1
|
Amin N, Wu F, Zhao BX, Shi Z, Abdelsadik A, Elshazly Younis A, Naz Abbasi I, Sundus J, Badry Hussein A, Geng Y, Fang M. Hif-1α ablation reduces the efficiency of NeuroD1 gene-based therapy and aggravates the brain damage following ischemic stroke. Expert Opin Drug Deliv 2025; 22:121-138. [PMID: 39632618 DOI: 10.1080/17425247.2024.2435458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 11/16/2024] [Indexed: 12/07/2024]
Abstract
INTRODUCTION Hypoxia-inducible factor 1α [HIF1α] regulates gene expression, allowing the organism to respond to low oxygen levels. Meanwhile, astrocytes participate in inflammatory processes and are associated with neurotoxic chemicals that can increase stroke volume, contributing considerably to the devastating effects of a stroke. OBJECTIVE To evaluate whether Hif-1α ablation from the central nervous system is implicated in motor dysfunction and ischemic brain damage following stroke. Furthermore, to explore if Hif-1α ablation affects the therapeutic impact of NeuroD1 gene-based therapy. METHODS Endothelin-1 [ET-1] was injected to induce ischemic stroke in mice. Both wild-type and Hypoxia-inducible factor 1α conditional knockout [Hif-1α CKO] mice were used. The effect of Hif-1α ablation was assessed by the neuron numbers, astrocyte activity, vascular endothelial growth factor [VEGF] expression, and behavioral tests. Moreover, western blot, ELISA, and RNA sequencing were used. Then, we used pAAV2/9-GfaABC1D-NeuroD1-P2A-EGFP-WPRE injection to examine the impact of NeuroD1 in Hif-1α CKO mice following ischemic stroke. RESULTS We found that following stroke, motor dysfunction significantly increased in Hif-1α CKO mice. Furthermore, elevation of apoptosis and activation in both microglia and astrocytes were observed, consequently up-regulating neuroinflammation. Meanwhile, Hif-1α ablation significantly decreased the efficiency of NeuroD1 gene-based therapy. CONCLUSION Our findings demonstrate that Hif-1α ablation from the nervous system is implicated in ischemic stroke pathogenesis mainly by increasing neuron cell death and inducing astrocytes as well as decreasing the efficiency of NeuroD1. These data support the idea that manipulating HIF-1α is a viable therapeutic for ischemic stroke.
Collapse
Affiliation(s)
- Nashwa Amin
- Center for Rehabilitation Medicine, Department of Neurology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
- Department of Neurology, Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Centre for Child Health, Hangzhou, China
- Department of Zoology, Faculty of Science, Aswan University, Aswan, Egypt
| | - Fei Wu
- Institute of System Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Bing-Xin Zhao
- Center for Rehabilitation Medicine, Department of Neurology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Zongjie Shi
- Center for Rehabilitation Medicine, Department of Neurology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Ahmed Abdelsadik
- Department of Zoology, Faculty of Science, Aswan University, Aswan, Egypt
- Laboratory of Immunometabolism, Aswan University, Aswan, Egypt
| | | | - Irum Naz Abbasi
- Institute of System Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Javaria Sundus
- Institute of System Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Azhar Badry Hussein
- Institute of System Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Yu Geng
- Center for Rehabilitation Medicine, Department of Neurology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Marong Fang
- Department of Neurology, Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Centre for Child Health, Hangzhou, China
- Institute of System Medicine, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
2
|
Basheeruddin M, Qausain S. Hypoxia-Inducible Factor 1-Alpha (HIF-1α) and Cancer: Mechanisms of Tumor Hypoxia and Therapeutic Targeting. Cureus 2024; 16:e70700. [PMID: 39493156 PMCID: PMC11529905 DOI: 10.7759/cureus.70700] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 10/02/2024] [Indexed: 11/05/2024] Open
Abstract
Hypoxia-inducible factor 1-alpha (HIF-1α) is necessary for cells to adapt to low oxygen levels often present in the tumor microenvironment. HIF-1α triggers a transcriptional program that promotes invasion, angiogenesis, metabolic reprogramming, and cell survival when it is active in hypoxic environments. These processes together lead to the growth and spread of tumors. This review article examines the molecular mechanisms by which HIF-1α contributes to tumor progression, including its regulation by oxygen-dependent and independent pathways, interactions with oncogenic signaling networks, and impact on the tumor microenvironment. Additionally, we explore current therapeutic strategies targeting HIF-1α, such as small molecule inhibitors, RNA interference, and immunotherapy approaches. Understanding the multifaceted roles of HIF-1α in cancer biology not only elucidates the complexities of tumor hypoxia but also opens avenues for developing novel and more effective cancer therapies.
Collapse
Affiliation(s)
- Mohd Basheeruddin
- Biochemistry, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Sana Qausain
- Biochemistry, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| |
Collapse
|
3
|
Lu C, Chen M, Zhao Y, Zhan Y, Wei X, Lu L, Yang M, Gong X. A Co-MOF encapsulated microneedle patch activates hypoxia induction factor-1 to pre-protect transplanted flaps from distal ischemic necrosis. Acta Biomater 2024; 184:171-185. [PMID: 38871202 DOI: 10.1016/j.actbio.2024.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 05/25/2024] [Accepted: 06/06/2024] [Indexed: 06/15/2024]
Abstract
Avoiding ischemic necrosis after flap transplantation remains a significant clinical challenge. Developing an effective pretreatment method to promote flap survival postoperatively is crucial. Cobalt chloride (CoCl2) can increase cell tolerance to ischemia and hypoxia condition by stimulating hypoxia-inducible factor-1 (HIF-1) expression. However, the considerable toxic effects severely limit the clinical application of CoCl2. In this study, cobalt-based metal-organic frameworks (Co-MOF) encapsulated in a microneedle patch (Co-MOF@MN) was developed to facilitate the transdermal sustained release of Co2+ for rapid, minimally invasive rapid pretreatment of flap transplantation. The MN patch was composed of a fully methanol-based two-component cross-linked polymer formula, with a pyramid structure and high mechanical strength, which satisfied the purpose of penetrating the skin stratum corneum of rat back to achieve subcutaneous vascular area administration. Benefiting from the water-triggered disintegration of Co-MOF and the transdermal delivery via the MN patch, preoperative damage and side effects were effectively mitigated. Moreover, in both the oxygen-glucose deprivation/recovery (OGD/R) cell model and the rat dorsal perforator flap model, Co-MOF@MN activated the HIF-1α pathway and its associated downstream proteins, which reduced reperfusion oxidative damage, improved blood supply in choke areas, and increased flap survival rates post-transplantation. This preprotection strategy, combining MOF nanoparticles and the MN patch, meets the clinical demands for trauma minimization and uniform administration in flap transplantation. STATEMENT OF SIGNIFICANCE: Cobalt chloride (CoCl2) can stimulate the expression of hypoxia-inducible factor (HIF-1) and improve the tolerance of cells to ischemia and hypoxia conditions. However, the toxicity and narrow therapeutic window of CoCl2 severely limit its clinical application. Herein, we explored the role of Co-MOF as a biocompatible nanocage for sustained release of Co2+, showing the protective effect on vascular endothelial cells in the stress model of oxygen-glucose deprivation. To fit the clinical needs of minimal trauma in flap transplantation, a Co-MOF@MN system was developed to achieve local transdermal delivery at the choke area, significantly improving blood supply opening and flap survival rate. This strategy of two-step delivery of Co2+ realized the enhancement of biological functions while ensuring the biosafety.
Collapse
Affiliation(s)
- Cheng Lu
- Department of Hand and Podiatric Surgery, Orthopedics Center, The First Hospital of Jilin University, Jilin University, Changchun 130031, PR China
| | - Miao Chen
- Department of Hand and Podiatric Surgery, Orthopedics Center, The First Hospital of Jilin University, Jilin University, Changchun 130031, PR China
| | - Yuanyuan Zhao
- Department of Hand and Podiatric Surgery, Orthopedics Center, The First Hospital of Jilin University, Jilin University, Changchun 130031, PR China
| | - Yongxin Zhan
- Department of Hand and Podiatric Surgery, Orthopedics Center, The First Hospital of Jilin University, Jilin University, Changchun 130031, PR China
| | - Xin Wei
- Department of Hand and Podiatric Surgery, Orthopedics Center, The First Hospital of Jilin University, Jilin University, Changchun 130031, PR China
| | - Laijin Lu
- Department of Hand and Podiatric Surgery, Orthopedics Center, The First Hospital of Jilin University, Jilin University, Changchun 130031, PR China; Orthopedics Central Laboratory, Institute of Translational Medicine, The First Hospital of Jilin University, Jilin University, Changchun 130021, PR China
| | - Mingxi Yang
- Department of Hand and Podiatric Surgery, Orthopedics Center, The First Hospital of Jilin University, Jilin University, Changchun 130031, PR China; Orthopedics Central Laboratory, Institute of Translational Medicine, The First Hospital of Jilin University, Jilin University, Changchun 130021, PR China.
| | - Xu Gong
- Department of Hand and Podiatric Surgery, Orthopedics Center, The First Hospital of Jilin University, Jilin University, Changchun 130031, PR China; Orthopedics Central Laboratory, Institute of Translational Medicine, The First Hospital of Jilin University, Jilin University, Changchun 130021, PR China.
| |
Collapse
|
4
|
Tregub PP, Kulikov VP, Ibrahimli I, Tregub OF, Volodkin AV, Ignatyuk MA, Kostin AA, Atiakshin DA. Molecular Mechanisms of Neuroprotection after the Intermittent Exposures of Hypercapnic Hypoxia. Int J Mol Sci 2024; 25:3665. [PMID: 38612476 PMCID: PMC11011936 DOI: 10.3390/ijms25073665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/19/2024] [Accepted: 03/21/2024] [Indexed: 04/14/2024] Open
Abstract
The review introduces the stages of formation and experimental confirmation of the hypothesis regarding the mutual potentiation of neuroprotective effects of hypoxia and hypercapnia during their combined influence (hypercapnic hypoxia). The main focus is on the mechanisms and signaling pathways involved in the formation of ischemic tolerance in the brain during intermittent hypercapnic hypoxia. Importantly, the combined effect of hypoxia and hypercapnia exerts a more pronounced neuroprotective effect compared to their separate application. Some signaling systems are associated with the predominance of the hypoxic stimulus (HIF-1α, A1 receptors), while others (NF-κB, antioxidant activity, inhibition of apoptosis, maintenance of selective blood-brain barrier permeability) are mainly modulated by hypercapnia. Most of the molecular and cellular mechanisms involved in the formation of brain tolerance to ischemia are due to the contribution of both excess carbon dioxide and oxygen deficiency (ATP-dependent potassium channels, chaperones, endoplasmic reticulum stress, mitochondrial metabolism reprogramming). Overall, experimental studies indicate the dominance of hypercapnia in the neuroprotective effect of its combined action with hypoxia. Recent clinical studies have demonstrated the effectiveness of hypercapnic-hypoxic training in the treatment of childhood cerebral palsy and diabetic polyneuropathy in children. Combining hypercapnic hypoxia with pharmacological modulators of neuro/cardio/cytoprotection signaling pathways is likely to be promising for translating experimental research into clinical medicine.
