1
|
Bai Y, Dai Q, He Y, Yan L, Niu J, Wang X, Xie Y, Yu X, Tang W, Li H, Huang Z, Sun B, Sun G, Wang X, Tang Y. Exogenous diethyl aminoethyl hexanoate alleviates the damage caused by low-temperature stress in Phaseolus vulgaris L. seedlings through photosynthetic and antioxidant systems. BMC PLANT BIOLOGY 2025; 25:75. [PMID: 39825233 PMCID: PMC11742526 DOI: 10.1186/s12870-025-06083-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Accepted: 01/08/2025] [Indexed: 01/20/2025]
Abstract
BACKGROUND Phaseolus vulgaris is a warm-season crop sensitive to low temperatures, which can adversely affect its growth, yield, and market value. Exogenous growth regulators, such as diethyl aminoethyl hexanoate (DA-6), have shown potential in alleviating stress caused by adverse environmental conditions. However, the effects that DA-6 has on P. vulgaris plants subjected to low-temperature stress are not well understood. This study aimed to investigate the impact DA-6 has on the growth, photosynthesis, antioxidant system, and gene expression in cold-tolerant (YJ009763) and cold-sensitive (Baibulao) P. vulgaris seedlings under low-temperature stress. RESULTS To simulate low-temperature stress, P. vulgaris seedlings were exposed to 5 °C, and 25 mg/L DA-6 solution applied to their leaves. This study revealed that DA-6 significantly enhanced the growth and photosynthetic performance of P. vulgaris seedlings under low-temperature stress. Specifically, DA-6 increased chlorophyll content and photosynthetic rates, reducing stomatal limitation and enhancing carbon assimilation. It also improved the photosynthetic efficiency by boosting electron transport in the reaction center. The antioxidant enzyme activities of superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) were markedly increased following DA-6 treatment. After 24 h of low-temperature stress, the cold-tolerant seedlings showed a 68.95% increase in POD activity, whereas the cold-sensitive seedlings displayed a 160.63% increase in SOD activity and an 85.56% increase in CAT activity. In addition, DA-6 significantly reduced the production rate of superoxide anion radical generation, with a 25.24% reduction in cold-tolerant seedlings and a 49.38% reduction in cold-sensitive seedlings. Under low-temperature stress, exogenous DA-6 could upregulate the relative expression of antioxidant enzyme-related genes, such as PvSOD and PvAPX. DA-6 also promoted the expression of key antioxidant genes, including PvMDHAR and PvDHAR2, which accelerated the ascorbate-glutathione cycle and mitigated oxidative stress. CONCLUSION Exogenous application of DA-6 effectively alleviates low-temperature stress in P. vulgaris by enhancing photosynthetic capacity and regulating the antioxidant defense system. Cold-tolerant varieties exhibited a stronger response to DA-6, demonstrating a greater ability to withstand cold stress. These findings suggest that DA-6 treatment could serve as a promising approach for improving the resilience of P. vulgaris to low temperatures.
Collapse
Affiliation(s)
- Yu Bai
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Qiya Dai
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yanheng He
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Li Yan
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jianpo Niu
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xuan Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yongdong Xie
- Institute of Agro-products Processing and Storage, Chengdu Academy of Agriculture and Forestry Sciences, Chengdu, 611130, China
| | - Xuena Yu
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Wen Tang
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Huanxiu Li
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Zhi Huang
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Bo Sun
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Guochao Sun
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xun Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yi Tang
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
2
|
Wang W, Kang W, Shi S, Liu L. Physiological and metabolomic analyses reveal the mechanism by which exogenous spermine improves drought resistance in alfalfa leaves ( Medicago sativa L.). FRONTIERS IN PLANT SCIENCE 2024; 15:1466493. [PMID: 39445141 PMCID: PMC11496139 DOI: 10.3389/fpls.2024.1466493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 09/16/2024] [Indexed: 10/25/2024]
Abstract
Introduction Alfalfa (Medicago sativa L.) is a globally important legume crop with high nutritional and ecological value. Drought poses a serious threat to alfalfa acreage and yields. Spermine (Spm) has been shown to protect plants from drought damage. The aim of this study was to clarify the mechanism of exogenous Spm to improve drought resistance of alfalfa. Methods In this study, we root applied 0.1, 0.5, and 1 mM Spm to Gannong No. 3 (G3) alfalfa under drought stress, and then determined their physiological and metabolic changes. Results The results showed that exogenous Spm increased chlorophyll content, chlorophyll fluorescence parameters and gas exchange parameters, enhanced antioxidant enzymes activity, improved ascorbic acid-glutathione (AsA-GSH) cycle, increased osmoregulatory substances content, reduced hydrogen peroxide and superoxide anion levels, and inhibited malondialdehyde accumulation in alfalfa under drought stress, thereby increasing plant height and leaf relative water content and enhancing drought tolerance of alfalfa. The redundancy analysis of the above physiological indicators showed that the addition of the optimal Spm to improve drought tolerance of alfalfa under drought stress was mainly achieved by increasing catalase activity and improving the ASA-GSH cycle. In addition, metabolomics analysis revealed that exogenous Spm increased the content of oxobutanedioic acid, citric acid, fumaric acid and malic acid to enhance the tricarboxylic acid cycle. Meanwhile, exogenous Spm increased endogenous Spm and proline (Pro) content to resist drought stress by enhancing Spm and Pro metabolism. Moreover, exogenous Spm increased the accumulation of the signaling substance abscisic acid. Discussion In conclusion, exogenous Spm enhanced drought resistance of alfalfa leaves under drought stress.
Collapse
Affiliation(s)
| | - Wenjuan Kang
- Key Laboratory of Grassland Ecosystem (Gansu Agricultural University), Ministry of Education, Lanzhou, China
| | - Shangli Shi
- Key Laboratory of Grassland Ecosystem (Gansu Agricultural University), Ministry of Education, Lanzhou, China
| | | |
Collapse
|
3
|
Pu K, Li N, Gao Y, Zhang M, Wang T, Xie J, Li J. Alleviating Effects of Methyl Jasmonate on Pepper ( Capsicum annuum L.) Seedlings under Low-Temperature Combined with Low-Light Stress. PLANTS (BASEL, SWITZERLAND) 2024; 13:2694. [PMID: 39409564 PMCID: PMC11478966 DOI: 10.3390/plants13192694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/23/2024] [Accepted: 09/23/2024] [Indexed: 10/20/2024]
Abstract
Low temperature combined with low light (LL) is an important factor limiting pepper quality and yield. 'Hang Jiao No. 2' were used as experimental materials, and different concentrations of MeJA (T1 (0 μM), T2 (100 μM), T3 (150 μM), T4 (200 μM), T5 (250 μM) and T6 (300 μM)) were sprayed under LL stress to explore the positive effect of exogenous methyl jasmonate (MeJA) on peppers under LL stress. The photosynthetic properties, osmoregulatory substance, reactive oxygen species, antioxidant enzyme activities, and related gene expressions of the peppers were measured. Our results demonstrated that 200 μM MeJA treatment significantly increased chlorophyll content, light quantum flux per active RC electron transfer (Eto/RC), maximum captured photonic flux per active RC (TRo/RC), energy flux for electron transfer in the excitation cross section (Eto/CSm), energy flux captured by absorption in the excitation cross section (TRo/CSm), soluble protein, and soluble sugar content. Moreover, it significantly improved the maximum photochemical efficiency of PSII (Fv/Fm) and performance index based on absorbed light energy (PI (abs)) by 56.77% and 67.00%, respectively, and significantly decreased malondialdehyde (MDA) content and relative conductivity by 30.55% and 28.17%, respectively. Additionally, antioxidant enzyme activities were elevated, and the expression of the related genes was activated in pepper seedlings under stress, leading to a significant reduction in reactive oxygen species content. In conclusion, our findings confirmed that 200 μM MeJA could reduce the injury of LL to pepper leaves to the photosynthetic organs of pepper leaves, protect the integrity of the cell membrane, and further improve the tolerance of pepper seedlings to LL.
