
| | - Yi Lee
- School of Pharmacy, China Medical University, Taichung, Taiwan
| | - Yi-Chen Yang
- Department of Nursing, National Taichung University of Science and Technology, Taichung, Taiwan
| | - Shih-Wei Wang
- Department of Medicine, Mackay Medical College, New Taipei City, Taiwan
| | - Wei-Hung Yang
- School of Chinese Medicine, China Medical University, Taichung, Taiwan.,Department of Nursing, National Taichung University of Science and Technology, Taichung, Taiwan.,Department of Orthopedic Surgery, Taichung Hospital, Ministry of Health and Welfare, Taichung, Taiwan
| | - Chih-Hsin Tang
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan.,Department of Pharmacology, School of Medicine, China Medical University, Taichung, Taiwan.,Department of Biotechnology, College of Health Science, Asia University, Taichung, Taiwan
| |
Collapse
|
33
|
Bauhinia variegata candida Fraction Induces Tumor Cell Death by Activation of Caspase-3, RIP, and TNF-R1 and Inhibits Cell Migration and Invasion In Vitro. BIOMED RESEARCH INTERNATIONAL 2018; 2018:4702481. [PMID: 29770331 PMCID: PMC5889885 DOI: 10.1155/2018/4702481] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Revised: 12/28/2017] [Accepted: 02/13/2018] [Indexed: 11/17/2022]
Abstract
Metastasis remains the most common cause of death in cancer patients. Inhibition of metalloproteinases (MMPs) is an interesting approach to cancer therapy because of their role in the degradation of extracellular matrix (ECM), cell-cell, and cell-ECM interactions, modulating key events in cell migration and invasion. Herein, we show the cytotoxic and antimetastatic effects of the third fraction (FR3) from Bauhinia variegata candida (Bvc) stem on human cervical tumor cells (HeLa) and human peripheral blood mononuclear cells (PBMCs). FR3 inhibited MMP-2 and MMP-9 activity, indicated by zymogram. This fraction was cytotoxic to HeLa cells and noncytotoxic to PBMCs and decreased HeLa cell migration and invasion. FR3 is believed to stimulate extrinsic apoptosis together with necroptosis, assessed by western blotting. FR3 inhibited MMP-2 activity in the HeLa supernatant, differently from the control. The atomic mass spectrometry (ESI-MS) characterization suggested the presence of glucopyranosides, D-pinitol, fatty acids, and phenolic acid. These findings provide insight suggesting that FR3 contains components with potential tumor-selective cytotoxic action in addition to the action on the migration of tumor cells, which may be due to inhibition of MMPs.
Collapse
|
34
|
Wang X, Fang G, Pang Y. Chinese Medicines in the Treatment of Prostate Cancer: From Formulas to Extracts and Compounds. Nutrients 2018; 10:E283. [PMID: 29495626 PMCID: PMC5872701 DOI: 10.3390/nu10030283] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 02/25/2018] [Accepted: 02/26/2018] [Indexed: 12/13/2022] Open
Abstract
In order to fully understand the progresses and achievements in Chinese medicines for the treatment of prostate cancer, we summarize all the available reports on formulas, extracts, and compounds of Chinese medicines against prostate cancer. A number of clinical trials verified that traditional Chinese formulas had some unique advantages in the treatment of prostate cancer. Many Chinese medicine extracts could protect against prostate cancer, and many compounds isolated from Chinese traditional medicines showed a clear anti-prostate cancer effect. However, Chinese medicines are facing many problems regarding their multicomponent nature, complicated mechanisms of action, and high doses required for therapy. Herein, we review the functions of Chinese medicines in prostate cancer and focus on their mechanisms. The review will deepen the understanding of Chinese medicines potential in the anti-prostate cancer field. In addition, we put forward a question concerning the current research on Chinese medicines: in order to better illustrate that Chinese medicines can be used in the clinical treatment of prostate cancer, should our research focus on formulas, extracts, or compounds?
Collapse
Affiliation(s)
- Xueni Wang
- Guangxi Zhuang Yao Medicine Center of Engineering and Technology, Guangxi University of Chinese Medicine, 13 Wuhe Road, Qingxiu District, Nanning 530200, China.
| | - Gang Fang
- Laboratory of Zhuang Medicine Prescriptions Basis and Application Research, Guangxi University of Chinese Medicine, 179 Mingxiudong Road, Xixiangtang District, Nanning 530001, China.
| | - Yuzhou Pang
- Guangxi Zhuang Yao Medicine Center of Engineering and Technology, Guangxi University of Chinese Medicine, 13 Wuhe Road, Qingxiu District, Nanning 530200, China.