Collapse
Affiliation(s)
- Pavel P. Tregub
- Department of Pathophysiology, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia;
- Brain Science Institute, Research Center of Neurology, 125367 Moscow, Russia
- Scientific and Educational Resource Center “Innovative Technologies of Immunophenotyping, Digital Spatial Profiling and Ultrastructural Analysis”, RUDN University, 117198 Moscow, Russia; (A.V.V.); (M.A.I.); (A.A.K.); (D.A.A.)
| | - Vladimir P. Kulikov
- Department of Ultrasound and Functional Diagnostics, Altay State Medical University, 656040 Barnaul, Russia;
| | - Irada Ibrahimli
- Department of Pathophysiology, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia;
| | | | - Artem V. Volodkin
- Scientific and Educational Resource Center “Innovative Technologies of Immunophenotyping, Digital Spatial Profiling and Ultrastructural Analysis”, RUDN University, 117198 Moscow, Russia; (A.V.V.); (M.A.I.); (A.A.K.); (D.A.A.)
| | - Michael A. Ignatyuk
- Scientific and Educational Resource Center “Innovative Technologies of Immunophenotyping, Digital Spatial Profiling and Ultrastructural Analysis”, RUDN University, 117198 Moscow, Russia; (A.V.V.); (M.A.I.); (A.A.K.); (D.A.A.)
| | - Andrey A. Kostin
- Scientific and Educational Resource Center “Innovative Technologies of Immunophenotyping, Digital Spatial Profiling and Ultrastructural Analysis”, RUDN University, 117198 Moscow, Russia; (A.V.V.); (M.A.I.); (A.A.K.); (D.A.A.)
| | - Dmitrii A. Atiakshin
- Scientific and Educational Resource Center “Innovative Technologies of Immunophenotyping, Digital Spatial Profiling and Ultrastructural Analysis”, RUDN University, 117198 Moscow, Russia; (A.V.V.); (M.A.I.); (A.A.K.); (D.A.A.)
| |
Collapse
|
5
|
Kepes Z, Hegedus E, Sass T, Csikos C, Szabo JP, Szugyiczki V, Hajdu I, Kertesz I, Opposits G, Imrek J, Balkay L, Kalman FK, Trencsenyi G. Concomitant [ 18F]F-FAZA and [ 18F]F-FDG Imaging of Gynecological Cancer Xenografts: Insight into Tumor Hypoxia. In Vivo 2024; 38:574-586. [PMID: 38418132 PMCID: PMC10905447 DOI: 10.21873/invivo.13476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/10/2023] [Accepted: 12/11/2023] [Indexed: 03/01/2024]
Abstract
BACKGROUND/AIM Herein we assessed the feasibility of imaging protocols using both hypoxia-specific [18F]F-FAZA and [18F]F-FDG in bypassing the limitations derived from the non-specific findings of [18F]F-FDG PET imaging of tumor-related hypoxia. MATERIALS AND METHODS CoCl2-generated hypoxia was induced in multidrug resistant (Pgp+) or sensitive (Pgp-) human ovarian (Pgp- A2780, Pgp+ A2780AD), and cervix carcinoma (Pgp- KB-3-1, Pgp+ KB-V-1) cell lines to establish corresponding tumor-bearing mouse models. Prior to [18F]F-FDG/[18F]F-FAZA-based MiniPET imaging, in vitro [18F]F-FDG uptake measurements and western blotting were used to verify the presence of hypoxia. RESULTS Elevated GLUT-1, and hexokinase enzyme-II expression driven by CoCl2-induced activation of hypoxia-inducible factor-1α explains enhanced cellular [18F]F-FDG accumulation. No difference was observed in the [18F]F-FAZA accretion of Pgp+ and Pgp- tumors. Tumor-to-muscle ratios for [18F]F-FAZA measured at 110-120 min postinjection (6.2±0.1) provided the best contrasted images for the delineation of PET-oxic and PET-hypoxic intratumor regions. Although all tumors exhibited heterogenous uptake of both radiopharmaceuticals, greater differences for [18F]F-FAZA between the tracer avid and non-accumulating regions indicate its superiority over [18F]F-FDG. Spatial correlation between [18F]F-FGD and [18F]F-FAZA scans confirms that hypoxia mostly occurs in regions with highly active glucose metabolism. CONCLUSION The addition of [18F]F-FAZA PET to [18F]F-FGD imaging may add clinical value in determining hypoxic sub-regions.
Collapse
Affiliation(s)
- Zita Kepes
- Division of Nuclear Medicine and Translational Imaging, Department of Medical Imaging, Faculty of Medicine, University of Debrecen, Debrecen, Hungary;
| | - Eva Hegedus
- Division of Nuclear Medicine and Translational Imaging, Department of Medical Imaging, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Tamas Sass
- Department of Surgery, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Csaba Csikos
- Division of Nuclear Medicine and Translational Imaging, Department of Medical Imaging, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Gyula Petrányi Doctoral School of Clinical Immunology and Allergology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Judit P Szabo
- Division of Nuclear Medicine and Translational Imaging, Department of Medical Imaging, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Viktoria Szugyiczki
- Department of Nuclear Medicine, Békés County Pándy Kálmán Hospital, Semmelweis, Hungary
| | - István Hajdu
- Division of Nuclear Medicine and Translational Imaging, Department of Medical Imaging, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Istvan Kertesz
- Division of Nuclear Medicine and Translational Imaging, Department of Medical Imaging, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Gabor Opposits
- Division of Nuclear Medicine and Translational Imaging, Department of Medical Imaging, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Jozsef Imrek
- Institute of Physics, University of Debrecen, Debrecen, Hungary
| | - Laszlo Balkay
- Division of Nuclear Medicine and Translational Imaging, Department of Medical Imaging, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | | | - Gyorgy Trencsenyi
- Division of Nuclear Medicine and Translational Imaging, Department of Medical Imaging, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
6
|
Liao Q, Xia W, Chen J, Wang K, Xiao E. Circular RNA DNAH14 molecular mechanism in an experimental model of hepatocellular carcinoma treated with Cobalt chloride to mimic the hypoxia-like response of transcatheter arterial chemoembolization. Sci Rep 2024; 14:1992. [PMID: 38263208 PMCID: PMC10805718 DOI: 10.1038/s41598-024-52578-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 01/20/2024] [Indexed: 01/25/2024] Open
Abstract
Transcatheter arterial chemoembolization (TACE) is the primary local treatment for patients with unresectable hepatocellular carcinoma (HCC). Numerous studies have demonstrated the pivotal role of circular RNAs (circRNAs) in TACE efficacy. This study aimed to investigate the function of circular RNA DNAH14 (circDNAH14) in TACE for HCC and to elucidate its molecular mechanisms. To simulate hypoxia conditions experienced during TACE, HCC cells were treated with cobalt chloride. The expression levels of circDNAH14, microRNA-508-3p (miR-508-3p), and Prothymosin Alpha (PTMA) were modulated via transfection for knockdown or overexpression. Cell Counting Kit-8 and 5-ethynyl-2'-deoxyuridine assays, flow cytometry, and Transwell assays, along with epithelial-mesenchymal transition (EMT) evaluations, were employed to assess cell proliferation, apoptosis, invasion, migration, and EMT. The results indicated that hypoxia treatment downregulated the expression of circDNAH14 and PTMA while upregulating miR-508-3p. Such treatment suppressed HCC cell proliferation, invasion, migration, and EMT, and induced apoptosis. Knockdown of circDNAH14 or PTMA intensified the suppressive effects of hypoxia on the malignant behaviors of HCC cells. Conversely, upregulation of miR-508-3p or PTMA mitigated the effects of circDNAH14 overexpression and knockdown, respectively. Mechanistically, circDNAH14 was found to competitively bind to miR-508-3p, thereby regulating PTMA expression. In vivo, nude mouse xenograft experiments demonstrated that circDNAH14 knockdown augmented the hypoxia-induced suppression of HCC tumor growth. In conclusion, circDNAH14 mitigates the suppressive effects of hypoxia on HCC, both in vitro and in vivo, by competitively binding to miR-508-3p and regulating PTMA expression.
Collapse
Affiliation(s)
- Qiuling Liao
- Department of Radiology, The Second Xiangya Hospital of Central South University, No. 139, Renmin Middle Road, Changsha City, 410011, Hunan Province, China
| | - Weiping Xia
- Department of Urology Surgery, Xiangya Hospital Central South University, No. 87 Xiangya Road, Kaifu District, Changsha City, 410008, Hunan Province, China
| | - Jiawen Chen
- Department of Urology Surgery, Xiangya Hospital Central South University, No. 87 Xiangya Road, Kaifu District, Changsha City, 410008, Hunan Province, China
| | - Kangning Wang
- Department of Urology Surgery, Xiangya Hospital Central South University, No. 87 Xiangya Road, Kaifu District, Changsha City, 410008, Hunan Province, China.
| | - Enhua Xiao
- Department of Radiology, The Second Xiangya Hospital of Central South University, No. 139, Renmin Middle Road, Changsha City, 410011, Hunan Province, China.
| |
Collapse
|
7
|
Li H, Wu QY, Teng XH, Li ZP, Zhu MT, Gu CJ, Chen BJ, Xie QQ, LuO XJ. The pathogenesis and regulatory role of HIF-1 in rheumatoid arthritis. Cent Eur J Immunol 2024; 48:338-345. [PMID: 38558567 PMCID: PMC10976655 DOI: 10.5114/ceji.2023.134217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 08/31/2023] [Indexed: 04/04/2024] Open
Abstract
Rheumatoid arthritis (RA) is a prevalent autoimmune disease that involves the overgrowth and inflammation of synovial tissue, leading to the degeneration and impairment of joints. In recent years, numerous studies have shown a close relationship between the hypoxic microenvironment in joints and the occurrence and progression of RA. The main cause of the pathological changes in RA is widely believed to be the abnormal expression of hypoxia-inducible factor-1 (HIF-1) in joints. This paper describes and illustrates the structure and primary functions of HIF-1 and explains the main regulatory methods of HIF-1, including the PHDs/HIF-1 α/pVHL pathway, factor-inhibiting HIF (FIH), regulation of inflammatory cytokines, and the NF-κB pathway. Furthermore, this paper discusses the mechanism of HIF-1 and its impact on inflammation, angiogenesis, and cartilage destruction in greater detail. We summarize previous research findings on the mechanism of HIF-1 and propose new potential treatments for RA based on the pathogenesis of HIF-1 in RA.
Collapse
Affiliation(s)
- Han Li
- Taizhou University, Taizhou, Zhejiang, China
| | - Qi-Yang Wu
- Taizhou University, Taizhou, Zhejiang, China
| | | | - Zhi-Peng Li
- Taizhou University, Taizhou, Zhejiang, China
| | | | - Chao-Jie Gu
- Taizhou University, Taizhou, Zhejiang, China
| | | | - Qi-Qi Xie
- Taizhou University, Taizhou, Zhejiang, China
| | | |
Collapse
|
8
|
Arachchige DL, Dwivedi SK, Waters M, Jaeger S, Peters J, Tucker DR, Geborkoff M, Werner T, Luck RL, Godugu B, Liu H. Sensitive monitoring of NAD(P)H levels within cancer cells using mitochondria-targeted near-infrared cyanine dyes with optimized electron-withdrawing acceptors. J Mater Chem B 2024; 12:448-465. [PMID: 38063074 PMCID: PMC10918806 DOI: 10.1039/d3tb02124f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
A series of near-infrared fluorescent probes, labeled A to E, were developed by combining electron-rich thiophene and 3,4-ethylenedioxythiophene bridges with 3-quinolinium and various electron deficient groups, enabling the sensing of NAD(P)H. Probes A and B exhibit absorptions and emissions in the near-infrared range, offering advantages such as minimal interference from autofluorescence, negligible photo impairment in cells and tissues, and exceptional tissue penetration. These probes show negligible fluorescence when NADH is not present, and their absorption maxima are at 438 nm and 470 nm, respectively. In contrast, probes C-E feature absorption maxima at 450, 334 and 581 nm, respectively. Added NADH triggers the transformation of the electron-deficient 3-quinolinium units into electron-rich 1,4-dihydroquinoline units resulting in fluorescence responses which were established at 748, 730, 575, 625 and 661 for probes AH-EH, respectively, at detection limits of 0.15 μM and 0.07 μM for probes A and B, respectively. Optimized geometries based on theoretical calculations reveal non-planar geometries for probes A-E due to twisting of the 3-quinolinium and benzothiazolium units bonded to the central thiophene group, which all attain planarity upon addition of hydride resulting in absorption and fluorescence in the near-IR region for probes AH and BH in contrast to probes CH-EH which depict fluorescence in the visible range. Probe A has been successfully employed to monitor NAD(P)H levels in glycolysis and specific mitochondrial targeting. Furthermore, it has been used to assess the influence of lactate and pyruvate on the levels of NAD(P)H, to explore how hypoxia in cancer cells can elevate levels of NAD(P)H, and to visualize changes in levels of NAD(P)H under hypoxic conditions with CoCl2 treatment. Additionally, probe A has facilitated the examination of the potential impact of chemotherapy drugs, namely gemcitabine, camptothecin, and cisplatin, on metabolic processes and energy generation within cancer cells by affecting NAD(P)H levels. Treatment of A549 cancer cells with these drugs has been shown to increase NAD(P)H levels, which may contribute to their anticancer effects ultimately leading to programmed cell death or apoptosis. Moreover, probe A has been successfully employed in monitoring NAD(P)H level changes in D. melanogaster larvae treated with cisplatin.