Collapse
Affiliation(s)
| | | | | | | | | | - Jianming Xie
- College of Horticulture, Gansu Agricultural University, Yingmen Village, Anning District, Lanzhou 730070, China; (K.P.); (N.L.); (Y.G.); (M.Z.); (T.W.)
| | - Jing Li
- College of Horticulture, Gansu Agricultural University, Yingmen Village, Anning District, Lanzhou 730070, China; (K.P.); (N.L.); (Y.G.); (M.Z.); (T.W.)
| |
Collapse
|
4
|
Xiang H, Liang X, Wang S, Wang X, He N, Dong X, Wang D, Chen S, Song Q, Liu Y, Wang Q, Li W. Foliar spraying exogenous ABA resists chilling stress on adzuki beans (Vigna angularis). PLoS One 2024; 19:e0304628. [PMID: 39250484 PMCID: PMC11383210 DOI: 10.1371/journal.pone.0304628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 05/14/2024] [Indexed: 09/11/2024] Open
Abstract
Adzuki bean, an important legume crop, exhibits poor tolerance to low temperatures. To investigate the effect of exogenous abscisic acid (ABA) on the physiological metabolism and yield resistance of adzuki bean under low-temperature stress, we conducted a potted experiment using Longxiaodou 4 (LXD 4) and Tianjinhong (TJH) as test materials and pre-sprayed with exogenous ABA at flowering stage continuously for 5 days with an average of 12°C and an average of 15°C, respectively. We found that, compared with spraying water, foliar spraying exogenous ABA increased the activities of antioxidants and the content of non-enzymatic antioxidants, effectively inhibited the increase of malondialdehyde (MDA), hydrogen peroxide (H2O2) content, O2-· production rate. Exogenous ABA induced the activation of endogenous protective mechanisms by increasing antioxidant enzymes activities such as superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT), as well as elevated levels of non-enzymatic antioxidants including ascorbic acid (ASA) and glutathione (GSH). Moreover, the yield loss of 5.81%-39.84% caused by chilling stress was alleviated by spraying ABA. In conclusion, foliar spraying exogenous ABA can reduce the negative effects of low-temperature stress on the yield of Adzuki beans, which is essential to ensure stable production of Adzuki beans under low-temperature conditions.
Collapse
Affiliation(s)
- Hongtao Xiang
- Suihua Branch, Heilongjiang Academy of Agricultural Machinery Sciences, Suihua, China
- Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Xiaoyan Liang
- College of Agriculture, Heilongjiang Bayi Agriculture University, Daqing, China
| | - Shiya Wang
- College of Agriculture, Heilongjiang Bayi Agriculture University, Daqing, China
| | - Xueyang Wang
- Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Ning He
- Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Xiaohui Dong
- Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Deming Wang
- Suihua Branch, Heilongjiang Academy of Agricultural Machinery Sciences, Suihua, China
- Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Shuqiang Chen
- Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Qiulai Song
- Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Yuqiang Liu
- Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Qingjuan Wang
- Qiqihar Agricultural Technology Promotion Center, Qiqihar, China
| | - Wan Li
- Heilongjiang Academy of Agricultural Sciences, Harbin, China
| |
Collapse
|
5
|
Li S, Liu Y, Kang Y, Liu W, Wang W, Wang Z, Xia X, Chen X, Wang C, He X. Spermidine Improves Freezing Tolerance by Regulating H 2O 2 in Brassica napus L. Antioxidants (Basel) 2024; 13:1032. [PMID: 39334691 PMCID: PMC11428980 DOI: 10.3390/antiox13091032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/16/2024] [Accepted: 08/21/2024] [Indexed: 09/30/2024] Open
Abstract
Low temperature is a common abiotic stress that causes significant damage to crop production. Polyamines (PAs) are a class of aliphatic amine compounds that serve as regulatory molecules involved in plant growth, development, and response to abiotic and biotic stresses. In this study, we found that the exogenous application of two concentrations of spermidine (Spd) significantly enhanced the freezing tolerance of three differently matured rapeseed (Brassica napus L.) varieties, as manifested by higher survival rates, lower freezing injury indexes, and reduced H2O2 content. RNA-seq and qRT-PCR analyses showed that Spd enhanced the freezing tolerance of rapeseed by regulating genes related to the PA metabolic pathway and antioxidant mechanism, and generally inhibited the expression of genes related to the JA signaling pathway. This study provides a reference basis for understanding the functionality and molecular mechanisms of polyamines in the response of rapeseed to freezing stress.
Collapse
Affiliation(s)
- Shun Li
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China
| | - Yan Liu
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China
| | - Yu Kang
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China
| | - Wei Liu
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China
| | - Weiping Wang
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China
| | - Zhonghua Wang
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China
| | - Xiaoyan Xia
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China
| | - Xiaoyu Chen
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China
| | - Chen Wang
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China
| | - Xin He
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China
- Yuelushan Laboratory, Changsha 410128, China
| |
Collapse
|
6
|
Shen X, Dai S, Chen M, Huang Y. Spermidine augments salt stress resilience in rice roots potentially by enhancing OsbZIP73's RNA binding capacity. BMC PLANT BIOLOGY 2024; 24:786. [PMID: 39160481 PMCID: PMC11334393 DOI: 10.1186/s12870-024-05492-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 08/06/2024] [Indexed: 08/21/2024]
Abstract
BACKGROUND Rice is a staple crop for over half of the global population, but soil salinization poses a significant threat to its production. As a type of polyamine, spermidine (Spd) has been shown to reduce stress-induced damage in plants, but its specific role and mechanism in protecting rice roots under salt stress require further investigation. RESULTS This study suggested spermidine (Spd) mitigates salt stress on rice root growth by enhancing antioxidant enzyme activity and reducing peroxide levels. Transcriptomic analysis showed that salt stress caused 333 genes to be upregulated and 1,765 to be downregulated. However, adding Spd during salt treatment significantly altered this pattern: 2,298 genes were upregulated and 844 were downregulated, which indicated Spd reverses some transcriptional changes caused by salt stress. KEGG pathway analysis suggested that Spd influenced key signaling pathways, including MAPK signaling, plant hormone signal transduction, and phenylalanine metabolism. Additionally, the bZIP transcription factor OsbZIP73 was upregulated after Spd treatment, which is confirmed by Western blot. Further insights into the interaction between OsbZIP73 and Spd were gained through fluorescence polarization experiments, showing that Spd enhances protein OsbZIP73's affinity for RNA. Functional enrichment analyses revealed that OsPYL1, OsSPARK1, and various SAUR family genes involved in Spd-affected pathways. The presence of G/A/C-box elements in these genes suggests they are potential targets for OsbZIP73. CONCLUSIONS Our findings suggest a strategy of using spermidine as a chemical alleviator for salt stress and provide insights into the regulatory function of OsbZIP73 in mitigating salt stress in rice roots.