- Laboratory of Zhuang Medicine Prescriptions Basis and Application Research, Guangxi University of Chinese Medicine, 179 Mingxiudong Road, Xixiangtang District, Nanning 530001, China.
| |
Collapse
|
35
|
Juan-Rivera MC, Martínez-Ferrer M. Integrin Inhibitors in Prostate Cancer. Cancers (Basel) 2018; 10:E44. [PMID: 29415418 PMCID: PMC5836076 DOI: 10.3390/cancers10020044] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 01/12/2018] [Accepted: 01/19/2018] [Indexed: 01/20/2023] Open
Abstract
Prostate cancer (PCa) is the most frequently diagnosed cancer and the third highest cause of cancer-related deaths in men in the U.S. The development of chemotherapeutic agents that can bind PCa tumor cells with high specificity is critical in order to increase treatment effectiveness. Integrin receptors and their corresponding ligands have different expression patterns in PCa cells. They have been identified as promising targets to inhibit pathways involved in PCa progression. Currently, several compounds have proven to target specific integrins and their subunits in PCa cells. In this article, we review the role of integrins inhibitors in PCa and their potential as therapeutic targets for PCa treatments. We have discussed the following: natural compounds, monoclonal antibodies, statins, campothecins analog, aptamers, d-aminoacid, and snake venom. Recent studies have shown that their mechanisms of action result in decrease cell migration, cell invasion, cell proliferation, and metastasis of PCa cells.
Collapse
Affiliation(s)
- Maylein C Juan-Rivera
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Puerto Rico, Medical Sciences Campus, San Juan, PR 00936, USA.
- University of Puerto Rico Comprehensive Cancer Center, Medical Sciences Campus, San Juan, PR 00936, USA.
| | - Magaly Martínez-Ferrer
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Puerto Rico, Medical Sciences Campus, San Juan, PR 00936, USA.
- University of Puerto Rico Comprehensive Cancer Center, Medical Sciences Campus, San Juan, PR 00936, USA.
| |
Collapse
|
36
|
Koh ES, Kim S, Kim M, Hong YA, Shin SJ, Park CW, Chang YS, Chung S, Kim HS. D‑Pinitol alleviates cyclosporine A‑induced renal tubulointerstitial fibrosis via activating Sirt1 and Nrf2 antioxidant pathways. Int J Mol Med 2018; 41:1826-1834. [PMID: 29393366 PMCID: PMC5810208 DOI: 10.3892/ijmm.2018.3408] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 01/02/2018] [Indexed: 12/15/2022] Open
Abstract
Although the mechanism of cyclosporine A (CsA)-induced renal injury remains to be fully elucidated, accumulating evidence suggests that oxidative stress is critical in producing CsA-induced structural and functional renal impairment. The present study investigated the effect of D-pinitol, a cyclitol present in soybean, on chronic CsA nephropathy. Male ICR mice were treated with vehicle, CsA (30 mg/kg/day), D-pinitol (50 mg/kg/day) or a combination of CsA and D-pinitol for 28 days. To assess which pathway responding to oxidative stress is augmented by D-pinitol, the expression levels of several antioxidant enzymes and their possible regulators were measured. Treatment with D-pinitol significantly suppressed the increase of serum creatinine and decrease of urine osmolality, compared with the CsA control group. Histological examination of Masson's trichrome- and α-smooth muscle actin-stained renal tissue demonstrated that the CsA-induced tubulointerstitial fibrosis and inflammation were attenuated by D-pinitol. Following the administration of D-pinitol, there were increased expression levels of heme oxygenase-1, NAD(P)H:quinone oxidoreductase 1, superoxide dismutase 1 and catalase in CsA-treated kidneys. In addition, D-pinitol increased the level of sirtuin 1 (Sirt1), and the total and nuclear expression levels of nuclear erythroid factor 2-related factor 2 (Nrf2), suggesting that activation of the Sirt1 and Nrf2 pathways may induce the cellular antioxi dant system against CsA-induced nephropathy. Collectively, these data suggested that D-pinitol may protect the kidney from CsA-induced fibrosis, and that this renoprotective effect of D-pinitol was due to the inhibition of oxidative stress through the activation of Sirt1 and Nrf2, and the subsequent enhancement of antioxidant enzymes.