Collapse
Affiliation(s)
- Dilka Liyana Arachchige
- Department of Chemistry, Michigan Technological University, Houghton, MI 49931, USA.
- Health Research Institute, Michigan Technological University, Houghton, MI 49931, USA
| | - Sushil K Dwivedi
- Department of Chemistry, Michigan Technological University, Houghton, MI 49931, USA.
- Health Research Institute, Michigan Technological University, Houghton, MI 49931, USA
| | - May Waters
- Department of Chemistry, Michigan Technological University, Houghton, MI 49931, USA.
- Health Research Institute, Michigan Technological University, Houghton, MI 49931, USA
| | - Sophia Jaeger
- Department of Chemistry, Michigan Technological University, Houghton, MI 49931, USA.
- Health Research Institute, Michigan Technological University, Houghton, MI 49931, USA
| | - Joe Peters
- Department of Chemistry, Michigan Technological University, Houghton, MI 49931, USA.
- Health Research Institute, Michigan Technological University, Houghton, MI 49931, USA
| | - Daniel R Tucker
- Department of Chemistry, Michigan Technological University, Houghton, MI 49931, USA.
| | - Micaela Geborkoff
- Department of Biological Sciences, Michigan Technological University, Houghton, MI 49931, USA
| | - Thomas Werner
- Department of Biological Sciences, Michigan Technological University, Houghton, MI 49931, USA
| | - Rudy L Luck
- Department of Chemistry, Michigan Technological University, Houghton, MI 49931, USA.
| | - Bhaskar Godugu
- Department of Chemistry, University of Pittsburgh, Chevron Science Center, 219 Parkman Avenue, Pittsburgh, PA 15260, USA
| | - Haiying Liu
- Department of Chemistry, Michigan Technological University, Houghton, MI 49931, USA.
- Health Research Institute, Michigan Technological University, Houghton, MI 49931, USA
| |
Collapse
|
9
|
Kale N, Edvall C, Ozoude C, Mallik S. In Vitro Tumor Mimetic Spheroid Model: Void Space within a Self-Detachable Cross-Linked Hydrogel. ACS APPLIED BIO MATERIALS 2023; 6:4682-4693. [PMID: 37867293 DOI: 10.1021/acsabm.3c00490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2023]
Abstract
The three-dimensional (3D) spheroid cell culture model is crucial in screening anticancer drugs in vitro and understanding tumor cell behavior. However, the current in vitro models require highly skilled techniques. Here, we present an in vitro, tumor-mimetic, self-detachable, cancer cell spheroid model that provides the confined space of a tumor microenvironment, convenient spheroid retrieval, immunostaining, treatment, and imaging. We formed a void space within alginate macrobeads by ionic disintegration at a specific region inside. The macrobeads were further destabilized with bovine serum albumin to retrieve the spheroid cultured within the void space. Quantitative analysis of the immunofluorescence images of the cultured spheroids showed enhanced expressions of the hypoxia-inducible factor-1α (HIF-1α) and carbonic anhydrase-9 (CA-9), like monolayer cultures of cancer cells under hypoxic conditions (0.2% oxygen). Furthermore, adding CoCl2 to the cell culture media induces even higher amounts of HIF-1α and CA-9 in the cultured spheroids. In conclusion, the present work highlighted the in vitro spheroid model, which is closer to the tumor microenvironment and has user-friendly cell seeding, spheroid retrieval, and immunostaining steps.
Collapse
Affiliation(s)
- Narendra Kale
- Pharmaceutical Sciences Department, North Dakota State University, Fargo, North Dakota 58105, United States
| | - Connor Edvall
- Pharmaceutical Sciences Department, North Dakota State University, Fargo, North Dakota 58105, United States
| | - Chukwuebuka Ozoude
- Pharmaceutical Sciences Department, North Dakota State University, Fargo, North Dakota 58105, United States
| | - Sanku Mallik
- Pharmaceutical Sciences Department, North Dakota State University, Fargo, North Dakota 58105, United States
| |
Collapse
|
10
|
Wei M, Chen A, Zhang J, Ren Y. Novel Oxygen-Dependent Degradable Immunotoxin Regulated by the Ubiquitin-Proteasome System Reduces Nonspecific Cytotoxicity. Mol Pharm 2023; 20:90-100. [PMID: 36305716 DOI: 10.1021/acs.molpharmaceut.2c00503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The use of bacterial toxins as antitumor agents has received considerable attention. Immunotoxins based on antigen recognition of single-chain antibodies have been widely explored for cancer therapy. Despite their impressive killing effect on tumor cells, immunotoxins still display unspecific toxicity with undesired side effects. High levels of hypoxia-inducible factor 1α (HIF-1α) are well-known indicators of hypoxia in cancer cells. In this study, different linkers were employed to fuse the immunotoxin DAB389-4D5 scFv (DS) with the oxygen-dependent degradation domain (ODDD) of HIF-1α, a domain selectively facilitating the accumulation of HIF-1α under hypoxia, to construct the oxygen-dependent degradable immunotoxin DS-ODDD (DSO). The engineered fusion protein DSO-2 containing a linker (G4S)3 possesses the best killing effect on cancer cells under hypoxia and displayed considerably reduced nonspecific toxicity to normal cells under normoxic conditions. Flow cytometry, immunofluorescence, and immunoblot analyses demonstrated that DSO-2 was degraded via the ubiquitin-proteasome pathway regulated by the oxygen-sensitive mechanism. Western blot analysis indicated that the degradation of DSO-2 significantly decreased the activation of apoptosis-related molecules in normal cells. The engineered immunotoxin with oxygen-sensing properties developed herein is a potential therapeutic agent for cancer treatment.
Collapse
Affiliation(s)
- Min Wei
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Anxiang Chen
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Jian Zhang
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Yuhong Ren
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| |
Collapse
|
11
|
Nguyen PL, Elkamhawy A, Choi YH, Lee CH, Lee K, Cho J. Suppression of Tumor Growth and Cell Migration by Indole-Based Benzenesulfonamides and Their Synergistic Effects in Combination with Doxorubicin. Int J Mol Sci 2022; 23:ijms23179903. [PMID: 36077298 PMCID: PMC9456432 DOI: 10.3390/ijms23179903] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/26/2022] [Accepted: 08/29/2022] [Indexed: 11/25/2022] Open
Abstract
Pharmacological inhibition of the enzyme activity targeting carbonic anhydrases (CAs) demonstrated antiglaucoma and anticancer effects through pH control. Recently, we reported a series of indole-based benzenesulfonamides as potent CA inhibitors. The present study aimed to evaluate the antitumor effects of these compounds against various cancer cell lines, including breast cancer (MDA-MB-231, MCF-7, and SK-BR-3), lung cancer (A549), and pancreatic cancer (Panc1) cells. Overall, more potent cytotoxicity was observed on MCF-7 and SK-BR-3 cells than on lung or pancreatic cancer cells. Among the 15 compounds tested, A6 and A15 exhibited potent cytotoxic and antimigratory activities against MCF-7 and SK-BR-3 cells in the CoCl2-induced hypoxic condition. While A6 and A15 markedly reduced the viability of control siRNA-treated cells, these compounds could not significantly reduce the viability of CA IX-knockdown cells, suggesting the role of CA IX in their anticancer activities. To assess whether these compounds exerted synergism with a conventional anticancer drug doxorubicin (DOX), the cytotoxic effects of A6 or A15 combined with DOX were analyzed using Chou−Talalay and Bliss independence methods. Our data revealed that both A6 and A15 significantly enhanced the anticancer activity of DOX. Among the tested pairs, the combination of DOX with A15 showed the strongest synergism on SK-BR-3 cells. Moreover, this combination further attenuated cell migration compared to the respective drug. Collectively, our results demonstrated that A6 and A15 suppressed tumor growth and cell migration of MCF-7 and SK-BR-3 cells through inhibition of CA IX, and the combination of these compounds with DOX exhibited synergistic cytotoxic effects on these breast cancer cells. Therefore, A6 and A15 may serve as potential anticancer agents alone or in combination with DOX against breast cancer.
Collapse
Affiliation(s)
| | - Ahmed Elkamhawy
- College of Pharmacy, Dongguk University-Seoul, Goyang 10326, Korea
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Young Hee Choi
- College of Pharmacy, Dongguk University-Seoul, Goyang 10326, Korea
| | - Chang Hoon Lee
- College of Pharmacy, Dongguk University-Seoul, Goyang 10326, Korea
| | - Kyeong Lee
- College of Pharmacy, Dongguk University-Seoul, Goyang 10326, Korea
- Correspondence: (K.L.); (J.C.)
| | - Jungsook Cho
- College of Pharmacy, Dongguk University-Seoul, Goyang 10326, Korea
- Correspondence: (K.L.); (J.C.)
| |
Collapse
|
12
|
Expression of proliferation-related genes in BM-MSC-treated ALL cells in hypoxia condition is regulated under the influence of epigenetic factors in-vitro. Med Oncol 2022; 39:88. [PMID: 35581482 DOI: 10.1007/s12032-022-01671-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 01/12/2022] [Indexed: 10/18/2022]
Abstract
Mesenchymal stem cells affect ALL cell biology under hypoxic conditions. We studied survival, proliferation, expression, and promoter methylation levels of essential genes involved in expanding MOLT-4 cells co-cultured with BM-MSC under the hypoxic condition. Here, MOLT-4 cells were co-cultured with BMMSCs under hypoxic conditions. First, the apoptosis rate was evaluated by Flow cytometry. Then, MOLT-4 cells' proliferation rate was assessed using MTT assay, and the expressions and methylation rates of genes were determined by qRT-PCR and MS-qPCR, respectively. The results showed that although MOLT-4 cells proliferation and survival rates were reduced under hypoxic conditions, this reduction was not statistically significant. Also, we showed that hypoxic conditions caused upregulation of candidate genes and affected their methylation status. Besides, it was revealed that Pontin was downregulated, while KDM3A, SKP2, and AURKA had an upward trend in the presence of MOLT-4 cells plus BM-MSC. The co-culture of leukemia cells with BMMSCs under hypoxic conditions may be a potential therapeutic approach for ALL.
Collapse
|
13
|
Petrocelli G, Pampanella L, Abruzzo PM, Ventura C, Canaider S, Facchin F. Endogenous Opioids and Their Role in Stem Cell Biology and Tissue Rescue. Int J Mol Sci 2022; 23:3819. [PMID: 35409178 PMCID: PMC8998234 DOI: 10.3390/ijms23073819] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 03/28/2022] [Accepted: 03/29/2022] [Indexed: 01/25/2023] Open
Abstract
Opioids are considered the oldest drugs known by humans and have been used for sedation and pain relief for several centuries. Nowadays, endogenous opioid peptides are divided into four families: enkephalins, dynorphins, endorphins, and nociceptin/orphanin FQ. They exert their action through the opioid receptors (ORs), transmembrane proteins belonging to the super-family of G-protein-coupled receptors, and are expressed throughout the body; the receptors are the δ opioid receptor (DOR), μ opioid receptor (MOR), κ opioid receptor (KOR), and nociceptin/orphanin FQ receptor (NOP). Endogenous opioids are mainly studied in the central nervous system (CNS), but their role has been investigated in other organs, both in physiological and in pathological conditions. Here, we revise their role in stem cell (SC) biology, since these cells are a subject of great scientific interest due to their peculiar features and their involvement in cell-based therapies in regenerative medicine. In particular, we focus on endogenous opioids' ability to modulate SC proliferation, stress response (to oxidative stress, starvation, or damage following ischemia-reperfusion), and differentiation towards different lineages, such as neurogenesis, vasculogenesis, and cardiogenesis.
Collapse
Affiliation(s)
- Giovannamaria Petrocelli
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy; (G.P.); (L.P.); (P.M.A.); (F.F.)
| | - Luca Pampanella
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy; (G.P.); (L.P.); (P.M.A.); (F.F.)
| | - Provvidenza M. Abruzzo
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy; (G.P.); (L.P.); (P.M.A.); (F.F.)
| | - Carlo Ventura
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy; (G.P.); (L.P.); (P.M.A.); (F.F.)
- National Laboratory of Molecular Biology and Stem Cell Bioengineering of the National Institute of Biostructures and Biosystems (NIBB)–Eldor Lab, at the Innovation Accelerator, CNR, Via Piero Gobetti 101, 40129 Bologna, Italy
| | - Silvia Canaider
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy; (G.P.); (L.P.); (P.M.A.); (F.F.)