Collapse
Affiliation(s)
- Xuefeng Shen
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524008, China
- National Saline-tolerant Rice Technology Innovation Center, South China, Zhanjiang, 524008, China
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518108, China
| | - Shuangfeng Dai
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524008, China
- National Saline-tolerant Rice Technology Innovation Center, South China, Zhanjiang, 524008, China
| | - Mingming Chen
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524008, China.
- National Saline-tolerant Rice Technology Innovation Center, South China, Zhanjiang, 524008, China.
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518108, China.
| | - Yongxiang Huang
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524008, China
- National Saline-tolerant Rice Technology Innovation Center, South China, Zhanjiang, 524008, China
| |
Collapse
|
7
|
Meng F, Feng N, Zheng D, Liu M, Zhou H, Zhang R, Huang X, Huang A. Exogenous Hemin enhances the antioxidant defense system of rice by regulating the AsA-GSH cycle under NaCl stress. PeerJ 2024; 12:e17219. [PMID: 38650645 PMCID: PMC11034499 DOI: 10.7717/peerj.17219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 03/20/2024] [Indexed: 04/25/2024] Open
Abstract
Abiotic stress caused by soil salinization remains a major global challenge that threatens and severely impacts crop growth, causing yield reduction worldwide. In this study, we aim to investigate the damage of salt stress on the leaf physiology of two varieties of rice (Huanghuazhan, HHZ, and Xiangliangyou900, XLY900) and the regulatory mechanism of Hemin to maintain seedling growth under the imposed stress. Rice leaves were sprayed with 5.0 μmol·L-1 Hemin or 25.0 μmol·L-1 ZnPP (Zinc protoporphyrin IX) at the three leaf and one heart stage, followed by an imposed salt stress treatment regime (50.0 mmol·L-1 sodium chloride (NaCl)). The findings revealed that NaCl stress increased antioxidant enzymes activities and decreased the content of nonenzymatic antioxidants such as ascorbate (AsA) and glutathione (GSH). Furthermore, the content of osmoregulatory substances like soluble proteins and proline was raised. Moreover, salt stress increased reactive oxygen species (ROS) content in the leaves of the two varieties. However, spraying with Hemin increased the activities of antioxidants such as superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) and accelerated AsA-GSH cycling to remove excess ROS. In summary, Hemin reduced the effect of salt stress on the physiological characteristics of rice leaves due to improved antioxidant defense mechanisms that impeded lipid peroxidation. Thus, Hemin was demonstrated to lessen the damage caused by salt stress.
Collapse
Affiliation(s)
- Fengyan Meng
- College of Coastal Agriculture Sciences, Guangdong Ocean University, Zhanjiang, Guangdong, China
- South China Center of National Saline-tolerant Rice Technology Innovation Cente, Zhanjiang, Guangdong, China
| | - Naijie Feng
- College of Coastal Agriculture Sciences, Guangdong Ocean University, Zhanjiang, Guangdong, China
- South China Center of National Saline-tolerant Rice Technology Innovation Cente, Zhanjiang, Guangdong, China
- Shenzhen Research Institute of Guangdong Ocean University, Shenzhen, Guangdong, China
| | - Dianfeng Zheng
- College of Coastal Agriculture Sciences, Guangdong Ocean University, Zhanjiang, Guangdong, China
- South China Center of National Saline-tolerant Rice Technology Innovation Cente, Zhanjiang, Guangdong, China
- Shenzhen Research Institute of Guangdong Ocean University, Shenzhen, Guangdong, China
| | - Meiling Liu
- College of Coastal Agriculture Sciences, Guangdong Ocean University, Zhanjiang, Guangdong, China
- South China Center of National Saline-tolerant Rice Technology Innovation Cente, Zhanjiang, Guangdong, China
| | - Hang Zhou
- South China Center of National Saline-tolerant Rice Technology Innovation Cente, Zhanjiang, Guangdong, China
- Shenzhen Research Institute of Guangdong Ocean University, Shenzhen, Guangdong, China
| | - Rongjun Zhang
- College of Coastal Agriculture Sciences, Guangdong Ocean University, Zhanjiang, Guangdong, China
- South China Center of National Saline-tolerant Rice Technology Innovation Cente, Zhanjiang, Guangdong, China
| | - XiXin Huang
- College of Coastal Agriculture Sciences, Guangdong Ocean University, Zhanjiang, Guangdong, China
- South China Center of National Saline-tolerant Rice Technology Innovation Cente, Zhanjiang, Guangdong, China
| | - Anqi Huang
- College of Coastal Agriculture Sciences, Guangdong Ocean University, Zhanjiang, Guangdong, China
- South China Center of National Saline-tolerant Rice Technology Innovation Cente, Zhanjiang, Guangdong, China
| |
Collapse
|
8
|
He M, Zhou J, Lyu D, Xu G, Qin S. Exogenous Spermidine Alleviated Low-Temperature Damage by Affecting Polyamine Metabolism and Antioxidant Levels in Apples. PLANTS (BASEL, SWITZERLAND) 2024; 13:1100. [PMID: 38674509 PMCID: PMC11053773 DOI: 10.3390/plants13081100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/02/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024]
Abstract
Low-temperature stress significantly limits the growth, development, and geographical distribution of apple cultivation. Spermidine (Spd), a known plant growth regulator, plays a vital role in the plant's response to abiotic stress. Yet, the mechanisms by which exogenous Spd enhances cold resistance in apples remain poorly understood. Therefore, the present study analyzed the effects of exogenous Spd on antioxidant enzyme activity, polyamine metabolism, and related gene expression levels of 1-year-old apple branches under low-temperature stress. Treatment with exogenous Spd was found to stabilize branch tissue biofilms and significantly reduce the levels of reactive oxygen species by elevating proline content and boosting the activity of antioxidants such as superoxide dismutase. It also upregulated the activities of arginine decarboxylase, S-adenosylmethionine decarboxylase, and spermidine synthase and the expression levels of MdADC1, MdSAMDC1, and MdSPDS1 under low-temperature stress and led to the accumulation of large amounts of Spd and spermine. Moreover, compared with the 2 mmol·L-1 Spd treatment, the 1 mmol·L-1 Spd treatment increased the expression levels of cold-responsive genes MdCBF1/2/3, MdCOR47, and MdKIN1, significantly. The findings suggest that exogenous Spd can enhance cold resistance in apple branches significantly. This enhancement is achieved by modulating polyamine metabolism and improving antioxidant defense mechanisms, which could be exploited to improve apple cultivation under cold stress conditions.