Collapse
Affiliation(s)
- Eun Sil Koh
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Soojeong Kim
- Department of Biochemistry, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Minyoung Kim
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Yu Ah Hong
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Seok Joon Shin
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Cheol Whee Park
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Yoon Sik Chang
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Sungjin Chung
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Ho-Shik Kim
- Department of Biochemistry, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| |
Collapse
|
37
|
Woo JK, Jung HJ, Park JY, Kang JH, Lee BI, Shin D, Nho CW, Cho SY, Seong JK, Oh SH. Daurinol blocks breast and lung cancer metastasis and development by inhibition of focal adhesion kinase (FAK). Oncotarget 2017; 8:57058-57071. [PMID: 28915654 PMCID: PMC5593625 DOI: 10.18632/oncotarget.18983] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 06/18/2017] [Indexed: 01/16/2023] Open
Abstract
FAK overexpression has been reported in diverse primary and metastatic tumor tissues, supporting its pro-tumorigenic and pro-metastatic roles. Therefore, we have developed a neo-treatment strategy using daurinol to effectively treat cancer metastasis. Daurinol blocked cancer cell migration and invasion in vitro and exhibited anti-metastatic activity in an experimental metastasis model of breast and lung cancer. Daurinol selectively inhibited phosphorylation of FAK at Tyr925, Tyr576/577, and Tyr397 sites in a dose- and time-dependent manner. Daurinol effectively suppressed migration and invasion of MDA-MB-231 and A549 cancer cells. These data were associated with inhibition of expression and secretion of invasion factors, including matrix metalloproteinase (MMP) 2, MMP9, and urokinase plasminogen activator (uPA). Consistent with these in vitro results, daurinol (10 mg/kg; Oral gavage) effectively inhibited breast and lung cancer metastasis in a mouse model. In addition, daurinol showed strong suppressive activity of cell survival as revealed by colony formation assays. Analysis of cellular phenotypes revealed that inhibition of FAK phosphorylation in cancer cells limited colony formation, cell migration, and invasion, thereby reducing the cell proliferation rate. Furthermore, daurinol significantly reduced tumor development in 4-(methylnitrosoamino)-1-(3-pyridyl)-1-butanone (NNK)/benzo(a)pyrene (BaP)-treated A/J mice. Our results suggest that daurinol suppresses lung metastasis through inhibition of migration and survival via blockade of FAK activity.
Collapse
Affiliation(s)
- Jong Kyu Woo
- Gachon Institute of Pharmaceutical Sciences, Gachon University, Incheon, Republic of Korea.,Korea Mouse Phenotyping Center, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Hyun Jin Jung
- Korea Mouse Phenotyping Center, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Ji-Youn Park
- Gachon Institute of Pharmaceutical Sciences, Gachon University, Incheon, Republic of Korea
| | - Ju-Hee Kang
- Gachon Institute of Pharmaceutical Sciences, Gachon University, Incheon, Republic of Korea
| | - Byung Il Lee
- National Cancer Center, Goyang-si, Republic of Korea
| | - DongYun Shin
- Gachon Institute of Pharmaceutical Sciences, Gachon University, Incheon, Republic of Korea
| | - Chu Won Nho
- Korea Institute of Science and Technology (KIST), Gangneung Institute, Gangneung-si, Republic of Korea
| | - Soo-Young Cho
- National Cancer Center, Goyang-si, Republic of Korea
| | - Je Kyung Seong
- Korea Mouse Phenotyping Center, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Seung Hyun Oh
- Gachon Institute of Pharmaceutical Sciences, Gachon University, Incheon, Republic of Korea
| |
Collapse
|
38
|
Immunomodulatory effects of ethanol extract of germinated ice plant (Mesembryanthemum crystallinum). Lab Anim Res 2017; 33:32-39. [PMID: 28400837 PMCID: PMC5385280 DOI: 10.5625/lar.2017.33.1.32] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 02/10/2017] [Accepted: 03/16/2017] [Indexed: 11/21/2022] Open
Abstract
The purpose of this study was to investigate the immunomodulatory activity of ice plant (Mesembryanthemum crystallinum) extract (IPE) in vitro and in vivo. Raji (a human B cell line) and Jurkat (a human T cell line) cells were treated with various doses of IPE and cell proliferation was measured by WST assay. Results showed that IPE promoted the proliferation of both Raji and Jurkat cells in a dose-dependent manner. IPE also enhanced IL-6 and TNF-α production in macrophages in the presence of lipopolysaccharide (LPS), although IPE alone did not induce cytokine production. Moreover, IPE treatment upregulated iNOS gene expression in macrophages in a time- and dose-dependent manner and led to the production of nitric oxide in macrophages in the presence of IFNγ. In vivo studies revealed that oral administration of IPE for 2 weeks increased the differentiation of CD4+, CD8+, and CD19+ cells in splenocytes. These findings suggested that IPE has immunomodulatory effects and could be developed as an immunomodulatory supplement.
