1
|
Fawzy El‐Sayed K, Mahlandt E, Schlicht K, Enthammer K, Tölle J, Wagner J, Hartmann K, Ebeling PR, Graetz C, Laudes M, Dörfer CE, Schulte DM. Effects of oxidized LDL versus IL-1ß/TNF-ɑ/INFɣ on human gingival mesenchymal stem cells properties. J Periodontal Res 2025; 60:77-89. [PMID: 38952262 PMCID: PMC11840472 DOI: 10.1111/jre.13319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/12/2024] [Accepted: 06/19/2024] [Indexed: 07/03/2024]
Abstract
AIMS Oxidized low-density lipoprotein (oxLDL) is an important player in the course of metabolic inflammatory diseases. oxLDL was identified in the gingival crevicular fluid, denoting possible associations between oxLDL-induced inflammation and periodontal disease. The current investigation compared for the first-time direct effects of oxLDL to a cytokine cocktail of IL-1ß/TNF-ɑ/INF-γ on gingival mesenchymal stem cells' (G-MSCs) attributes. METHODS Human third passage G-MSCs, isolated from connective tissue biopsies (n = 5) and characterized, were stimulated in three groups over 7 days: control group, cytokine group (IL-1β[1 ng/mL], TNF-α[10 ng/mL], IFN-γ[100 ng/mL]), or oxLDL group (oxLDL [50 μg/mL]). Next Generation Sequencing and KEGG pathway enrichment analysis, stemness gene expression (NANOG/SOX2/OCT4A), cellular proliferation, colony-formation, multilinear potential, and altered intracellular pathways were investigated via histochemistry, next-generation sequencing, and RT-qPCR. RESULTS G-MSCs exhibited all mesenchymal stem cells' characteristics. oxLDL group and cytokine group displayed no disparities in their stemness markers (p > .05). Next-generation-sequencing revealed altered expression of the TXNIP gene in response to oxLDL treatment compared with controls (p = .04). Following an initial boosting for up to 5 days by inflammatory stimuli, over 14 day, cellular counts [median count ×10-5 (Q25/Q75)] were utmost in control - [2.6607 (2.0804/4.5357)], followed by cytokine - [0.0433 (0.0026/1.4215)] and significantly lowered in the oxLDL group [0.0274 (0.0023/0.7290); p = .0047]. Osteogenic differentiation [median relative Ca2+ content(Q25/Q75)] was significantly lower in cytokine - [0.0066 (0.0052/0.0105)] compared to oxLDL - [0.0144 (0.0108/0.0216)] (p = .0133), with no differences notable for chondrogenic and adipogenic differentiation (p > .05). CONCLUSIONS Within the current investigation's limitations, in contrast to cytokine-mediated inflammation, G-MSCs appear to be minimally responsive to oxLDL-mediated metabolic inflammation, with little negative effect on their differentiation attributes and significantly reduced cellular proliferation.
Collapse
Affiliation(s)
- Karim Fawzy El‐Sayed
- Clinic for Conservative Dentistry and PeriodontologyUniversity Hospital of Schleswig‐HolsteinKielGermany
- Oral Medicine and Periodontology Department, Faculty of DentistryCairo UniversityCairoEgypt
- Stem Cells and Tissue Engineering Unit, Faculty of DentistryCairo UniversityCairoEgypt
| | - Elena Mahlandt
- Institute of Diabetes and Clinical Metabolic ResearchUniversity Hospital of Schleswig‐HolsteinKielGermany
| | - Kristina Schlicht
- Institute of Diabetes and Clinical Metabolic ResearchUniversity Hospital of Schleswig‐HolsteinKielGermany
| | - Kim Enthammer
- Institute of Diabetes and Clinical Metabolic ResearchUniversity Hospital of Schleswig‐HolsteinKielGermany
| | - Johannes Tölle
- Clinic for Conservative Dentistry and PeriodontologyUniversity Hospital of Schleswig‐HolsteinKielGermany
- Department of DermatologyUniversity Hospital Schleswig‐HolsteinKielGermany
- Institute of ImmunologyUniversity Hospital Schleswig‐HolsteinKielGermany
| | - Juliane Wagner
- Department of Oral and Maxillofacial SurgeryUniversity Hospital of Schleswig‐HolsteinKielGermany
| | - Katharina Hartmann
- Institute of Diabetes and Clinical Metabolic ResearchUniversity Hospital of Schleswig‐HolsteinKielGermany
| | - Peter R. Ebeling
- Department of Medicine, School of Clinical Sciences at Monash HealthMonash UniversityMelbourneVictoriaAustralia
| | - Christian Graetz
- Clinic for Conservative Dentistry and PeriodontologyUniversity Hospital of Schleswig‐HolsteinKielGermany
| | - Mathias Laudes
- Institute of Diabetes and Clinical Metabolic ResearchUniversity Hospital of Schleswig‐HolsteinKielGermany
- Division of Endocrinology, Diabetes and Clinical Nutrition, Department of Internal Medicine IUniversity Hospital Schleswig‐HolsteinKielGermany
| | - Christof E. Dörfer
- Clinic for Conservative Dentistry and PeriodontologyUniversity Hospital of Schleswig‐HolsteinKielGermany
| | - Dominik M. Schulte
- Institute of Diabetes and Clinical Metabolic ResearchUniversity Hospital of Schleswig‐HolsteinKielGermany
- Department of Medicine, School of Clinical Sciences at Monash HealthMonash UniversityMelbourneVictoriaAustralia
- Division of Endocrinology, Diabetes and Clinical Nutrition, Department of Internal Medicine IUniversity Hospital Schleswig‐HolsteinKielGermany
| |
Collapse
|
2
|
Li Y, Guo X, Yao H, Zhang Z, Zhao H. Epigenetic control of dental stem cells: progress and prospects in multidirectional differentiation. Epigenetics Chromatin 2024; 17:37. [PMID: 39623487 PMCID: PMC11613947 DOI: 10.1186/s13072-024-00563-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 11/26/2024] [Indexed: 12/06/2024] Open
Abstract
Dental stem cells, with their exceptional proliferative capacity and multidirectional differentiation potential, hold significant promise for dental and oral tissue regeneration. Epigenetic inheritance, which involves stable and heritable changes in gene expression and function without alterations to the DNA sequence, plays a critical role in numerous biological processes. Environmental factors are particularly influential in epigenetic inheritance, as variations in exposure can lead to changes in epigenetic modifications that subsequently impact gene expression. Epigenetic mechanisms are widely involved in processes such as bone homeostasis, embryogenesis, stem cell fate determination, and disease development. Recently, the epigenetic regulation of dental stem cells has attracted considerable research attention. This paper reviews studies focused on the epigenetic mechanisms governing the multidirectional differentiation of dental stem cells.
Collapse
Affiliation(s)
- Yan Li
- Hospital of Stomatology, Jilin University, Changchun, 130021, China
| | - Xinwei Guo
- Department of Stomatology, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Hua Yao
- Department of Stomatology, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Zhimin Zhang
- Hospital of Stomatology, Jilin University, Changchun, 130021, China.
| | - Hongyan Zhao
- Hospital of Stomatology, Jilin University, Changchun, 130021, China.
| |
Collapse
|
3
|
Wen S, Zheng X, Yin W, Liu Y, Wang R, Zhao Y, Liu Z, Li C, Zeng J, Rong M. Dental stem cell dynamics in periodontal ligament regeneration: from mechanism to application. Stem Cell Res Ther 2024; 15:389. [PMID: 39482701 PMCID: PMC11526537 DOI: 10.1186/s13287-024-04003-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 10/17/2024] [Indexed: 11/03/2024] Open
Abstract
Periodontitis, a globally prevalent chronic inflammatory disease is characterized by the progressive degradation of tooth-supporting structures, particularly the periodontal ligament (PDL), which can eventually result in tooth loss. Despite the various clinical interventions available, most focus on symptomatic relief and lack substantial evidence of supporting the functional regeneration of the PDL. Dental stem cells (DSCs), with their homology and mesenchymal stem cell (MSC) properties, have gained significant attention as a potential avenue for PDL regeneration. Consequently, multiple therapeutic strategies have been developed to enhance the efficacy of DSC-based treatments and improve clinical outcomes. This review examines the mechanisms by which DSCs and their derivatives promote PDL regeneration, and explores the diverse applications of exogenous implantation and endogenous regenerative technology (ERT) aimed at amplifying the regenerative capacity of endogenous DSCs. Additionally, the persistent challenges and controversies surrounding DSC therapies are discussed, alongside an evaluation of the limitations in current research on the underlying mechanisms and innovative applications of DSCs in PDL regeneration with the aim of providing new insights for future development. Periodontitis, a chronic inflammatory disease, represents a major global public health concern, affecting a significant proportion of the population and standing as the leading cause tooth loss in adults. The functional periodontal ligament (PDL) plays an indispensable role in maintaining periodontal health, as its structural and biological integrity is crucial for the long-term prognosis of periodontal tissues. It is widely recognized as the cornerstone of periodontal regeneration Despite the availability of various treatments, ranging from nonsurgical interventions to guided tissue regeneration (GTR) techniques, these methods have shown limited success in achieving meaningful PDL regeneration. As a result, the inability to fully restore PDL function underscores the urgent need for innovative therapeutic strategies at reconstructing this essential structure. Stem cell therapy, known for its regenerative and immunomodulatory potential, offers a promising approach for periodontal tissue repair. Their application marks a significant paradigm shift in the treatment of periodontal diseases, opening new avenues for functional PDL regeneration. However, much of the current research has primarily focused on the regeneration of alveolar bone and gingiva, as these hard and soft tissues can be more easily evaluated through visual assessment. The complexity of PDL structure, coupled with the intricate interactions among cellular and molecular components, presents significant scientific and clinical hurdles in translating DSC research into practical therapeutic applications. This review provides a thorough exploration of DSC dynamics in periodontal regeneration, detailing their origins, properties, and derived products, while also examining their potential mechanisms and applications in PDL regeneration. It offers an in-depth analysis of the current research, landscape, acknowledging both the progress made and the challenges that remain in bridging the gap between laboratory findings and clinical implementation. Finally, the need for continued investigation into the intricate mechanisms governing DSC behavior and the optimization of their use in regenerative therapies for periodontal diseases is also emphasized.
Collapse
Affiliation(s)
- Shuyi Wen
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, 510280, China
| | - Xiao Zheng
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, 510280, China
| | - Wuwei Yin
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, 510280, China
| | - Yushan Liu
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, 510280, China
| | - Ruijie Wang
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, 510280, China
| | - Yaqi Zhao
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, 510280, China
| | - Ziyi Liu
- Department of Stomatology, Shunde Hospital, Southern Medical University, The First People's Hospital of Shunde, Foshan, Guangdong, 528308, China
| | - Cong Li
- Dongguan Key Laboratory of Metabolic Immunology and Oral Diseases, Dongguan Maternal and Child Health Care Hospital, Dongguan, Guangdong, 523000, China
| | - Jincheng Zeng
- Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Immunology and Molecular Diagnostics, Guangdong Medical University, Dongguan, Guangdong, 523808, China.
| | - Mingdeng Rong
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, 510280, China.
| |
Collapse
|
4
|
Chopra H, Cao C, Alice H, Kak S, Maska B, Tagett R, Sugai J, Garmire L, Kaigler D. Landscape of Differentiation Potentials as a "Hallmark" in Oral-derived MSCs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.02.606413. [PMID: 39211139 PMCID: PMC11360929 DOI: 10.1101/2024.08.02.606413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Background Mesenchymal stem cells (MSCs) offer clinical promise for use in cell therapy approaches for regenerative medicine. A therapeutic challenge is that MSCs from different tissues are phenotypically and functionally distinct. Therefore, this study aims to molecularly characterize oral-derived MSCs by defining one of the three hallmarks of MSCs, differentiation potential, to discern their true molecular identities. Methods Three different populations of oral tissue MSCs (from alveolar bone-aBMSCs; from dental pulp-DPSCs; and from gingiva-GMSCs) from three different patients were isolated and cultured. These MSCs were characterized for their stemness by flow cytometry and multi-differentiation potential, and their RNA was also isolated and analyzed quantitatively with RNA sequencing. Total mRNA-seq was performed and differentially expressed genes (DEGs) were identified in pairwise (DPSCs vs. aBMSCs, GMSCs vs. aBMSCs, and GMSCs vs. DPSCs) and tissue-specific comparisons (aBMSCs vs. Others, DPSCs vs. Others, GMSCs vs. Others) (FDR, p<0.05 ). Further, these DEGs, either common between MSC populations or unique to a specific MSC population, were evaluated for pathways and biological processes. Results aBMSCs, DPSCs, and GMSCs were successfully isolated and characterized. The tissue-specific comparison revealed that DEGs were most numerous in DPSCs (693 genes) as compared to aBMSCs (103 genes) or DPSCs (232 genes). Statistically significant DEGs through pairwise comparisons present higher numbers in GMSCs vs. DPSCs (627) as compared to either DPSCs vs aBMSCs (286) or GMSCs vs. aBMSCs (82). Further analysis found that RUNX2, IBSP, SOX6, ACAN, and VCAM1 were significantly upregulated in aBMSCs. In DPSCs, BMP4 and IL6 were significantly downregulated, whereas AXL and NES were significantly upregulated. In GMSCs, AGPT1, SEMA4D, and PGDFA were significantly downregulated. Additionally, MAPK, PI3-AKT, and RAS signaling pathways were significantly regulated in GMSCs. Interestingly, aBMSCs and DPSCs revealed positive regulation of osteoblast differentiation, whereas GMSCs revealed negative regulation of osteoblast differentiation. DPSCs also revealed negative regulation of angiogenesis. Conclusions Oral-derived MSCs have an inherent "landscape" of differentiation defined by their tissue of origin; yet this differentiation potential can be modulated by their microenvironment.
Collapse
|
5
|
Rakh D, Kuloli A, Kharat A, Sanap A, Kheur S, Bhonde R, Gopalakrishnan D. Long-term cryopreservation of whole gingival tissue. Cell Tissue Bank 2024; 25:551-558. [PMID: 37851168 DOI: 10.1007/s10561-023-10115-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 09/28/2023] [Indexed: 10/19/2023]
Abstract
Stem cells obtained from the body tissue, such as adipose tissue, dental pulp and gingival tissue. Fresh tissue is often used to isolate and culture for regenerative medicine. However, availability of tissue as and when required is one of the measure issue in regenerative medicine. Cryopreservation of tissue provides benefit over tissue availability, storage for significant amount of period and helps preserve the original cell structures. The effects of cryopreservation of gingival tissue for mesenchymal stem cell (MSC) are not well documented; however this process is of increasing importance for regenerative therapies. This study examined the effect of cryopreservation on the long term survival the whole gingival biopsy tissue. We studied cell outgrowth, cell morphology, MSC surface-markers and differentiation of mesenchymal stem cells derived from cryopreserved gingiva. In this study, gingival tissue was cryopreserved for 3, 6, 9 months. Cryopreserved tissue has been thawed and cells were isolated by using explant culture method. The fresh and cryopreserved gingival tissue cells were cultured and characterized for surface marker analysis, CFU-f, population doubling time, and osteogenic, chondrogenic and adipogenic differentiation. The fresh and cryopreserved tissue has similar stem cell properties. Results indicate that cryopreservation of the entire gingival tissue does not affect the properties of stem cells. This opens door for gingival tissue banking for future use in periodontology and regenerative medicine.