Collapse
Affiliation(s)
- Meiqi He
- Key Laboratory of Fruit Quality Development and Regulation of Liaoning Province, College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China; (M.H.); (J.Z.); (D.L.)
| | - Jia Zhou
- Key Laboratory of Fruit Quality Development and Regulation of Liaoning Province, College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China; (M.H.); (J.Z.); (D.L.)
| | - Deguo Lyu
- Key Laboratory of Fruit Quality Development and Regulation of Liaoning Province, College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China; (M.H.); (J.Z.); (D.L.)
| | - Gongxun Xu
- Research Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng 125100, China
| | - Sijun Qin
- Key Laboratory of Fruit Quality Development and Regulation of Liaoning Province, College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China; (M.H.); (J.Z.); (D.L.)
| |
Collapse
|
9
|
Xiang H, Wang S, Liang X, Wang X, Xie H, Wang D, Gai Z, Wang N, Xiang P, Han D, Shan D, Li Y, Li W. Foliar spraying of exogenous uniconazole (S3307) at the flowering stage as an effective method to resist low-temperature stress on mung bean [Vigna radiata (L.) Wilczek]. Sci Rep 2023; 13:22331. [PMID: 38102232 PMCID: PMC10724285 DOI: 10.1038/s41598-023-49652-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 12/11/2023] [Indexed: 12/17/2023] Open
Abstract
Low temperature is one of the major constraints on agricultural productivity worldwide and is likely to further increase. Several adaptations and mitigation strategies are required to cope with low-temperature stress. Uniconazole (S3307) could play a significant role in the alleviation of abiotic stress in plants. In this study, the effects of S3307 on the reactive oxygen species (ROS) and antioxidant metabolism were studied in the leaves of mung bean [Vigna radiata (L.) Wilczek]. The experimental results showed that the low-temperature induced accumulation of superoxide anion (O2-) production rate, and malonaldehyde (MDA) contents. Increased proline content and enzymatic antioxidants, including superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD), were found to alleviate oxidative damage under low temperatures. While, S3307 could reduce O2- production rate and MDA contents and increase the activities of SOD, POD, and CAT, slowed the decrease in ascorbic acid (AsA), dehydroascorbic acid (DHA), glutathione (GSH), and oxidized glutathione (GSSG), and promoted increase in soluble sugars (SS), soluble proteins (SP), and proline (Pro) content under low-temperature. At the same time, low temperature leads to lower 100 grain weight and number of grains per plant, which eventually causes yield reduction decreased. Foliar spraying of S3307 could alleviate the yield loss caused by low temperature, and the increase of S3307 treatment was 5.1%-12.5% and 6.3%-32.9% for the two varieties, respectively, compared with CK. In summary, exogenous S3307 pretreatment enhances plant tolerance to low-temperature by improving the antioxidant enzyme activities, increased non-enzymatic antioxidants content, and decreased O2- production rate and MDA contents and inducing alterations in endogenous S3307, and reduce the decrease in mung bean yield.
Collapse
Affiliation(s)
- Hongtao Xiang
- Suihua Branch, Heilongjiang Academy of Agricultural Machinery Sciences, Suihua, 152054, Heilongjiang, China
- Heilongjiang Academy of Agricultural Sciences, Harbin, 150086, Heilongjiang, China
| | - Shiya Wang
- College of Agriculture, Heilongjiang Bayi Agriculture University, Daqing, 163319, Heilongjiang, China
| | - Xiaoyan Liang
- College of Agriculture, Heilongjiang Bayi Agriculture University, Daqing, 163319, Heilongjiang, China
| | - Xueyang Wang
- Heilongjiang Academy of Agricultural Sciences, Harbin, 150086, Heilongjiang, China
| | - Hongchang Xie
- Suihua Branch, Heilongjiang Academy of Agricultural Machinery Sciences, Suihua, 152054, Heilongjiang, China
- Heilongjiang Academy of Agricultural Sciences, Harbin, 150086, Heilongjiang, China
| | - Deming Wang
- Suihua Branch, Heilongjiang Academy of Agricultural Machinery Sciences, Suihua, 152054, Heilongjiang, China
- Heilongjiang Academy of Agricultural Sciences, Harbin, 150086, Heilongjiang, China
| | - Zhijia Gai
- Heilongjiang Academy of Agricultural Sciences, Harbin, 150086, Heilongjiang, China
| | - Nannan Wang
- Heilongjiang Academy of Agricultural Sciences, Harbin, 150086, Heilongjiang, China
| | - Peng Xiang
- Heilongjiang Academy of Agricultural Sciences, Harbin, 150086, Heilongjiang, China
| | - Dongwei Han
- Heilongjiang Academy of Agricultural Sciences, Harbin, 150086, Heilongjiang, China
| | - Dapeng Shan
- Heilongjiang Academy of Agricultural Sciences, Harbin, 150086, Heilongjiang, China
| | - Yichu Li
- Heilongjiang Academy of Agricultural Sciences, Harbin, 150086, Heilongjiang, China
| | - Wan Li
- Heilongjiang Academy of Agricultural Sciences, Harbin, 150086, Heilongjiang, China.
| |
Collapse
|
10
|
Xue X, Xie M, Zhu L, Wang D, Xu Z, Liang L, Zhang J, Xu L, Zhou P, Ran J, Yu G, Lai Y, Sun B, Tang Y, Li H. 5-ALA Improves the Low Temperature Tolerance of Common Bean Seedlings through a Combination of Hormone Transduction Pathways and Chlorophyll Metabolism. Int J Mol Sci 2023; 24:13189. [PMID: 37685996 PMCID: PMC10487637 DOI: 10.3390/ijms241713189] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/16/2023] [Accepted: 08/21/2023] [Indexed: 09/10/2023] Open
Abstract
Low-temperature stress is a key factor limiting the yield and quality of the common bean. 5-aminolevulinic acid (5-ALA), an antioxidant in plants, has been shown to modulate plant cold stress responses. However, the molecular mechanisms of 5-ALA-induced physiological and chemical changes in common bean seedlings under cold stress remains unknown. This study explored the physiological and transcriptome changes of common bean seedlings in response to cold stress after 5-ALA pretreatment. Physiological results showed that exogenous 5-ALA promotes the growth of common bean plants under cold stress, increases the activity of antioxidant enzymes (superoxide dismutase: 23.8%; peroxidase: 10.71%; catalase: 9.09%) and proline content (24.24%), decreases the relative conductivity (23.83%), malondialdehyde (33.65%), and active oxygen content, and alleviates the damage caused by cold to common bean seedlings. Transcriptome analysis revealed that 214 differentially expressed genes (DEGs) participate in response to cold stress. The DEGs are mainly concentrated in indole alkaloid biosynthesis, carotenoid biosynthesis, porphyrin, and chlorophyll metabolism. It is evident that exogenous 5-ALA alters the expression of genes associated with porphyrin and chlorophyll metabolism, as well as the plant hormone signal transduction pathway, which helps to maintain the energy supply and metabolic homeostasis under low-temperature stress. The results reveal the effect that applying exogenous 5-ALA has on the cold tolerance of the common bean and the molecular mechanism of its response to cold tolerance, which provides a theoretical basis for exploring and improving plant tolerance to low temperatures.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | - Huanxiu Li
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (X.X.); (M.X.); (L.Z.); (D.W.); (Z.X.); (L.L.); (J.Z.); (L.X.); (P.Z.); (J.R.); (G.Y.); (Y.L.); (B.S.); (Y.T.)