Collapse
|
39
|
Eser F, Mutlu Altundag E, Gedik G, Demirtas I, Onal A, Selvi B. Anti-inflammatory effect of D-pinitol isolated from the leaves of Colutea cilicica Boiss et Bal. on K562 cells. ACTA ACUST UNITED AC 2017. [DOI: 10.1515/tjb-2016-0120] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AbstractAim:D-pinitol, a natural compound has shown various biological and pharmacological effects. Last studies are focused on the determination of its further pharmacological activities including mainly biological activity. Therefore, isolation of D-pinitol from the leaves ofMaterials and methods:Isolation of D-pinitol was performed by column chromatography. Chemical structure of the compound was confirmed by spectroscopic methods includingResults:Stimulation of cells with D-pinitol (0–80 μM) was observed for 24, 48 and 72 h. It is determined that D-pinitol inhibited protein expression of Cox-2 in K562 cells. We observed that Poly (ADP-ribose) polymerase (PARP) protein expression did not change, but Cox-2 protein expression reduced with non-cytotoxic concentrations of D-pinitol.Conclusion:It is concluded that D-pinitol did not affect cell proliferation and apoptosis in K562 cells however reduced the inflammation, significantly. These results show that D-pinitol may be anti-inflammatory agent for the treatment of K562 cells.
Collapse
|
40
|
Wang CQ, Huang YW, Wang SW, Huang YL, Tsai CH, Zhao YM, Huang BF, Xu GH, Fong YC, Tang CH. Amphiregulin enhances VEGF-A production in human chondrosarcoma cells and promotes angiogenesis by inhibiting miR-206 via FAK/c-Src/PKCδ pathway. Cancer Lett 2016; 385:261-270. [PMID: 27826039 DOI: 10.1016/j.canlet.2016.10.010] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 10/01/2016] [Accepted: 10/03/2016] [Indexed: 12/28/2022]
Abstract
Chondrosarcoma is the second most common primary malignancy of bone after myeloma and osteosarcoma. Chondrosarcoma development may be linked to angiogenesis, which is principally elicited by vascular endothelial growth factor-A (VEGF-A). The expression of VEGF-A has been recognized as a prognostic marker in angiogenesis. Amphiregulin (AR), an epidermal growth factor receptor ligand, promotes tumor proliferation, metastasis and angiogenesis. However, the role of AR in VEGF-A expression and angiogenesis in human chondrosarcoma remains largely unknown. This current study shows that AR promoted VEGF-A production and induced angiogenesis of human endothelial progenitor cells. Moreover, AR-enhanced VEGF-A expression and angiogenesis involved the FAK, c-Src and PKCδ signaling pathways, while miR-206 expression was negatively mediated by AR via the FAK, c-Src and PKCδ pathways. Our results illustrate the clinical significance between AR, VEGF-A and miR-206, as well as tumor stage, in human chondrosarcoma. AR may represent a novel therapeutic target in the metastasis and angiogenesis of chondrosarcoma.
Collapse
Affiliation(s)
- Chao-Qun Wang
- Department of Pathology, Affiliated Dongyang Hospital of Wenzhou Medical University, Dongyang, China
| | - Yu-Wen Huang
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan
| | - Shih-Wei Wang
- Department of Medicine, Mackay Medical College, New Taipei City, Taiwan
| | - Yuan-Li Huang
- Department of Biotechnology, College of Health Science, Asia University, Taichung, Taiwan
| | - Chun-Hao Tsai
- School of Medicine, China Medical University, Taichung, Taiwan; Department of Orthopedic Surgery, China Medical University Hospital, Taichung, Taiwan
| | - Yong-Ming Zhao
- Department of Surgical Oncology, Affiliated Dongyang Hospital of Wenzhou Medical University, Dongyang, China
| | - Bi-Fei Huang
- Department of Pathology, Affiliated Dongyang Hospital of Wenzhou Medical University, Dongyang, China
| | - Guo-Hong Xu
- Department of Orthopedics, Dongyang People's Hospital, Wenzhou Medical University, Dongyang, China
| | - Yi-Chin Fong
- Department of Sports Medicine, College of Health Care, China Medical University, Taichung, Taiwan; Department of Orthopedic Surgery, China Medical University Beigang Hospital, Yunlin County, Taiwan
| | - Chih-Hsin Tang
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan; Department of Biotechnology, College of Health Science, Asia University, Taichung, Taiwan; School of Medicine, China Medical University, Taichung, Taiwan.