Collapse
Affiliation(s)
- Dipika Rakh
- Department of Periodontology and Oral Implantology, Dr. D. Y. Patil Dental College & Hospital, Dr. D. Y. Patil Vidyapeeth, Pune, India
| | - Anita Kuloli
- Department of Periodontology and Oral Implantology, Dr. D. Y. Patil Dental College & Hospital, Dr. D. Y. Patil Vidyapeeth, Pune, India.
| | - Avinash Kharat
- Regenerative Medicine Laboratory, Dr. D. Y. Patil Dental College & Hospital, Dr. D. Y. Patil Vidyapeeth, Pune, India
| | - Avinash Sanap
- Regenerative Medicine Laboratory, Dr. D. Y. Patil Dental College & Hospital, Dr. D. Y. Patil Vidyapeeth, Pune, India
| | - Supriya Kheur
- Regenerative Medicine Laboratory, Dr. D. Y. Patil Dental College & Hospital, Dr. D. Y. Patil Vidyapeeth, Pune, India
| | - Ramesh Bhonde
- Regenerative Medicine Laboratory, Dr. D. Y. Patil Dental College & Hospital, Dr. D. Y. Patil Vidyapeeth, Pune, India.
| | - D Gopalakrishnan
- Department of Periodontology and Oral Implantology, Dr. D. Y. Patil Dental College & Hospital, Dr. D. Y. Patil Vidyapeeth, Pune, India
| |
Collapse
|
6
|
Liu Y, Chen P, Zhou T, Zeng J, Liu Z, Wang R, Xu Y, Yin W, Rong M. Co-culture of STRO1 + human gingival mesenchymal stem cells and human umbilical vein endothelial cells in 3D spheroids: enhanced in vitro osteogenic and angiogenic capacities. Front Cell Dev Biol 2024; 12:1378035. [PMID: 38770153 PMCID: PMC11102987 DOI: 10.3389/fcell.2024.1378035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 04/22/2024] [Indexed: 05/22/2024] Open
Abstract
Stem cell spheroid is a promising graft substitute for bone tissue engineering. Spheroids obtained by 3D culture of STRO1+ Gingival Mesenchymal Stem Cells (sGMSCs) (sGMSC spheroids, GS) seldom express angiogenic factors, limiting their angiogenic differentiation in vivo. This study introduced a novel stem cell spheroid with osteogenic and angiogenic potential through 3D co-culture of sGMSCs and Human Umbilical Vein Endothelial Cells (HUVECs) (sGMSC/HUVEC spheroids, GHS). GHS with varying seeding ratios of sGMSCs to HUVECs (GHR) were developed. Cell fusion within the GHS system was observed via immunofluorescence. Calcein-AM/PI staining and chemiluminescence assay indicated cellular viability within the GHS. Furthermore, osteogenic and angiogenic markers, including ALP, OCN, RUNX2, CD31, and VEGFA, were quantified and compared with the control group comprising solely of sGMSCs (GS). Incorporating HUVECs into GHS extended cell viability and stability, initiated the expression of angiogenic factors CD31 and VEGFA, and upregulated the expression of osteogenic factors ALP, OCN, and RUNX2, especially when GHS with a GHR of 1:1. Taken together, GHS, derived from the 3D co-culture of sGMSCs and HUVECs, enhanced osteogenic and angiogenic capacities in vitro, extending the application of cell therapy in bone tissue engineering.
Collapse
Affiliation(s)
- Yushan Liu
- Department of Periodontology and Implantology, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Pei Chen
- Department of Periodontology and Implantology, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Tengfei Zhou
- Department of Periodontology and Implantology, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Jincheng Zeng
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Medical University, Dongguan, China
| | - Ziyi Liu
- Department of Periodontology and Implantology, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Ruijie Wang
- Department of Periodontology and Implantology, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Yiwei Xu
- Guangzhou Regenerative Medicine and Health Guangdong Laboratory, CAS Key Laboratory of Regenerative Biology, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Science, Guangzhou, China
| | - Wuwei Yin
- Department of Periodontology and Implantology, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Mingdeng Rong
- Department of Periodontology and Implantology, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| |
Collapse
|
7
|
Chang YT, Lai CH, Yu JH, Tang CH, Wen CY, Huang PW, Lai CC, Lin DJ. Exploring the impact of culture techniques and patient demographics on the success rate of primary culture of human periodontal ligament stem cells. J Dent Sci 2024; 19:961-970. [PMID: 38618084 PMCID: PMC11010602 DOI: 10.1016/j.jds.2023.07.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/18/2023] [Indexed: 04/16/2024] Open
Abstract
Background/purpose Periodontal ligament stem cells (PDLSCs) have the potential for regenerating periodontal tissue. The study aims to investigate the impact of demographics (ages, gender, disease) and culture techniques (shipping storage time and culture method) on the success of primary culture. Materials and methods PDLSCs were collected from 51 teeth of 26 patients and cultured via outgrowth (OG) and enzymatic digestion (ED) methods. Cells characteristics were confirmed by flow cytometry, MTT, and ARS. The primary culture success rate was evaluated with a serial chi-square test to determine the relationship with culture technique (ED/OG and ≤4 h/prolonged culture) and patient demographics (Young/Old, Female/Male, and Health/Periodontitis). Results The overall success rate of Health group (69.7%) was higher than Periodontitis (38.9%). Culturing within 4 h possessed a higher success rate (71.8%) than prolonged group (16.7%) regardless of patient demographics, and using OG method (81.5%) revealed more promising. Subgroup analysis of 39 cases (culture within 4 h) found that the success rate of OG was higher than ED in the Old group (87.5%-25.0%) and in the Periodontitis group (83.3%-25.0%). Conclusion Primary culturing of PDLSCs within 4 h and using the outgrowth method led to higher success rates regardless of patient demographics. It can achieve successful PDLSCs culture of older patients or patients with periodontal disease by appropriate culture technique.
Collapse
Affiliation(s)
- Yi-Tao Chang
- Graduate Institute of Clinical Medical Science, School of Medicine, China Medical University, Taichung, Taiwan
- School of Dentistry, College of Dentistry, China Medical University, Taichung, Taiwan
- Department of Orthodontics, China Medical University Hospital Medical Center, Taichung, Taiwan
| | - Chih-Ho Lai
- Graduate Institute of Clinical Medical Science, School of Medicine, China Medical University, Taichung, Taiwan
- Department of Microbiology and Immunology, Chang Gung University, Taoyuan, Taiwan
| | - Jian-Hong Yu
- School of Dentistry, College of Dentistry, China Medical University, Taichung, Taiwan
- Department of Orthodontics, China Medical University Hospital Medical Center, Taichung, Taiwan
| | - Chih-Hsin Tang
- Graduate Institute of Basic Medical Science, School of Medicine, China Medical University, Taichung, Taiwan
- Department of Pharmacology, School of Medicine, China Medical University, Taichung, Taiwan
| | - Chi-Yuan Wen
- Graduate Institute of Basic Medical Science, School of Medicine, China Medical University, Taichung, Taiwan
| | - Pei-Wen Huang
- School of Dentistry, College of Dentistry, China Medical University, Taichung, Taiwan
| | - Chuan-Ching Lai
- Department of Post-Baccalaureate Veterinary Medicine, Asia University, Taichung, Taiwan
| | - Dan-Jae Lin
- Graduate Institute of Clinical Medical Science, School of Medicine, China Medical University, Taichung, Taiwan
- School of Dentistry, College of Dentistry, China Medical University, Taichung, Taiwan
- Department of Biomedical Engineering, College of Biomedical Engineering, China Medical University, Taichung, Taiwan
| |
Collapse
|
8
|
Kornsuthisopon C, Nowwarote N, Chansaenroj A, Photichailert S, Rochanavibhata S, Klincumhom N, Petit S, Dingli F, Loew D, Fournier BPJ, Osathanon T. Human dental pulp stem cells derived extracellular matrix promotes mineralization via Hippo and Wnt pathways. Sci Rep 2024; 14:6777. [PMID: 38514682 PMCID: PMC10957957 DOI: 10.1038/s41598-024-56845-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 03/12/2024] [Indexed: 03/23/2024] Open
Abstract
Extracellular matrix (ECM) is an intricate structure providing the microenvironment niche that influences stem cell differentiation. This study aimed to investigate the efficacy of decellularized ECM derived from human dental pulp stem cells (dECM_DPSCs) and gingival-derived mesenchymal stem cells (dECM_GSCs) as an inductive scaffold for osteogenic differentiation of GSCs. The proteomic analysis demonstrated that common and signature matrisome proteins from dECM_DPSCs and dECM_GSCs were related to osteogenesis/osteogenic differentiation. RNA sequencing data from GSCs reseeded on dECM_DPSCs revealed that dECM_DPSCs upregulated genes related to the Hippo and Wnt signaling pathways in GSCs. In the inhibitor experiments, results revealed that dECM_DPSCs superiorly promoted GSCs osteogenic differentiation, mainly mediated through Hippo and Wnt signaling. The present study emphasizes the promising translational application of dECM_DPSCs as a bio-scaffold rich in favorable regenerative microenvironment for tissue engineering.
Collapse
Affiliation(s)
- Chatvadee Kornsuthisopon
- Center of Excellence for Dental Stem Cell Biology and Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, 34 Henri-Dunant Rd. Pathumwan, Bangkok, 10330, Thailand
| | - Nunthawan Nowwarote
- Centre de Recherche des Cordeliers, Université Paris Cité, Sorbonne Université, INSERM UMR1138, Molecular Oral Pathophysiology, 75006, Paris, France
- Department of Oral Biology, Faculty of Dentistry, Université Paris Cité, 75006, Paris, France
| | - Ajjima Chansaenroj
- Center of Excellence for Dental Stem Cell Biology and Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, 34 Henri-Dunant Rd. Pathumwan, Bangkok, 10330, Thailand
| | - Suphalak Photichailert
- Center of Excellence for Dental Stem Cell Biology and Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, 34 Henri-Dunant Rd. Pathumwan, Bangkok, 10330, Thailand
| | - Sunisa Rochanavibhata
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Nuttha Klincumhom
- Center of Excellence for Dental Stem Cell Biology and Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, 34 Henri-Dunant Rd. Pathumwan, Bangkok, 10330, Thailand
| | - Stephane Petit
- Department of Oral Biology, Faculty of Dentistry, Université Paris Cité, 75006, Paris, France
| | - Florent Dingli
- Institut Curie, Centre de Recherche, Laboratoire de Spectrométrie de Masse Protéomique, PSL Research University, 26 Rue d'Ulm, 75248 Cedex 05, Paris, France
| | - Damarys Loew
- Institut Curie, Centre de Recherche, Laboratoire de Spectrométrie de Masse Protéomique, PSL Research University, 26 Rue d'Ulm, 75248 Cedex 05, Paris, France
| | - Benjamin P J Fournier
- Centre de Recherche des Cordeliers, Université Paris Cité, Sorbonne Université, INSERM UMR1138, Molecular Oral Pathophysiology, 75006, Paris, France.
- Department of Oral Biology, Faculty of Dentistry, Université Paris Cité, 75006, Paris, France.
| | - Thanaphum Osathanon
- Center of Excellence for Dental Stem Cell Biology and Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, 34 Henri-Dunant Rd. Pathumwan, Bangkok, 10330, Thailand.
| |
Collapse
|
9
|
Kadkhoda Z, Motie P, Rad MR, Mohaghegh S, Kouhestani F, Motamedian SR. Comparison of Periodontal Ligament Stem Cells with Mesenchymal Stem Cells from Other Sources: A Scoping Systematic Review of In vitro and In vivo Studies. Curr Stem Cell Res Ther 2024; 19:497-522. [PMID: 36397622 DOI: 10.2174/1574888x17666220429123319] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 12/31/2021] [Accepted: 03/11/2022] [Indexed: 11/22/2022]
Abstract
OBJECTIVE The application of stem cells in regenerative medicine depends on their biological properties. This scoping review aimed to compare the features of periodontal ligament stem cells (PDLSSCs) with stem cells derived from other sources. DESIGN An electronic search in PubMed/Medline, Embase, Scopus, Google Scholar and Science Direct was conducted to identify in vitro and in vivo studies limited to English language. RESULTS Overall, 65 articles were included. Most comparisons were made between bone marrow stem cells (BMSCs) and PDLSCs. BMSCs were found to have lower proliferation and higher osteogenesis potential in vitro and in vivo than PDLSCs; on the contrary, dental follicle stem cells and umbilical cord mesenchymal stem cells (UCMSCs) had a higher proliferative ability and lower osteogenesis than PDLSCs. Moreover, UCMSCs exhibited a higher apoptotic rate, hTERT expression, and relative telomerase length. The immunomodulatory function of adipose-derived stem cells and BMSCs was comparable to PDLSCs. Gingival mesenchymal stem cells showed less sensitivity to long-term culture. Both pure and mixed gingival cells had lower osteogenic ability compared to PDLSCs. Comparison of dental pulp stem cells (DPSCs) with PDLSCs regarding proliferation rate, osteo/adipogenesis, and immunomodulatory properties was contradictory; however, in vivo bone formation of DPSCs seemed to be lower than PDLSCs. CONCLUSION In light of the performed comparative studies, PDLSCs showed comparable results to stem cells derived from other sources; however, further in vivo studies are needed to determine the actual pros and cons of stem cells in comparison to each other.
Collapse
Affiliation(s)
- Zeinab Kadkhoda
- Department of Periodontology, School of Dentistry, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Parisa Motie
- Student Research Committee, School of Dentistry, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Maryam Rezaei Rad
- Dental Research Center, Research Institute of Dental Sciences, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sadra Mohaghegh
- Student Research Committee, School of Dentistry, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Farnaz Kouhestani
- Department of Periodontics, School of Dentistry, Bushehr University of Medical Sciences, Tehran, Iran
| | - Saeed Reza Motamedian
- Dentofacial Deformities Research Center, Research Institute of Dental Sciences, Department of Orthodontics, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
10
|
Bardag Gorce F, Al Dahan M, Narwani K, Terrazas J, Ferrini M, Calhoun CC, Uyanne J, Royce-Flores J, Crum E, Niihara Y. Human Oral Mucosa as a Potentially Effective Source of Neural Crest Stem Cells for Clinical Practice. Cells 2023; 12:2216. [PMID: 37759439 PMCID: PMC10526281 DOI: 10.3390/cells12182216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/28/2023] [Accepted: 08/29/2023] [Indexed: 09/29/2023] Open
Abstract
We report in this study on the isolation and expansion of neural crest stem cells (NCSCs) from the epithelium of oral mucosa (OM) using reagents that are GMP-certified and FDA-approved for clinical use. Characterization analysis showed that the levels of keratins K2, K6C, K4, K13, K31, and K15-specific to OM epithelial cells-were significantly lower in the experimental NCSCs. While SOX10 was decreased with no statistically significant difference, the earliest neural crest specifier genes SNAI1/2, Ap2a, Ap2c, SOX9, SOX30, Pax3, and Twist1 showed a trend in increased expression in NCSCs. In addition, proteins of Oct4, Nestin and Noth1 were found to be greatly expressed, confirming NCSC multipotency. In conclusion, our study showed that the epithelium of OM contains NCSCs that can be isolated and expanded with clinical-grade reagents to supply the demand for multipotent cells required for clinical applications in regenerative medicine. Supported by Emmaus Medical Inc.
Collapse
Affiliation(s)
- Fawzia Bardag Gorce
- The Lundquist Institute for Biomedical Innovation, Torrance, CA 90502, USA (Y.N.)
- Division of Oral & Maxillofacial Surgery and Hospital Dentistry, Department of Surgery Harbor UCLA Medical Center, Torrance, CA 90502, USA
- Charles R. Drew University of Medicine and Science, Los Angeles, CA 90059, USA
| | - Mais Al Dahan
- The Lundquist Institute for Biomedical Innovation, Torrance, CA 90502, USA (Y.N.)
- Division of Oral & Maxillofacial Surgery and Hospital Dentistry, Department of Surgery Harbor UCLA Medical Center, Torrance, CA 90502, USA
| | - Kavita Narwani
- The Lundquist Institute for Biomedical Innovation, Torrance, CA 90502, USA (Y.N.)
| | - Jesus Terrazas
- Charles R. Drew University of Medicine and Science, Los Angeles, CA 90059, USA
| | - Monica Ferrini
- Charles R. Drew University of Medicine and Science, Los Angeles, CA 90059, USA
| | - Colonya C. Calhoun
- The Lundquist Institute for Biomedical Innovation, Torrance, CA 90502, USA (Y.N.)
- Department of Surgery, UCLA, David Geffen School of Medicine, Los Angeles, CA 90095, USA
- UCLA School of Dentistry, Los Angeles, CA 90095, USA
- Department of Oral & Maxillofacial Surgery and Hospital Dentistry, University of Michigan School of Dentistry, Ann Arbor, MI 48109, USA
| | - Jettie Uyanne
- The Lundquist Institute for Biomedical Innovation, Torrance, CA 90502, USA (Y.N.)
- Division of Oral & Maxillofacial Surgery and Hospital Dentistry, Department of Surgery Harbor UCLA Medical Center, Torrance, CA 90502, USA
- Herman Ostrow School of Dentistry of USC, Los Angeles, CA 90089, USA
| | - Jun Royce-Flores
- The Lundquist Institute for Biomedical Innovation, Torrance, CA 90502, USA (Y.N.)