- National Laboratory of Molecular Biology and Stem Cell Bioengineering of the National Institute of Biostructures and Biosystems (NIBB)–Eldor Lab, at the Innovation Accelerator, CNR, Via Piero Gobetti 101, 40129 Bologna, Italy
| | - Federica Facchin
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy; (G.P.); (L.P.); (P.M.A.); (F.F.)
- National Laboratory of Molecular Biology and Stem Cell Bioengineering of the National Institute of Biostructures and Biosystems (NIBB)–Eldor Lab, at the Innovation Accelerator, CNR, Via Piero Gobetti 101, 40129 Bologna, Italy
| |
Collapse
|
14
|
Špaková I, Rabajdová M, Mičková H, Graier WF, Mareková M. Effect of hypoxia factors gene silencing on ROS production and metabolic status of A375 malignant melanoma cells. Sci Rep 2021; 11:10325. [PMID: 33990669 PMCID: PMC8121821 DOI: 10.1038/s41598-021-89792-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 04/29/2021] [Indexed: 01/04/2023] Open
Abstract
The innate response of melanocytes to exogenous or endogenous stress stimuli like extreme pH and temperature, metabolite and oxygen deficiency or a high UV dose initiates a cellular stress response. This process activates adaptive processes to minimize the negative impact of the stressor on the pigment cell. Under physiological conditions, a non-cancer cell is directed to apoptosis if the stressor persists. However, malignant melanoma cells will survive persistent stress thanks to distinct "cancerous" signaling pathways (e.g. MEK) and transcription factors that regulate the expression of so-called "survival genes" (e.g. HIF, MITF). In this survival response of cancer cells, MEK pathway directs melanoma cells to deregulate mitochondrial metabolism, to accumulate reduced species (NADH), and to centralize metabolism in the cytosol. The aim of this work was to study the effect of gene silencing in malignant melanoma A375 cells on metabolic processes in cytosol and mitochondria. Gene silencing of HIF-1α, and miR-210 in normoxia and pseudohypoxia, and analysis of its effect on MITF-M, and PDHA1 expression. Detection of cytosolic NADH by Peredox-mCherry Assay. Detection of OCR, and ECAR using Seahorse XF96. Measurement of produced O2•- with MitoTracker Red CMXRos. 1H NMR analysis of metabolites present in cell suspension, and medium. By gene silencing of HIF-1α and miR-210 the expression of PDHA1 was upregulated while that of MITF-M was downregulated, yielding acceleration of mitochondrial respiratory activity and thus elimination of ROS. Hence, we detected a significantly reduced A375 cell viability, an increase in alanine, inositol, nucleotides, and other metabolites that together define apoptosis. Based on the results of measurements of mitochondrial resipiratory activity, ROS production, and changes in the metabolites obtained in cells under the observed conditions, we concluded that silencing of HIF-1α and miR-210 yields apoptosis and, ultimately, apoptotic cell death in A375 melanoma cells.
Collapse
Affiliation(s)
- Ivana Špaková
- Department of Medical and Clinical Biochemistry, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, Trieda SNP 1, 04011, Košice, Slovakia
| | - Miroslava Rabajdová
- Department of Medical and Clinical Biochemistry, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, Trieda SNP 1, 04011, Košice, Slovakia.
| | - Helena Mičková
- Department of Biology, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, Košice, Slovakia
| | - Wolfgang F Graier
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria.,BioTechMed, Graz, Austria
| | - Mária Mareková
- Department of Medical and Clinical Biochemistry, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, Trieda SNP 1, 04011, Košice, Slovakia
| |
Collapse
|
15
|
Marofi F, Shomali N, Younus LA, Hassanzadeh A, Vahedi G, Kuznetsova MY, Solali S, Gharibi T, Hosseini A, Mohammed RN, Mohammadi H, Tamjidifar R, Firouzi-Amandi A, Farshdousti Hagh M. Under hypoxic conditions, MSCs affect the expression and methylation level of survival-related genes in ALL independent of apoptosis pathways in vitro. Biotechnol Appl Biochem 2021; 69:822-839. [PMID: 33786874 DOI: 10.1002/bab.2154] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 03/18/2021] [Indexed: 12/27/2022]
Abstract
Mesenchymal stem cells (MSCs) are one of the most prominent cells in the bone marrow. MSCs can affect acute lymphocytic leukemia (ALL) cells under hypoxic conditions. With this aim, we used MOLT-4 cells as simulators of ALL cells cocultured with bone marrow mesenchymal stem cells (BMMSCs) under hypoxic conditions in vitro. Then, mRNA and protein expression of the MAT2A, PDK1, and HK2 genes were evaluated by real-time PCR and Western blot which was also followed by apoptosis measurement by a flow-cytometric method. Next, the methylation status of the target genes was investigated by MS-qPCR. Additionally, candidate gene expressions were examined after treatment with rapamycin using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. We found that the mRNA expression of the candidate genes was augmented under the hypoxic condition in which MAT2A was upregulated in cocultured cells compared to MOLT-4, while HK2 and PDK1 were downregulated. Moreover, we found an association between gene expression and promoter methylation levels of target genes. Besides, expressions of the candidate genes were decreased, while their methylation levels were promoted following treatment with rapamycin. Our results suggest an important role for the BMMSC in regulating the methylation of genes involved in cell survival in hypoxia conditions; however, we found no evidence to prove the MSCs' effect on directing malignant lymphoblastic cells to apoptosis.
Collapse
Affiliation(s)
- Faroogh Marofi
- Department of Hematology, Division of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Immunology research center, Tabriz University of medical sciences, Tabriz, Iran.,Bone Marrow Transplant Center, Hiwa Cancer Hospital, Suleimanyah, Iraq
| | - Navid Shomali
- Immunology research center, Tabriz University of medical sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Laith A Younus
- Departement of Clinical Laboratory Sciences, Faculty of Pharmacy, Jabir Ibn Hayyan Medical University, Al Najaf Al-Ashraf, Iraq
| | - Ali Hassanzadeh
- Department of Hematology, Division of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ghasem Vahedi
- Department of Immunology, Faculty of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | | | - Saeed Solali
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Tohid Gharibi
- Immunology research center, Tabriz University of medical sciences, Tabriz, Iran
| | - Arezoo Hosseini
- Immunology research center, Tabriz University of medical sciences, Tabriz, Iran
| | - Rebar N Mohammed
- Bone Marrow Transplant Center, Hiwa Cancer Hospital, Suleimanyah, Iraq
| | - Hamed Mohammadi
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Rozita Tamjidifar
- Immunology research center, Tabriz University of medical sciences, Tabriz, Iran
| | | | - Majid Farshdousti Hagh
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
16
|
Chen TT, Zhou X, Xu YN, Li Y, Wu XY, Xiang Q, Fu LY, Hu XX, Tao L, Shen XC. Gastrodin ameliorates learning and memory impairment in rats with vascular dementia by promoting autophagy flux via inhibition of the Ca 2+/CaMKII signal pathway. Aging (Albany NY) 2021; 13:9542-9565. [PMID: 33714957 PMCID: PMC8064221 DOI: 10.18632/aging.202667] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 11/30/2020] [Indexed: 12/12/2022]
Abstract
Vascular dementia (VD) is a common disease that occurs during human aging. Gastrodin (GAS) has potential benefits for the prevention and treatment of VD. In the present study, we investigated the effects of GAS on cognitive dysfunction in rats with VD induced by permanent middle cerebral artery occlusion (pMCAO) and explored the underlying mechanism. Immunohistochemical and western blot analyses revealed that GAS attenuated hippocampal levels of LC3 (microtubule-associated protein 1 light chain 3), p62, and phosphorylated CaMKII (Ca2+-calmodulin stimulated protein kinase II) in VD rats. Additionally, our results revealed that cobalt chloride blocked autophagic flux in HT22 cells, which was confirmed by increased levels of LC3 and p62 when combined with chloroquine. Notably, GAS ameliorated the impaired autophagic flux. Furthermore, we confirmed that GAS combined with KN93 (a CaMKII inhibitor) or CaMKII knockdown did not impact the reduced p62 levels when compared with GAS treatment alone. Furthermore, a co-immunoprecipitation assay demonstrated that endogenous p62 bound to CaMKII, as confirmed by mass spectrometric analysis after the immunoprecipitation of p62 from HT22 cells. These findings revealed that GAS attenuated autophagic flux dysfunction by inhibiting the Ca2+/CaMKII signaling pathway to ameliorate cognitive impairment in VD.
Collapse
Affiliation(s)
- Ting-Ting Chen
- The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province and The High Educational Key Laboratory of Guizhou Province for Natural Medicinal Pharmacology and Druggability, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, P.R. China
- Guiyang Maternal and Child Health-Care Hospital, Guiyang 550000, P.R. China
- The Key Laboratory of Optimal Utilization of Natural Medicine Resources and The Union Key Laboratory of Guiyang City, Guizhou Medical University, School of Pharmaceutical Sciences, Guiyang 550025, P.R. China
| | - Xue Zhou
- The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province and The High Educational Key Laboratory of Guizhou Province for Natural Medicinal Pharmacology and Druggability, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, P.R. China
| | - Yi-Ni Xu
- The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province and The High Educational Key Laboratory of Guizhou Province for Natural Medicinal Pharmacology and Druggability, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, P.R. China
| | - Yue Li
- Guiyang Maternal and Child Health-Care Hospital, Guiyang 550000, P.R. China
| | - Xiao-Ying Wu
- The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province and The High Educational Key Laboratory of Guizhou Province for Natural Medicinal Pharmacology and Druggability, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, P.R. China
- The Key Laboratory of Optimal Utilization of Natural Medicine Resources and The Union Key Laboratory of Guiyang City, Guizhou Medical University, School of Pharmaceutical Sciences, Guiyang 550025, P.R. China
| | - Quan Xiang
- The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province and The High Educational Key Laboratory of Guizhou Province for Natural Medicinal Pharmacology and Druggability, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, P.R. China
- The Key Laboratory of Endemic and Ethnic Diseases of Ministry of Education, Guizhou Medical University, Guiyang 550025, P.R. China
| | - Ling-Yun Fu
- The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province and The High Educational Key Laboratory of Guizhou Province for Natural Medicinal Pharmacology and Druggability, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, P.R. China
- The Key Laboratory of Endemic and Ethnic Diseases of Ministry of Education, Guizhou Medical University, Guiyang 550025, P.R. China
| | - Xiao-Xia Hu
- The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province and The High Educational Key Laboratory of Guizhou Province for Natural Medicinal Pharmacology and Druggability, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, P.R. China
- The Key Laboratory of Endemic and Ethnic Diseases of Ministry of Education, Guizhou Medical University, Guiyang 550025, P.R. China
| | - Ling Tao
- The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province and The High Educational Key Laboratory of Guizhou Province for Natural Medicinal Pharmacology and Druggability, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, P.R. China
| | - Xiang-Chun Shen
- The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province and The High Educational Key Laboratory of Guizhou Province for Natural Medicinal Pharmacology and Druggability, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, P.R. China
- The Key Laboratory of Optimal Utilization of Natural Medicine Resources and The Union Key Laboratory of Guiyang City, Guizhou Medical University, School of Pharmaceutical Sciences, Guiyang 550025, P.R. China
- The Key Laboratory of Endemic and Ethnic Diseases of Ministry of Education, Guizhou Medical University, Guiyang 550025, P.R. China
| |
Collapse
|
17
|
Yang Z, Huang Y, Zhu L, Yang K, Liang K, Tan J, Yu B. SIRT6 promotes angiogenesis and hemorrhage of carotid plaque via regulating HIF-1α and reactive oxygen species. Cell Death Dis 2021; 12:77. [PMID: 33436551 PMCID: PMC7804142 DOI: 10.1038/s41419-020-03372-2] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/16/2020] [Accepted: 12/17/2020] [Indexed: 12/15/2022]
Abstract
As a member of Sirtuins family, SIRT6 participates in the physiological and pathological progress of DNA repair, anti-aging, metabolism, and so on. Several studies have demonstrated that knockdown of SIRT6 inhibited the development of atherosclerosis (AS), indicated SIRT6 as a protective factor for AS. However, we confirmed SIRT6 was significantly overexpressed in human unstable carotid plaques compared with stable carotid plaques. This result indicated a more complex role of SIRT6 in AS. Furthermore, we constructed mice model with unstable carotid plaque and injected them with SIRT6 overexpressed adeno-associated virus (AAV-SIRT6). AAV-SIRT6 significantly promoted angiogenesis as well as hemorrhage in plaques. In vitro, we demonstrated overexpression of SIRT6 prevented HIF-1α from degradation by deubiquitination at K37 and K532 of HIF-1α, thus promoted the expression of HIF-1α under both normoxia and hypoxia in human umbilical vein endothelial cells (HUVECs). Through regulating HIF-1α, overexpression of SIRT6 promoted invasion, migration, proliferation, as well as tube formation ability of HUVECs. Interestingly, under different conditions, SIRT6 played different roles in the function of HUVECs. Under oxidative stress, another important pathological environment for AS, SIRT6 bound to the promoter of Catalase, a main reactive oxygen species scavenger, and depleted H3K56 acetylation, thus inhibited expression and activity of Catalase at the transcriptional level. Subsequently, inhibited Catalase promoted reactive oxygen species (ROS) under oxidative stress. Accumulated ROS further aggravated oxidative stress injury of HUVECs. On one hand, SIRT6 promoted angiogenesis in plaque via HIF-1α under hypoxia. On the other hand, SIRT6 promoted injury of neovascular via ROS under oxidative stress. It is this process of continuous growth and damage that leads to hemorrhage in carotid plaque. In conclusion, we innovatively confirmed SIRT6 promoted the angiogenesis and IPH via promoting HIF-1α and ROS in different environments, thus disclosed the unknowing danger of SIRT6.