| |
Collapse
|
41
|
Sacchi S, Marinaro F, Tondelli D, Lui J, Xella S, Marsella T, Tagliasacchi D, Argento C, Tirelli A, Giulini S, La Marca A. Modulation of gonadotrophin induced steroidogenic enzymes in granulosa cells by d-chiroinositol. Reprod Biol Endocrinol 2016; 14:52. [PMID: 27582109 PMCID: PMC5006365 DOI: 10.1186/s12958-016-0189-2] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 08/23/2016] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND d-chiroinositol (DCI) is a inositolphosphoglycan (IPG) involved in several cellular functions that control the glucose metabolism. DCI functions as second messenger in the insulin signaling pathway and it is considered an insulin sensitizer since deficiency in tissue availability of DCI were shown to cause insulin resistance (IR). Polycystic ovary syndrome (PCOS) is a pathological condition that is often accompanied with insulin resistance. DCI can positively affects several aspect of PCOS etiology decreasing the total and free testosterone, lowering blood pressure, improving the glucose metabolism and increasing the ovulation frequency. The purpose of this study was to evaluate the effects of DCI and insulin combined with gonadotrophins namely follicle-stimulating hormone (FSH) and luteinizing hormone (LH) on key steroidogenic enzymes genes regulation, cytochrome P450 family 19 subfamily A member 1 (CYP19A1) and cytochrome P450 side-chain cleavage (P450scc) in primary cultures of human granulosa cells (hGCs). We also investigated whether DCI, being an insulin-sensitizer would be able to counteract the expected stimulator activity of insulin on human granulosa cells (hGCs). METHODS The study was conducted on primary cultures of hGCs. Gene expression was evaluated by RT-qPCR method. Statistical analysis was performed applying student t-test, as appropriate (P < 0.05) set for statistical significance. RESULTS DCI is able to reduce the gene expression of CYP19A1, P450scc and insulin-like growth factor 1 receptor (IGF-1R) in dose-response manner. The presence of DCI impaired the increased expression of steroidogenic enzyme genes generated by the insulin treatment in gonadotrophin-stimulated hGCs. CONCLUSIONS Insulin acts as co-gonadotrophin increasing the expression of steroidogenic enzymes genes in gonadotrophin-stimulated granulosa cells. DCI is an insulin-sensitizer that counteracts this action by reducing the expression of the genes CYP19A1, P450scc and IGF-1R. The ability of DCI to modulate in vitro ovarian activity of insulin could in part explain its beneficial effect when used as treatment for conditions associated to insulin resistance.
Collapse
Affiliation(s)
- Sandro Sacchi
- Mother-Infant Department, University of Modena and Reggio Emilia, Via del pozzo 41, 41100 Modena, Italy
| | - Federica Marinaro
- Mother-Infant Department, University of Modena and Reggio Emilia, Via del pozzo 41, 41100 Modena, Italy
| | - Debora Tondelli
- Mother-Infant Department, University of Modena and Reggio Emilia, Via del pozzo 41, 41100 Modena, Italy
| | - Jessica Lui
- Mother-Infant Department, University of Modena and Reggio Emilia, Via del pozzo 41, 41100 Modena, Italy
| | - Susanna Xella
- Mother-Infant Department, University of Modena and Reggio Emilia, Via del pozzo 41, 41100 Modena, Italy
| | - Tiziana Marsella
- Mother-Infant Department, University of Modena and Reggio Emilia, Via del pozzo 41, 41100 Modena, Italy
| | - Daniela Tagliasacchi
- Mother-Infant Department, University of Modena and Reggio Emilia, Via del pozzo 41, 41100 Modena, Italy
| | - Cindy Argento
- Mother-Infant Department, University of Modena and Reggio Emilia, Via del pozzo 41, 41100 Modena, Italy
| | - Alessandra Tirelli
- Mother-Infant Department, University of Modena and Reggio Emilia, Via del pozzo 41, 41100 Modena, Italy
| | - Simone Giulini
- Mother-Infant Department, University of Modena and Reggio Emilia, Via del pozzo 41, 41100 Modena, Italy
| | - Antonio La Marca
- University of Modena and Reggio Emilia and Clinica Eugin Modena, Modena, Italy
| |
Collapse
|
42
|
Thomas MP, Mills SJ, Potter BVL. The "Other" Inositols and Their Phosphates: Synthesis, Biology, and Medicine (with Recent Advances in myo-Inositol Chemistry). Angew Chem Int Ed Engl 2016; 55:1614-50. [PMID: 26694856 PMCID: PMC5156312 DOI: 10.1002/anie.201502227] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Indexed: 12/24/2022]
Abstract
Cell signaling via inositol phosphates, in particular via the second messenger myo-inositol 1,4,5-trisphosphate, and phosphoinositides comprises a huge field of biology. Of the nine 1,2,3,4,5,6-cyclohexanehexol isomers, myo-inositol is pre-eminent, with "other" inositols (cis-, epi-, allo-, muco-, neo-, L-chiro-, D-chiro-, and scyllo-) and derivatives rarer or thought not to exist in nature. However, neo- and d-chiro-inositol hexakisphosphates were recently revealed in both terrestrial and aquatic ecosystems, thus highlighting the paucity of knowledge of the origins and potential biological functions of such stereoisomers, a prevalent group of environmental organic phosphates, and their parent inositols. Some "other" inositols are medically relevant, for example, scyllo-inositol (neurodegenerative diseases) and d-chiro-inositol (diabetes). It is timely to consider exploration of the roles and applications of the "other" isomers and their derivatives, likely by exploiting techniques now well developed for the myo series.