- Division of Oral & Maxillofacial Surgery and Hospital Dentistry, Department of Surgery Harbor UCLA Medical Center, Torrance, CA 90502, USA
- UCLA School of Dentistry, Los Angeles, CA 90095, USA
| | - Eric Crum
- Division of Oral & Maxillofacial Surgery and Hospital Dentistry, Department of Surgery Harbor UCLA Medical Center, Torrance, CA 90502, USA
- Department of Surgery, UCLA, David Geffen School of Medicine, Los Angeles, CA 90095, USA
- UCLA School of Dentistry, Los Angeles, CA 90095, USA
| | - Yutaka Niihara
- The Lundquist Institute for Biomedical Innovation, Torrance, CA 90502, USA (Y.N.)
- Emmaus Medical, Inc., Torrance, CA 90503, USA
| |
Collapse
|
11
|
Zhou Y, Xu T, Wang C, Han P, Ivanovski S. Clinical usage of dental stem cells and their derived extracellular vesicles. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 199:297-326. [PMID: 37678975 DOI: 10.1016/bs.pmbts.2023.03.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
Stem cell-based therapies remain at the forefront of tissue engineering and regenerative medicine because stem cells are a unique cell source with enormous potential to treat incurable diseases and even extend lifespans. The search for the best stem cell candidates continues to evolve and in recent years, dental stem cells have received significant attention due to their easy accessibility, high plasticity, and multipotential properties. Dental stem cells have been the subject of extensive research in both animal models and human clinical trials over the past two decades, and have demonstrated significant potential in ocular therapy, bone tissue engineering, and, of course, therapeutic applications in dentistry such as regenerative endodontics and periodontal tissue regeneration. These new sources of cells may be advantageous for cellular therapy and the advancement of regenerative medicine strategies, such as allogeneic transplantation or therapy with extracellular vesicles (EVs), which are functional nanoscale membrane vesicles produced by cells. This chapter discusses the accumulating research findings on cell-based regenerative therapy utilizing dental stem cells and their derived EVs, which could be a viable tool for the treatment of a variety of diseases and hence extremely valuable to mankind in the long run.
Collapse
Affiliation(s)
- Yinghong Zhou
- The University of Queensland, School of Dentistry, Brisbane, QLD, Australia.
| | - Tian Xu
- The University of Queensland, School of Dentistry, Brisbane, QLD, Australia.
| | - Cong Wang
- The University of Queensland, School of Dentistry, Brisbane, QLD, Australia.
| | - Pingping Han
- The University of Queensland, School of Dentistry, Brisbane, QLD, Australia.
| | - Sašo Ivanovski
- The University of Queensland, School of Dentistry, Brisbane, QLD, Australia.
| |
Collapse
|
12
|
Mohd Nor NH, Mansor NI, Mohd Kashim MIA, Mokhtar MH, Mohd Hatta FA. From Teeth to Therapy: A Review of Therapeutic Potential within the Secretome of Stem Cells from Human Exfoliated Deciduous Teeth. Int J Mol Sci 2023; 24:11763. [PMID: 37511524 PMCID: PMC10380442 DOI: 10.3390/ijms241411763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/18/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023] Open
Abstract
Stem cells derived from human exfoliated deciduous teeth (SHED) have emerged as an alternative stem cell source for cell therapy and regenerative medicine because they are readily available, pose fewer ethical concerns, and have low immunogenicity and tumourigenicity. SHED offer a number of advantages over other dental stem cells, including a high proliferation rate with the potential to differentiate into multiple developmental lineages. The therapeutic effects of SHED are mediated by multiple mechanisms, including immunomodulation, angiogenesis, neurogenesis, osteogenesis, and adipogenesis. In recent years, there is ample evidence that the mechanism of action of SHED is mainly due to its paracrine action, releasing a wide range of soluble factors such as cytokines, chemokines, and trophic factors (also known as 'secretome') into the local tissue microenvironment to promote tissue survival and recovery. This review provides an overview of the secretome derived from SHED and highlights the bioactive molecules involved in tissue regeneration and their potential applications in regenerative medicine.
Collapse
Affiliation(s)
- Nurul Hafizah Mohd Nor
- Institute of Islamic Civilization, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor Darul Ehsan, Malaysia
| | - Nur Izzati Mansor
- Department of Nursing, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras 56000, Kuala Lumpur, Malaysia
| | - Mohd Izhar Ariff Mohd Kashim
- Institute of Islamic Civilization, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor Darul Ehsan, Malaysia
- Faculty of Islamic Studies, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor Darul Ehsan, Malaysia
| | - Mohd Helmy Mokhtar
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras 56000, Kuala Lumpur, Malaysia
| | - Farah Ayuni Mohd Hatta
- Institute of Islamic Civilization, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor Darul Ehsan, Malaysia
| |
Collapse
|
13
|
Zhao J, Zhou YH, Zhao YQ, Gao ZR, Ouyang ZY, Ye Q, Liu Q, Chen Y, Tan L, Zhang SH, Feng Y, Hu J, Dusenge MA, Feng YZ, Guo Y. Oral cavity-derived stem cells and preclinical models of jaw-bone defects for bone tissue engineering. Stem Cell Res Ther 2023; 14:39. [PMID: 36927449 PMCID: PMC10022059 DOI: 10.1186/s13287-023-03265-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 03/06/2023] [Indexed: 03/18/2023] Open
Abstract
BACKGROUND Jaw-bone defects caused by various diseases lead to aesthetic and functional complications, which can seriously affect the life quality of patients. Current treatments cannot fully meet the needs of reconstruction of jaw-bone defects. Thus, the research and application of bone tissue engineering are a "hot topic." As seed cells for engineering of jaw-bone tissue, oral cavity-derived stem cells have been explored and used widely. Models of jaw-bone defect are excellent tools for the study of bone defect repair in vivo. Different types of bone defect repair require different stem cells and bone defect models. This review aimed to better understand the research status of oral and maxillofacial bone regeneration. MAIN TEXT Data were gathered from PubMed searches and references from relevant studies using the search phrases "bone" AND ("PDLSC" OR "DPSC" OR "SCAP" OR "GMSC" OR "SHED" OR "DFSC" OR "ABMSC" OR "TGPC"); ("jaw" OR "alveolar") AND "bone defect." We screened studies that focus on "bone formation of oral cavity-derived stem cells" and "jaw bone defect models," and reviewed the advantages and disadvantages of oral cavity-derived stem cells and preclinical model of jaw-bone defect models. CONCLUSION The type of cell and animal model should be selected according to the specific research purpose and disease type. This review can provide a foundation for the selection of oral cavity-derived stem cells and defect models in tissue engineering of the jaw bone.
Collapse
Affiliation(s)
- Jie Zhao
- Department of Stomatology, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Ying-Hui Zhou
- Department of Stomatology, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha, 410011, Hunan, China.,National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Ya-Qing Zhao
- Department of Stomatology, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Zheng-Rong Gao
- Department of Stomatology, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Ze-Yue Ouyang
- Department of Stomatology, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Qin Ye
- Department of Stomatology, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Qiong Liu
- Department of Stomatology, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Yun Chen
- Department of Stomatology, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Li Tan
- Department of Stomatology, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Shao-Hui Zhang
- Department of Stomatology, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Yao Feng
- Department of Stomatology, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Jing Hu
- Department of Stomatology, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Marie Aimee Dusenge
- Department of Stomatology, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Yun-Zhi Feng
- Department of Stomatology, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha, 410011, Hunan, China.
| | - Yue Guo
- Department of Stomatology, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha, 410011, Hunan, China.
| |
Collapse
|
14
|
Sharma AR, Jaiswal RK, Shinde Kamble S, Ghadage M, Pawar M, Bagde H, Singh Makkad R. Chronic inflammation on gingiva-derived mesenchymal stem cells. Bioinformation 2023; 19:138-142. [PMID: 37720288 PMCID: PMC10504518 DOI: 10.6026/97320630019138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 09/19/2023] Open
Abstract
The impact of inflammatory response on the biological characteristics of GMSCs has been the subject of studies, with conflicting findings. In order to more fully understand the effects of the localized inflammatory environment, the current study assessed the intensity and differentiating capacity of GMSCs derived from healthy periodontal tissues (H-GMSC) and GMSC derived from inflamed periodontal tissues (I-GMSC) tissues. Cells from every well were taken out and counted using a hemocytometer every three days for a total of 12 days. The findings of the cell proliferation assay, which involved quantifying the cells with the help of a hemocytometer at 0th day, 3rd day, 6th day, and 9th day, are shown. On day nine of culture, there was a considerable (P = 0.02) variation in the rate of multiplication between GMSCs from healthy gingival tissues and GMSCs from gingival tissues having inflammation. Additionally, I-GMSCs had a higher cell concentration on day twelve than that of H-GMSCs. However, there was no significant variance in PDT values comparing GMSCs from healthy gingival tissues and GMSCs from gingival tissues having inflammation (P > 0.05). The mean PDT findings of 66.7 h and 53.4 h have been documented for Healthy-GMSCs and Inflamed-GMSCs, respectively. In addition, compared to GMSCs from healthy gingival tissues, GMSCs from inflammatory tissues had decreased osteogenesis and increased adipogenic potential. To evaluate the efficacy of GMSCs derived from patients suffering periodontitis utilising human models for cell-based treatments, additional study is necessary.
Collapse
Affiliation(s)
- Anant Ragav Sharma
- Department of Periodontics, Pacific Dental College, Debari, Udaipur, Rajasthan, India
| | - Rakesh Kumar Jaiswal
- Department of Dentistry, Late Shree Lakhiram Agrawal Memorial Government Medical College Raigarh Chhattisgarh Pin 496001, India
| | - Swapnali Shinde Kamble
- Department of Preventive and Pediatric Dentistry, Child Dental Home, Borivali (W), India
| | - Mahesh Ghadage
- Department of Prosthodontics and Crown and Bridge.Bharati Vidyapeeth (Deemed to be University) Pune Dental College and Hospital, Navi Mumbai, India
| | - Madhura Pawar
- Department of Pediatric and Preventive Dentistry, Dr D Y Patil Dental College and Hospital, Dr D Y Patil Vidyapeeth Pimpri, Pune, Maharashtra, India
| | - Hiroj Bagde
- Department of Periodontology, Rama Dental College, Hospital and Research Centre, Kanpur
| | - Ramanpal Singh Makkad
- Department of Oral Medicine and Radiology, New Horizon Dental College and Research Institute, Bilaspur, Chhattisgarh, India
| |
Collapse
|
15
|
First-in-Human Study to Investigate the Safety Assessment of Peri-Implant Soft Tissue Regeneration with Micronized-Gingival Connective Tissue: A Pilot Case Series Study. MEDICINES (BASEL, SWITZERLAND) 2023; 10:medicines10010009. [PMID: 36662493 PMCID: PMC9865433 DOI: 10.3390/medicines10010009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/28/2022] [Accepted: 12/29/2022] [Indexed: 01/06/2023]
Abstract
Background: We have recently proposed an alternative strategy of free gingival graft (FGG) and connective tissue graft (CTG) using micronized-gingival connective tissues (MGCTs). The advantage of this strategy is that MGCTs from a small piece of maxillary tuberosity can regenerate the keratinized tissue band. However, safety and efficacy have not yet been established in patients. This clinical study was a pilot case series, and the objective was to assess the safety and the preliminary efficacy of MGCTs on peri-implant mucosa regeneration. Methods: This was a pilot interventional, single-center, first-in-human (FIH), open (no masking), uncontrolled, and single-assignment study. A total of 4 patients who needed peri-implant soft tissues reconstruction around dental implants received transplantation of atelocollagen-matrix with MGCTs micronized by the tissue disruptor technique. The duration of intervention was 4 weeks after surgery. Results: This first clinical study demonstrated that using MGCTs did not cause any irreversible adverse events, and it showed the preliminary efficacy for peri-implant soft tissues reconstruction in dental implant therapy. Conclusions: Though further studies are needed on an appropriate scale, as an alternative strategy of FGG or CTG, MGCTs might be promising for peri-implant mucosa reconstruction without requiring a high level of skills and morbidity to harvest graft tissues.
Collapse
|
16
|
Osteogenic Differentiation of Human Umbilical Cord Blood Mesenchymal Stem Cells Induced by Liu’s Zhenggudan No. 2 Formula. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:4718438. [PMID: 36110185 PMCID: PMC9470313 DOI: 10.1155/2022/4718438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/09/2022] [Accepted: 07/19/2022] [Indexed: 12/02/2022]
Abstract
Aim This study aimed to investigate the potential of Liu's Zhenggudan No. 2 Formula (LZF2) in inducing osteogenic differentiation of human umbilical cord blood mesenchymal stem cells (hUCB-MSCs) and treating osteoporosis (OP), thereby providing new methods and ideas for the treatment of OP by traditional Chinese medicine. Methods Forty sample rats were equally divided into five groups: high-concentration LZF2, low-concentration LZF2, the Eucommia ulmoides (EU) group, the classical osteogenesis induction (COI) group, and the blank control group. Eight rats in each group were routinely housed for 7 days. Subsequently, to induce hUCB-MSCs, drug-containing serum was extracted from the abdominal aorta of rats to prepare the osteogenic induction solution. In addition, alkaline phosphatase (ALP) activity and osteocalcin (OCN) content assays, and alizarin red staining were performed on days 3, 6, 9, and 12 after culture. Results After induction of hUCB-MSCs, ALP activity and OCN content increased significantly in the high-concentration LZF2 group. Alizarin red staining also depicted numerous orange-red calcified nodules in rats in the high-concentration LZF2 group. Conclusion High concentration of LZF2 can facilitate the differentiation of hUCB-MSCs to promote osteogenesis.
Collapse
|
17
|
Fonticoli L, Della Rocca Y, Rajan TS, Murmura G, Trubiani O, Oliva S, Pizzicannella J, Marconi GD, Diomede F. A Narrative Review: Gingival Stem Cells as a Limitless Reservoir for Regenerative Medicine. Int J Mol Sci 2022; 23:ijms23084135. [PMID: 35456951 PMCID: PMC9024914 DOI: 10.3390/ijms23084135] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 04/05/2022] [Accepted: 04/07/2022] [Indexed: 11/16/2022] Open
Abstract
The gingival tissue can be collected in an easy way and represent an accessible source to isolate gingival-derived mesenchymal stem cells (GMSCs). GMSCs are a subpopulation of dental-derived mesenchymal stem cells that show the mesenchymal stem cells (MSCs) features, such as differentiation abilities and immunomodulatory properties. Dental-derived stem cells are also expandable in vitro with genomic stability and the possibility to maintain the stemness properties over a prolonged period of passages. Moreover, several preclinical studies have documented that the extracellular vesicles (EVs) released from GMSCs possess similar biological functions and therapeutic effects. The EVs may represent a promising tool in the cell-free regenerative therapy approach. The present review paper summarized the GMSCs, their multi-lineage differentiation capacities, immunomodulatory features, and the potential use in the treatment of several diseases in order to stimulate tissue regeneration. GMSCs should be considered a good stem cell source for potential applications in tissue engineering and regenerative dentistry.
