1
|
Li K, Jiang Y, Wang N, Lai L, Xu S, Xia T, Yue X, Xin H. Traditional Chinese Medicine in Osteoporosis Intervention and the Related Regulatory Mechanism of Gut Microbiome. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2023; 51:1957-1981. [PMID: 37884447 DOI: 10.1142/s0192415x23500866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
The gut microbiome (GM) has become a crucial factor that can affect the progression of osteoporosis. A number of studies have demonstrated the impact of Traditional Chinese Medicine (TCM) on GM and bone metabolism. In this review, we summarize the potential mechanisms of the relationship between osteoporosis and GM disorder and introduce several natural Chinese medicines that exert anti-osteoporosis effects by modulating the GM. It is underlined that, through the provision of the microbial associated molecular pattern (MAMP), the GM causes inflammatory reactions and alterations in the Treg-Th17 balance and ultimately leads to changes in bone mass. Serotonin and many hormones, especially estrogen, may play a crucial role in the interaction of the GM with bone metabolism. Additionally, the GM may affect the absorption of specific nutrients in the intestine, particularly minerals like calcium, magnesium, and phosphorus. Several natural Chinese herbs, such as Sambucus Williamsii, Achyranthes bidentata Blume, Pleurotus ostreatus and Ganoderma lucidum mushrooms, Pueraria Lobata, and Agaricus blazei Murill have exhibited anti-osteoporosis effects through regulating the distribution and metabolism of the GM. These herbs may increase the abundance of Firmicutes, decrease the abundance of Bacteroides, promote the GM to produce more SCFAs, modulate the immune response caused by harmful bacteria, and increase the proportion of Treg-Th17 to indirectly affect bone metabolism. Moreover, gut-derived 5-HT is an important target for TCM to prevent osteoporosis via the gut-bone axis. Puerarin could prevent osteoporosis by improving intestinal mucosal integrity and decrease systemic inflammation caused by estrogen deficiency.
Collapse
Affiliation(s)
- Kun Li
- Department of Pharmacognosy, School of Pharmacy, Naval Medical University, Shanghai, P. R. China
- Department of Traditional Chinese Medicine, Changzheng Hospital, Naval Medical University, Shanghai, P. R. China
| | - Yiping Jiang
- Department of Pharmacognosy, School of Pharmacy, Naval Medical University, Shanghai, P. R. China
| | - Nani Wang
- Department of Medicine, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, P. R. China
| | - Liyong Lai
- Department of Pharmacognosy, School of Pharmacy, Naval Medical University, Shanghai, P. R. China
| | - Shengyan Xu
- Department of Pharmacognosy, School of Pharmacy, Naval Medical University, Shanghai, P. R. China
| | - Tianshuang Xia
- Department of Pharmacognosy, School of Pharmacy, Naval Medical University, Shanghai, P. R. China
| | - Xiaoqiang Yue
- Department of Traditional Chinese Medicine, Changzheng Hospital, Naval Medical University, Shanghai, P. R. China
| | - Hailiang Xin
- Department of Pharmacognosy, School of Pharmacy, Naval Medical University, Shanghai, P. R. China
| |
Collapse
|
2
|
Zhao M, Ahn DU, Li S, Liu W, Yi S, Huang X. Effects of phosvitin phosphopeptide-Ca complex prepared by efficient enzymatic hydrolysis on calcium absorption and bone deposition of mice. FOOD SCIENCE AND HUMAN WELLNESS 2022. [DOI: 10.1016/j.fshw.2022.06.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
3
|
Connick K, Lalor R, Murphy A, Glasgow A, Breen C, Malfait Z, Harold D, O'Neill SM. RNA-seq analysis of murine peyer's patches at 6 and 18 h post infection with Fasciola hepatica metacecariae. Vet Parasitol 2022; 302:109643. [PMID: 35066425 DOI: 10.1016/j.vetpar.2021.109643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 12/08/2021] [Accepted: 12/26/2021] [Indexed: 11/29/2022]
Abstract
Fasciola hepatica is a zoonotic parasite that not only economically burdens the agribusiness sector, but also infects up to 1 million people worldwide, with no commercial vaccine yet available. An ideal vaccine would induce protection in the gut, curtailing the extensive tissue damage associated with parasite's migration from the gut to the bile ducts. The design of such a vaccine requires greater knowledge of gut mucosal responses during the early stage of infection. We examined total mRNA expression of the peyer's patches at 6 and 18 h post F. hepatica infection using RNA sequencing. Differential expression analysis revealed 1341 genes upregulated and 61 genes downregulated at 6 h post infection, while 1562 genes were upregulated and 10 genes downregulated after 18 h. Gene-set enrichment analysis demonstrated that immune specific biological processes were amongst the most downregulated. The Toll-like receptor pathway in particular was significantly affected, the suppression of which is a well-documented immune evasive strategy employed by F. hepatica. In general, the genes identified were associated with suppression of inflammatory responses, helminth induced immune responses and tissue repair/homeostasis. This study provides a rich catalogue of the genes expressed in the early stages of F. hepatica infection, adding to the understanding of early host-parasite interactions and assisting in the design of future studies that look to advance the development of a novel F. hepatica vaccine.