Collapse
Affiliation(s)
- Zhou Yang
- Department of General Surgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, 201399, China
| | - Yijun Huang
- Department of General Surgery, Huashan Hospital North, Fudan University, Shanghai, 201907, China
| | - Lei Zhu
- Department of Vascular Surgery, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Kai Yang
- Department of General Surgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, 201399, China
| | - Kun Liang
- Department of Vascular Surgery, Huashan Hospital, Fudan University, Shanghai, 200040, China.
| | - Jinyun Tan
- Department of Vascular Surgery, Huashan Hospital, Fudan University, Shanghai, 200040, China.
| | - Bo Yu
- Department of General Surgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, 201399, China.
- Department of Vascular Surgery, Huashan Hospital, Fudan University, Shanghai, 200040, China.
| |
Collapse
|
18
|
Yang Z, Wei X, Pan Y, Min Z, Xu J, Yu B. Colon cancer combined with obesity indicates improved survival- research on relevant mechanism. Aging (Albany NY) 2020; 12:23778-23794. [PMID: 33197880 PMCID: PMC7762486 DOI: 10.18632/aging.103972] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 07/30/2020] [Indexed: 12/11/2022]
Abstract
Obesity contributes to the incidence of various tumors, including colon cancer. However, the impact of obesity on patients’ survival and related mechanisms remains unclear. Multi-omics data of 227 cases of colon cancer patients combined with clinical characteristics data were acquired from The Cancer Genome Atlas (TCGA) database. We confirmed obesity as an independent prognostic factor for improved overall survival of colon cancer patients. We demonstrated that hypoxia pathways were repressed in obese patients by regulating miR-210. Immune checkpoints PD-1 and LAG3 were also downregulated in obese patients, which indicated enhanced immune surveillance. The frequency of PIK3CA and KRAS mutations was decreased in obese patients. The sites and types of TP53 mutation were alternated in obesity patients. In conclusion, our research demonstrated the potential mechanisms of prolonged survival in colon cancer patients combined with obesity, which may provide potential value for improving the prognosis of colon cancer.
Collapse
Affiliation(s)
- Zhou Yang
- Department of General Surgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, China
| | - Xiyi Wei
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210009, Jiangsu, China
| | - Yitong Pan
- Department of Bioinformatics, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing 211116, China
| | - Zhijun Min
- Department of General Surgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, China
| | - Jingyuan Xu
- Department of General Surgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, China.,Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Bo Yu
- Department of General Surgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, China.,Department of General Surgery, Huashan Hospital Affiliated to Fudan University, Shanghai 201399, China
| |
Collapse
|
19
|
Hwang S, Seong H, Ryu J, Jeong JY, Kang TS, Nam KY, Seo SW, Kim SJ, Kang SS, Han YS. Phosphorylation of STAT3 and ERBB2 mediates hypoxia‑induced VEGF release in ARPE‑19 cells. Mol Med Rep 2020; 22:2733-2740. [PMID: 32945388 PMCID: PMC7453508 DOI: 10.3892/mmr.2020.11344] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 06/15/2020] [Indexed: 12/14/2022] Open
Abstract
Neovascularization in the retina can cause loss of vision. Vascular endothelial growth factor (VEGF) serves an important role in the pathogenesis of retinal vascular diseases. Hypoxia is a notable cause of VEGF release and both STAT3 and ERBB2 are known to be associated with VEGF. In addition, STAT3 and ERBB2 interact with each other. In the present study, it was hypothesized that signal transducer and activator of transcription 3 (STAT3) and erbB-2 receptor tyrosine kinase 2 (ERBB2) may be involved in the regulation of hypoxia-induced VEGF in the retina. Cells of the retinal pigment epithelium (RPE) are an important source of VEGF. Therefore, the RPE-derived human cell line ARPE-19 was exposed to hypoxia. Hypoxia-induced phosphorylation of STAT3 and ERBB2 in ARPE-19 cells was decreased by AG490, an inhibitor of Janus kinase 2, as were hypoxia-induced VEGF release and tube formation in human umbilical vein endothelial cells. Thus, phosphorylation of ERBB2 and STAT3 regulates hypoxia-induced VEGF release in ARPE-19 cells. The results of the present study suggested that inhibition of ERBB2 and STAT3-mediated pathways under hypoxia may represent a new strategy for treating retinal vascular disease.
Collapse
Affiliation(s)
- Soohyun Hwang
- Department of Anatomy and Convergence Medical Science, College of Medicine, Gyeongsang National University, Jinju, South Gyeongsang 52727, Republic of Korea
| | - Hyemin Seong
- Department of Anatomy and Convergence Medical Science, College of Medicine, Gyeongsang National University, Jinju, South Gyeongsang 52727, Republic of Korea
| | - Jinhyun Ryu
- Department of Anatomy and Convergence Medical Science, College of Medicine, Gyeongsang National University, Jinju, South Gyeongsang 52727, Republic of Korea
| | - Joo Yeon Jeong
- Department of Anatomy and Convergence Medical Science, College of Medicine, Gyeongsang National University, Jinju, South Gyeongsang 52727, Republic of Korea
| | - Tae Seen Kang
- Department of Ophthalmology, Gyeongsang National University Changwon Hospital, Changwon, Gyeongsangnam‑do 51472, Republic of Korea
| | - Ki Yup Nam
- Department of Ophthalmology, Gyeongsang National University Changwon Hospital, Changwon, Gyeongsangnam‑do 51472, Republic of Korea
| | - Seong Wook Seo
- Department of Ophthalmology, College of Medicine, Gyeongsang National University, Jinju, South Gyeongsang 52727, Republic of Korea
| | - Seong Jae Kim
- Department of Ophthalmology, College of Medicine, Gyeongsang National University, Jinju, South Gyeongsang 52727, Republic of Korea
| | - Sang Soo Kang
- Department of Anatomy and Convergence Medical Science, College of Medicine, Gyeongsang National University, Jinju, South Gyeongsang 52727, Republic of Korea
| | - Yong Seop Han
- Department of Ophthalmology, Gyeongsang National University Changwon Hospital, Changwon, Gyeongsangnam‑do 51472, Republic of Korea
| |
Collapse
|
20
|
Tregub PP, Malinovskaya NA, Morgun AV, Osipova ED, Kulikov VP, Kuzovkov DA, Kovzelev PD. Hypercapnia potentiates HIF-1α activation in the brain of rats exposed to intermittent hypoxia. Respir Physiol Neurobiol 2020; 278:103442. [DOI: 10.1016/j.resp.2020.103442] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 03/19/2020] [Accepted: 04/06/2020] [Indexed: 12/30/2022]
|
21
|
Cilastatin Preconditioning Attenuates Renal Ischemia-Reperfusion Injury via Hypoxia Inducible Factor-1α Activation. Int J Mol Sci 2020; 21:ijms21103583. [PMID: 32438631 PMCID: PMC7279043 DOI: 10.3390/ijms21103583] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/13/2020] [Accepted: 05/16/2020] [Indexed: 12/16/2022] Open
Abstract
Cilastatin is a specific inhibitor of renal dehydrodipeptidase-1. We investigated whether cilastatin preconditioning attenuates renal ischemia-reperfusion (IR) injury via hypoxia inducible factor-1α (HIF-1α) activation. Human proximal tubular cell line (HK-2) was exposed to ischemia, and male C57BL/6 mice were subjected to bilateral kidney ischemia and reperfusion. The effects of cilastatin preconditioning were investigated both in vitro and in vivo. In HK-2 cells, cilastatin upregulated HIF-1α expression in a time- and dose-dependent manner. Cilastatin enhanced HIF-1α translation via the phosphorylation of Akt and mTOR was followed by the upregulation of erythropoietin (EPO) and vascular endothelial growth factor (VEGF). Cilastatin did not affect the expressions of PHD and VHL. However, HIF-1α ubiquitination was significantly decreased after cilastatin treatment. Cilastatin prevented the IR-induced cell death. These cilastatin effects were reversed by co-treatment of HIF-1α inhibitor or HIF-1α small interfering RNA. Similarly, HIF-1α expression and its upstream and downstream signaling were significantly enhanced in cilastatin-treated kidney. In mouse kidney with IR injury, cilastatin treatment decreased HIF-1α ubiquitination independent of PHD and VHL expression. Serum creatinine level and tubular necrosis, and apoptosis were reduced in cilastatin-treated kidney with IR injury, and co-treatment of cilastatin with an HIF-1α inhibitor reversed these effects. Thus, cilastatin preconditioning attenuated renal IR injury via HIF-1α activation.
Collapse
|
22
|
CoCl 2 simulated hypoxia induce cell proliferation and alter the expression pattern of hypoxia associated genes involved in angiogenesis and apoptosis. Biol Res 2019; 52:12. [PMID: 30876462 PMCID: PMC6419504 DOI: 10.1186/s40659-019-0221-z] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 03/04/2019] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND/AIMS Hypoxia microenvironment plays a crucial role during tumor progression and it tends to exhibit poor prognosis and make resistant to various conventional therapies. HIF-1α acts as an important transcriptional regulator directly or indirectly associated with genes involved in cell proliferation, angiogenesis, apoptosis and energy metabolism during tumor progression in hypoxic microenvironment. This study was aimed to investigate the expression pattern of the hypoxia associated genes and their association during breast cancer progression under hypoxic microenvironment in breast cancer cells. METHODS Cell proliferation in MCF-7 and MDA-MB-231 cell lines treated with different concentration of CoCl2 was analyzed by MTT assay. Flow cytometry was performed to check cell cycle distribution, whereas cell morphology was examined by phase contrast microscopy in both the cells during hypoxia induction. Expression of hypoxia associated genes HIF-1α, VEGF, p53 and BAX were determined by semiquantitative RT-PCR and real-time PCR. Western blotting was performed to detect the expression at protein level. RESULTS Our study revealed that cell proliferation in CoCl2 treated breast cancer cells were concentration dependent and varies with different cell types, further increase in CoCl2 concentration leads to apoptotic cell death. Further, accumulation of p53 protein in response to hypoxia as compare to normoxia showed that induction of p53 in breast cancer cells is HIF-1α dependent. HIF-1α dependent BAX expression during hypoxia revealed that after certain extent of hypoxia induction, over expression of BAX conquers the effect of anti-apoptotic proteins and ultimately leads to apoptosis in breast cancer cells. CONCLUSION In conclusion our results clearly indicate that CoCl2 simulated hypoxia induce the accumulation of HIF-1α protein and alter the expression of hypoxia associated genes involved in angiogenesis and apoptosis.