Collapse
Affiliation(s)
- Luigia Fonticoli
- Department of Innovative Technologies in Medicine & Dentistry, University "G. d'Annunzio" Chieti-Pescara, Via dei Vestini, 31, 66100 Chieti, Italy
| | - Ylenia Della Rocca
- Department of Innovative Technologies in Medicine & Dentistry, University "G. d'Annunzio" Chieti-Pescara, Via dei Vestini, 31, 66100 Chieti, Italy
| | | | - Giovanna Murmura
- Department of Innovative Technologies in Medicine & Dentistry, University "G. d'Annunzio" Chieti-Pescara, Via dei Vestini, 31, 66100 Chieti, Italy
| | - Oriana Trubiani
- Department of Innovative Technologies in Medicine & Dentistry, University "G. d'Annunzio" Chieti-Pescara, Via dei Vestini, 31, 66100 Chieti, Italy
| | - Stefano Oliva
- Department of Innovative Technologies in Medicine & Dentistry, University "G. d'Annunzio" Chieti-Pescara, Via dei Vestini, 31, 66100 Chieti, Italy
| | | | - Guya Diletta Marconi
- Department of Medical, Oral and Biotechnological Sciences, University "G. d'Annunzio" Chieti-Pescara, Via dei Vestini, 31, 66100 Chieti, Italy
| | - Francesca Diomede
- Department of Innovative Technologies in Medicine & Dentistry, University "G. d'Annunzio" Chieti-Pescara, Via dei Vestini, 31, 66100 Chieti, Italy
| |
Collapse
|
18
|
Fawzy El-Sayed KM, Bittner A, Schlicht K, Mekhemar M, Enthammer K, Höppner M, Es-Souni M, Schulz J, Laudes M, Graetz C, Dörfer CE, Schulte DM. Ascorbic Acid/Retinol and/or Inflammatory Stimuli's Effect on Proliferation/Differentiation Properties and Transcriptomics of Gingival Stem/Progenitor Cells. Cells 2021; 10:cells10123310. [PMID: 34943818 PMCID: PMC8699152 DOI: 10.3390/cells10123310] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 11/16/2021] [Accepted: 11/18/2021] [Indexed: 12/13/2022] Open
Abstract
The present study explored the effects of ascorbic-acid (AA)/retinol and timed inflammation on the stemness, the regenerative potential, and the transcriptomics profile of gingival mesenchymal stem/progenitor cells' (G-MSCs). STRO-1 (mesenchymal stem cell marker) immuno-magnetically sorted G-MSCs were cultured in basic medium (control group), in basic medium with IL-1β (1 ng/mL), TNF-α (10 ng/mL) and IFN-γ (100 ng/mL, inflammatory-medium), in basic medium with AA (250 µmol/L) and retinol (20 µmol/L) (AA/retinol group) or in inflammatory medium with AA/retinol (inflammatory/AA/retinol group; n = 5/group). The intracellular levels of phosphorylated and total β-Catenin at 1 h, the expression of stemness genes over 7 days, the number of colony-forming units (CFUs) as well as the cellular proliferation aptitude over 14 days, and the G-MSCs' multilineage differentiation potential were assessed. Next-generation sequencing was undertaken to elaborate on up-/downregulated genes and altered intracellular pathways. G-MSCs demonstrated all mesenchymal stem/progenitor cells characteristics. Controlled inflammation with AA/retinol significantly elevated NANOG (p < 0.05). The AA/retinol-mediated reduction in intracellular phosphorylated β-Catenin was restored through the effect of controlled inflammation (p < 0.05). Cellular proliferation was highest in the AA/retinol group (p < 0.05). AA/retinol counteracted the inflammation-mediated reduction in G-MSCs' clonogenic ability and CFUs. Amplified chondrogenic differentiation was observed in the inflammatory/AA/retinol group. At 1 and 3 days, the differentially expressed genes were associated with development, proliferation, and migration (FOS, EGR1, SGK1, CXCL5, SIPA1L2, TFPI2, KRATP1-5), survival (EGR1, SGK1, TMEM132A), differentiation and mineral absorption (FOS, EGR1, MT1E, KRTAP1-5, ASNS, PSAT1), inflammation and MHC-II antigen processing (PER1, CTSS, CD74) and intracellular pathway activation (FKBP5, ZNF404). Less as well as more genes were activated the longer the G-MSCs remained in the inflammatory medium or AA/retinol, respectively. Combined, current results point at possibly interesting interactions between controlled inflammation or AA/retinol affecting stemness, proliferation, and differentiation attributes of G-MSCs.
Collapse
Affiliation(s)
- Karim M. Fawzy El-Sayed
- Clinic for Conservative Dentistry and Periodontology, School of Dental Medicine, Christian-Albrechts-University of Kiel, 24105 Kiel, Germany; (A.B.); (M.M.); (C.G.); (C.E.D.)
- Oral Medicine and Periodontology Department, Faculty of Dentistry, Cairo University, Cairo 11553, Egypt
- Stem cells and Tissue Engineering Unit, Faculty of Dentistry, Cairo University, Cairo 11553, Egypt
- Correspondence:
| | - Amira Bittner
- Clinic for Conservative Dentistry and Periodontology, School of Dental Medicine, Christian-Albrechts-University of Kiel, 24105 Kiel, Germany; (A.B.); (M.M.); (C.G.); (C.E.D.)
| | - Kristina Schlicht
- Institute of Diabetes and Clinical Metabolic Research, School of Medicine, Christian-Albrechts-University of Kiel, 24104 Kiel, Germany; (K.S.); (K.E.); (J.S.); (M.L.); (D.M.S.)
- Division of Endocrinology, Diabetes and Clinical Nutrition, Department of Medicine I, School of Medicine, University Hospital of Schleswig-Holstein, 24105 Kiel, Germany
| | - Mohamed Mekhemar
- Clinic for Conservative Dentistry and Periodontology, School of Dental Medicine, Christian-Albrechts-University of Kiel, 24105 Kiel, Germany; (A.B.); (M.M.); (C.G.); (C.E.D.)
| | - Kim Enthammer
- Institute of Diabetes and Clinical Metabolic Research, School of Medicine, Christian-Albrechts-University of Kiel, 24104 Kiel, Germany; (K.S.); (K.E.); (J.S.); (M.L.); (D.M.S.)
- Division of Endocrinology, Diabetes and Clinical Nutrition, Department of Medicine I, School of Medicine, University Hospital of Schleswig-Holstein, 24105 Kiel, Germany
| | - Marc Höppner
- Institute of Clinical Molecular Biology, School of Medicine, Christian-Albrechts-University of Kiel, 24105 Kiel, Germany;
| | - Martha Es-Souni
- Department of Orthodontics, School of Dental Medicine, University Clinic Schleswig-Holstein (UKSH), Christian-Albrechts University of Kiel, 24105 Kiel, Germany;
| | - Juliane Schulz
- Institute of Diabetes and Clinical Metabolic Research, School of Medicine, Christian-Albrechts-University of Kiel, 24104 Kiel, Germany; (K.S.); (K.E.); (J.S.); (M.L.); (D.M.S.)
- Division of Endocrinology, Diabetes and Clinical Nutrition, Department of Medicine I, School of Medicine, University Hospital of Schleswig-Holstein, 24105 Kiel, Germany
- Cluster of Excellence, Precision Medicine in Chronic Inflammation, School of Medicine, Christian-Albrechts-University of Kiel, 24105 Kiel, Germany
| | - Matthias Laudes
- Institute of Diabetes and Clinical Metabolic Research, School of Medicine, Christian-Albrechts-University of Kiel, 24104 Kiel, Germany; (K.S.); (K.E.); (J.S.); (M.L.); (D.M.S.)
- Division of Endocrinology, Diabetes and Clinical Nutrition, Department of Medicine I, School of Medicine, University Hospital of Schleswig-Holstein, 24105 Kiel, Germany
- Cluster of Excellence, Precision Medicine in Chronic Inflammation, School of Medicine, Christian-Albrechts-University of Kiel, 24105 Kiel, Germany
| | - Christian Graetz
- Clinic for Conservative Dentistry and Periodontology, School of Dental Medicine, Christian-Albrechts-University of Kiel, 24105 Kiel, Germany; (A.B.); (M.M.); (C.G.); (C.E.D.)
| | - Christof E. Dörfer
- Clinic for Conservative Dentistry and Periodontology, School of Dental Medicine, Christian-Albrechts-University of Kiel, 24105 Kiel, Germany; (A.B.); (M.M.); (C.G.); (C.E.D.)
| | - Dominik M. Schulte
- Institute of Diabetes and Clinical Metabolic Research, School of Medicine, Christian-Albrechts-University of Kiel, 24104 Kiel, Germany; (K.S.); (K.E.); (J.S.); (M.L.); (D.M.S.)
- Division of Endocrinology, Diabetes and Clinical Nutrition, Department of Medicine I, School of Medicine, University Hospital of Schleswig-Holstein, 24105 Kiel, Germany
- Cluster of Excellence, Precision Medicine in Chronic Inflammation, School of Medicine, Christian-Albrechts-University of Kiel, 24105 Kiel, Germany
| |
Collapse
|
19
|
Kumar BM, Rao S, Talwar A, Shetty V. Minimal influence of chronic inflammation on the potency and differentiation characteristics of gingiva-derived mesenchymal stem cells-An in vitro study. J Indian Soc Periodontol 2021; 25:379-385. [PMID: 34667379 PMCID: PMC8452161 DOI: 10.4103/jisp.jisp_410_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 12/20/2020] [Accepted: 12/25/2020] [Indexed: 11/21/2022] Open
Abstract
Objective: Gingiva-derived mesenchymal stem cells (GMSCs) have been identified and characterized from healthy tissues. However, reports on the influence of chronic inflammation on their stemness characteristics are sparse. The present study evaluated the potency and differentiation ability of GMSCs from periodontally healthy GMSC (H-GMSC) and inflamed GMSC (I-GMSC) tissues. Materials and Methods: Established H-GMSCs and I-GMSCs were evaluated on their potency characteristics, such as morphology, viability, proliferation rate, population doubling time, colony-forming ability, expression of stemness markers, and mesenchymal differentiation potential. Results: H-GMSCs and I-GMSCs exhibited fibroblast-like morphology and showed >95% viability with high proliferation potential and shorter doubling time. H-GMSCs showed fewer and smaller colonies, whereas I-GMSCs exhibited multiple and larger colonies. The evaluation of stemness markers revealed that both H-GMSCs and I-GMSCs were weakly positive for stage-specific embryonic antigen-4, Stro1, and CD105 (Endoglin), strongly positive for CD73 and CD90, and negative for the hematopoietic cell markers, CD34 and CD45. H-GMSCs showed a slightly higher osteogenic potential when compared to I-GMSCs, while I-GMSCs had a higher adipogenic potential than H-GMSCs. Conclusion: The findings showed that the inflammatory environment might have a stimulatory effect on the growth kinetics and ability of colony formation in GMSCs. However, varied osteogenic and adipogenic differentiation was observed between H-GMSCs and I-GMSCs.
Collapse
Affiliation(s)
- Basavarajappa Mohana Kumar
- Nitte (Deemed to be University), K. S. Hegde Medical Academy, Nitte University Centre for Stem Cell Research and Regenerative Medicine, Mangalore, Karnataka, India
| | - Shama Rao
- Nitte (Deemed to be University), K. S. Hegde Medical Academy, Nitte University Centre for Stem Cell Research and Regenerative Medicine, Mangalore, Karnataka, India
| | - Avaneendra Talwar
- Nitte (Deemed to be University), A. B. Shetty Memorial Institute of Dental Sciences, Department of Periodontics, Mangalore, Karnataka, India
| | - Veena Shetty
- Nitte (Deemed to be University), K. S. Hegde Medical Academy, Nitte University Centre for Stem Cell Research and Regenerative Medicine, Mangalore, Karnataka, India
| |
Collapse
|
20
|
Chen MH, Tai WC, Cheng NC, Chang CH, Chang PC. Characterization of the stemness and osteogenic potential of oral and sinus mucosal cells. J Formos Med Assoc 2021; 121:652-659. [PMID: 34233852 DOI: 10.1016/j.jfma.2021.06.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/10/2021] [Accepted: 06/17/2021] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND/PURPOSE Covering the wounds from guided bone regeneration and sinus floor elevation with oral and sinus mucosa is a fundamental criterion for success. This study aimed to verify the regeneration capability of the mucosal connective tissue stromal cells by characterizing their stemness and osteogenic potentials. METHODS Bone marrow stromal cells (BMSCs), alveolar mucosa cells (AMCs), keratinized gingival cells (KGCs), and sinus mucosal cells (SMCs), were isolated from four Sprague-Dawley rats. The morphology and viability of the cells were investigated under a confocal microscope and by Alamar Blue. Stem cell surface markers were evaluated by flow cytometry. Expressions of pluripotent factors after initial seeding and an early osteogenic gene following 24 h of osteoinduction were evaluated by realtime PCR. Trilineage differentiation capability in long-term inductive cell culture was assessed by Alizarin Red, Alcian Blue, and Oil Red O staining. RESULTS BMSCs and AMCs were larger cells with smaller aspect ratios relative to KGCs and SMCs, and BMSCs revealed the greatest initial viability but the slowest proliferation. More than 94% of BMSCs, AMCs, and KGCs were double-positive for CD73 and CD90. Compared with BMSCs, AMCs expressed significantly higher Oct4 but reduced Cbfa1 after initial seeding, and AMCs and SMCs expressed significantly higher Cbfa1 following 24 h of osteoinduction. In long-term inductive cell culture, osteogenesis was observed in BMSCs, AMCs, and SMCs, chondrogenesis was observed in BMSCs, AMCs, and KGCs, and adipogenesis was evident in only BMSCs. CONCLUSION AMCs contain a high percentage of stem/progenitor cells and show differentiation capability toward osteogenic lineage.
Collapse
Affiliation(s)
- Ming-Hsu Chen
- Department of Otorhinolaryngology, Cathay General Hospital, Taipei, Taiwan
| | - Wei-Chiu Tai
- Graduate Institute of Clinical Dentistry, School of Dentistry, National Taiwan University, Taipei, Taiwan
| | - Nai-Chen Cheng
- Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan
| | - Ching-He Chang
- Graduate Institute of Clinical Dentistry, School of Dentistry, National Taiwan University, Taipei, Taiwan
| | - Po-Chun Chang
- Graduate Institute of Clinical Dentistry, School of Dentistry, National Taiwan University, Taipei, Taiwan; Division of Periodontics, Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan; School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.
| |
Collapse
|
21
|
The Gingiva from the Tissue Surrounding the Bone to the Tissue Regenerating the Bone: A Systematic Review of the Osteogenic Capacity of Gingival Mesenchymal Stem Cells in Preclinical Studies. Stem Cells Int 2021; 2021:6698100. [PMID: 34234830 PMCID: PMC8218920 DOI: 10.1155/2021/6698100] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 12/20/2020] [Accepted: 05/21/2021] [Indexed: 12/13/2022] Open
Abstract
The current review aims to systematically assess the osteogenic capacity of gingiva-derived mesenchymal stem cells (GMSCs) in preclinical studies. A comprehensive electronic search of PubMed, Embase, Web of Science, and Scopus databases, as well as a manual search of relevant references, was performed in June 2020 without date or language restrictions. Eligibility criteria were the following: studies that compared mesenchymal stem cells (MSCs) derived from the gingiva with other MSC sources (in vitro or in vivo) or cell-free scaffold (in vivo) and studies that reported at least one of the following outcomes: osteogenic potential and new bone formation for in vitro and in vivo, respectively. Moreover, the assessment of included studies was conducted using appropriate guidelines. From 646 initial retrieved studies, 35 full-text articles were subjected to further screening and 26 studies were selected (20 in vitro studies and 6 in vivo studies). GMSCs showed great proliferation capacity and expressed recognized mesenchymal stem cell markers, particularly CD90. In vitro, MSC sources including GMSCs were capable of undergoing osteogenic differentiation with less ability in GMSCs, while most in vivo studies confirmed the capacity of GMSCs to regenerate bony defects. Concerning the assessment of methodological quality, in vitro studies met the relevant guideline except in five areas: the sample size calculation, randomization, allocation concealment, implementation, and blinding, and in vivo publications had probably low risk of bias in most domains except in three areas: allocation concealment, attrition, and blinding items.
Collapse
|
22
|
Jia L, Zhang Y, Li D, Zhang W, Zhang D, Xu X. Analyses of key mRNAs and lncRNAs for different osteo-differentiation potentials of periodontal ligament stem cell and gingival mesenchymal stem cell. J Cell Mol Med 2021; 25:6217-6231. [PMID: 34028189 PMCID: PMC8256345 DOI: 10.1111/jcmm.16571] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 03/25/2021] [Accepted: 04/10/2021] [Indexed: 12/12/2022] Open
Abstract
Both human periodontal ligament stem cells (hPDLSCs) and human gingival mesenchymal stem cells (hGMSCs) are candidate seed cells for bone tissue engineering, but the osteo-differentiation ability of the latter is weaker than the former, and the mechanisms are unknown. To explore the potential regulation of mRNAs and long non-coding RNAs (lncRNAs), this study obtained the gene expression profiles of hPDLSCs and hGMSCs in both undifferentiated and osteo-differentiated conditions by microarray assay and then analysed the common and specific differentially expressed mRNAs and lncRNAs in hPDLSCs and hGMSCs through bioinformatics method. The results showed that 275 mRNAs and 126 lncRNAs displayed similar changing patterns in hPDLSCs and hGMSCs after osteogenic induction, which may regulate the osteo-differentiation in both types of cells. In addition, the expression of 223 mRNAs and 238 lncRNAs altered only in hPDLSCs after osteogenic induction, and 177 mRNAs and 170 lncRNAs changed only in hGMSCs. These cell-specific differentially expressed mRNAs and lncRNAs could underlie the different osteo-differentiation potentials of hPDLSCs and hGMSCs. Finally, dickkopf Wnt signalling pathway inhibitor 1 (DKK1) was proved to be one regulator for the weaker osteo-differentiation ability of hGMSCs through validation experiments. We hope these results help to reveal new mRNAs-lncRNAs-based molecular mechanism for osteo-differentiation of hPDLSCs and hGMSCs and provide clues on strategies for improving stem cell-mediated bone regeneration.