Collapse
Affiliation(s)
- K Connick
- Fundamental and Translational Immunology Group, Dublin City University, Dublin 9, Ireland
| | - R Lalor
- Fundamental and Translational Immunology Group, Dublin City University, Dublin 9, Ireland
| | - A Murphy
- Fundamental and Translational Immunology Group, Dublin City University, Dublin 9, Ireland
| | - A Glasgow
- Fundamental and Translational Immunology Group, Dublin City University, Dublin 9, Ireland
| | - C Breen
- Genetic Epidemiology Group, Dublin City University, Dublin 9, Ireland
| | - Z Malfait
- Genetic Epidemiology Group, Dublin City University, Dublin 9, Ireland
| | - D Harold
- Genetic Epidemiology Group, Dublin City University, Dublin 9, Ireland
| | - S M O'Neill
- Fundamental and Translational Immunology Group, Dublin City University, Dublin 9, Ireland.
| |
Collapse
|
4
|
Asowata EO, Olusanya O, Abaakil K, Chichger H, Srai SKS, Unwin RJ, Marks J. Diet-induced iron deficiency in rats impacts small intestinal calcium and phosphate absorption. Acta Physiol (Oxf) 2021; 232:e13650. [PMID: 33749990 DOI: 10.1111/apha.13650] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 02/26/2021] [Accepted: 03/17/2021] [Indexed: 12/31/2022]
Abstract
AIMS Recent reports suggest that iron deficiency impacts both intestinal calcium and phosphate absorption, although the exact transport pathways and intestinal segment responsible have not been determined. Therefore, we aimed to systematically investigate the impact of iron deficiency on the cellular mechanisms of transcellular and paracellular calcium and phosphate transport in different regions of the rat small intestine. METHODS Adult, male Sprague-Dawley rats were maintained on a control or iron-deficient diet for 2 weeks and changes in intestinal calcium and phosphate uptake were determined using the in situ intestinal loop technique. The circulating levels of the hormonal regulators of calcium and phosphate were determined by ELISA, while the expression of transcellular calcium and phosphate transporters, and intestinal claudins were determined using qPCR and western blotting. RESULTS Diet-induced iron deficiency significantly increased calcium absorption in the duodenum but had no impact in the jejunum and ileum. In contrast, phosphate absorption was significantly inhibited in the duodenum and to a lesser extent the jejunum, but remained unchanged in the ileum. The changes in duodenal calcium and phosphate absorption in the iron-deficient animals were associated with increased claudin 2 and 3 mRNA and protein levels, while levels of parathyroid hormone, fibroblast growth factor-23 and 1,25-dihydroxy vitamin D3 were unchanged. CONCLUSION We propose that iron deficiency alters calcium and phosphate transport in the duodenum. This occurs via changes to the paracellular pathway, whereby upregulation of claudin 2 increases calcium absorption and upregulation of claudin 3 inhibits phosphate absorption.