| |
Collapse
|
11
|
Effects of Ascorbic Acid on Physiological Characteristics during Somatic Embryogenesis of Fraxinus mandshurica. Int J Mol Sci 2022; 24:ijms24010289. [PMID: 36613732 PMCID: PMC9820202 DOI: 10.3390/ijms24010289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/15/2022] [Accepted: 12/19/2022] [Indexed: 12/28/2022] Open
Abstract
Fraxinus mandshurica is one of the precious tree species in northeast China and has important economic and ecological value. Ascorbic acid (ASA) is a strong antioxidant that can significantly improve plant photosynthetic efficiency and stress resistance and participate widely in plant growth and development. In this study, we investigated the development process of mature zygotic embryos of F. mandshurica under different concentrations of ASA and found that 100 mg·L-1 exogenous ASA was the optimal concentration and that the induction rate of somatic embryos (SEs) was the highest at 72.89%, which was 7.13 times higher than that of the control group. The polyphenol content, peroxidase (POD) activity, nitric oxide (NO) content, nitrate reductase (NR) activity, total ascorbic acid (T-ASA) content, ASA content, ASA/Dehydroascorbic acid (DHA) ratio, GSH/GSSG ratio, and ascorbate peroxidase (APX) activity were significantly increased under the application of exogenous ASA in explants, whereas the polyphenol oxidase (PPO) activity, phenylalanine ammonia-lyase (PAL) activity, superoxide dismutase (SOD) activity, and catalase (CAT) activity, malondialdehyde (MDA) content and nitric oxide synthase (NOS) activity were decreased. At the same time, the content of T-ASA and ASA, T-GSH and GSSG, and PAL and SOD had the same change pattern in the control group and the treatment group. These results suggested that high or low concentrations of ASA could not promote the somatic embryogenesis of F. mandshurica and that exogenous ASA had significant effects on the physiology of F. mandshurica explants. ASA was also highly related to somatic embryogenesis and the explant browning of F. mandshurica. Our results could provide a reference for further study on the browning mechanism of F. mandshurica explants and lay the foundation for optimizing the condition of somatic embryogenesis in F. mandshurica.
Collapse
|
12
|
Borysiuk K, Ostaszewska-Bugajska M, Kryzheuskaya K, Gardeström P, Szal B. Glyoxalase I activity affects Arabidopsis sensitivity to ammonium nutrition. PLANT CELL REPORTS 2022; 41:2393-2413. [PMID: 36242617 PMCID: PMC9700585 DOI: 10.1007/s00299-022-02931-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
Elevated methylglyoxal levels contribute to ammonium-induced growth disorders in Arabidopsis thaliana. Methylglyoxal detoxification pathway limitation, mainly the glyoxalase I activity, leads to enhanced sensitivity of plants to ammonium nutrition. Ammonium applied to plants as the exclusive source of nitrogen often triggers multiple phenotypic effects, with severe growth inhibition being the most prominent symptom. Glycolytic flux increase, leading to overproduction of its toxic by-product methylglyoxal (MG), is one of the major metabolic consequences of long-term ammonium nutrition. This study aimed to evaluate the influence of MG metabolism on ammonium-dependent growth restriction in Arabidopsis thaliana plants. As the level of MG in plant cells is maintained by the glyoxalase (GLX) system, we analyzed MG-related metabolism in plants with a dysfunctional glyoxalase pathway. We report that MG detoxification, based on glutathione-dependent glyoxalases, is crucial for plants exposed to ammonium nutrition, and its essential role in ammonium sensitivity relays on glyoxalase I (GLXI) activity. Our results indicated that the accumulation of MG-derived advanced glycation end products significantly contributes to the incidence of ammonium toxicity symptoms. Using A. thaliana frostbite1 as a model plant that overcomes growth repression on ammonium, we have shown that its resistance to enhanced MG levels is based on increased GLXI activity and tolerance to elevated MG-derived advanced glycation end-product (MAGE) levels. Furthermore, our results show that glyoxalase pathway activity strongly affects cellular antioxidative systems. Under stress conditions, the disruption of the MG detoxification pathway limits the functioning of antioxidant defense. However, under optimal growth conditions, a defect in the MG detoxification route results in the activation of antioxidative systems.
Collapse
Affiliation(s)
- Klaudia Borysiuk
- Department of Plant Bioenergetics, Institute of Experimental Plant Biology and Biotechnology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland
| | - Monika Ostaszewska-Bugajska
- Department of Plant Bioenergetics, Institute of Experimental Plant Biology and Biotechnology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland
| | - Katsiaryna Kryzheuskaya
- Department of Plant Bioenergetics, Institute of Experimental Plant Biology and Biotechnology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland
| | - Per Gardeström
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, 90187, Umeå, Sweden
| | - Bożena Szal
- Department of Plant Bioenergetics, Institute of Experimental Plant Biology and Biotechnology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland.
| |
Collapse
|
13
|
Wang X, Wang Q, Zhang M, Zhao Y, Dong P, Zhao Y, Li H, Jia X, An P, Tang Y, Li C. Foliar Application of Spermidine Alleviates Waterlogging-Induced Damages to Maize Seedlings by Enhancing Antioxidative Capacity, Modulating Polyamines and Ethylene Biosynthesis. Life (Basel) 2022; 12:1921. [PMID: 36431056 PMCID: PMC9692385 DOI: 10.3390/life12111921] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/14/2022] [Accepted: 11/15/2022] [Indexed: 11/19/2022] Open
Abstract
Waterlogging is a major threat to maize production worldwide. The exogenous application of spermidine is well known to enhance plant tolerance to abiotic stresses. The role of exogenous spermidine application in waterlogging tolerance in maize was investigated in this study. Two maize varieties (a waterlogging-tolerant variety: Xundan 20 (XD20) and a waterlogging-sensitive variety: Denghai 662 (DH662)) were subjected to waterlogging stress at the seedling stage, and then foliar spraying of 0.75 mM spermidine or purified water. Findings demonstrated lower chlorophyll content, reduced growth indices, considerable increase in superoxide anion (O2-) generation rate, and H2O2/malondialdehyde accumulation in the two maize varieties under waterlogging stress compared to the control treatment. However, the tolerance variety performed better than the sensitive one. Foliar application of spermidine significantly increased antioxidant enzyme activities under waterlogging stress. In addition, the application of spermidine increased polyamine levels and led to the reduction of ethylene levels under waterlogging. Consequences of spermidine application were most apparent for the waterlogging-sensitive cultivar DH662 under waterlogging than the waterlogging-tolerant variety XD20.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Chaohai Li
- College of Agronomy, Henan Agricultural University, Zhengzhou 450000, China
| |
Collapse
|
14
|
Shao J, Huang K, Batool M, Idrees F, Afzal R, Haroon M, Noushahi HA, Wu W, Hu Q, Lu X, Huang G, Aamer M, Hassan MU, El Sabagh A. Versatile roles of polyamines in improving abiotic stress tolerance of plants. FRONTIERS IN PLANT SCIENCE 2022; 13:1003155. [PMID: 36311109 PMCID: PMC9606767 DOI: 10.3389/fpls.2022.1003155] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
In recent years, extreme environmental cues such as abiotic stresses, including frequent droughts with irregular precipitation, salinity, metal contamination, and temperature fluctuations, have been escalating the damage to plants' optimal productivity worldwide. Therefore, yield maintenance under extreme events needs improvement in multiple mechanisms that can minimize the influence of abiotic stresses. Polyamines (PAs) are pivotally necessary for a defensive purpose under adverse abiotic conditions, but their molecular interplay in this remains speculative. The PAs' accretion is one of the most notable metabolic responses of plants under stress challenges. Recent studies reported the beneficial roles of PAs in plant development, including metabolic and physiological processes, unveiling their potential for inducing tolerance against adverse conditions. This review presents an overview of research about the most illustrious and remarkable achievements in strengthening plant tolerance to drought, salt, and temperature stresses by the exogenous application of PAs. The knowledge of underlying processes associated with stress tolerance and PA signaling pathways was also summarized, focusing on up-to-date evidence regarding the metabolic and physiological role of PAs with exogenous applications that protect plants under unfavorable climatic conditions. Conclusively, the literature proposes that PAs impart an imperative role in abiotic stress tolerance in plants. This implies potentially important feedback on PAs and plants' stress tolerance under unfavorable cues.