Collapse
Affiliation(s)
- Linglu Jia
- Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue RegenerationSchool and Hospital of StomatologyCheeloo College of MedicineShandong UniversityJinanChina
| | - Yunpeng Zhang
- Department of Oral ImplantologyThe Affiliated Stomatology Hospital of Kunming Medical UniversityKunmingChina
| | - Dongfang Li
- Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue RegenerationSchool and Hospital of StomatologyCheeloo College of MedicineShandong UniversityJinanChina
| | - Wenjing Zhang
- Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue RegenerationSchool and Hospital of StomatologyCheeloo College of MedicineShandong UniversityJinanChina
| | - Dongjiao Zhang
- Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue RegenerationSchool and Hospital of StomatologyCheeloo College of MedicineShandong UniversityJinanChina
| | - Xin Xu
- Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue RegenerationSchool and Hospital of StomatologyCheeloo College of MedicineShandong UniversityJinanChina
| |
Collapse
|
23
|
Kim D, Lee AE, Xu Q, Zhang Q, Le AD. Gingiva-Derived Mesenchymal Stem Cells: Potential Application in Tissue Engineering and Regenerative Medicine - A Comprehensive Review. Front Immunol 2021; 12:667221. [PMID: 33936109 PMCID: PMC8085523 DOI: 10.3389/fimmu.2021.667221] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 03/30/2021] [Indexed: 12/15/2022] Open
Abstract
A unique subpopulation of mesenchymal stem cells (MSCs) has been isolated and characterized from human gingival tissues (GMSCs). Similar to MSCs derived from other sources of tissues, e.g. bone marrow, adipose or umbilical cord, GMSCs also possess multipotent differentiation capacities and potent immunomodulatory effects on both innate and adaptive immune cells through the secretion of various types of bioactive factors with immunosuppressive and anti-inflammatory functions. Uniquely, GMSCs are highly proliferative and have the propensity to differentiate into neural cell lineages due to the neural crest-origin. These properties have endowed GMSCs with potent regenerative and therapeutic potentials in various preclinical models of human disorders, particularly, some inflammatory and autoimmune diseases, skin diseases, oral and maxillofacial disorders, and peripheral nerve injuries. All types of cells release extracellular vesicles (EVs), including exosomes, that play critical roles in cell-cell communication through their cargos containing a variety of bioactive molecules, such as proteins, nucleic acids, and lipids. Like EVs released by other sources of MSCs, GMSC-derived EVs have been shown to possess similar biological functions and therapeutic effects on several preclinical diseases models as GMSCs, thus representing a promising cell-free platform for regenerative therapy. Taken together, due to the easily accessibility and less morbidity of harvesting gingival tissues as well as the potent immunomodulatory and anti-inflammatory functions, GMSCs represent a unique source of MSCs of a neural crest-origin for potential application in tissue engineering and regenerative therapy.
Collapse
Affiliation(s)
- Dane Kim
- Department of Oral & Maxillofacial Surgery & Pharmacology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Alisa E Lee
- Department of Oral & Maxillofacial Surgery & Pharmacology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Qilin Xu
- Department of Oral & Maxillofacial Surgery & Pharmacology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Qunzhou Zhang
- Department of Oral & Maxillofacial Surgery & Pharmacology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Anh D Le
- Department of Oral & Maxillofacial Surgery & Pharmacology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States.,Center of Innovation & Precision Dentistry, School of Dental Medicine, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, United States.,Department of Oral & Maxillofacial Surgery, Penn Medicine Hospital of the University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
24
|
Wu Y, Zhu T, Yang Y, Gao H, Shu C, Chen Q, Yang J, Luo X, Wang Y. Irradiation with red light-emitting diode enhances proliferation and osteogenic differentiation of periodontal ligament stem cells. Lasers Med Sci 2021; 36:1535-1543. [PMID: 33719020 DOI: 10.1007/s10103-021-03278-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 02/16/2021] [Indexed: 12/27/2022]
Abstract
This study aimed to evaluate the effects of low-energy red light-emitting diode (LED) irradiation on the proliferation and osteogenic differentiation of periodontal ligament stem cells (PDLSCs). PDLSCs were derived from human periodontal ligament tissues of premolars and were irradiated with 0 (control group), 1, 3, or 5 J/cm2 red LED in osteogenic induction medium. Cell proliferation was analyzed using the 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide (MTT) assay. Osteogenic differentiation activity was evaluated by monitoring alkaline phosphatase (ALP) activity, alizarin red staining, and real-time polymerase chain reaction (RT-PCR) results. Osteoblast-associated proteins (Runx2, OCN, OPN, and BSP) were detected using western blotting. The results of the MTT assay indicated that PDLSCs in the irradiation groups exhibited a higher proliferation rate than those in the control group (P < 0.05). ALP results showed that after 7 days of illumination, only 5 J/cm2 promoted the expression of ALP of PDLSCs. However, after 14 days of illumination, the irradiation treatments did not increase ALP activity. The results of alizarin red staining showed that red LED promoted osteogenic differentiation of the PDLSCs. The real-time polymerase chain reaction (RT-PCR) results demonstrated that red LED upregulated the expression levels of osteogenic genes. Expression of the proteins BSP, OPN, OCN, and Runx2 in the irradiation groups was higher than that in the control group. Our results confirmed that low-energy red LED at 1, 3, and 5 J/cm2 promotes proliferation and osteogenic differentiation of PDLSCs.
Collapse
Affiliation(s)
- Yan Wu
- Southwest Medical University, Lu Zhou, 646000, China.,West China-Guang'an Hospital, Sichuan University, Guang'an, 638550, China
| | - Tingting Zhu
- Yantai Stomatological Hospital, Yan Tai, 264000, China
| | - Yaoyao Yang
- Hospital/School of Stomatology, Zunyi Medical University, Zun Yi, 563000, China
| | - Hong Gao
- Yantai Stomatological Hospital, Yan Tai, 264000, China
| | - Chunxia Shu
- Southwest Medical University, Lu Zhou, 646000, China
| | - Qiang Chen
- Southwest Medical University, Lu Zhou, 646000, China
| | - Juan Yang
- Southwest Medical University, Lu Zhou, 646000, China
| | - Xiang Luo
- Southwest Medical University, Lu Zhou, 646000, China
| | - Yao Wang
- Hospital of Stomatology, Southwest Medical University, Lu Zhou, 646000, China.
| |
Collapse
|
25
|
Nizami MZI, Nishina Y. Recent Advances in Stem Cells for Dental Tissue Engineering. ENGINEERING MATERIALS FOR STEM CELL REGENERATION 2021:281-324. [DOI: 10.1007/978-981-16-4420-7_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
26
|
Gao X, Cao Z. Gingiva-derived Mesenchymal Stem Cells and Their Potential Applications in Oral and Maxillofacial Diseases. Curr Stem Cell Res Ther 2020; 15:43-53. [PMID: 31702517 DOI: 10.2174/1574888x14666191107100311] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 09/02/2019] [Accepted: 09/12/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND Stem cells are undifferentiated cells with multilineage differentiation potential. They can be collected from bone marrow, fat, amniotic fluid, and teeth. Stem cell-based therapies have been widely used to treat multiple diseases, such as cardiac disease, and hematological disorders. The cells may also be beneficial for controlling the disease course and promoting tissue regeneration in oral and maxillofacial diseases. Oral-derived gingival mesenchymal stem cells are easy to access and the donor sites heal rapidly without a scar. Such characteristics demonstrate the beneficial role of GMSCs in oral and maxillofacial diseases. OBJECTIVE We summarize the features of GMSCs, including their self-renewal, multipotent differentiation, immunomodulation, and anti-inflammation properties. We also discuss their applications in oral and maxillofacial disease treatment and tissue regeneration. CONCLUSION GMSCs are easily harvestable adult stem cells with outstanding proliferation, differentiation, and immunomodulation characteristics. A growing body of evidence indicates that GMSCs have strong potential use in accelerating wound healing and promoting the regeneration of bone defects, periodontium, oral neoplasms, salivary glands, peri-implantitis, and nerves. Moreover, alginate, polylactic acid and polycaprolactone can be used as biodegradable scaffolds for GMSC encapsulation. Various growth factors can be applied to the corresponding scaffolds to obtain the desired GMSC differentiation and phenotypes. Three-dimensional spheroid culture systems could optimize GMSC properties and improve the performance of the cells in tissue engineering. The immunomodulatory property of GMSCs in controlling oral and maxillofacial inflammation needs further research.
Collapse
Affiliation(s)
- Xudong Gao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST KLOS) & Key Laboratory for Oral Biomedical Engineering of Ministry of Education (KLOBME), School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Zhengguo Cao
- Department of Periodontology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| |
Collapse
|
27
|
Zhao G, Ge Y, Zhang C, Zhang L, Xu J, Qi L, Li W. Progress of Mesenchymal Stem Cell-Derived Exosomes in Tissue Repair. Curr Pharm Des 2020; 26:2022-2037. [PMID: 32310043 DOI: 10.2174/1381612826666200420144805] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Accepted: 03/25/2020] [Indexed: 12/17/2022]
Abstract
Mesenchymal stem cells (MSCs) are a kind of adult stem cells with self-replication and multidirectional differentiation, which can differentiate into tissue-specific cells under physiological conditions, maintaining tissue self-renewal and physiological functions. They play a role in the pathological condition by lateral differentiation into tissue-specific cells, replacing damaged tissue cells by playing the role of a regenerative medicine , or repairing damaged tissues through angiogenesis, thereby, regulating immune responses, inflammatory responses, and inhibiting apoptosis. It has become an important seed cell for tissue repair and organ reconstruction, and cell therapy based on MSCs has been widely used clinically. The study found that the probability of stem cells migrating to the damaged area after transplantation or differentiating into damaged cells is very low, so the researchers believe the leading role of stem cell transplantation for tissue repair is paracrine secretion, secreting growth factors, cytokines or other components. Exosomes are biologically active small vesicles secreted by MSCs. Recent studies have shown that they can transfer functional proteins, RNA, microRNAs, and lncRNAs between cells, and greatly reduce the immune response. Under the premise of promoting proliferation and inhibition of apoptosis, they play a repair role in tissue damage, which is caused by a variety of diseases. In this paper, the biological characteristics of exosomes (MSCs-exosomes) derived from mesenchymal stem cells, intercellular transport mechanisms, and their research progress in the field of stem cell therapy are reviewed.
Collapse
Affiliation(s)
- Guifang Zhao
- School of Basic Medical Sciences, Jilin Medical University, Jilin 132013, China.,Qingyuan People's Hospital, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan 511518, Guangzhou Province, China
| | - Yiwen Ge
- School of Basic Medical Sciences, Jilin Medical University, Jilin 132013, China
| | - Chenyingnan Zhang
- School of Basic Medical Sciences, Jilin Medical University, Jilin 132013, China
| | - Leyi Zhang
- School of Pharmacy, Jilin Medical University, Jilin 132013, China
| | - Junjie Xu
- School of Basic Medical Sciences, Jilin Medical University, Jilin 132013, China
| | - Ling Qi
- Qingyuan People's Hospital, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan 511518, Guangzhou Province, China.,School of Basic Medical Sciences, Department of Pathophysiology, Jilin Medical University, Jilin 132013, China
| | - Wenliang Li
- School of Pharmacy, Jilin Medical University, Jilin 132013, China
| |
Collapse
|
28
|
Analysis of cell-biomaterial interaction through cellular bridge formation in the interface between hGMSCs and CaP bioceramics. Sci Rep 2020; 10:16493. [PMID: 33020540 PMCID: PMC7536240 DOI: 10.1038/s41598-020-73428-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 09/15/2020] [Indexed: 12/17/2022] Open
Abstract
The combination of biomaterials and stem cells for clinical applications constitute a great challenge in bone tissue engineering. Hence, cellular networks derived from cells-biomaterials crosstalk have a profound influence on cell behaviour and communication, preceding proliferation and differentiation. The purpose of this study was to investigate in vitro cellular networks derived from human gingival mesenchymal stem cells (hGMSCs) and calcium phosphate (CaP) bioceramic interaction. Biological performance of CaP bioceramic and hGMSCs interaction was evaluated through cell adhesion and distribution, cellular proliferation, and potential osteogenic differentiation, at three different times: 5 h, 1 week and 4 weeks. Results confirmed that hGMSCs met the required MSCs criteria while displaying osteogenic differentiaton capacities. We found a significant increase of cellular numbers and proliferation levels. Also, protein and mRNA OPN expression were upregulated in cells cultured with CaP bioceramic by day 21, suggesting an osteoinductible effect of the CaP bioceramic on hGMSCs. Remarkably, CaP bioceramic aggregations were obtained through hGMSCs bridges, suggesting the in vitro potential of macrostructures formation. We conclude that hGMSCs and CaP bioceramics with micro and macropores support hGMSC adhesion, proliferation and osteogenic differentiation. Our results suggest that investigations focused on the interface cells-biomaterials are essential for bone tissue regenerative therapies.
Collapse
|
29
|
Stefańska K, Mehr K, Wieczorkiewicz M, Kulus M, Angelova Volponi A, Shibli JA, Mozdziak P, Skowroński MT, Antosik P, Jaśkowski JM, Piotrowska-Kempisty H, Kempisty B, Dyszkiewicz-Konwińska M. Stemness Potency of Human Gingival Cells-Application in Anticancer Therapies and Clinical Trials. Cells 2020; 9:cells9081916. [PMID: 32824702 PMCID: PMC7464983 DOI: 10.3390/cells9081916] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/01/2020] [Accepted: 08/14/2020] [Indexed: 12/17/2022] Open
Abstract
Gingivae, as the part of periodontium, are involved in tooth support and possess the ability to heal rapidly, without scar formation. Recently, dental tissues have been identified as a potential source of mesenchymal stem cells (MSCs) and several populations of MSCs were isolated from the orofacial region, including gingival mesenchymal stem cells (GMSCs). GMSCs exhibit robust immunomodulatory and differentiation potential and are easily obtainable, which make them promising candidates for cellular therapies. Apart from being tested for application in immunologic- and inflammatory-related disorders and various tissue regeneration, GMSCs promise to be a valuable tool in cancer treatment, especially in tongue squamous cell carcinoma (TSCC) with the use of targeted therapy, since GMSCs are able to selectively migrate towards the cancerous cells both in vitro and in vivo. In addition to their ability to uptake and release anti-neoplastic drugs, GMSCs may be transduced with apoptosis-inducing factors and used for cancer growth inhibition. Moreover, GMSCs, as most mammalian cells, secrete exosomes, which are a subset of extracellular vesicles with a diameter of 40–160 nm, containing DNA, RNA, lipids, metabolites, and proteins. Such GMSCs-derived exosomes may be useful therapeutic tool in cell-free therapy, as well as their culture medium. GMSCs exhibit molecular and stem-cell properties that make them well suited in preclinical and clinical studies.