Collapse
Affiliation(s)
- Evans O. Asowata
- Department of Neuroscience, Physiology & Pharmacology University College London London UK
| | - Oluwatobi Olusanya
- Department of Neuroscience, Physiology & Pharmacology University College London London UK
| | - Kaoutar Abaakil
- Department of Neuroscience, Physiology & Pharmacology University College London London UK
| | - Havovi Chichger
- Biomedical Research Group School of Life Sciences Anglia Ruskin University Cambridge UK
| | - Surjit K. S. Srai
- Institute of Structural and Molecular Biology University College London London UK
| | - Robert J. Unwin
- Department of Renal Medicine University College London London UK
| | - Joanne Marks
- Department of Neuroscience, Physiology & Pharmacology University College London London UK
| |
Collapse
|
5
|
Wongdee K, Chanpaisaeng K, Teerapornpuntakit J, Charoenphandhu N. Intestinal Calcium Absorption. Compr Physiol 2021; 11:2047-2073. [PMID: 34058017 DOI: 10.1002/cphy.c200014] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
In this article, we focus on mammalian calcium absorption across the intestinal epithelium in normal physiology. Intestinal calcium transport is essential for supplying calcium for metabolism and bone mineralization. Dietary calcium is transported across the mucosal epithelia via saturable transcellular and nonsaturable paracellular pathways, both of which are under the regulation of 1,25-dihydroxyvitamin D3 and several other endocrine and paracrine factors, such as parathyroid hormone, prolactin, 17β-estradiol, calcitonin, and fibroblast growth factor-23. Calcium absorption occurs in several segments of the small and large intestine with varying rates and capacities. Segmental heterogeneity also includes differential expression of calcium transporters/carriers (e.g., transient receptor potential cation channel and calbindin-D9k ) and the presence of favorable factors (e.g., pH, luminal contents, and gut motility). Other proteins and transporters (e.g., plasma membrane vitamin D receptor and voltage-dependent calcium channels), as well as vesicular calcium transport that probably contributes to intestinal calcium absorption, are also discussed. © 2021 American Physiological Society. Compr Physiol 11:1-27, 2021.
Collapse
Affiliation(s)
- Kannikar Wongdee
- Faculty of Allied Health Sciences, Burapha University, Chonburi, Thailand.,Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Krittikan Chanpaisaeng
- Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, Thailand.,Functional Ingredients and Food Innovation Research Group, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Jarinthorn Teerapornpuntakit
- Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, Thailand.,Department of Physiology, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
| | - Narattaphol Charoenphandhu
- Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, Thailand.,Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand.,Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand.,The Academy of Science, The Royal Society of Thailand, Bangkok, Thailand
| |
Collapse
|
6
|
Estrogen Regulates Duodenal Calcium Absorption Through Differential Role of Estrogen Receptor on Calcium Transport Proteins. Dig Dis Sci 2020; 65:3502-3513. [PMID: 31974908 DOI: 10.1007/s10620-020-06076-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 01/12/2020] [Indexed: 12/24/2022]
Abstract
BACKGROUND AND AIMS Intestinal calcium absorption from the diet plays important role in maintaining calcium homeostasis in the body. Estrogen exerts wide physiological and pathological effects in the human. Previous studies have shown that estrogen is involved in the intestinal calcium absorption. In this study, we made investigation on the mechanism of estrogen action on duodenal calcium absorption. METHODS The experiments were performed in mice, human, and human duodenal epithelial cells, SCBN cells. Murine duodenal calcium absorption was measured by using single pass perfusion of the duodenum in vivo. The calcium absorption of SCBN cells was evaluated by calcium imaging system. The expression of calcium transport proteins, transient receptor potential cation channel (TRPV6) and plasma membrane calcium pump (PMCA1b), in the duodenum or SCBN cells were analyzed by western blot. RESULTS The duodenal calcium absorption in ovariectomized mice was significantly decreased, compared with control female mice, which returned to control level after 17β-estradiol replacement treatment. Estrogen regulated the expressions of TRPV6 and PMCA1b in murine and human duodenal mucosae and SCBN cells. The further results from SCBN cells showed that 17β-estradiol regulated calcium influx through the respective effects of estrogen receptor (ER) ɑ and β on TRPV6 and PMCA1b. CONCLUSION Estrogen regulates duodenal calcium absorption through differential role of ERɑ and ERβ on duodenal epithelial cellular TRPV6 and PMCA1b. The study further elucidates the mechanism of estrogen on the regulation of intestinal calcium absorption.
Collapse
|
7
|
Allgöwer C, Kretz AL, von Karstedt S, Wittau M, Henne-Bruns D, Lemke J. Friend or Foe: S100 Proteins in Cancer. Cancers (Basel) 2020; 12:cancers12082037. [PMID: 32722137 PMCID: PMC7465620 DOI: 10.3390/cancers12082037] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/21/2020] [Accepted: 07/23/2020] [Indexed: 12/24/2022] Open
Abstract
S100 proteins are widely expressed small molecular EF-hand calcium-binding proteins of vertebrates, which are involved in numerous cellular processes, such as Ca2+ homeostasis, proliferation, apoptosis, differentiation, and inflammation. Although the complex network of S100 signalling is by far not fully deciphered, several S100 family members could be linked to a variety of diseases, such as inflammatory disorders, neurological diseases, and also cancer. The research of the past decades revealed that S100 proteins play a crucial role in the development and progression of many cancer types, such as breast cancer, lung cancer, and melanoma. Hence, S100 family members have also been shown to be promising diagnostic markers and possible novel targets for therapy. However, the current knowledge of S100 proteins is limited and more attention to this unique group of proteins is needed. Therefore, this review article summarises S100 proteins and their relation in different cancer types, while also providing an overview of novel therapeutic strategies for targeting S100 proteins for cancer treatment.