Collapse
|
23
|
Goto T, Ubukawa K, Kobayashi I, Sugawara K, Asanuma K, Sasaki Y, Guo YM, Takahashi N, Sawada K, Wakui H, Nunomura W. ATP produced by anaerobic glycolysis is essential for enucleation of human erythroblasts. Exp Hematol 2019; 72:14-26.e1. [PMID: 30797950 DOI: 10.1016/j.exphem.2019.02.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 02/13/2019] [Accepted: 02/18/2019] [Indexed: 11/16/2022]
Abstract
More than 2million human erythroblasts extrude their nuclei every second in bone marrow under hypoxic conditions (<7% O2). Enucleation requires specific signal transduction pathways and the local assembly of contractile actomyosin rings. However, the energy source driving these events has not yet been identified. We examined whether different O2 environments (hypoxic [5% O2] and normoxic [21% O2] conditions) affected human CD34+ cell erythroblast differentiation. We also investigated the regulatory mechanisms underlying energy production in erythroblasts during terminal differentiation under 5% or 21% O2 conditions. The results obtained revealed that the enucleation ratio and intracellular levels of adenosine triphosphate (ATP), lactate dehydrogenase (LDH) M3H, and hypoxia-inducible factor 1α in erythroblasts during terminal differentiation were higher under the 5% O2 condition than under the 21% O2 condition. We also found that the enzymatic inhibition of glyceraldehyde 3-phosphate dehydrogenase and LDH, key enzymes in anaerobic glycolysis, blocked the proliferation of colony-forming units-erythroid and enucleation of erythroblasts, and also reduced ATP levels in erythroblasts under both hypoxic and normoxic conditions. Under both conditions, phosphorylation of the Ser232, Ser293, and Ser300 residues in pyruvate dehydrogenase (inactive state of the enzyme) in erythroblasts was involved in regulating the pathway governing energy metabolism during erythroid terminal differentiation. This reaction may be mediated by pyruvate dehydrogenase kinase (PDK) 4, the major PDK isozyme expressed in erythroblasts undergoing enucleation. Collectively, these results suggest that ATP produced by anaerobic glycolysis is the main source of energy for human erythroblast enucleation in the hypoxic bone marrow environment.
Collapse
Affiliation(s)
- Tatsufumi Goto
- Department of Life Science, Graduate School of Engineering Science, Akita University, Akita, Japan
| | - Kumi Ubukawa
- Department of Hematology, Nephrology, and Rheumatology, Graduate School of Medicine, Akita University, Akita, Japan
| | - Isuzu Kobayashi
- Department of Hematology, Nephrology, and Rheumatology, Graduate School of Medicine, Akita University, Akita, Japan
| | - Kotomi Sugawara
- Department of Hematology, Nephrology, and Rheumatology, Graduate School of Medicine, Akita University, Akita, Japan
| | - Ken Asanuma
- Division of Radio Isotope, Bioscience Education and Research Support Center, Akita University, Akita, Japan
| | - Yumi Sasaki
- Department of Life Science, Graduate School of Engineering Science, Akita University, Akita, Japan
| | - Yong-Mei Guo
- Department of Hematology, Nephrology, and Rheumatology, Graduate School of Medicine, Akita University, Akita, Japan
| | - Naoto Takahashi
- Department of Hematology, Nephrology, and Rheumatology, Graduate School of Medicine, Akita University, Akita, Japan
| | | | - Hideki Wakui
- Department of Life Science, Graduate School of Engineering Science, Akita University, Akita, Japan.
| | - Wataru Nunomura
- Department of Life Science, Graduate School of Engineering Science, Akita University, Akita, Japan; Research Center for Engineering Science, Graduate School of Engineering Science, Akita University, Akita, Japan
| |
Collapse
|
24
|
Yang Z, Yu W, Huang R, Ye M, Min Z. SIRT6/HIF-1α axis promotes papillary thyroid cancer progression by inducing epithelial-mesenchymal transition. Cancer Cell Int 2019; 19:17. [PMID: 30675128 PMCID: PMC6335740 DOI: 10.1186/s12935-019-0730-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Accepted: 01/06/2019] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND In our previous study, we demonstrated that Sirtuin 6 (SIRT6) is upregulated and associated with papillary thyroid cancer (PTC) progression (Qu et al. in Int J Oncol 50(5):1683-92, 2017). This study examined whether SIRT6 promotes epithelial-mesenchymal transition (EMT) of papillary thyroid cancer through hypoxia inducible factor-1α (HIF-1α). METHODS SIRT6-upregulated TPC-1 and B-CPAP cells were generated by lentivirus. Western blotting, RT-qPCR, immunofluorescence was performed to detect the following EMT associated markers: E-cadherin, Vimentin, Snail, and TWIST. Cell proliferation was detected by CCK8, and cell invasion and migration were detected by transwell and wound healing assays, respectively. HIF-1α expression was further detected by western blotting in both normoxia and hypoxia conditions. A HIF-1α inhibitor was then used to block HIF-1α expression in SIRT6-upregulated PTC cells. The same parameters were then assessed and compared with control HIF-1α cells. RESULTS E-cadherin was significantly decreased, whereas Vimentin, Snail, and TWIST were increased in SIRT6-upregulated PTC cells. Additionally, SIRT6 promoted the invasion and migration of PTC cells. We found that SIRT6 enhanced HIF-1α stability and synthesis and prolonged the protein half-life. The changes in the EMT associated markers and in the invasion and migration ability were rescued after inhibition of HIF-1α expression. Furthermore, we found that SIRT6 increased PTC resistance to HIF-1α inhibitor-mediated proliferation changes. CONCLUSION These results confirm that the SIRT6/HIF-1α axis promotes papillary thyroid cancer progression by inducing EMT.
Collapse
Affiliation(s)
- Zhou Yang
- Department of General Surgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, 2800 Gongwei Road, Huinan Town, Pudong, Shanghai, 201399 China
| | - Weiping Yu
- Department of General Surgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, 2800 Gongwei Road, Huinan Town, Pudong, Shanghai, 201399 China
| | - Renhong Huang
- Department of General Surgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, 2800 Gongwei Road, Huinan Town, Pudong, Shanghai, 201399 China
| | - Min Ye
- Department of General Surgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, 2800 Gongwei Road, Huinan Town, Pudong, Shanghai, 201399 China
| | - Zhijun Min
- Department of General Surgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, 2800 Gongwei Road, Huinan Town, Pudong, Shanghai, 201399 China
| |
Collapse
|
25
|
Niu N, Li Z, Zhu M, Sun H, Yang J, Xu S, Zhao W, Song R. Effects of nuclear respiratory factor‑1 on apoptosis and mitochondrial dysfunction induced by cobalt chloride in H9C2 cells. Mol Med Rep 2019; 19:2153-2163. [PMID: 30628711 PMCID: PMC6390059 DOI: 10.3892/mmr.2019.9839] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Accepted: 09/28/2018] [Indexed: 01/31/2023] Open
Abstract
Hypoxia-induced apoptosis occurs in various diseases. Cobalt chloride (CoCl2) is a hypoxia mimic agent that is frequently used in studies investigating the mechanisms of hypoxia. Nuclear respiratory factor-1 (NRF-1) is a transcription factor with an important role in the expression of mitochondrial respiratory and mitochondria-associated genes. However, few studies have evaluated the effects of NRF-1 on apoptosis, particularly with regard to damage caused by CoCl2. In the present study, the role of NRF-1 in mediating CoCl2-induced apoptosis was investigated using cell viability analysis, flow cytometry, fluorescence imaging, western blotting analysis, energy metabolism analysis and reverse transcription-quantitative polymerase chain reaction. The present results revealed that the apoptosis caused by CoCl2 could be alleviated by NRF-1. Furthermore, overexpression of NRF-1 increased the expression of B-cell lymphoma-2, hypoxia inducible factor-1α and NRF-2. Also, cell damage induced by CoCl2 may be associated with depolarization of mitochondrial membrane potential, and NRF-1 suppressed this effect. Notably, the oxygen consumption rate (OCR) was reduced in CoCl2-treated cells, whereas overexpression of NRF-1 enhanced the OCR, suggesting that NRF-1 had protective effects. In summary, the present study demonstrated that NRF-1 protected against CoCl2-induced apoptosis, potentially by strengthening mitochondrial function to resist CoCl2-induced damage to H9C2 cells. The results of the present study provide a possible way for the investigation of myocardial diseases.
Collapse
Affiliation(s)
- Nan Niu
- College of Basic Medicine, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750001, P.R. China
| | - Zihua Li
- School of Pharmacy, Tsinghua University, Beijing 100084, P.R. China
| | - Mingxing Zhu
- College of Basic Medicine, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750001, P.R. China
| | - Hongli Sun
- College of Basic Medicine, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750001, P.R. China
| | - Jihui Yang
- College of Basic Medicine, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750001, P.R. China
| | - Shimei Xu
- College of Basic Medicine, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750001, P.R. China
| | - Wei Zhao
- College of Basic Medicine, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750001, P.R. China
| | - Rong Song
- Department of Critical Care Medicine, The Fifth Hospital of the Chinese People's Liberation Army, Yinchuan, Ningxia Hui Autonomous Region 750001, P.R. China
| |
Collapse
|
26
|
Liu Q, Fan D, Adah D, Wu Z, Liu R, Yan QT, Zhang Y, Du ZY, Wang D, Li Y, Bao SY, Liu LP. CRISPR/Cas9‑mediated hypoxia inducible factor‑1α knockout enhances the antitumor effect of transarterial embolization in hepatocellular carcinoma. Oncol Rep 2018; 40:2547-2557. [PMID: 30226584 PMCID: PMC6151876 DOI: 10.3892/or.2018.6667] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 07/31/2018] [Indexed: 12/15/2022] Open
Abstract
Transarterial embolization (TAE) is a palliative option commonly used for the treatment of advanced, unresectable hepatocellular carcinoma (HCC). However, patient prognosis in regards to overall survival has not improved with this method, mainly due to hypoxia-inducible factor-1α (HIF-1α)-induced angiogenesis and invasiveness. Thus, it is hypothesized that HIF-1α may be an ideal knockout target for the treatment of HCC in combination with TAE. Thus, in the present study, HIF-1α knockout was conducted in human liver cancer SMMC-7721 cells and a xenograft HCC model was established using a lentivirus-mediated CRISPR/Cas system (LV-Cas) with small guide RNA-721 (LV-H721). Furthermore, hepatic artery ligation (HAL) was used to mimic human transarterial chemoembolization in mice. The results revealed that HIF-1α was highly expressed in both HCC patient tissues and SMMC-7721-induced tumor tissues. The HIF-1α knockout in SMMC-7721 cells significantly suppressed cell invasiveness and migration, and induced cell apoptosis under CoCl2-mimicking hypoxic conditions. Compared with the control groups, HAL + LV-H721 inhibited SMMC-7721 tumor growth in orthotopic HCC and markedly prolonged the survival of HCC-bearing mice, which was accompanied by a lower CD31 expression (tumor angiogenesis) and increased apoptosis in the tumor cells. These findings demonstrated a valuable antitumor synergism in combining CRISPR/Cas9-mediated HIF-1α knockout with TAE in mice and highlighted the possibility that HIF-1α may be an effective therapeutic knockout target in combination with TAE for HCC treatment.