Collapse
Affiliation(s)
- Jinhua Shao
- Research Center on Ecological Sciences, Jiangxi Agricultural University, Nanchang, China
- China Guangxi Hydraulic Research Institute, Nanning, China
- Key Laboratory of Water Engineering Materials and Structures, Nanning, China
| | - Kai Huang
- China Guangxi Hydraulic Research Institute, Nanning, China
- Key Laboratory of Water Engineering Materials and Structures, Nanning, China
| | - Maria Batool
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Fahad Idrees
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Rabail Afzal
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Muhammad Haroon
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | | | - Weixiong Wu
- China Guangxi Hydraulic Research Institute, Nanning, China
- Key Laboratory of Water Engineering Materials and Structures, Nanning, China
| | - Qiliang Hu
- Research Center on Ecological Sciences, Jiangxi Agricultural University, Nanchang, China
| | - Xingda Lu
- China Guangxi Hydraulic Research Institute, Nanning, China
- Key Laboratory of Water Engineering Materials and Structures, Nanning, China
| | - Guoqin Huang
- Research Center on Ecological Sciences, Jiangxi Agricultural University, Nanchang, China
| | - Muhammad Aamer
- Research Center on Ecological Sciences, Jiangxi Agricultural University, Nanchang, China
| | - Muhammad Umair Hassan
- Research Center on Ecological Sciences, Jiangxi Agricultural University, Nanchang, China
| | - Ayman El Sabagh
- Department of Field Crops, Faculty of Agriculture, Siirt University, Siirt, Turkey
- Department of Agronomy, Faculty of Agriculture, University of Kafrelsheikh, Kafr El Sheikh, Egypt
| |
Collapse
|
15
|
Li Y, Wang M, Guo T, Li S, Teng K, Dong D, Liu Z, Jia C, Chao Y, Han L. Overexpression of abscisic acid-insensitive gene ABI4 from Medicago truncatula, which could interact with ABA2, improved plant cold tolerance mediated by ABA signaling. FRONTIERS IN PLANT SCIENCE 2022; 13:982715. [PMID: 36212309 PMCID: PMC9545351 DOI: 10.3389/fpls.2022.982715] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/29/2022] [Indexed: 06/16/2023]
Abstract
ABI4 is considered an important transcription factor with multiple regulatory functions involved in many biological events. However, its role in abiotic stresses, especially low-temperature-induced stress, is poorly understood. In this study, the MtABI4 gene was derived from M. truncatula, a widely used forage grass. Analysis of subcellular localization indicated that ABI4 was localized in the nucleus. Identification of expression characteristics showed that ABI4 was involved in the regulatory mechanisms of multiple hormones and could be induced by the low temperature. IP-MS assay revealed that MtABI4 protein could interact with xanthoxin dehydrogenase protein (ABA2). The two-hybrid yeast assay and the biomolecular fluorescence complementarity assay further supported this finding. Expression analysis demonstrated that overexpression of MtABI4 induced an increase in ABA2 gene expression both in M. truncatula and Arabidopsis, which in turn increased the ABA level in transgenic plants. In addition, the transgenic lines with the overexpression of MtABI4 exhibited enhanced tolerance to low temperature, including lower malondialdehyde content, electrical conductivity, and cell membrane permeability, compared with the wide-type lines after being cultivated for 5 days in 4°C. Gene expression and enzyme activities of the antioxidant system assay revealed the increased activities of SOD, CAT, MDHAR, and GR, and higher ASA/DHA ratio and GSH/GSSG ratio in transgenic lines. Additionally, overexpression of ABI4 also induced the expression of members of the Inducer of CBF expression genes (ICEs)-C-repeat binding transcription factor genes(CBFs)-Cold regulated genes (CORs) low-temperature response module. In summary, under low-temperature conditions, overexpression of ABI4 could enhance the content of endogenous ABA in plants through interactions with ABA2, which in turn reduced low-temperature damage in plants. This provides a new perspective for further understanding the molecular regulatory mechanism of plant response to low temperature and the improvement of plant cold tolerance.
Collapse
Affiliation(s)
- Yinruizhi Li
- Turfgrass Research Institute, College of Grassland Science, Beijing Forestry University, Beijing, China
| | - Mengdi Wang
- Turfgrass Research Institute, College of Grassland Science, Beijing Forestry University, Beijing, China
| | - Tao Guo
- Chongqing Key Laboratory of Germplasm Innovation and Utilization of Native Plants, Chongqing Landscape and Gardening Research Institute, Chongqing, China
| | - Shuwen Li
- Turfgrass Research Institute, College of Grassland Science, Beijing Forestry University, Beijing, China
| | - Ke Teng
- Beijing Research and Development Center for Grass and Environment, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Di Dong
- Turfgrass Research Institute, College of Grassland Science, Beijing Forestry University, Beijing, China
| | - Zhuocheng Liu
- Turfgrass Research Institute, College of Grassland Science, Beijing Forestry University, Beijing, China
| | - Chenyan Jia
- Inner Mongolia Mengcao Ecological Environment (Group) Co., Ltd., Hohhot, China
| | - Yuehui Chao
- Turfgrass Research Institute, College of Grassland Science, Beijing Forestry University, Beijing, China
| | - Liebao Han
- Turfgrass Research Institute, College of Grassland Science, Beijing Forestry University, Beijing, China
| |
Collapse
|
16
|
Tang J, Zhao Y, Qi S, Dai Q, Lin Q, Duan Y. Abscisic acid alleviates chilling injury in cold-stored peach fruit by regulating ethylene and hydrogen peroxide metabolism. FRONTIERS IN PLANT SCIENCE 2022; 13:987573. [PMID: 36147223 PMCID: PMC9488807 DOI: 10.3389/fpls.2022.987573] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 08/05/2022] [Indexed: 05/02/2023]
Abstract
Peach (Prunus persica (L.) Batsch) is susceptible to chilling injury under improper low-temperature storage (2°C-5°C). Previous research has shown that abscisic acid (ABA) alleviates chilling injury in fruits and vegetables, but the potential mechanism is still unclear. To explore its effectiveness and potential mechanism in alleviating chilling injury during cold storage, exogenous ABA was applied to peach fruit by immersion in 100 μmol L-1 solutions for 10 min. In our experiment, ABA alleviated chilling injury by reducing hydrogen peroxide (H2O2) content and ethylene production. In addition, ABA inhibited the expression of the ethylene synthesis-related genes PpACO1 and PpEIN2. At the same time, ABA activated the antioxidant enzymatic pathway and the ascorbate-glutathione (AsA-GSH) cycle, the transcript abundance encoding genes related to antioxidant enzyme activities also changed correspondingly. The results suggested that ABA alleviated chilling injury by scavenging excessive H2O2 by promoting antioxidant enzymes and the AsA-GSH pathway.