Collapse
Affiliation(s)
- Chantal Allgöwer
- Department of General and Visceral Surgery, Ulm University Hospital, Albert-Einstein-Allee 23, 89081 Ulm, Germany; (C.A.); (A.-L.K.); (M.W.); (D.H.-B.)
| | - Anna-Laura Kretz
- Department of General and Visceral Surgery, Ulm University Hospital, Albert-Einstein-Allee 23, 89081 Ulm, Germany; (C.A.); (A.-L.K.); (M.W.); (D.H.-B.)
| | - Silvia von Karstedt
- Department of Translational Genomics, Center of Integrated Oncology Cologne-Bonn, Medical Faculty, University Hospital Cologne, Weyertal 115b, 50931 Cologne, Germany;
- CECAD Cluster of Excellence, University of Cologne, Joseph-Stelzmann-Straße 26, 50931 Cologne, Germany
- Center of Molecular Medicine Cologne, Medical Faculty, University Hospital of Cologne, Weyertal 115b, 50931 Cologne, Germany
| | - Mathias Wittau
- Department of General and Visceral Surgery, Ulm University Hospital, Albert-Einstein-Allee 23, 89081 Ulm, Germany; (C.A.); (A.-L.K.); (M.W.); (D.H.-B.)
| | - Doris Henne-Bruns
- Department of General and Visceral Surgery, Ulm University Hospital, Albert-Einstein-Allee 23, 89081 Ulm, Germany; (C.A.); (A.-L.K.); (M.W.); (D.H.-B.)
| | - Johannes Lemke
- Department of General and Visceral Surgery, Ulm University Hospital, Albert-Einstein-Allee 23, 89081 Ulm, Germany; (C.A.); (A.-L.K.); (M.W.); (D.H.-B.)
- Correspondence: ; Tel.: +49-731-500-53691
| |
Collapse
|
8
|
Schwaller B. Cytosolic Ca 2+ Buffers Are Inherently Ca 2+ Signal Modulators. Cold Spring Harb Perspect Biol 2020; 12:cshperspect.a035543. [PMID: 31308146 DOI: 10.1101/cshperspect.a035543] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
For precisely regulating intracellular Ca2+ signals in a time- and space-dependent manner, cells make use of various components of the "Ca2+ signaling toolkit," including Ca2+ entry and Ca2+ extrusion systems. A class of cytosolic Ca2+-binding proteins termed Ca2+ buffers serves as modulators of such, mostly short-lived Ca2+ signals. Prototypical Ca2+ buffers include parvalbumins (α and β isoforms), calbindin-D9k, calbindin-D28k, and calretinin. Although initially considered to function as pure Ca2+ buffers, that is, as intracellular Ca2+ signal modulators controlling the shape (amplitude, decay, spread) of Ca2+ signals, evidence has accumulated that calbindin-D28k and calretinin have additional Ca2+ sensor functions. These other functions are brought about by direct interactions with target proteins, thereby modulating their targets' function/activity. Dysregulation of Ca2+ buffer expression is associated with several neurologic/neurodevelopmental disorders including autism spectrum disorder (ASD) and schizophrenia. In some cases, the presence of these proteins is presumed to confer a neuroprotective effect, as evidenced in animal models of Parkinson's or Alzheimer's disease.