Collapse
Affiliation(s)
- Quan Liu
- Department of Hepatobiliary and Pancreas Surgery, Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University, Shenzhen, Guangdong 518020, P.R. China
| | - Dahua Fan
- Department of Chinese and Western Integrative Medicine, The Eighth Affiliated Hospital of Sun Yat‑Sen University, Shenzhen, Guangdong 518033, P.R. China
| | - Dickson Adah
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Zhengzhi Wu
- Department of Chinese and Western Integrative Medicine, The Eighth Affiliated Hospital of Sun Yat‑Sen University, Shenzhen, Guangdong 518033, P.R. China
| | - Renyan Liu
- Department of Pharmacology, Upstate Medical University, State University of New York, Syracuse, NY 13210, USA
| | - Qiao-Ting Yan
- Department of Hepatobiliary and Pancreas Surgery, Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University, Shenzhen, Guangdong 518020, P.R. China
| | - Yue Zhang
- Department of Hepatobiliary and Pancreas Surgery, Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University, Shenzhen, Guangdong 518020, P.R. China
| | - Zhi-Yong Du
- Department of Hepatobiliary and Pancreas Surgery, Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University, Shenzhen, Guangdong 518020, P.R. China
| | - Dou Wang
- Department of Hepatobiliary and Pancreas Surgery, Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University, Shenzhen, Guangdong 518020, P.R. China
| | - Yan Li
- Department of Hepatobiliary and Pancreas Surgery, Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University, Shenzhen, Guangdong 518020, P.R. China
| | - Shi-Yun Bao
- Department of Hepatobiliary and Pancreas Surgery, Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University, Shenzhen, Guangdong 518020, P.R. China
| | - Li-Ping Liu
- Department of Hepatobiliary and Pancreas Surgery, Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University, Shenzhen, Guangdong 518020, P.R. China
| |
Collapse
|
27
|
Li L, Yang R, Feng M, Guo Y, Wang Y, Guo J, Lu X. Rig-I is involved in inflammation through the IPS-1/TRAF 6 pathway in astrocytes under chemical hypoxia. Neurosci Lett 2018; 672:46-52. [PMID: 29474875 DOI: 10.1016/j.neulet.2018.02.035] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 02/13/2018] [Accepted: 02/15/2018] [Indexed: 12/26/2022]
Abstract
The retinoic acid-inducible gene I (RIG-I) is a crucial cytoplasmic pathogen recognition receptor involved in neuroinflammation in degenerative diseases. In the present study, in vitro human astrocytes were subjected to a chemical hypoxia model using cobalt chloride pretreatment. Chemical hypoxia induces the up-regulation of RIG-I in astrocytes and results in the expression of inflammatory cytokines IL-1β, IL-6, and TNF-α in an NF-κB dependent manner. Elevated RIG-I modulates the interaction of interferon-β promoter stimulator-1 (IPS-1) and TNF receptor-associated factor 6 (TRAF6) following chemical hypoxia. Inhibition of IPS-1 or TRAF6 suppresses RIG-I-induced NF-κB activation and inflammatory cytokines in response to chemical hypoxia. These data suggest that chemical hypoxia leads to RIG-I activation and the expression of inflammatory cytokines through the NF-κB pathway. Blocking IPS-1/TRAF6 pathway relieves RIG-I-induced neuroinflammation in astrocytes subjected to hypoxia.
Collapse
Affiliation(s)
- Lei Li
- Department of Geriatrics, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, Jiangsu, China; Department of Geriatrics, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221002, China
| | - Rongli Yang
- Department of Geriatrics, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221002, China
| | - Meijiang Feng
- Department of Geriatrics, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, Jiangsu, China
| | - YiChen Guo
- School of medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing, China
| | - YuXuan Wang
- School of medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jun Guo
- School of medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiang Lu
- Department of Geriatrics, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, Jiangsu, China.
| |
Collapse
|
28
|
Mullick M, Sen D. The Delta Opioid Peptide DADLE Represses Hypoxia-Reperfusion Mimicked Stress Mediated Apoptotic Cell Death in Human Mesenchymal Stem Cells in Part by Downregulating the Unfolded Protein Response and ROS along with Enhanced Anti-Inflammatory Effect. Stem Cell Rev Rep 2018; 14:558-573. [DOI: 10.1007/s12015-018-9810-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
29
|
Calvo-Anguiano G, Lugo-Trampe JJ, Camacho A, Said-Fernández S, Mercado-Hernández R, Zomosa-Signoret V, Rojas-Martínez A, Ortiz-López R. Comparison of specific expression profile in two in vitro hypoxia models. Exp Ther Med 2018; 15:4777-4784. [PMID: 29805495 PMCID: PMC5958671 DOI: 10.3892/etm.2018.6048] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 03/15/2018] [Indexed: 11/13/2022] Open
Abstract
The microenvironment plays a fundamental role in carcinogenesis: Acidity and hypoxia are actively involved in this process. It is important to have in vitro models to study these mechanisms. The models that are most commonly referred to are the hypoxia chamber and the chemical induction [Cobalt (II) chloride]. It is not yet defined if these models are interchangeable if the metabolic effect is the same, and if the results may be compared in these models. In the present study, the response to the effect of stress (hypoxia and acidity) in both models was evaluated. The results indicated that in the chemical model, the effect of hypoxia appeared in an early form at 6 h; whereas in the gas chamber the effect was slow and gradual and at 72 h there was an overexpression of erythropoietin (EPO), vascular endothelial growth factor (VEGF), carbonic anhydrase 9 (CA9) and hypoxia-inducible factor 1α (HIF1α). In addition to the genes analyzed by reverse transcription-quantitative polymerase chain reaction, the global expression analysis between both models revealed the 9 most affected genes in common. The present study additionally identified 3 potential genes (lysyl oxidase, ankyrin repeat domain 37, B-cell lymphoma 2 interacting protein 3 like) previously identified in other studies, which may be considered as universal hypoxia genes along with HIF1α, EPO, VEGF, glucose transporter 1 (GLUT1), CA9, and LDH. To the best of the author's knowledge, this is the first time that both hypoxia models have been compared, and it was demonstrated that the effect of hypoxia induction was time sensitive in each model. These observations must be considered prior to selecting one of these models to identify selective hypoxia genes and their effects in cancer.
Collapse
Affiliation(s)
- Geovana Calvo-Anguiano
- Biochemistry and Molecular Medicine Department, School of Medicine, Universidad Autonoma de Nuevo Leon, Monterrey, Nuevo León 64460, Mexico.,Center for Research and Development in Health Sciences, Genomic Unit, Universidad Autonoma de Nuevo Leon, Monterrey, Nuevo León 64460, Mexico
| | - Jose J Lugo-Trampe
- Genetic Department, School of Medicine, Universidad Autonoma de Nuevo Leon, Monterrey, Nuevo León 64460, Mexico
| | - Alberto Camacho
- Biochemistry and Molecular Medicine Department, School of Medicine, Universidad Autonoma de Nuevo Leon, Monterrey, Nuevo León 64460, Mexico.,Center for Research and Development in Health Sciences, Neurometabolism Unit, Universidad Autonoma de Nuevo Leon, Monterrey, Nuevo León 64460, Mexico
| | - Salvador Said-Fernández
- Biochemistry and Molecular Medicine Department, School of Medicine, Universidad Autonoma de Nuevo Leon, Monterrey, Nuevo León 64460, Mexico
| | - Roberto Mercado-Hernández
- Science Exact Department, School of Biological Science, Universidad Autonoma de Nuevo Leon, Monterrey, Nuevo León 66451, Mexico
| | - Viviana Zomosa-Signoret
- Biochemistry and Molecular Medicine Department, School of Medicine, Universidad Autonoma de Nuevo Leon, Monterrey, Nuevo León 64460, Mexico
| | - Augusto Rojas-Martínez
- Center for Research and Development in Health Sciences, Experimental Therapies Unit, Universidad Autonoma de Nuevo Leon, Monterrey, Nuevo León 64460, Mexico.,Tecnologico de Monterrey, School of Medicine and Health Sciences, Monterrey, Nuevo León 64710, Mexico
| | - Rocio Ortiz-López
- Center for Research and Development in Health Sciences, Genomic Unit, Universidad Autonoma de Nuevo Leon, Monterrey, Nuevo León 64460, Mexico.,Tecnologico de Monterrey, School of Medicine and Health Sciences, Monterrey, Nuevo León 64710, Mexico
| |
Collapse
|
30
|
Bhan A, Deb P, Shihabeddin N, Ansari KI, Brotto M, Mandal SS. Histone methylase MLL1 coordinates with HIF and regulate lncRNA HOTAIR expression under hypoxia. Gene 2017; 629:16-28. [DOI: 10.1016/j.gene.2017.07.069] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 07/11/2017] [Accepted: 07/25/2017] [Indexed: 12/17/2022]
|
31
|
Poudineh M, Sargent EH, Kelley SO. Amplified Micromagnetic Field Gradients Enable High-Resolution Profiling of Rare Cell Subpopulations. ACS APPLIED MATERIALS & INTERFACES 2017; 9:25683-25690. [PMID: 28696666 DOI: 10.1021/acsami.7b04677] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Analyzing small collections of cells is challenging because of the need for extremely high levels of sensitivity. We recently reported a new approach, termed magnetic ranking cytometry (MagRC), to profile nanoparticle-labeled cells. Using antibody-functionalized magnetic nanoparticles, we label cells so that each cell's magnetization is proportional to its surface expression of a selected biomarker. Using a microfluidic device that sorts the cells into 100 different zones based on magnetic labeling levels, we generate profiles that report on the level and distribution of surface expression in small collections of cells. Here, we present a new set of studies investigating in depth parameters such as flow rate and magnetic nanoparticle size that affect device performance using both experiments and modeling. We present a model that further elucidates the mechanism of cell capture and use it to optimize device performance to efficiently capture rare cells. We show that this method has excellent specificity and can be used to characterize rare cells even in the presence of whole blood.
Collapse
Affiliation(s)
- Mahla Poudineh
- Department of Pharmaceutical Science, Leslie Dan Faculty of Pharmacy, University of Toronto , Toronto, Ontario M5S 3M2, Canada
| | - Edward H Sargent
- Department of Electrical and Computer Engineering, University of Toronto , Toronto, Ontario M5S 3G4, Canada
| | - Shana O Kelley
- Department of Pharmaceutical Science, Leslie Dan Faculty of Pharmacy, University of Toronto , Toronto, Ontario M5S 3M2, Canada
- Department of Biochemistry, Faculty of Medicine, University of Toronto , Toronto, Ontario M5S 1A8, Canada
- Institute for Biomaterials and Biomedical Engineering, University of Toronto , Toronto, Ontario M5S 3M2, Canada
| |
Collapse
|
32
|
Green BJ, Kermanshah L, Labib M, Ahmed SU, Silva PN, Mahmoudian L, Chang IH, Mohamadi RM, Rocheleau JV, Kelley SO. Isolation of Phenotypically Distinct Cancer Cells Using Nanoparticle-Mediated Sorting. ACS APPLIED MATERIALS & INTERFACES 2017; 9:20435-20443. [PMID: 28548481 DOI: 10.1021/acsami.7b05253] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Isolating subpopulations of heterogeneous cancer cells is an important capability for the meaningful characterization of circulating tumor cells at different stages of tumor progression and during the epithelial-to-mesenchymal transition. Here, we present a microfluidic device that can separate phenotypically distinct subpopulations of cancer cells. Magnetic nanoparticles coated with antibodies against the epithelial cell adhesion molecule (EpCAM) are used to separate breast cancer cells in the microfluidic platform. Cells are sorted into different zones on the basis of the levels of EpCAM expression, which enables the detection of cells that are losing epithelial character and becoming more mesenchymal. The phenotypic properties of the isolated cells with low and high EpCAM are then assessed using matrix-coated surfaces for collagen uptake analysis, and an NAD(P)H assay that assesses metabolic activity. We show that low-EpCAM expressing cells have higher collagen uptake and higher folate-induced NAD(P)H responses compared to those of high-EpCAM expressing cells. In addition, we tested SKBR3 cancer cells undergoing chemically induced hypoxia. The induced cells have reduced expression of EpCAM, and we find that these cells have higher collagen uptake and NAD(P)H metabolism relative to noninduced cells. This work demonstrates that nanoparticle-mediated binning facilitates the isolation of functionally distinct cell subpopulations and allows surface marker expression to be associated with invasiveness, including collagen uptake and metabolic activity.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Shana O Kelley
- Department of Biochemistry, Faculty of Medicine, University of Toronto , Toronto M5S 1A8, Canada
| |
Collapse
|
33
|
Azman AS, Othman I, Fang CM, Chan KG, Goh BH, Lee LH. Antibacterial, Anticancer and Neuroprotective Activities of Rare Actinobacteria from Mangrove Forest Soils. Indian J Microbiol 2017; 57:177-187. [PMID: 28611495 PMCID: PMC5446825 DOI: 10.1007/s12088-016-0627-z] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 10/11/2016] [Indexed: 10/20/2022] Open
Abstract
Mangrove is a complex ecosystem that contains diverse microbial communities, including rare actinobacteria with great potential to produce bioactive compounds. To date, bioactive compounds extracted from mangrove rare actinobacteria have demonstrated diverse biological activities. The discovery of three novel rare actinobacteria by polyphasic approach, namely Microbacterium mangrovi MUSC 115T, Sinomonas humi MUSC 117T and Monashia flava MUSC 78T from mangrove soils at Tanjung Lumpur, Peninsular Malaysia have led to the screening on antibacterial, anticancer and neuroprotective activities. A total of ten different panels of bacteria such as Methicillin-resistant Staphylococcus aureus (MRSA) ATCC 43300, ATCC 70069, Pseudomonas aeruginosa NRBC 112582 and others were selected for antibacterial screening. Three different neuroprotective models (hypoxia, oxidative stress, dementia) were done using SHSY5Y neuronal cells while two human cancer cells lines, namely human colon cancer cell lines (HT-29) and human cervical carcinoma cell lines (Ca Ski) were utilized for anticancer activity. The result revealed that all extracts exhibited bacteriostatic effects on the bacteria tested. On the other hand, the neuroprotective studies demonstrated M. mangrovi MUSC 115T extract exhibited significant neuroprotective properties in oxidative stress and dementia model while the extract of strain M. flava MUSC 78T was able to protect the SHSY5Y neuronal cells in hypoxia model. Furthermore, the extracts of M. mangrovi MUSC 115T and M. flava MUSC 78T exhibited anticancer effect against Ca Ski cell line. The chemical analysis of the extracts through GC-MS revealed that the majority of the compounds present in all extracts are heterocyclic organic compound that could explain for the observed bioactivities. Therefore, the results obtained in this study suggested that rare actinobacteria discovered from mangrove environment could be potential sources of antibacterial, anticancer and neuroprotective agents.