Collapse
Affiliation(s)
- Mark P Thomas
- Department of Pharmacy & Pharmacology, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | - Stephen J Mills
- Department of Pharmacy & Pharmacology, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | - Barry V L Potter
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, UK.
| |
Collapse
|
43
|
Thomas MP, Mills SJ, Potter BVL. Die “anderen” Inositole und ihre Phosphate: Synthese, Biologie und Medizin (sowie jüngste Fortschritte in dermyo-Inositolchemie). Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201502227] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Mark P. Thomas
- Department of Pharmacy & Pharmacology; University of Bath; Claverton Down Bath BA2 7AY Vereinigtes Königreich
| | - Stephen J. Mills
- Department of Pharmacy & Pharmacology; University of Bath; Claverton Down Bath BA2 7AY Vereinigtes Königreich
| | - Barry V. L. Potter
- Department of Pharmacology; University of Oxford; Mansfield Road Oxford OX1 3QT Vereinigtes Königreich
| |
Collapse
|
44
|
d-pinitol mitigates tumor growth by modulating interleukins and hormones and induces apoptosis in rat breast carcinogenesis through inhibition of NF-κB. J Physiol Biochem 2015; 71:191-204. [DOI: 10.1007/s13105-015-0397-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Accepted: 02/24/2015] [Indexed: 02/08/2023]
|
45
|
Xu CS, Wang ZF, Huang XD, Dai LM, Cao CJ, Li ZQ. Involvement of ROS-alpha v beta 3 integrin-FAK/Pyk2 in the inhibitory effect of melatonin on U251 glioma cell migration and invasion under hypoxia. J Transl Med 2015; 13:95. [PMID: 25889845 PMCID: PMC4371719 DOI: 10.1186/s12967-015-0454-8] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 03/06/2015] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Melatonin, a well-known antioxidant, has been shown to possess anti-invasive properties for glioma. However, little is known about the effect of melatonin on glioma cell migration and invasion under hypoxia, which is a crucial microenvironment for tumor progress. In addition, focal adhesion kinase (FAK) and proline-rich tyrosine kinase 2 (Pyk2) are closely associated with cell migration and invasion. Therefore, we investigated the possible role of these kinases and its related signaling in the regulation of human U251 glioma cells behavior by melatonin under hypoxia. METHODS The abilities of migration and invasion of U251 glioma cells were determined by wound healing and transwell assay in vitro. The intracellular production of reactive oxygen species (ROS) was measured by using the fluorescent probe 6-carboxy-2', 7'-dichorodihydrofluorescein diacetate (DCFH-DA). Immunofluorescence experiments and western blotting analysis were used to detect the expression level of protein. Small interfering RNAs (siRNA) was used to silence specific gene expression. RESULTS The pharmacologic concentration (1 mM) of melatonin significantly inhibited the migration and invasion of human U251 glioma cells under hypoxia. The inhibitory effect of melatonin was accompanied with the reduced phosphorylation of FAK and Pyk2, and decreased expression of alpha v beta 3 (αvβ3) integrin. Additionally, inhibition of αvβ3 integrin by siRNA reduced the phosphorylation of FAK/Pyk2 and demonstrated the similar anti-tumor effects as melatonin, suggesting the involvement of αvβ3 integrin- FAK/Pyk2 pathway in the anti-migratory and anti-invasive effect of melatonin. It was also found that melatonin treatment decreased the ROS levels in U251 glioma cells cultured under hypoxia. ROS inhibitor apocynin not only inhibited αvβ3 integrin expression and the phosphorylation levels of FAK and Pyk2, but also suppressed the migratory and invasive capacity of U251 glioma cells under hypoxia. CONCLUSIONS These results suggest that melatonin exerts anti-migratory and anti-invasive effects on glioma cells in response to hypoxia via ROS-αvβ3 integrin-FAK/Pyk2 signaling pathways. This provides evidence that melatonin may be a potential therapeutic molecule targeting the hypoxic microenvironment of glioma.