Collapse
Affiliation(s)
- Beat Schwaller
- Department of Anatomy, Section of Medicine, University of Fribourg, CH-1700 Fribourg, Switzerland
| |
Collapse
|
9
|
Ahn C, Jung EM, An BS, Hong EJ, Yoo YM, Jeung EB. The Protective Role of Calbindin-D 9k on Endoplasmic Reticulum Stress-Induced Beta Cell Death. Int J Mol Sci 2019; 20:ijms20215317. [PMID: 31731478 PMCID: PMC6862009 DOI: 10.3390/ijms20215317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 10/22/2019] [Accepted: 10/23/2019] [Indexed: 11/16/2022] Open
Abstract
Intracellular calcium ion content is tightly regulated for the maintenance of cellular functions and cell survival. Calbindin-D9k (CaBP-9k) is responsible for regulating the distribution of cytosolic free-calcium ions. In this study, we aimed to investigate the effect of CaBP-9k on cell survival in pancreatic beta cells. Six-month-old wildtype CaBP-9k, CaBP-28k, and CaBP-9k/28k knockout (KO) mice were used to compare the pathological phenotypes of calcium-binding protein-deleted mice. Subsequently, the endoplasmic reticulum (ER) stress reducer tauroursodeoxycholic acid (TUDCA) was administered to wildtype and CaBP-9k KO mice. In vitro assessment of the role of CaBP-9k was performed following CaBP-9k overexpression and treatment with the ER stress inducer thapsigargin. Six-month-old CaBP-9k KO mice showed reduced islet volume and up-regulation of cell death markers resulting from ER stress, which led to pancreatic beta cell death. TUDCA treatment recovered islet volume, serum insulin level, and abdominal fat storage by CaBP-9k ablation. CaBP-9k overexpression elevated insulin secretion and recovered thapsigargin-induced ER stress in the INS-1E cell line. The results of this study show that CaBP-9k can protect pancreatic beta cell survival from ER stress and contribute to glucose homeostasis, which can reduce the risk of type 1 diabetes and provide the molecular basis for calcium supplementation to diabetic patients.
Collapse
Affiliation(s)
- Changhwan Ahn
- Laboratory of Veterinary Biochemistry and Molecular Biology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk 28644, Korea; (C.A.); (E.-M.J.); (Y.-M.Y.)
| | - Eui-Man Jung
- Laboratory of Veterinary Biochemistry and Molecular Biology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk 28644, Korea; (C.A.); (E.-M.J.); (Y.-M.Y.)
| | - Beum-Soo An
- Department of Biomaterials Science, College of Natural Resources & Life Science, Pusan National University, Miryang 50463, Korea;
| | - Eui-Ju Hong
- College of Veterinary Medicine, Chungnam National University, 99 Daehak-ro, Suite 401Veterinary Medicine Bldg., Yuseong, Daejeon 34134, Korea;
| | - Yeong-Min Yoo
- Laboratory of Veterinary Biochemistry and Molecular Biology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk 28644, Korea; (C.A.); (E.-M.J.); (Y.-M.Y.)
| | - Eui-Bae Jeung
- Laboratory of Veterinary Biochemistry and Molecular Biology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk 28644, Korea; (C.A.); (E.-M.J.); (Y.-M.Y.)
- Correspondence:
| |
Collapse
|
10
|
Park SY, Yoo YM, Jung EM, Jeung EB. Distribution of and steroid hormone effects on calbindin-D 9k in the immature rat brain. Brain Res Bull 2019; 152:225-235. [PMID: 31357009 DOI: 10.1016/j.brainresbull.2019.07.028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 07/08/2019] [Accepted: 07/23/2019] [Indexed: 01/06/2023]
Abstract
Calbindin-D9k (CaBP-9k), one of the major calcium-binding and calcium-buffering proteins, is important in the physiological functioning of organs. The neuroanatomical localization of CaBP-9k in the rodent brain has not been reported; thus, this study investigated the neuroanatomical distribution of CaBP-9k and the regulation of CaBP-9k expression on steroid hormones in the immature rat brain. To confirm the influence of steroid hormones on CaBP-9k expression, immature female rats were injected for 5 days with estrogen (E2), progesterone (P4), dexamethasone (DEX), and their antagonists (ICI 182, 780 and RU 486). The localization and expression of the CaBP-9k protein in brain regions were identified by immunofluorescence and western blot assays, respectively. We observed that CaBP-9k expression was especially strong in hypothalamus, cerebellum, and brain stem. In addition, CaBP-9k was colocalized with mature-, GABAergic, dopaminergic, and oxytocinergic neurons. We also observed that the CaBP-9k protein level was significantly increased by P4 and reversed by antagonist RU 486 treatment in immature rat brain. In summary, CaBP-9k positive cells have a wide distribution in the immature rat brain, and CaBP-9k expression is regulated by P4. We suggest that CaBP-9k expression regulated by steroid hormone may serve as an important regulator of cytosolic calcium concentration in the brain.