Collapse
Affiliation(s)
- Jixing Tang
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yaoyao Zhao
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shuning Qi
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qi Dai
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
- Department of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Qiong Lin
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yuquan Duan
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
17
|
Yu M, Huang L, Feng N, Zheng D, Zhao J. Exogenous uniconazole enhances tolerance to chilling stress in mung beans (Vigna radiata L.) through cross talk among photosynthesis, antioxidant system, sucrose metabolism, and hormones. JOURNAL OF PLANT PHYSIOLOGY 2022; 276:153772. [PMID: 35872423 DOI: 10.1016/j.jplph.2022.153772] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 07/13/2022] [Accepted: 07/14/2022] [Indexed: 06/15/2023]
Abstract
To monitor the role of exogenous uniconazole in mitigating chilling stress, this study investigated the effect of foliar spraying of 50 mg L-1 uniconazole on the chilling (15 °C) tolerance of mung beans at the flowering stage. The results showed that uniconazole significantly enhanced the reactive oxygen species (ROS) scavenging ability of mung beans by increasing the superoxide dismutase (SOD), peroxidase (POD), ascorbate peroxidase (APX), glutathione reductase (GR) activities, the contents of ascorbic acid (AsA) and glutathione (GSH), and the transcription levels of SOD and POD under chilling stress. The uniconazole applications also drastically increased the net photosynthetic rate (Pn), maximum net photosynthetic rate (Pnmax), maximum quantum yield of PSII (Fv/Fm), and the expression levels of the corresponding photosynthetic genes PsbO, PsbP, PsbQ, PsbY, and Psb28. This, in turn, resulted in a higher sucrose content. Meanwhile, uniconazole increased the indole-3-acetic acid (IAA) content but reduced the gibberellin A3 (GA3) content under chilling stress. During the recovery period, the photosynthetic parameters and ROS of plants receiving uniconazole recovered faster, and the antioxidant activity and non-antioxidant contents were higher than in chilling-treated plants. Additionally, chilling stress markedly reduced the pod number per plant, grain number per plant, and 100-seed weight, whereas uniconazole significantly increased the grain weight per plant by 53.47% compared to the chilling treatment. These results strongly suggest that uniconazole can effectively protect mung beans from chilling stress damage by protecting the photosynthetic machinery and enhancing the antioxidant capacity to quench excessive ROS caused by chilling stress. These effects are closely relevant to chilling tolerance enhancement and yield improvement in mung beans.
Collapse
Affiliation(s)
- Minglong Yu
- College of Coastal Agriculture Sciences, Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China; College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, 163319, China
| | - Lu Huang
- College of Coastal Agriculture Sciences, Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China; Shenzhen Reseach Institute of Guangdong Ocean University, Shenzhen, Guangdong, 518108, China
| | - Naijie Feng
- College of Coastal Agriculture Sciences, Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China; Shenzhen Reseach Institute of Guangdong Ocean University, Shenzhen, Guangdong, 518108, China
| | - Dianfeng Zheng
- College of Coastal Agriculture Sciences, Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China; Shenzhen Reseach Institute of Guangdong Ocean University, Shenzhen, Guangdong, 518108, China.
| | - Jingjing Zhao
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, 163319, China
| |
Collapse
|
18
|
Exogenous Proline Optimizes Osmotic Adjustment Substances and Active Oxygen Metabolism of Maize Embryo under Low-Temperature Stress and Metabolomic Analysis. Processes (Basel) 2022. [DOI: 10.3390/pr10071388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Maize (Zea mays L.) is more sensitive to low-temperature stress in the early growth period. The study was to explore the response mechanism of proline to low-temperature stress during maize seed germination. Maize varieties Xinxin 2 (low-temperature insensitive) and Damin 3307 (low-temperature sensitive) were chosen as the test materials, setting the normal temperature for germination (22 °C/10 °C, 9d), low-temperature germination (4 °C/4 °C, 5d) and normal temperature recovery (22 °C/10 °C, 4d), combined with proline (15 mmol·L−1) soaking treatment, to study its effects on the osmotic regulation system and antioxidant protection system of maize embryos. Metabolomics analysis was carried out to initially reveal the basis of the metabolic regulation mechanism. The results showed that the activities of superoxide dismutase (SOD), peroxidase (POD), ascorbic acid peroxidase (APX) and glutathione reductase (GR) were induced to some extent under low-temperature stress. The activities of SOD, POD, APX and GR were further enhanced in the soaking seeds with proline. Proline treatment improved the activities of catalase (CAT), monodehydrated ascorbic acid reductase (MDHAR) and dehydroascorbic acid (DHAR), increased the contents of ascorbic acid (AsA) and glutathione (GSH) and decreased the contents of oxidized ascorbic acid (DHA) and reduced glutathione (GSSG) under low-temperature stress. The ratio of AsA/DHA and GSH/GSSG increased. The increase in antioxidant enzyme activity and the content of antioxidants can help to maintain the stability of the AsA-GSH cycle, and effectively reduce the production rate of superoxide anion (O2•−), hydrogen peroxide (H2O2) and malondialdehyde (MDA). Based on the UPLC-MS/MS detection platform and self-built database, 589 metabolites were detected in each treated maize embryo; 262 differential metabolites were obtained, including 32 organic acids, 28 amino acids, 20 nucleotides and their derivatives, 26 sugars and alcohols, 46 lipids, 51 alkaloids, 44 phenols and 15 other metabolites. Sixty-eight metabolic pathways involving different metabolites were obtained by KEGG enrichment analysis. The results showed that proline increased the accumulation of sorbitol, planteose, erythritose 4-phosphate, arabinose and other saccharides and alcohols in response to low-temperature stress, increased the content of osmoregulation substances under low-temperature stress. Proline also restored the TCA cycle by increasing the content of α-ketoglutarate and fumaric acid. Proline increased the contents of some amino acids (ornithine, proline, glycine, etc.), alkaloids (cocamidopropyl betaine, vanillylamine, 6-hydroxynicotinic acid, etc.), phenols (phenolic ayapin, chlorogenic acid, etc.) and vitamins (ascorbic acid, etc.) in the embryo under low-temperature stress. Combined with pathway enrichment analysis, proline could enhance the low-temperature stress resistance of germinated maize embryos by enhancing starch and sucrose metabolism, arginine and proline metabolism, biosynthesis of secondary metabolites, flavonoid biosynthesis and pentose phosphate pathway.