Collapse
Affiliation(s)
- Katarzyna Stefańska
- Department of Histology and Embryology, Poznan University of Medical Sciences, 6 Święcickiego St., 60-781 Poznan, Poland;
| | - Katarzyna Mehr
- Department of Gerostomatology and Pathology of Oral Cavity, Poznan University of Medical Sciences, 70 Bukowska St., 60-812 Poznan, Poland;
| | - Maria Wieczorkiewicz
- Department of Basic and Preclinical Sciences, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 7 Gagarina St., 87-100 Torun, Poland; (M.W.); (M.T.S.)
| | - Magdalena Kulus
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 7 Gagarina St., 87-100 Torun, Poland; (M.K.); (P.A.)
| | - Ana Angelova Volponi
- Centre for Craniofacial and Regenerative Biology, Dental Institute, King’s College London, Strand, London WC2R 2LS, UK;
| | - Jamil A. Shibli
- Department of Periodontology and Oral Implantology, Dental Research Division, Guarulhos University, Guarulhos, R. Eng. Prestes Maia, 88-Centro, São Paulo 07023-070, Brazil;
| | - Paul Mozdziak
- Physiology Graduate Program, North Carolina State University, Campus Box 7608, Raleigh, NC 27695-7608, USA;
| | - Mariusz T. Skowroński
- Department of Basic and Preclinical Sciences, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 7 Gagarina St., 87-100 Torun, Poland; (M.W.); (M.T.S.)
| | - Paweł Antosik
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 7 Gagarina St., 87-100 Torun, Poland; (M.K.); (P.A.)
| | - Jędrzej M. Jaśkowski
- Department of Diagnostics and Clinical Sciences, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 7 Gagarina St., 87-100 Torun, Poland;
| | - Hanna Piotrowska-Kempisty
- Department of Toxicology, Poznan University of Medical Sciences, 30 Dojazd St., 60-631 Poznan, Poland;
| | - Bartosz Kempisty
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 7 Gagarina St., 87-100 Torun, Poland; (M.K.); (P.A.)
- Department of Anatomy, Poznan University of Medical Sciences, 6 Święcickiego St., 60-781 Poznan, Poland;
- Correspondence: ; Tel./Fax: +48-61-8546565
| | - Marta Dyszkiewicz-Konwińska
- Department of Anatomy, Poznan University of Medical Sciences, 6 Święcickiego St., 60-781 Poznan, Poland;
- Department of Biomaterials and Experimental Dentistry, Poznan University of Medical Sciences, 70 Bukowska St., 60-812 Poznan, Poland
| |
Collapse
|
30
|
Ascorbic Acid, Inflammatory Cytokines (IL-1 β/TNF- α/IFN- γ), or Their Combination's Effect on Stemness, Proliferation, and Differentiation of Gingival Mesenchymal Stem/Progenitor Cells. Stem Cells Int 2020; 2020:8897138. [PMID: 32879629 PMCID: PMC7448213 DOI: 10.1155/2020/8897138] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 07/16/2020] [Accepted: 07/30/2020] [Indexed: 02/07/2023] Open
Abstract
Objective Ascorbic acid (AA) and controlled inflammatory stimuli are postulated to possess the ability to independently exert positive effects on a variety of proliferative, pluripotency, and differentiation attributes of gingival mesenchymal stem/progenitor cells (G-MSCs). The current study's objective was to explore and compare for the first time the impact of the major inflammatory cytokines (IL-1β/TNF-α/IFN-γ), AA, or their combination on multipotency/pluripotency, proliferative, and differentiation characteristics of G-MSCs. Design Human G-MSCs (n = 5) were isolated and cultured in basic medium (control group), in basic medium with major inflammatory cytokines; 1 ng/ml IL-1β, 10 ng/ml TNF-α, and 100 ng/ml IFN-γ (inflammatory group), in basic medium with 250 μmol/l AA (AA group) and in inflammatory medium supplemented by AA (inflammatory/AA group). All media were renewed three times per week. In stimulated G-MSCs intracellular β-catenin at 1 hour, pluripotency gene expression at 1, 3, and 5 days, as well as colony-forming units (CFUs) ability and cellular proliferation over 14 days were examined. Following a five-days stimulation in the designated groups, multilineage differentiation was assessed via qualitative and quantitative histochemistry as well as mRNA expression. Results β-Catenin significantly decreased intracellularly in all experimental groups (p = 0.002, Friedman). AA group exhibited significantly higher cellular counts on days 3, 6, 7, and 13 (p < 0.05) and the highest CFUs at 14 days [median-CFUs (Q25/Q75); 40 (15/50), p = 0.043]. Significantly higher Nanog expression was noted in AA group [median gene-copies/PGK1 (Q25/Q75); 0.0006 (0.0002/0.0007), p < 0.01, Wilcoxon-signed-rank]. Significant multilineage differentiation abilities, especially into osteogenic and chondrogenic directions, were further evident in the AA group. Conclusions AA stimulation enhances G-MSCs' stemness, proliferation, and differentiation properties, effects which are associated with a Wnt/β-catenin signaling pathway activation. Apart from initially boosting cellular metabolism as well as Sox2 and Oct4A pluripotency marker expression, inflammation appeared to attenuate these AA-induced positive effects. Current results reveal that for AA to exert its beneficial effects on G-MSCs' cellular attributes, it requires to act in an inflammation-free microenvironment.
Collapse
|
31
|
Abedian Z, Jenabian N, Moghadamnia AA, Zabihi E, Pourbagher R, Hossein‐Nataj H, Mohamadnia‐Afrouzi M. A comparative study on immunophenotypic characterization and osteogenic differentiation of human mesenchymal stromal cells derived from periodontal ligament and gingiva. J Periodontol 2020; 91:1194-1202. [DOI: 10.1002/jper.19-0535] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 12/24/2019] [Accepted: 12/30/2019] [Indexed: 01/03/2023]
Affiliation(s)
- Zeinab Abedian
- Student Research Committee Babol University of Medical Sciences Babol Iran
- Dental Materials Research Center Health Research Institute Babol University of Medical Sciences Babol Iran
- Cellular and Molecular Biology Research Center Health Research Institute Babol University of Medical Sciences Babol Iran
| | - Niloofar Jenabian
- Dental Materials Research Center Health Research Institute Babol University of Medical Sciences Babol Iran
| | | | - Ebrahim Zabihi
- Cellular and Molecular Biology Research Center Health Research Institute Babol University of Medical Sciences Babol Iran
- Department of Pharmacology Babol University of Medical Sciences Babol Iran
| | - Roghayeh Pourbagher
- Student Research Committee Babol University of Medical Sciences Babol Iran
- Cellular and Molecular Biology Research Center Health Research Institute Babol University of Medical Sciences Babol Iran
| | - Hadi Hossein‐Nataj
- Department of Immunology School of Medicine Mazandaran University of Medical Sciences Sari Iran
| | - Mousa Mohamadnia‐Afrouzi
- Cellular and Molecular Biology Research Center Health Research Institute Babol University of Medical Sciences Babol Iran
| |
Collapse
|
32
|
Therapeutic Functions of Stem Cells from Oral Cavity: An Update. Int J Mol Sci 2020; 21:ijms21124389. [PMID: 32575639 PMCID: PMC7352407 DOI: 10.3390/ijms21124389] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 06/14/2020] [Accepted: 06/17/2020] [Indexed: 12/11/2022] Open
Abstract
Adult stem cells have been developed as therapeutics for tissue regeneration and immune regulation due to their self-renewing, differentiating, and paracrine functions. Recently, a variety of adult stem cells from the oral cavity have been discovered, and these dental stem cells mostly exhibit the characteristics of mesenchymal stem cells (MSCs). Dental MSCs can be applied for the replacement of dental and oral tissues against various tissue-damaging conditions including dental caries, periodontitis, and oral cancers, as well as for systemic regulation of excessive inflammation in immune disorders, such as autoimmune diseases and hypersensitivity. Therefore, in this review, we summarized and updated the types of dental stem cells and their functions to exert therapeutic efficacy against diseases.
Collapse
|
33
|
Bikmulina PY, Kosheleva NV, Shpichka AI, Efremov YM, Yusupov VI, Timashev PS, Rochev YA. Beyond 2D: effects of photobiomodulation in 3D tissue-like systems. JOURNAL OF BIOMEDICAL OPTICS 2020; 25:1-16. [PMID: 32351077 PMCID: PMC7189416 DOI: 10.1117/1.jbo.25.4.048001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Accepted: 04/09/2020] [Indexed: 05/02/2023]
Abstract
SIGNIFICANCE Currently, various scaffolds with immobilized cells are widely used in tissue engineering and regenerative medicine. However, the physiological activity and cell viability in such constructs might be impaired due to a lack of oxygen and nutrients. Photobiomodulation (PBM) is a promising method of preconditioning cells to increase their metabolic activity and to activate proliferation or differentiation. AIM Investigation of the potential of PBM for stimulation of cell activities in hydrogels. APPROACH Mesenchymal stromal cells (MSCs) isolated from human gingival mucosa were encapsulated in modified fibrin hydrogels with different thicknesses and concentrations. Constructs with cells were subjected to a single-time exposure to red (630 nm) and near-infrared (IR) (840 nm) low-intensity irradiation. After 3 days of cultivation, the viability and physiological activity of the cells were analyzed using confocal microscopy and a set of classical tests for cytotoxicity. RESULTS The cell viability in fibrin hydrogels depended both on the thickness of the hydrogels and the concentration of gel-forming proteins. The PBM was able to improve cell viability in hydrogels. The most pronounced effect was achieved with near-IR irradiation at the 840-nm wavelength. CONCLUSIONS PBM using near-IR light can be applied for stimulation of MSCs metabolism and proliferation in hydrogel-based constructs with thicknesses up to 3 mm.
Collapse
Affiliation(s)
- Polina Y. Bikmulina
- Sechenov First Moscow State Medical University, Institute for Regenerative Medicine, Moscow, Russia
| | - Nastasia V. Kosheleva
- Lomonosov Moscow State University, Faculty of Biology, Moscow, Russia
- FSBSI “Institute of General Pathology and Pathophysiology,” Moscow, Russia
- FSBEI FPE “Russian Medical Academy of Continuous Professional Education,” Ministry of Healthcare of Russia, Moscow, Russia
| | - Anastasia I. Shpichka
- Sechenov First Moscow State Medical University, Institute for Regenerative Medicine, Moscow, Russia
- Lomonosov Moscow State University, Chemistry Department, Moscow, Russia
| | - Yuri M. Efremov
- Sechenov First Moscow State Medical University, Institute for Regenerative Medicine, Moscow, Russia
| | - Vladimir I. Yusupov
- Institute of Photon Technologies of FSRC “Crystallography and Photonics” RAS, Troitsk, Moscow, Russia
| | - Peter S. Timashev
- Sechenov First Moscow State Medical University, Institute for Regenerative Medicine, Moscow, Russia
- Lomonosov Moscow State University, Chemistry Department, Moscow, Russia
- Institute of Photon Technologies of FSRC “Crystallography and Photonics” RAS, Troitsk, Moscow, Russia
- N.N. Semenov Institute of Chemical Physics, Department of Polymers and Composites, Moscow, Russia
| | - Yury A. Rochev
- Sechenov First Moscow State Medical University, Institute for Regenerative Medicine, Moscow, Russia
- National University of Ireland, National Centre for Biomedical Engineering Science, Galway, Ireland
| |
Collapse
|
34
|
Koltsova AM, Zenin VV, Turilova VI, Yakovleva TK, Poljanskaya GG. Isolation and Characterization of Mesenchymal Stem Cells from Human Gingiva. ACTA ACUST UNITED AC 2020. [DOI: 10.1134/s1990519x2001006x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
35
|
Qiu J, Wang X, Zhou H, Zhang C, Wang Y, Huang J, Liu M, Yang P, Song A. Enhancement of periodontal tissue regeneration by conditioned media from gingiva-derived or periodontal ligament-derived mesenchymal stem cells: a comparative study in rats. Stem Cell Res Ther 2020; 11:42. [PMID: 32014015 PMCID: PMC6998241 DOI: 10.1186/s13287-019-1546-9] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 12/24/2019] [Accepted: 12/29/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Evidence has demonstrated conditioned medium (CM) from periodontal ligament stem cells (PDLSCs) improved periodontal regeneration. Gingival mesenchymal stem cells (GMSCs) have been considered an alternative strategy for regenerative medicine. To determine whether GMSC-CM could promote periodontal wound healing, we compared the effects of GMSC-CM and PDLSC-CM on periodontal regeneration and the underlying mechanisms in rat periodontal defects. METHODS Cell-free CMs were collected from PDLSCs, GMSCs, and gingival fibroblasts (GFs) using ultracentrifugation (100-fold concentration). Periodontal defects were created on the buccal side of the first molar in the left mandible of 90 rats by a surgical method. Collagen membranes loaded with concentrated CMs (α-MEM, GF-CM, GMSC-CM, PDLSC-CM) were transplanted into periodontal defects. After 1, 2, and 4 weeks, the animals were sacrificed and specimens including the first molar and the surrounding tissues were separated and decalcified. Hematoxylin-eosin and Masson's trichrome staining were performed to evaluate periodontal regeneration. Immunohistochemical staining for tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-10 was conducted to analyze inflammation. Immunohistochemistry of BSP-II and Runx2 was performed to analyze osteoblast differentiation. RESULTS Histological analysis showed the amount of newly formed periodontal tissue was significantly higher in both the GMSC-CM and PDLSC-CM groups than in the other groups, with no significant difference between these two groups. At 1 and 2 weeks, the expression levels of TNF-α and IL-1β were significantly lower in the GMSC-CM and PDLSC-CM groups than in the other three groups, while there was no significant difference between these two groups. IL-10 expression was significantly higher in the GMSC-CM group than in the PDLSC-CM group and the other three groups. At 1, 2, and 4 weeks, BSP-II and Runx2 expressions were significantly higher in the GMSC-CM and PDLSC-CM groups than in the other three groups, with no significant difference between the two groups. CONCLUSIONS Our results demonstrate that GMSC-CM transplantation can significantly promote periodontal regeneration in rats and achieve the same effect as PDLSC-CM. The mechanism of periodontal regeneration may involve the regulation of inflammatory factors and the promotion of osteogenic differentiation of bone progenitor cells in the wound region by CMs from MSCs.
Collapse
Affiliation(s)
- Jiling Qiu
- Department of Periodontology, School and Hospital of Stomatology, Shandong University, No.44-1 Wenhua Road West, Jinan, 250012, Shandong, China
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, No.44-1 Wenhua Road West, Jinan, 250012, Shandong, China
- Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, No.44-1 Wenhua Road West, Jinan, 250012, Shandong, China
| | - Xiaotong Wang
- Department of Periodontology, School and Hospital of Stomatology, Shandong University, No.44-1 Wenhua Road West, Jinan, 250012, Shandong, China
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, No.44-1 Wenhua Road West, Jinan, 250012, Shandong, China
- Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, No.44-1 Wenhua Road West, Jinan, 250012, Shandong, China
| | - Haowen Zhou
- Department of Periodontology, School and Hospital of Stomatology, Shandong University, No.44-1 Wenhua Road West, Jinan, 250012, Shandong, China
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, No.44-1 Wenhua Road West, Jinan, 250012, Shandong, China
- Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, No.44-1 Wenhua Road West, Jinan, 250012, Shandong, China
| | - Chunshu Zhang
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, No.44-1 Wenhua Road West, Jinan, 250012, Shandong, China
- Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, No.44-1 Wenhua Road West, Jinan, 250012, Shandong, China
| | - Yijia Wang
- Department of Periodontology, School and Hospital of Stomatology, Shandong University, No.44-1 Wenhua Road West, Jinan, 250012, Shandong, China
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, No.44-1 Wenhua Road West, Jinan, 250012, Shandong, China
- Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, No.44-1 Wenhua Road West, Jinan, 250012, Shandong, China
| | - Jiahui Huang
- Department of Periodontology, School and Hospital of Stomatology, Shandong University, No.44-1 Wenhua Road West, Jinan, 250012, Shandong, China
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, No.44-1 Wenhua Road West, Jinan, 250012, Shandong, China
- Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, No.44-1 Wenhua Road West, Jinan, 250012, Shandong, China
| | - Meng Liu
- Department of Periodontology, School and Hospital of Stomatology, Shandong University, No.44-1 Wenhua Road West, Jinan, 250012, Shandong, China
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, No.44-1 Wenhua Road West, Jinan, 250012, Shandong, China
- Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, No.44-1 Wenhua Road West, Jinan, 250012, Shandong, China
| | - Pishan Yang
- Department of Periodontology, School and Hospital of Stomatology, Shandong University, No.44-1 Wenhua Road West, Jinan, 250012, Shandong, China.
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, No.44-1 Wenhua Road West, Jinan, 250012, Shandong, China.
- Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, No.44-1 Wenhua Road West, Jinan, 250012, Shandong, China.
| | - Aimei Song
- Department of Periodontology, School and Hospital of Stomatology, Shandong University, No.44-1 Wenhua Road West, Jinan, 250012, Shandong, China.
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, No.44-1 Wenhua Road West, Jinan, 250012, Shandong, China.
- Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, No.44-1 Wenhua Road West, Jinan, 250012, Shandong, China.
| |
Collapse
|
36
|
Comparative analysis of lncRNA and mRNA expression profiles between periodontal ligament stem cells and gingival mesenchymal stem cells. Gene 2019; 699:155-164. [PMID: 30876821 DOI: 10.1016/j.gene.2019.03.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 03/05/2019] [Accepted: 03/11/2019] [Indexed: 02/08/2023]
Abstract
Oral tissue-derived mesenchymal stem cells, such as periodontal ligament stem cells (PDLSCs) and gingival mesenchymal stem cells (GMSCs), possess different biological characteristics, but the molecular mechanism remains unclear, which restricts their application in tissue engineering. Long noncoding RNAs (lncRNAs) are known to be significant regulators of gene expression, but our knowledge about their roles in the regulation of stem cell biological properties is still limited. This study compared the lncRNA and mRNA expression profiles between PDLSCs and GMSCs through microarray analysis, and applied bioinformatics methods to analyze and predict the function and connection of differentially expressed genes, aiming to screen potential key regulators of diverse biological characteristics in PDLSCs and GMSCs. Microarray analysis showed that 2162 lncRNAs and 1347 mRNAs were significantly differentially expressed between PDLSCs and GMSCs. Gene ontology (GO) analysis and pathway analysis indicated that these differentially expressed genes were involved in diverse biological processes and signaling pathways. The gene signal network and pathway relation network predicted some potentially important regulators. The coding-noncoding gene coexpression network (CNC network) revealed many potential lncRNA-mRNA connection pairs that participated in the regulation of biological behaviors. These results stressed the roles of lncRNAs in controlling stem cell biological behaviors and provided guides for molecular mechanistic study of different biological characteristics in PDLSCs and GMSCs.
Collapse
|
37
|
Xing Y, Zhang Y, Wu X, Zhao B, Ji Y, Xu X. A comprehensive study on donor-matched comparisons of three types of mesenchymal stem cells-containing cells from human dental tissue. J Periodontal Res 2018; 54:286-299. [PMID: 30474138 DOI: 10.1111/jre.12630] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 10/25/2018] [Accepted: 10/29/2018] [Indexed: 12/19/2022]
Abstract
BACKGROUND AND OBJECTIVE Mesenchymal stem cells (MSCs) have been widely used in tissue engineering, such as for regenerating the supporting structures of teeth destroyed by periodontal diseases. In recent decades, dental tissue-derived MSCs have drawn much attention owing to their accessibility, plasticity and applicability. Dental pulp stem cells (DPSCs), periodontal ligament stem cells (PDLSCs) and gingival MSCs (GMSCs) are the most readily available MSCs among all types of dental MSCs. The purpose of this study was to comprehensively compare the characteristics of MSCs from dental pulp (DP), periodontal ligament (PDL) and gingiva (G) in vitro and thus provide insight into optimizing the performance of cells and seed cell selection strategies for tissue regeneration. MATERIALS AND METHODS In this study, patient-matched (n = 5) cells derived from DP, PDL and G which, respectively, contained DPSCs, PDLSCs and GMSCs were evaluated using multiple methods in terms of their proliferation, senescence, apoptosis, multilineage differentiation and stemness maintenance after long-term passage. RESULTS Mesenchymal stem cells-containing cells from G (MSCs/GCs) showed superior proliferation capability, whereas patient-matched MSCs-containing cells from PDL (MSCs/PDLCs) exhibited excellent osteogenic and adipogenic differentiation ability; MSCs-containing cells from DP (MSCs/DPCs) achieved mediocre results in both aspects. In addition, MSCs/GCs were the least susceptible to senescence, while MSCs/PDLCs were the most prone to ageing. Furthermore, the biological properties of these three types of cells were all affected after long-term in vitro culture. CONCLUSION These three types of dental MSCs showed different biological characteristics. MSCs/PDLCs are the best candidate cells for bone regeneration, but the application of MSCs/PDLCs might be limited to certain number of passages. Improving the differentiation of MSCs/GCs remains the key issue regarding their application in tissue engineering.
Collapse
Affiliation(s)
- Yixiao Xing
- Shandong Provincial Key Laboratory of Oral Tissue Regeneraton, School of Stomatology, Shandong University, Jinan, China.,School of Stomatology, Shandong University, Jinan, China
| | - Yunpeng Zhang
- Shandong Provincial Key Laboratory of Oral Tissue Regeneraton, School of Stomatology, Shandong University, Jinan, China.,School of Stomatology, Shandong University, Jinan, China
| | - Xuan Wu
- Shandong Provincial Key Laboratory of Oral Tissue Regeneraton, School of Stomatology, Shandong University, Jinan, China.,School of Stomatology, Shandong University, Jinan, China
| | - Bin Zhao
- Shandong Provincial Key Laboratory of Oral Tissue Regeneraton, School of Stomatology, Shandong University, Jinan, China.,School of Stomatology, Shandong University, Jinan, China
| | - Yawen Ji
- Shandong Provincial Key Laboratory of Oral Tissue Regeneraton, School of Stomatology, Shandong University, Jinan, China.,School of Stomatology, Shandong University, Jinan, China
| | - Xin Xu
- Shandong Provincial Key Laboratory of Oral Tissue Regeneraton, School of Stomatology, Shandong University, Jinan, China.,School of Stomatology, Shandong University, Jinan, China
| |
Collapse
|
38
|
Iijima K, Ishikawa S, Sasaki K, Hashizume M, Kawabe M, Otsuka H. Osteogenic Differentiation of Bone Marrow-Derived Mesenchymal Stem Cells in Electrospun Silica Nonwoven Fabrics. ACS OMEGA 2018; 3:10180-10187. [PMID: 31459146 PMCID: PMC6645240 DOI: 10.1021/acsomega.8b01139] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 08/20/2018] [Indexed: 05/12/2023]
Abstract
Silica nonwoven fabrics (SNFs) with enough mechanical strength are candidates as implantable scaffolds. Culture of cells therein is expected to affect the proliferation and differentiation of the cells through cell-cell and cell-SNF interactions. In this study, we examined three-dimensional (3D) SNFs as a scaffold of mesenchymal stem cells (MSCs) for bone tissue engineering applications. The interconnected highly porous microstructure of 3D SNFs is expected to allow omnidirectional cell-cell interactions, and the morphological similarity of a silica nanofiber to that of a fibrous extracellular matrix can contribute to the promotion of cell functions. 3D SNFs were prepared by the sol-gel process, and their mechanical properties were characterized by the compression test and rheological analysis. In the compression test, SNFs showed a compressive elastic modulus of over 1 MPa and a compressive strength of about 200 kPa. These values are higher than those of porous polystyrene disks used for in vitro 3D cell culture. In rheological analysis, the elastic modulus and fracture stress were 3.27 ± 0.54 kPa and 25.9 ± 8.3 Pa, respectively. Then, human bone marrow-derived MSCs were cultured on SNFs, and the effects on proliferation and osteogenic differentiation were evaluated. The MSCs seeded on SNF proliferated, and the thickness of the cell layer became over 80 μm after 14 days of culture. The osteogenic differentiation of MSCs on SNFs was induced by the culture in the commercial osteogenic differentiation medium. The alkaline phosphatase activity of MSCs on SNFs increased rapidly and remained high up to 14 days and was much higher than that on two-dimensional tissue culture-treated polystyrene. The high expression of RUNX2 and intense staining by alizarin red s after differentiation supported that SNFs enhanced the osteogenic differentiation of MSCs. Furthermore, permeation analysis of SNFs using fluorescein isothiocyanate-dextran suggested a sufficient permeability of SNFs for oxygen, minerals, nutrients, and secretions, which is important for maintaining the cell viability and vitality. These results suggested that SNFs are promising scaffolds for the regeneration of bone defects using MSCs, originated from highly porous and elastic SNF characters.
Collapse
Affiliation(s)
- Kazutoshi Iijima
- Department
of Industrial Chemistry, Faculty of Engineering, Tokyo University of Science, 12-1 Ichigayafunagawara-machi,
Shinjuku-ku, Tokyo 162-0826, Japan
| | - Shohei Ishikawa
- Graduate School of Science and Department of
Applied Chemistry, Faculty of
Science, Tokyo University of Science, 1-3 Kagurazaka,
Shinjuku-ku, Tokyo 162-8601, Japan
| | - Kohei Sasaki
- Japan
Vilene Company Ltd., 7 kita-Tone, Koga, Ibaraki 306-0213, Japan
| | - Mineo Hashizume
- Department
of Industrial Chemistry, Faculty of Engineering, Tokyo University of Science, 12-1 Ichigayafunagawara-machi,
Shinjuku-ku, Tokyo 162-0826, Japan
| | - Masaaki Kawabe
- Japan
Vilene Company Ltd., 7 kita-Tone, Koga, Ibaraki 306-0213, Japan
| | - Hidenori Otsuka
- Graduate School of Science and Department of
Applied Chemistry, Faculty of
Science, Tokyo University of Science, 1-3 Kagurazaka,
Shinjuku-ku, Tokyo 162-8601, Japan
- E-mail: . Phone: +81-3-5228-8265. Fax: +81-3-5261-4631 (H.O.)
| |
Collapse
|
39
|
Chopra H, Liao C, Zhang CF, Pow EHN. Lapine periodontal ligament stem cells for musculoskeletal research in preclinical animal trials. J Transl Med 2018; 16:174. [PMID: 29929550 PMCID: PMC6013849 DOI: 10.1186/s12967-018-1551-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Accepted: 06/15/2018] [Indexed: 12/13/2022] Open
Abstract
Background Human periodontal ligament stem cells (hPDLSCs) have been shown to be a reliable source of mesenchymal stem cells (MSCs). On the other hand, rabbits have been commonly used in preclinical trials for musculoskeletal research. However, there is a lack of sufficient data on using rabbit periodontal ligament stem cells (rPDLSCs) for regenerative dentistry. This study, for the first time, comprehensively compared rPDLSCs against hPDLSCs in terms of clonogenicity, growth potential, multi-differential capacity and surface antigens. Methods Periodontal ligament (PDL) was obtained from the rabbit and human teeth. rPDL and hPDL cells were isolated from PDL using enzymatic digestion method. After culturing for 2 weeks, the cells were first analyzed microscopically. STRO-1+CD146+ PDLSCs were then sorted from PDL cells by fluorescence-activated cell sorting (FACS) followed by examination of CD34, CD45, CD90, vimentin and desmin markers. The cells were also evaluated by immunohistocytochemical and multi-differentiation potential tests. The clonogenicity and growth of PDL cells were analyzed by Independent T test and 2-way repeated measures ANOVA respectively. Results rPDL cells were broader and less elongated as compared to hPDL cells. STRO-1+CD146+ hPDLSCs were isolated from hPDL cells but not from the rPDL cells. Therefore, heterogeneous population of rabbit and human PDL cells were subsequently used for latter comparative studies. FACS analysis and immunohistocytochemistry revealed that rPDL cells were partially positive for STRO-1 as compared to hPDL cells. Furthermore, both rPDL cells and hPDL cells were positive for CD146, CD90, vimentin, and desmin, while negative for CD34 and CD45. No difference in clonogenicity between rPDL and hPDL cells was found (p > 0.05). The proliferative potential of rPDL cells displayed significantly slower growth as compared to hPDL cells (p < 0.05). Osteogenic, adipogenic, and chondrogenic differentiation potential was comparatively less in rPDL cells than that of hPDL cells, but the neurogenic differential potential was similar. Conclusion Although rPDL cells manifested variable differences in expression of stem cell markers and multi-differential potential as compared to hPDL cells, they demonstrated the attributes of stemness. Further studies are also required to validate if the regenerative potential of rPDL cells is similar to rPDLSCs.
Collapse
Affiliation(s)
- H Chopra
- Discipline of Prosthodontics, Faculty of Dentistry, The University of Hong Kong, Hong Kong, SAR, China
| | - C Liao
- Discipline of Orthodontics, Faculty of Dentistry, The University of Hong Kong, Hong Kong, SAR, China
| | - C F Zhang
- Discipline of Endodontology, Faculty of Dentistry, The University of Hong Kong, Hong Kong, SAR, China
| | - E H N Pow
- Discipline of Prosthodontics, Faculty of Dentistry, The University of Hong Kong, Hong Kong, SAR, China. .,3/F, The Prince Philip Dental Hospital, 34 Hospital Road, Sai Ying Pun, Hong Kong, China.
| |
Collapse
|
40
|
Assem M, Kamal S, Sabry D, Soliman N, Aly RM. Preclinical Assessment of the Proliferation Capacity of Gingival and Periodontal Ligament Stem Cells from Diabetic Patients. Open Access Maced J Med Sci 2018. [PMID: 29531583 PMCID: PMC5839427 DOI: 10.3889/oamjms.2018.076] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND: Stem cells have recently received great interest as potential therapeutics alternative for a variety of diseases. The oral and maxillofacial region, in particular, encompasses a variety of distinctive mesenchymal (MSC) populations and is characterized by a potent multilineage differentiation capacity. AIM: In this report, we aimed to investigate the effect of diabetes on the proliferation potential of stem cells isolated from controlled diabetic patients (type 2) and healthy individuals. SUBJECTS & METHODS: The proliferation rate of gingival and periodontal derived stem cells isolated from diabetic & healthy individuals were compared using MTT Assay. Expression levels of Survivin in isolated stem cells from all groups were measured by qRt - PCR. RESULTS: There was a significantly positive correlation between proliferation rate and expression of Survivin in all groups which sheds light on the importance of Survivin as a reliable indicator of proliferation. The expression of Survivin further confirmed the proliferation results from MTT Assay where the expression of stem cells from non - diabetic individuals was higher than diabetic patients. CONCLUSION: Taking together all the results, it could be concluded that PDLSC and GSC are promising candidates for autologous regenerative therapy due to their ease of accessibility in addition to their high proliferative rates.
Collapse
Affiliation(s)
| | - Samia Kamal
- Cairo University Faculty of Oral and Dental Medicine, Cairo, Egypt
| | - Dina Sabry
- Cairo University, Kasr Alainy Faculty of Medicine, Cairo, Egypt
| | | | | |
Collapse
|
41
|
Aboushady IM, Salem ZA, Sabry D, Mohamed A. Comparative study of the osteogenic potential of mesenchymal stem cells derived from different sources. J Clin Exp Dent 2018; 10:e7-e13. [PMID: 29670709 PMCID: PMC5899816 DOI: 10.4317/jced.53957] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 10/23/2017] [Indexed: 11/24/2022] Open
Abstract
Background Mesenchymal stem cells (MSCs) can regenerate missing tissues and treat diseases. Hence, the current work aimed to compare the proliferation rate and the osteogenic differentiation potential of bone marrow MSCs (BMSCs), gingival MSCs (GMSCs) and submandibular MSCs (SMSCs). Material and Methods MSCs derived from bone marrow, gingiva and submandibular salivary gland were isolated and cultured from rats. The proliferation capacity was judged by MTT proliferation Assay. Osteogenic differentiation was assessed by Alzarin red stain and quantitative RT-PCR was performed for Runx-2 and MMP-13. Results The highest significant proliferation was estimated in the BMSCs compared to GMSCs and SMSCs (p-value was < 0.01). All studied cell types formed mineralized nodules as stained with Alizarin Red stain at the 3rd passage of differentiation. However, BMSCs seemed to generate the highest level of mineralization compared to GMSCs and SMSCs. RT-PCR revealed that the expression of Runx-2 and MMP-13 mRNAs was significantly increased in the BMSCs compared to GMSCs and SMSCs (p-value was < 0.01). Conclusions BMSCs displayed maximum osteogenesis results followed by the GMSCs and lastly by the SGSCs. Thus, it could be recommended that GMSCs can be used as a second choice after BMSCs when bone tissue reconstruction is needed. Key words:Mesenchymal stem cells, osteogenic differentiation, Runx-2, MMP-13.