Collapse
Affiliation(s)
- Seon Young Park
- Laboratory of Veterinary Biochemistry and Molecular Biology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, 362-763, Republic of Korea
| | - Yeong-Min Yoo
- Laboratory of Veterinary Biochemistry and Molecular Biology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, 362-763, Republic of Korea
| | - Eui-Man Jung
- Laboratory of Veterinary Biochemistry and Molecular Biology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, 362-763, Republic of Korea.
| | - Eui-Bae Jeung
- Laboratory of Veterinary Biochemistry and Molecular Biology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, 362-763, Republic of Korea.
| |
Collapse
|
11
|
El-Ishaq A, Alshawsh MA, Chik ZB. Evaluating the oestrogenic activities of aqueous root extract of Asparagus africanus Lam in female Sprague-Dawley rats and its phytochemical screening using Gas Chromatography-Mass Spectrometry (GC/MS). PeerJ 2019; 7:e7254. [PMID: 31355056 PMCID: PMC6644626 DOI: 10.7717/peerj.7254] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 06/05/2019] [Indexed: 01/16/2023] Open
Abstract
Asparagus africanus Lam. is a plant used traditionally for natal care. This study evaluates the oestrogenic activities of aqueous root extract and screens for possible bioactive phytochemicals. Oestrogenicity of A. africanus was evaluated in ovariectomised rats treated with 50, 200, and 800 mg/kgBW doses twice daily for three days. Ethinyl estradiol (EE)1 mg/kg was used as positive control, and hormonal analysis and gene expression were carried out. The findings demonstrated that the extract produced a dose-dependent increase in the oestrogen levels with a significant increase compared to untreated rats. Pre-treatment with oestrogen receptor antagonist (ORA) prior to A. africanus treatment reversed the trend. Gene expression analysis on rats treated with 200 mg/kgBW A. africanus showed significant (p < 0.005) upregulation of oestrogen receptor alpha (ERα), while pre-treating animals with (ORA) significantly (p < 0.005) increased the expression of calbindin 3 (Calb3) in the EE group as compared to the untreated rats. The GC/MS results showed the presence of steroidal saponins such as stigmasterol and sarsasapogenin. These might be the bioactive constituents that exhibited these activities. The oestrogenic properties of A. africanus revealed in this study could contribute to the antifertility properties of the plant. However, further pharmacological studies are required to confirm the antifertility effect.
Collapse
Affiliation(s)
- Abubakar El-Ishaq
- Science Laboratory Technology Department, School of Science and Technology, Federal Polytechnic, Damaturu, Yobe, Nigeria
- University of Malaya Bioequivalence Testing Centre (UBAT), Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Selangor, Malaysia
| | - Mohammed A. Alshawsh
- Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Selangor, Malaysia
| | - Zamri Bin Chik
- University of Malaya Bioequivalence Testing Centre (UBAT), Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Selangor, Malaysia
| |
Collapse
|
12
|
Ahn C, Kang JH, Jeung EB. Calcium homeostasis in diabetes mellitus. J Vet Sci 2018; 18:261-266. [PMID: 28927245 PMCID: PMC5639077 DOI: 10.4142/jvs.2017.18.3.261] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 04/16/2017] [Accepted: 05/05/2017] [Indexed: 12/13/2022] Open
Abstract
Diabetes mellitus (DM) is becoming a lifestyle-related pandemic disease. Diabetic patients frequently develop electrolyte disorders, especially diabetic ketoacidosis or nonketotic hyperglycemic hyperosmolar syndrome. Such patients show characteristic potassium, magnesium, phosphate, and calcium depletion. In this review, we discuss a homeostatic mechanism that links calcium and DM. We also provide a synthesis of the evidence in favor or against this linking mechanism by presenting recent clinical indications, mainly from veterinary research. There are consistent results supporting the use of calcium and vitamin D supplementation to reduce the risk of DM. Clinical trials support a marginal reduction in circulating lipids, and some meta-analyses support an increase in insulin sensitivity, following vitamin D supplementation. This review provides an overview of the calcium and vitamin D disturbances occurring in DM and describes the underlying mechanisms. Such elucidation will help indicate potential pathophysiology-based precautionary and therapeutic approaches and contribute to lowering the incidence of DM.