Collapse
Affiliation(s)
- Cheng-Shi Xu
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, PR China.
| | - Ze-Fen Wang
- Department of Physiology, School of basic medical science, Wuhan University, Wuhan, 430071, PR China.
| | - Xiao-Dong Huang
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, PR China. .,Department of Neurosurgery, Taihe Hospital of Shiyan, Shiyan, 442000, PR China.
| | - Li-Ming Dai
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, PR China.
| | - Chang-Jun Cao
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, PR China.
| | - Zhi-Qiang Li
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, PR China. .,Laboratory of Neuro-oncology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, PR China.
| |
Collapse
|
46
|
Abstract
Targeting prostate cancer metastasis has very high therapeutic potential. Prostate cancer is the second most common cause of cancer death among men in the USA, and death results from the development of metastatic disease. In order to metastasize, cancer cells must complete a series of steps that together constitute the metastatic cascade. Each step therefore offers the opportunity for therapeutic targeting. However, practical limitations have served as limiting roadblocks to successfully targeting the metastatic cascade. They include our still-emerging understanding of the underlying biology, as well as the fact that many of the dysregulated processes have critical functionality in otherwise normal cells. We provide a discussion of the underlying biology, as it relates to therapeutic targeting. Therapeutic inroads are rapidly being made, and we present a series of case studies to highlight key points. Finally, future perspectives related to drug discovery for antimetastatic agents are discussed.
Collapse
|
47
|
Lou C, Takahashi K, Irimura T, Saiki I, Hayakawa Y. Identification of Hirsutine as an anti-metastatic phytochemical by targeting NF-κB activation. Int J Oncol 2014; 45:2085-91. [PMID: 25175557 DOI: 10.3892/ijo.2014.2624] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Accepted: 07/22/2014] [Indexed: 11/06/2022] Open
Abstract
Nuclear factor-κB (NF-κB) activation has been implicated not only in carcinogenesis but also in cancer cell invasion and metastatic process; therefore, targeting the NF-κB pathway is an attractive strategy for controlling meta-stasis. Amongst 56 chemically defined compounds derived from natural products, we have identified a new phytochemical compound Hirsutine, which strongly suppresses NF-κB activity in murine 4T1 breast cancer cells. In accordance with the NF-κB inhibition, Hirsutine reduced the metastatic potential of 4T1 cells, as seen in the inhibition of the migration and invasion capacity of 4T1 cells. Hirsutine further inhibited the constitutive expression of MMP-2 and MMP-9 in 4T1 cells, and reduced the in vivo lung metastatic potential of 4T1 cells in the experimental model. Given that the migration of human breast cancer cells was also inhibited, our present study implies that Hirsutine is an attractive phytochemical compound for reducing metastasis potential of cancer cells by regulating tumor-promoting NF-κB activity.
Collapse
Affiliation(s)
- Chenghua Lou
- Division of Pathogenic Biochemistry, Department of Bioscience, Institute of Natural Medicine, University of Toyama, Toyama 930-0194, Japan
| | - Kei Takahashi
- Laboratory of Cancer Biology and Molecular Immunology, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo 113-0033, Japan
| | - Tatsuro Irimura
- Laboratory of Cancer Biology and Molecular Immunology, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo 113-0033, Japan
| | - Ikuo Saiki
- Division of Pathogenic Biochemistry, Department of Bioscience, Institute of Natural Medicine, University of Toyama, Toyama 930-0194, Japan
| | - Yoshihiro Hayakawa
- Division of Pathogenic Biochemistry, Department of Bioscience, Institute of Natural Medicine, University of Toyama, Toyama 930-0194, Japan
| |
Collapse
|
48
|
Lee BH, Lee CC, Wu SC. Ice plant (Mesembryanthemum crystallinum) improves hyperglycaemia and memory impairments in a Wistar rat model of streptozotocin-induced diabetes. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2014; 94:2266-2273. [PMID: 24374864 DOI: 10.1002/jsfa.6552] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 11/20/2013] [Accepted: 12/24/2013] [Indexed: 06/03/2023]
Abstract
BACKGROUND Ice plant (Mesembryanthemum crystallinum) has been used as an anti-diabetic agent in Japan because it contains d-pinitol. The efficacy of ice plant in the regulation of blood glucose is unclear at present. Recently, memory impairment and development of Alzheimer's disease found in diabetic patients are thought to be caused by high blood glucose. The mechanism by which ice plant protects against the impairment of memory and learning abilities caused by high blood glucose remains unclear. The aim of this study was to evaluate the protection of ice plant water extracts (IPE) and D-pinitol against memory impairments in a Wistar rat model of streptozotocin (STZ)-induced diabetes. We hypothesised that IPE and D-pinitol could suppress blood glucose and elevate insulin sensitivity in these rats. RESULTS For memory evaluation, IPE and D-pinitol also improved the passive avoidance task and the working memory task. In addition, inhibition of acetylcholinesterase activity in hippocampus and cortex was found in this rat model administered IPE or D-pinitol. IPE and D-pinitol also markedly elevated superoxide dismutase activity against oxidative stress and reduced malondialdehyde production in hippocampus and cortex of the rats. CONCLUSION These findings indicated that IPE and D-pinitol possess beneficial effects for neural protection and memory ability in a rat model of diabetes.