Collapse
Affiliation(s)
- Adzzie-Shazleen Azman
- Novel Bacteria and Drug Discovery Research Group, School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor Darul Ehsan Malaysia
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor Malaysia
| | - Iekhsan Othman
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor Malaysia
| | - Chee-Mun Fang
- School of Pharmacy, Faculty of Science, The University of Nottingham Malaysia Campus, Jalan Broga, 43500 Semenyih, Selangor Malaysia
| | - Kok-Gan Chan
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Bey-Hing Goh
- Novel Bacteria and Drug Discovery Research Group, School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor Darul Ehsan Malaysia
- Center of Health Outcomes Research and Therapeutic Safety (Cohorts), School of Pharmaceutical Sciences, University of Phayao, Phayao, Thailand
| | - Learn-Han Lee
- Novel Bacteria and Drug Discovery Research Group, School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor Darul Ehsan Malaysia
- Center of Health Outcomes Research and Therapeutic Safety (Cohorts), School of Pharmaceutical Sciences, University of Phayao, Phayao, Thailand
| |
Collapse
|
34
|
Mittal K, Donthamsetty S, Kaur R, Yang C, Gupta MV, Reid MD, Choi DH, Rida PCG, Aneja R. Multinucleated polyploidy drives resistance to Docetaxel chemotherapy in prostate cancer. Br J Cancer 2017; 116:1186-1194. [PMID: 28334734 PMCID: PMC5418452 DOI: 10.1038/bjc.2017.78] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Revised: 02/24/2017] [Accepted: 03/01/2017] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Docetaxel is the only FDA-approved first-line treatment for castration-resistant prostate cancer (CRPC) patients. Docetaxel treatment inevitably leads to tumour recurrence after an initial therapeutic response with generation of multinucleated polyploid (MP) cells. Here we investigated role of MP cells in clinical relapse of CRPC. METHODS Prostate cancer (PC-3) cells were treated with docetaxel (5 nM) for 3 days followed by a washout and samples were collected at close intervals over 35 days post drug washout. The tumorigenic potential of the giant MP cells was studied by implanting MP cells subcutaneously as tumour xenografts in nude mice. RESULTS Docetaxel-induced polyploid cells undergo mitotic slippage and eventually spawn mononucleated cells via asymmetric cell division or neosis. Both MP and cells derived from polyploid cells had increased survival signals, were positive for CD44 and were resistant to docetaxel chemotherapy. Although MP cells were tumorigenic in nude mice, these cells took a significantly longer time to form tumours compared with parent PC-3 cells. CONCLUSIONS Generation of MP cells upon docetaxel therapy is an adaptive response of apoptosis-reluctant cells. These giant cells ultimately contribute to the generation of mononucleated aneuploid cells via neosis and may have a fundamental role precipitating clinical relapse and chemoresistance in CRPC.
Collapse
Affiliation(s)
- Karuna Mittal
- Department of Biology, Georgia State University, Atlanta, GA-30303, USA
| | | | - Ramneet Kaur
- Department of Biology, Georgia State University, Atlanta, GA-30303, USA
| | - Chunhua Yang
- Department of Biology, Georgia State University, Atlanta, GA-30303, USA
| | | | - Michelle D Reid
- Department of Pathology, Emory University School of Medicine, Atlanta, GA, USA
| | - Da Hoon Choi
- Department of Biology, Georgia State University, Atlanta, GA-30303, USA
| | - Padmashree C G Rida
- Department of Biology, Georgia State University, Atlanta, GA-30303, USA.,Novazoi Theranostics, Inc., Rolling Hills Estates, CA 90274, USA
| | - Ritu Aneja
- Department of Biology, Georgia State University, Atlanta, GA-30303, USA
| |
Collapse
|
35
|
Huang M, Wang L, Chen J, Bai M, Zhou C, Liu S, Lin Q. Regulation of COX-2 expression and epithelial-to-mesenchymal transition by hypoxia-inducible factor-1α is associated with poor prognosis in hepatocellular carcinoma patients post TACE surgery. Int J Oncol 2016; 48:2144-54. [PMID: 26984380 PMCID: PMC4809660 DOI: 10.3892/ijo.2016.3421] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2015] [Accepted: 02/06/2016] [Indexed: 12/26/2022] Open
Abstract
Currently, it is not entirely clear whether hypoxia-inducible factor-1α (HIF-1α) is involved in the regulation of COX-2 expression and epithelial-to-mesenchymal transition (EMT), and whether these events affect the prognosis of hepatocellular carcinoma (HCC) patients treated with transcatheter arterial chemoembolization (TACE). In this report the relationship between HIF-1α and COX-2 protein expression, EMT in tumor specimens from HCC patients after TACE surgery and the clinical significance of HIF-1α and COX-2 expression were analyzed using statistical approaches. HepG2 cells treated with CoCl2 was employed as a hypoxia cell model in vitro to study hypoxia-induced HIF-1α, COX-2 expression, and EMT alteration. The results showed that HIF-1α and COX-2 protein expression increased in HCC tissues after TACE surgery. Moreover, there was positive correlation between upregulation of HIF-1α and COX-2. Elevated expression of HIF-1α increased both Snail and Vimentin protein expression, while it reduced E-cadherin protein expression. It was further verified that hypoxia enhanced protein expression of HIF-1α and COX-2 in HepG2 cells treated with CoCl2. Upregulation of HIF-1α and COX-2, together with EMT alteration resulted in increased migration and invasion of HepG2 cells under hypoxia. In conclusion, TACE surgery results in aggravated hypoxia status, leading to increased HIF-1α protein expression in HCC tissue. To adapt to hypoxic environment, HIF-1α stimulates COX-2 protein expression and promotes EMT process in hepatocellular cancer cells, which enhances HCC invasion and metastasis, and might contribute to poor prognosis in HCC patients post TACE treatment.
Collapse
Affiliation(s)
- Mingsheng Huang
- Department of Radiology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, P.R. China
| | - Long Wang
- Department of Interventional Radiology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou 510630, P.R. China
| | - Junwei Chen
- Department of Radiology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, P.R. China
| | - Mingjun Bai
- Department of Radiology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, P.R. China
| | - Churen Zhou
- Department of Radiology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, P.R. China
| | - Sujuan Liu
- Department of Radiology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, P.R. China
| | - Qu Lin
- Department of Medical Oncology, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510630, P.R. China
| |
Collapse
|
36
|
Alivand MR, Sabouni F, Soheili ZS. Probable Chemical Hypoxia Effects on Progress of CNV Through Induction of Promoter CpG Demethylation and Overexpression of IL17RC in Human RPE Cells. Curr Eye Res 2016; 41:1245-54. [DOI: 10.3109/02713683.2015.1095933] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Mohammad Reza Alivand
- Molecular Medicine Department, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
- Department of Medical Genetic, Medical Faculty, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Farzaneh Sabouni
- Molecular Medicine Department, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Zahra-Soheila Soheili
- Molecular Medicine Department, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| |
Collapse
|
37
|
Li J, Wang HM. Effects of cobalt chloride on phenotypes of normal human saphenous vein smooth muscle cells. Int J Clin Exp Med 2014; 7:4933-4941. [PMID: 25663990 PMCID: PMC4307437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Accepted: 12/08/2014] [Indexed: 06/04/2023]
Abstract
To explore the cellular adaptations and responses to hypoxia in normal human saphenous vein smooth muscle cells (SMCs) and presume what roles phenotypic modulation of normal human saphenous vein SMCs would play in varicose vein of lower extremity, we used cobalt chloride (CoCl2), a hypoxia mimetic, to treat normal human saphenous vein SMCs in vitro. The proliferating ability of cells exposed to serial dilutions of CoCl2 (0, 200, 300, 400 and 500 μM) at 24 h, 48 h and 72 h respectively was detected by MTT assay. Wound healing assay was used to observe the migrating ability of cells under CoCl2 (200 μM) treatment for 8 days continuously. Hoechst 33258 stain was used to determine whether hypoxia induced by CoCl2 could cause apoptosis of normal human saphenous vein SMCs. We found that CoCl2 enhanced the proliferation and inhibited the migration of normal human saphenous vein SMCs. The apparent morphous of normal human saphenous vein SMCs under chronic CoCl2 treatment was significantly changed compared to no CoCl2 treated control, but this process did not relate to cell apoptosis. To conclude, our results support the concept that the phenotypes of normal human saphenous vein SMCs could be influenced by hypoxia stimulus. Cellular structural and functional changes under chronic hypoxia in normal human saphenous vein SMCs might play important roles in the development of varicose veins of lower extremity.
Collapse
Affiliation(s)
- Jing Li
- Department of Central Laboratory, 89 Hospital of PLA Weifang, Shandong Province, China
| | - Huai-Ming Wang
- Department of Central Laboratory, 89 Hospital of PLA Weifang, Shandong Province, China
| |
Collapse
|
38
|
Jóźwiak-Bębenista M, Kowalczyk E, Nowak JZ. The cyclic AMP effects and neuroprotective activities of PACAP and VIP in cultured astrocytes and neurons exposed to oxygen-glucose deprivation. Pharmacol Rep 2014; 67:332-8. [PMID: 25712659 DOI: 10.1016/j.pharep.2014.10.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 09/24/2014] [Accepted: 10/02/2014] [Indexed: 01/30/2023]
Abstract
BACKGROUND Pituitary adenylate cyclase-activating polypeptide (PACAP) and vasoactive intestinal peptide (VIP) are endogenous peptides, widely expressed in the central and peripheral nervous system. The adenylyl cyclase (AC)/cyclic AMP (cAMP) is their main intracellular signal transduction pathway. Numerous data suggest that PACAP and VIP have considerable neuroprotective potential, indicating the possibility for their use as new therapeutic strategies in stroke treatment. The aim of this study was to evaluate the effect of oxygen-glucose deprivation (OGD) - an established in vitro model for ischemic cell stress - on PACAP and VIP-evoked receptor-mediated cAMP generation in glial and neuronal cells, and to determine whether PACAP and VIP have neuroprotective activity under these conditions. METHODS The formation of [(3)H]cAMP by PACAP, VIP and forskolin (a direct activator of AC) was measured in [(3)H]adenine prelabeled primary rat glial and neuronal cells under normoxia and OGD conditions. The effects of PACAP and VIP on cell viability were measured using the MTT conversion method, and were compared to tacrolimus (FK506), a well known neuroprotective agent. RESULTS The OGD model inhibited the PACAP and VIP-induced cAMP formation in rat astrocytes and neurons. Incubation of neuronal cells with PACAP prevented OGD-induced cell death, more efficiently than VIP and FK506. CONCLUSION The obtained results showed that hypoxia/ischemia may trigger down-regulation of the brain AC-coupled PACAP/VIP receptors, with a consequent decrease of PACAP- and/or VIP-ergic-dependent cAMP-driven signaling. Moreover, our findings indicate that PACAP and VIP can prevent the deleterious effect of OGD on rat neuronal cells.
Collapse
Affiliation(s)
- Marta Jóźwiak-Bębenista
- Department of Pharmacology and Toxicology, The Interfaculty Chair of Basic and Clinical Pharmacology, Medical University of Lodz, Łódź, Poland.
| | - Edward Kowalczyk
- Department of Pharmacology and Toxicology, The Interfaculty Chair of Basic and Clinical Pharmacology, Medical University of Lodz, Łódź, Poland
| | - Jerzy Z Nowak
- Department of Pharmacology and Toxicology, The Interfaculty Chair of Basic and Clinical Pharmacology, Medical University of Lodz, Łódź, Poland
| |
Collapse
|