Collapse
Affiliation(s)
- Changhwan Ahn
- Laboratory of Veterinary Biochemistry and Molecular Biology, College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Korea
| | - Ji-Houn Kang
- Laboratory of Veterinary Internal Medicine, Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Korea
| | - Eui-Bae Jeung
- Laboratory of Veterinary Biochemistry and Molecular Biology, College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Korea
| |
Collapse
|
13
|
Calbindin-D28k in the Brain Influences the Expression of Cellular Prion Protein. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018. [PMID: 29541346 PMCID: PMC5818940 DOI: 10.1155/2018/4670210] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The phenotypes of calbindin-D9k- (CaBP-9k-) knockout (KO), calbindin-D28k- (CaBP-28k-) KO, and CaBP-9k/28k-KO mice are similar to those of wild-type (WT) mice due to the compensatory action of other calcium transport proteins. In this study, we investigated the expression of cellular prion protein (PrPC) in the brains of CaBP-9k-, CaBP-28k-, and CaBP-9k/28k-KO mice. PrPC expression was significantly upregulated in the brain of all three strains. Levels of phospho-Akt (Ser473) and phospho-Bad (Ser136) were significantly elevated, but those of phospho-ERK and phospho-Bad (Ser155 and 112) were significantly reduced in the brains of CaBP-9k-, CaBP-28k-, and CaBP-9k/28k-KO mice. The expressions of the Bcl-2, p53, Bax, Cu/Zn-SOD, and Mn-SOD proteins were decreased in the brains of all KO mice. Expression of the endoplasmic reticulum marker protein BiP/GRP78 was decreased, and that of the CHOP protein was increased in the brains of those KO mice. To identify the roles of CaBP-28k, we transfected PC12 cells with siRNA for CaBP-28k and found increased expression of the PrPC protein compared to the levels in control cells. These results suggest that CaBP-28k expression may regulate PrPC protein expression and these mice may be vulnerable to the influence of prion disease.
Collapse
|
14
|
Lee SR, Park MY, Yang H, Lee GS, An BS, Park BK, Jeung EB, Hong EJ. 5α-dihydrotestosterone reduces renal Cyp24a1 expression via suppression of progesterone receptor. J Mol Endocrinol 2018; 60:159-170. [PMID: 29382742 DOI: 10.1530/jme-17-0187] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Accepted: 12/22/2017] [Indexed: 01/03/2023]
Abstract
Androgens act in concert with vitamin D to influence reabsorption of calcium. However, it is unclear whether androgens directly regulate vitamin D homeostasis or control other cellular events that are related to vitamin D metabolism. To examine whether the expression of vitamin D-related genes in mouse kidney is driven by androgens or androgen-dependent effects, the androgen receptor and other sex steroid receptors were monitored in orchidectomized mice treated with 5α-dihydrotestosterone (DHT). Our results revealed that exposing orchidectomized mice to DHT inhibited the expression of progesterone receptor (Pgr) with or without estrogen receptor α expression, the latter was confirmed by ER-positive (MCF7 and T47D) or -negative (PCT) cells analysis. The loss of Pgr in turn decreased the expression of renal 24-hydroxylase via transcriptional regulation because Cyp24a1 gene has a progesterone receptor-binding site on promoter. When male kidneys preferentially hydroxylate 25-hydroxyvitamin D3 using 24-hydroxylase rather than 25-hydroxyvitamin D3-1-alpha hydroxylase, DHT suppressed the Pgr-mediated 24-hydroxylase expression, and it is important to note that DHT increased the blood 25-hydroxyvitamin D3 levels. These findings uncover an important link between androgens and vitamin D homeostasis and suggest that therapeutic modulation of Pgr may be used to treat vitamin D deficiency and related disorders.
Collapse
Affiliation(s)
- Sang R Lee
- College of Veterinary Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Mi-Young Park
- College of Veterinary Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Hyun Yang
- Korean Institute of Oriental Medicine, Daejeon, Republic of Korea
| | - Geun-Shik Lee
- College of Veterinary Medicine, Kangwon National University, Chuncheon, Gangwon, Republic of Korea
| | - Beum-Soo An
- Department of Biomaterials Science, College of Natural Resources & Life Science, Pusan National University, Miryang, Republic of Korea
| | - Bae-Kuen Park
- College of Veterinary Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Eui-Bae Jeung
- College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Eui-Ju Hong
- College of Veterinary Medicine, Chungnam National University, Daejeon, Republic of Korea
| |
Collapse
|
15
|
Ahn C, Lee D, Lee JH, Yang H, An BS, Jeung EB. Calbindin-D9k Ablation Disrupt Glucose/Pancreatic Insulin Homeostasis. PLoS One 2016; 11:e0164527. [PMID: 27736926 PMCID: PMC5063278 DOI: 10.1371/journal.pone.0164527] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 09/27/2016] [Indexed: 02/06/2023] Open
Abstract
It has been proposed that cellular Ca2+ signals activate hormone secretion. In pancreatic β cells, which produce insulin, Ca2+ signals have been known to contribute to insulin secretion. Prior to this study, we confirmed that insulin-secreting β cells express CaBP-9k, and assumed that CaBP-9k play a role in β cell insulin synthesis or secretion. Using CaBP-9k knock out (KO) mice, we demonstrated that ablation of CaBP-9k causes reducing insulin secretion and increasing serum glucose. To compare the role of CaBP-9k with pathophysiological conditions, we exposed wild-type and CaBP-9k KO mice to hypoxic conditions for 10 days. Hypoxia induced endoplasmic reticulum (ER) stress, increasing both insulin signaling and insulin resistance. By exposing hypoxia, CaBP-9k KO mice showed an increased level of ER stress marker protein relative to wild type mice. Without hypoxic conditions, CaBP-9K ablation regulates calcium channels and causes ER stress in a CaBP-9K specific manner. Ablation of CaBP-9k also showed decreased levels of sulfonylurea receptor1 (SUR1) and inward-rectifier potassium ion channel 6.2 (Kir6.2), which are insulin secretion marker genes. Overall, the results of the present study demonstrated that CaBP-9k regulates synthesis of insulin and is part of the insulin-secreting calcium signaling.