Collapse
Affiliation(s)
- Iman M Aboushady
- MD, MS, Lecturer of oral biology, Department of Oral Biology, Faculty of Oral and Dental Medicine, Cairo University
| | - Zeinab A Salem
- MD, MS, Lecturer of oral biology, Department of Oral Biology, Faculty of Oral and Dental Medicine, Cairo University
| | - Dina Sabry
- MD, MS, Professor of Medical Biochemistry and Molecular Biology, Department of Medical biochemistry and molecular biology, Faculty of medicine, Cairo University
| | - Abbas Mohamed
- MD, MS, Lecturer of Medical Biochemistry and Molecular Biology, Department of Medical biochemistry and molecular biology, Faculty of medicine, Cairo University
| |
Collapse
|
42
|
Zhou L, Dörfer CE, Chen L, Fawzy El-Sayed KM. Porphyromonas gingivalislipopolysaccharides affect gingival stem/progenitor cells attributes through NF-κB, but not Wnt/β-catenin, pathway. J Clin Periodontol 2017; 44:1112-1122. [DOI: 10.1111/jcpe.12777] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/09/2017] [Indexed: 12/19/2022]
Affiliation(s)
- Lili Zhou
- Clinic of Conservative Dentistry and Periodontology; School of Dental Medicine; Christian-Albrechts Universität at Kiel; Kiel Germany
- Department of Oral Medicine; The Second Affiliated Hospital; School of Medicine; Zhejiang University; Hangzhou China
| | - Christof E. Dörfer
- Clinic of Conservative Dentistry and Periodontology; School of Dental Medicine; Christian-Albrechts Universität at Kiel; Kiel Germany
| | - Lili Chen
- Department of Oral Medicine; The Second Affiliated Hospital; School of Medicine; Zhejiang University; Hangzhou China
| | - Karim M. Fawzy El-Sayed
- Clinic of Conservative Dentistry and Periodontology; School of Dental Medicine; Christian-Albrechts Universität at Kiel; Kiel Germany
- Oral Medicine and Periodontology Department; Faculty of Oral and Dental Medicine; Cairo University; Cairo Egypt
| |
Collapse
|
43
|
Cho Y, Kim B, Bae H, Kim W, Baek J, Woo K, Lee G, Seol Y, Lee Y, Ku Y, Rhyu I, Ryoo H. Direct Gingival Fibroblast/Osteoblast Transdifferentiation via Epigenetics. J Dent Res 2017; 96:555-561. [PMID: 28081379 DOI: 10.1177/0022034516686745] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Alveolar bone resorption caused by trauma or periodontal diseases has represented a challenge for both dental clinicians and researchers. In this study, we evaluate the osteogenic potential of human gingival fibroblasts (HGFs) through a direct transdifferentiation from HGFs to functional osteoblasts via epigenetic modification and osteogenic signaling with bone morphogenetic protein 2 (BMP2) in vitro and in vivo. HGF treatment with 5-aza-2'-deoxycytidine (5-aza-dC) induced demethylation in the hypermethylated CpG islands of the osteogenic lineage marker genes RUNX2 and ALP, and subsequent BMP2 treatment successfully drove the fibroblasts to the osteoblasts' lineage. Cell morphological changes viewed under microscopy and alkaline phosphatase (ALP) and alizarin red S (ARS) staining confirmed the osteoblastic change mediated by epigenetic modification as did real-time polymerase chain reaction (PCR), methylation-specific PCR (MSP), and chromatin immunoprecipitation (ChIP) assay, which demonstrated the altered methylation patterns in the RUNX2 and ALP promoter regions and their effect on gene expression. Furthermore, micro-computed tomography (CT) analysis of in vivo mouse cell transplantation experiments showed high-density signal in the epigenetically modified HGF group; in addition, a significant amount of bone formation was observed in the transplanted material using hematoxylin and eosin (H&E) staining as well. Collectively, our results indicate that epigenetic modification permits the direct programming of HGFs into functional osteoblasts, suggesting that this approach might open a novel therapeutic avenue in alveolar bone regeneration.
Collapse
Affiliation(s)
- Y Cho
- 1 Department of Molecular Genetics, School of Dentistry and Dental Research Institute, BK21 Program, Seoul National University, Seoul, South Korea.,2 Department of Periodontology, School of Dentistry and Dental Research Institute, BK21 Program, Seoul National University, Seoul, South Korea
| | - B Kim
- 1 Department of Molecular Genetics, School of Dentistry and Dental Research Institute, BK21 Program, Seoul National University, Seoul, South Korea
| | - H Bae
- 1 Department of Molecular Genetics, School of Dentistry and Dental Research Institute, BK21 Program, Seoul National University, Seoul, South Korea
| | - W Kim
- 1 Department of Molecular Genetics, School of Dentistry and Dental Research Institute, BK21 Program, Seoul National University, Seoul, South Korea
| | - J Baek
- 1 Department of Molecular Genetics, School of Dentistry and Dental Research Institute, BK21 Program, Seoul National University, Seoul, South Korea
| | - K Woo
- 1 Department of Molecular Genetics, School of Dentistry and Dental Research Institute, BK21 Program, Seoul National University, Seoul, South Korea
| | - G Lee
- 1 Department of Molecular Genetics, School of Dentistry and Dental Research Institute, BK21 Program, Seoul National University, Seoul, South Korea
| | - Y Seol
- 2 Department of Periodontology, School of Dentistry and Dental Research Institute, BK21 Program, Seoul National University, Seoul, South Korea
| | - Y Lee
- 2 Department of Periodontology, School of Dentistry and Dental Research Institute, BK21 Program, Seoul National University, Seoul, South Korea
| | - Y Ku
- 2 Department of Periodontology, School of Dentistry and Dental Research Institute, BK21 Program, Seoul National University, Seoul, South Korea
| | - I Rhyu
- 2 Department of Periodontology, School of Dentistry and Dental Research Institute, BK21 Program, Seoul National University, Seoul, South Korea
| | - H Ryoo
- 1 Department of Molecular Genetics, School of Dentistry and Dental Research Institute, BK21 Program, Seoul National University, Seoul, South Korea
| |
Collapse
|
44
|
Chalisserry EP, Nam SY, Park SH, Anil S. Therapeutic potential of dental stem cells. J Tissue Eng 2017; 8:2041731417702531. [PMID: 28616151 PMCID: PMC5461911 DOI: 10.1177/2041731417702531] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 03/12/2017] [Indexed: 12/13/2022] Open
Abstract
Stem cell biology has become an important field in regenerative medicine and tissue engineering therapy since the discovery and characterization of mesenchymal stem cells. Stem cell populations have also been isolated from human dental tissues, including dental pulp stem cells, stem cells from human exfoliated deciduous teeth, stem cells from apical papilla, dental follicle progenitor cells, and periodontal ligament stem cells. Dental stem cells are relatively easily obtainable and exhibit high plasticity and multipotential capabilities. The dental stem cells represent a gold standard for neural-crest-derived bone reconstruction in humans and can be used for the repair of body defects in low-risk autologous therapeutic strategies. The bioengineering technologies developed for tooth regeneration will make substantial contributions to understand the developmental process and will encourage future organ replacement by regenerative therapies in a wide variety of organs such as the liver, kidney, and heart. The concept of developing tooth banking and preservation of dental stem cells is promising. Further research in the area has the potential to herald a new dawn in effective treatment of notoriously difficult diseases which could prove highly beneficial to mankind in the long run.
Collapse
Affiliation(s)
- Elna Paul Chalisserry
- Interdisciplinary Program of Marine-Bio, Electrical & Mechanical Engineering, Pukyong National University, Busan, Korea
- Center for Marine-Integrated Biomedical Technology (BK21 Plus), Pukyong National University, Busan, Korea
| | - Seung Yun Nam
- Interdisciplinary Program of Marine-Bio, Electrical & Mechanical Engineering, Pukyong National University, Busan, Korea
- Center for Marine-Integrated Biomedical Technology (BK21 Plus), Pukyong National University, Busan, Korea
- Department of Biomedical Engineering, Pukyong National University, Busan, South Korea
| | - Sang Hyug Park
- Interdisciplinary Program of Marine-Bio, Electrical & Mechanical Engineering, Pukyong National University, Busan, Korea
- Center for Marine-Integrated Biomedical Technology (BK21 Plus), Pukyong National University, Busan, Korea
- Department of Biomedical Engineering, Pukyong National University, Busan, South Korea
| | - Sukumaran Anil
- Division of Periodontics, Department of Preventive Dental Sciences, College of Dentistry Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| |
Collapse
|
45
|
Libro R, Diomede F, Scionti D, Piattelli A, Grassi G, Pollastro F, Bramanti P, Mazzon E, Trubiani O. Cannabidiol Modulates the Expression of Alzheimer's Disease-Related Genes in Mesenchymal Stem Cells. Int J Mol Sci 2016; 18:E26. [PMID: 28025562 PMCID: PMC5297661 DOI: 10.3390/ijms18010026] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 12/13/2016] [Accepted: 12/19/2016] [Indexed: 12/24/2022] Open
Abstract
Mesenchymal stem cells (MSCs) have emerged as a promising tool for the treatment of several neurodegenerative disorders, including Alzheimer's disease (AD). The main neuropathological hallmarks of AD are senile plaques, composed of amyloid beta (Aβ), and neurofibrillary tangles, formed by hyperphosphorylated tau. However, current therapies for AD have shown limited efficacy. In this study, we evaluated whether pre-treatment with cannabidiol (CBD), at 5 μM concentration, modulated the transcriptional profile of MSCs derived from gingiva (GMSCs) in order to improve their therapeutic potential, by performing a transcriptomic analysis by the next-generation sequencing (NGS) platform. By comparing the expression profiles between GMSCs treated with CBD (CBD-GMSCs) and control GMSCs (CTR-GMSCs), we found that CBD led to the downregulation of genes linked to AD, including genes coding for the kinases responsible of tau phosphorylation and for the secretases involved in Aβ generation. In parallel, immunocytochemistry analysis has shown that CBD inhibited the expression of GSK3β, a central player in AD pathogenesis, by promoting PI3K/Akt signalling. In order to understand through which receptor CBD exerted these effects, we have performed pre-treatments with receptor antagonists for the cannabinoid receptors (SR141716A and AM630) or for the vanilloid receptor 1 (TRPVI). Here, we have proved that TRPV1 was able to mediate the modulatory effect of CBD on the PI3K/Akt/GSK3β axis. In conclusion, we have found that pre-treatment with CBD prevented the expression of proteins potentially involved in tau phosphorylation and Aβ production in GMSCs. Therefore, we suggested that GMSCs preconditioned with CBD possess a molecular profile that might be more beneficial for the treatment of AD.
Collapse
Affiliation(s)
- Rosaliana Libro
- IRCCS Centro Neurolesi "Bonino-Pulejo", via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy.
| | - Francesca Diomede
- Stem Cells and Regenerative Medicine Laboratory, Department of Medical, Oral and Biotechnological Sciences, University "G. D'Annunzio", Chieti-Pescara, via dei Vestini, 31, 66100 Chieti, Italy.
| | - Domenico Scionti
- IRCCS Centro Neurolesi "Bonino-Pulejo", via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy.
| | - Adriano Piattelli
- Stem Cells and Regenerative Medicine Laboratory, Department of Medical, Oral and Biotechnological Sciences, University "G. D'Annunzio", Chieti-Pescara, via dei Vestini, 31, 66100 Chieti, Italy.
| | - Gianpaolo Grassi
- Council for Research and Experimentation in Agriculture-Research Centre for Industrial Crops (CREA-CIN), 45100 Rovigo, Italy.
| | - Federica Pollastro
- Dipartimento di Scienze del Farmaco, Universita del Piemonte Orientale, Largo Donegani 2, 28100 Novara, Italy.
| | - Placido Bramanti
- IRCCS Centro Neurolesi "Bonino-Pulejo", via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy.
| | - Emanuela Mazzon
- IRCCS Centro Neurolesi "Bonino-Pulejo", via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy.
| | - Oriana Trubiani
- Stem Cells and Regenerative Medicine Laboratory, Department of Medical, Oral and Biotechnological Sciences, University "G. D'Annunzio", Chieti-Pescara, via dei Vestini, 31, 66100 Chieti, Italy.
| |
Collapse
|
46
|
Gingival Mesenchymal Stem/Progenitor Cells: A Unique Tissue Engineering Gem. Stem Cells Int 2016; 2016:7154327. [PMID: 27313628 PMCID: PMC4903147 DOI: 10.1155/2016/7154327] [Citation(s) in RCA: 119] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 03/28/2016] [Accepted: 04/28/2016] [Indexed: 12/27/2022] Open
Abstract
The human gingiva, characterized by its outstanding scarless wound healing properties, is a unique tissue and a pivotal component of the periodontal apparatus, investing and surrounding the teeth in their sockets in the alveolar bone. In the last years gingival mesenchymal stem/progenitor cells (G-MSCs), with promising regenerative and immunomodulatory properties, have been isolated and characterized from the gingival lamina propria. These cells, in contrast to other mesenchymal stem/progenitor cell sources, are abundant, readily accessible, and easily obtainable via minimally invasive cell isolation techniques. The present review summarizes the current scientific evidence on G-MSCs' isolation, their characterization, the investigated subpopulations, the generated induced pluripotent stem cells- (iPSC-) like G-MSCs, their regenerative properties, and current approaches for G-MSCs' delivery. The review further demonstrates their immunomodulatory properties, the transplantation preconditioning attempts via multiple biomolecules to enhance their attributes, and the experimental therapeutic applications conducted to treat multiple diseases in experimental animal models in vivo. G-MSCs show remarkable tissue reparative/regenerative potential, noteworthy immunomodulatory properties, and primary experimental therapeutic applications of G-MSCs are very promising, pointing at future biologically based therapeutic techniques, being potentially superior to conventional clinical treatment modalities.
Collapse
|
47
|
Rao SR, Subbarayan R, Dinesh MG, Arumugam G, Raja STK. Differentiation of human gingival mesenchymal stem cells into neuronal lineages in 3D bioconjugated injectable protein hydrogel construct for the management of neuronal disorder. Exp Mol Med 2016; 48:e209. [PMID: 26869025 PMCID: PMC4892868 DOI: 10.1038/emm.2015.113] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 09/14/2015] [Accepted: 09/30/2015] [Indexed: 01/05/2023] Open
Abstract
The success of regeneration attempt is based on an ideal combination of stem cells, scaffolding and growth factors. Tissue constructs help to maintain stem cells in a required area for a desired time. There is a need for easily obtainable cells, potentially autologous stem cells and a biologically acceptable scaffold for use in humans in different difficult situations. This study aims to address these issues utilizing a unique combination of stem cells from gingiva and a hydrogel scaffold, based on a natural product for regenerative application. Human gingival mesenchymal stem cells (HGMSCs) were, with due induction, differentiated to neuronal lineages to overcome the problems associated with birth tissue-related stem cells. The differentiation potential of neuronal lineages was confirmed with suitable specific markers. The properties of mesenchymal stem cells in encapsulated form were observed to be similar to free cells. The encapsulated cells (3D) were then subjected to differentiation into neuronal lineages with suitable inducers, and the morphology and gene expression of transient cells were analyzed. HGMSCs was differentiated into neuronal lineages as both free and encapsulated forms without any significant differences. The presence of Nissl bodies and the neurite outgrowth confirm the differentiation. The advantages of this new combination appear to make it a promising tissue construct for translational application.
Collapse
Affiliation(s)
- Suresh Ranga Rao
- Department of Periodontology and Implantology, Faculty of Dental Sciences, Centre for Regenerative Medicine and Stem Cell Research, Sri Ramachandra University, Chennai, India
| | - Rajasekaran Subbarayan
- Centre for Regenerative Medicine and Stem Cell Research, Central Research Facility, Sri Ramachandra University, Chennai, India
| | - Murugan Girija Dinesh
- Centres for Indian Systems of Medicine Quality Assurance and Standardization, Sri Ramachandra University, Chennai, India
| | - Gnanamani Arumugam
- Microbiology Division, Central Leather Research Institute Adyar, Chennai, India
| | | |
Collapse
|
48
|
Van Pham P, Tran NY, Phan NLC, Vu NB, Phan NK. Vitamin C stimulates human gingival stem cell proliferation and expression of pluripotent markers. In Vitro Cell Dev Biol Anim 2015; 52:218-27. [DOI: 10.1007/s11626-015-9963-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 09/17/2015] [Indexed: 02/08/2023]
|
49
|
Gugjoo MB, . A, Kinjavdeka P, Aithal HP, Matin Ansa M, Pawde AM, Sharma GT. Isolation, Culture and Characterization of New Zealand White Rabbit Mesenchymal Stem Cells Derived from Bone Marrow. ACTA ACUST UNITED AC 2015. [DOI: 10.3923/ajava.2015.537.548] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|