Collapse
Affiliation(s)
- Bao-Hong Lee
- Department of Food Science, National Chiayi University, Chiayi City, Taiwan, ROC
| | | | | |
Collapse
|
49
|
Zhao H, Yuan X, Jiang J, Wang P, Sun X, Wang D, Zheng Q. Antimetastatic Effects of Licochalcone B on Human Bladder Carcinoma T24 by Inhibition of Matrix Metalloproteinases-9 and NF-кB Activity. Basic Clin Pharmacol Toxicol 2014; 115:527-33. [DOI: 10.1111/bcpt.12273] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Accepted: 05/14/2014] [Indexed: 12/15/2022]
Affiliation(s)
- Hong Zhao
- Institute of traditional Chinese medicine; Binzhou Medical University; Yantai China
- School of Pharmacy; Shihezi University; Shihezi China
| | - Xuan Yuan
- School of Pharmacy; Shihezi University; Shihezi China
| | | | - Penglong Wang
- School of Pharmacy; Shihezi University; Shihezi China
| | - Xiling Sun
- Institute of traditional Chinese medicine; Binzhou Medical University; Yantai China
| | - Dong Wang
- Qianfoshan Hospital of Shandong Province; Jinan China
| | - Qiusheng Zheng
- Institute of traditional Chinese medicine; Binzhou Medical University; Yantai China
- School of Pharmacy; Shihezi University; Shihezi China
| |
Collapse
|
50
|
Yin X, Gong X, Jiang R, Zhang L, Wang B, Xu G, Wang C, Wan J. Synthetic RGDS peptide attenuated lipopolysaccharide/D-galactosamine-induced fulminant hepatic failure in mice. J Gastroenterol Hepatol 2014; 29:1308-15. [PMID: 24476051 DOI: 10.1111/jgh.12525] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/28/2013] [Indexed: 12/11/2022]
Abstract
BACKGROUND AND AIM Fulminant hepatic failure (FHF) is a serious clinic syndrome with extremely poor prognosis and no effective treatment except for liver transplantation. Synthetic RGDS peptide, an inhibitor of integrins, was proved to suppress integrin signals. In this study, we investigated the protection effects of RGDS peptide on lipopolysaccharide/D-galactosamine (LPS/D-GalN)-induced FHF and the underlying molecular mechanisms. METHODS Synthetic RGDS peptide was given intraperitoneally 30 min before LPS/D-GalN injection. Liver function and the extent of liver injury were analyzed biochemically and pathologically respectively. Enzyme-linked immunosorbent assay, real-time polymerase chain reaction and Western blotting were used to detect effectors and signaling molecules. RESULTS Pretreatment with synthetic RGDS peptide significantly improved LPS/D-GalN-induced mortality, and liver injury as determined by alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activities, as well as pathological analysis. In addition, RGDS peptide significantly reduced tumor necrosis factor (TNF)-α and macrophage inflammatory protein (MIP)-2 production, and decreased myeloperoxidase (MPO) and NF-κB activity. Furthermore, Western blotting indicated that the levels of phospho-integrin β3, phospho-focal adhesion kinase (FAK) and phospho-p38 mitogen-activated protein kinases (MAPK) decreased with RGDS peptide pretreatment. CONCLUSION Together, these data suggest that synthetic RGDS peptide protect against LPS/D-GalN-induced FHF by inhibiting inflammatory cells migration and blocking the integrin αVβ3-FAK-p38 MAPK and NF-κB signaling.
Collapse
Affiliation(s)
- Xinru Yin
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Medical University, Chongqing, China
| | | | | | | | | | | | | | | |
Collapse
|