Collapse
Affiliation(s)
- Changhwan Ahn
- Laboratory of Veterinary Biochemistry and Molecular Biology, Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| | - Dongoh Lee
- Laboratory of Veterinary Biochemistry and Molecular Biology, Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| | - Jae-Hwan Lee
- Laboratory of Veterinary Biochemistry and Molecular Biology, Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| | - Hyun Yang
- Laboratory of Veterinary Biochemistry and Molecular Biology, Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| | - Beum-Soo An
- Department of Biomaterials Science, College of National Resources & Life Science, Pusan National University, Miryang, Gyeongsangnam-do 627-706, Republic of Korea
| | - Eui-Bae Jeung
- Laboratory of Veterinary Biochemistry and Molecular Biology, Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
- * E-mail:
| |
Collapse
|
16
|
Diaz de Barboza G, Guizzardi S, Tolosa de Talamoni N. Molecular aspects of intestinal calcium absorption. World J Gastroenterol 2015; 21:7142-7154. [PMID: 26109800 PMCID: PMC4476875 DOI: 10.3748/wjg.v21.i23.7142] [Citation(s) in RCA: 150] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 03/21/2015] [Accepted: 04/17/2015] [Indexed: 02/06/2023] Open
Abstract
Intestinal Ca2+ absorption is a crucial physiological process for maintaining bone mineralization and Ca2+ homeostasis. It occurs through the transcellular and paracellular pathways. The first route comprises 3 steps: the entrance of Ca2+ across the brush border membranes (BBM) of enterocytes through epithelial Ca2+ channels TRPV6, TRPV5, and Cav1.3; Ca2+ movement from the BBM to the basolateral membranes by binding proteins with high Ca2+ affinity (such as CB9k); and Ca2+ extrusion into the blood. Plasma membrane Ca2+ ATPase (PMCA1b) and sodium calcium exchanger (NCX1) are mainly involved in the exit of Ca2+ from enterocytes. A novel molecule, the 4.1R protein, seems to be a partner of PMCA1b, since both molecules co-localize and interact. The paracellular pathway consists of Ca2+ transport through transmembrane proteins of tight junction structures, such as claudins 2, 12, and 15. There is evidence of crosstalk between the transcellular and paracellular pathways in intestinal Ca2+ transport. When intestinal oxidative stress is triggered, there is a decrease in the expression of several molecules of both pathways that inhibit intestinal Ca2+ absorption. Normalization of redox status in the intestine with drugs such as quercetin, ursodeoxycholic acid, or melatonin return intestinal Ca2+ transport to control values. Calcitriol [1,25(OH)2D3] is the major controlling hormone of intestinal Ca2+ transport. It increases the gene and protein expression of most of the molecules involved in both pathways. PTH, thyroid hormones, estrogens, prolactin, growth hormone, and glucocorticoids apparently also regulate Ca2+ transport by direct action, indirect mechanism mediated by the increase of renal 1,25(OH)2D3 production, or both. Different physiological conditions, such as growth, pregnancy, lactation, and aging, adjust intestinal Ca2+ absorption according to Ca2+ demands. Better knowledge of the molecular details of intestinal Ca2+ absorption could lead to the development of nutritional and medical strategies for optimizing the efficiency of intestinal Ca2+ absorption and preventing osteoporosis and other pathologies related to Ca2+ metabolism.
Collapse
|