Collapse
|
19
|
Ding D, Li J, Xie J, Li N, Bakpa EP, Han K, Yang Y, Wang C. Exogenous Zeaxanthin Alleviates Low Temperature Combined with Low Light Induced Photosynthesis Inhibition and Oxidative Stress in Pepper (Capsicum annuum L.) Plants. Curr Issues Mol Biol 2022; 44:2453-2471. [PMID: 35735609 PMCID: PMC9221838 DOI: 10.3390/cimb44060168] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/17/2022] [Accepted: 05/23/2022] [Indexed: 11/16/2022] Open
Abstract
Low temperature combined with low light (LL) affects crop production, especially the yield and quality of peppers, in northwest China during the winter and spring seasons. Zeaxanthin (Z) is a known lipid protectant and active oxygen scavenger. However, whether exogenous Z can mitigate LL-induced inhibition of photosynthesis and oxidative stress in peppers remains unclear. In this study, we investigated the effects of exogenous Z on photosynthesis and the antioxidant machinery of pepper seedlings subject to LL stress. The results showed that the growth and photosynthesis of pepper seedlings were significantly inhibited by LL stress. In addition, the antioxidant machinery was disturbed by the uneven production and elimination of reactive oxygen species (ROS), which resulted in damage to the pepper. For example, membrane lipid peroxidation increased ROS content, and so on. However, exogenous application of Z before LL stress significantly increased the plant height, stem diameter, net photosynthetic rate (Pn), and stomata, which were obviously closed at LL. The activities of antioxidant enzymes superoxide dismutase (SOD), catalase (CAT), mono de-hydroascorbate reductase (MDHAR), de-hydroascorbate reductase (DHAR), ascorbate peroxidase (APX), and ascorbate oxidase (AAO) improved significantly due to the increased expression of CaSOD, CaCAT, CaAPX, CaMDHAR, and CaDHAR. The ascorbic (AsA) and glutathione (GSH) contents and ascorbic/dehydroascorbate (AsA/DHA) and glutathione/oxidized glutathione (GSH/GSSG) ratios also increased significantly, resulting in the effective removal of hydrogen peroxide (H2O2) and superoxide anions (O2•−) caused by LL stress. Thus, pre-treatment with Z significantly reduced ROS accumulation in pepper seedlings under LL stress by enhancing the activity of antioxidant enzymes and accumulation of components of the ascorbate–glutathione (AsA–GSH) cycle and upregulated key genes in the AsA–GSH cycle.
Collapse
|
20
|
Li R, Wu X, Zhu Z, Lv Y, Zheng Y, Lu H, Zhou K, Wu D, Zeng W, Dong W, Zhang T. Polyamines protect boar sperm from oxidative stress in vitro. J Anim Sci 2022; 100:6542920. [PMID: 35247050 PMCID: PMC9030141 DOI: 10.1093/jas/skac069] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 03/03/2022] [Indexed: 11/13/2022] Open
Abstract
Sperm are susceptible to excessive reactive oxygen species (ROS). Spermine and spermidine are secreted in large amounts by the prostate and potent natural free radical scavengers and protect cells against redox disorder. Thus, we used boar sperm as a model to study the polyamines uptake and elucidate whether polyamines protected sperm from ROS stress. Seven mature and fertile Duroc boars (aged 15 to 30 mo) were used in this study. In experiment 1, spermine and spermidine (3.6 ± 0.3 and 3.3 ± 0.2 mmol/L, respectively) were abundant in seminal plasma, and the content of polyamine decreased (P < 0.05) after preservation at 17 °C for 7 d or incubation at 37 °C for 6 h. In experiment 2, using labeling of spermine or spermidine by conjugation with fluorescein isothiocyanate and ultra-high-performance liquid chromatography, we found that the accumulation of spermine or spermidine in sperm was inhibited by quinidine and dl-tetrahydropalmatine (THP, organic cation transporters [OCT] inhibitors, P < 0.05), but not mildronate and l-carnitine (organic cation/carnitine transporter [OCTN] inhibitors, P > 0.05). In experiment 3, the addition of spermine or spermidine (0.5 mmol/L) in the extender resulted in higher motility, plasma membrane and acrosome integrity, and lower ROS level after preservation in vitro at 17 °C for 7 d (P < 0.05). In experiment 4, in the condition of oxidative stress (treatment with H2O2 at 37 °C for 2 h), the addition of spermine (1 mmol/L) or spermidine (0.5 mmol/L) in extender increased activities of glutathione peroxidase, glutathione reductase, and glutathione S-transferase; reduced glutathione and oxidized glutathione ratio (P < 0.05); and alleviate oxidative stress-induced lipid peroxidation, DNA damage, mitochondrial membrane potential (ΔΨm) decline, adenosine triphosphate depletion, and intracellular calcium concentration ([Ca2+]i) overload (P < 0.05), thereby improving boar sperm motility, the integrity of plasma membrane and acrosome (P < 0.05) in vitro. These data suggest that spermine and spermidine alleviate oxidative stress via the antioxidant capacity, thereby improving the efficacy of boar semen preservation.
Collapse
Affiliation(s)
- Rongnan Li
- Key Laboratory for Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Xiaodong Wu
- Key Laboratory for Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Zhendong Zhu
- Key Laboratory for Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Yinghua Lv
- College of Chemistry and Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yi Zheng
- Key Laboratory for Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Hongzhao Lu
- School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, Shaanxi 723001, China
| | - Kaifeng Zhou
- Shandong Provincial Animal Husbandry General Station, Jinan, Shandong 250000, China
| | - De Wu
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education of China, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611100, China
| | - Wenxian Zeng
- Key Laboratory for Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A & F University, Yangling, Shaanxi 712100, China,Corresponding author:
| | - Wuzi Dong
- Key Laboratory for Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Tao Zhang
- School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, Shaanxi 723001, China
| |
Collapse
|
21
|
Polyamines Metabolism Interacts with γ-Aminobutyric Acid, Proline and Nitrogen Metabolisms to Affect Drought Tolerance of Creeping Bentgrass. Int J Mol Sci 2022; 23:ijms23052779. [PMID: 35269921 PMCID: PMC8911106 DOI: 10.3390/ijms23052779] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 02/26/2022] [Accepted: 02/27/2022] [Indexed: 02/01/2023] Open
Abstract
Due to increased global warming and climate change, drought has become a serious threat to horticultural crop cultivation and management. The purpose of this study was to investigate the effect of spermine (Spm) pretreatment on metabolic alterations of polyamine (PAs), γ-aminobutyric acid (GABA), proline (Pro), and nitrogen associated with drought tolerance in creeping bentgrass (Agrostis stolonifera). The results showed that drought tolerance of creeping bentgrass could be significantly improved by the Spm pretreatment, as demonstrated by the maintenance of less chlorophyll loss and higher photosynthesis, gas exchange, water use efficiency, and cell membrane stability. The Spm pretreatment further increased drought-induced accumulation of endogenous PAs, putrescine, spermidine, and Spm, and also enhanced PAs metabolism through improving arginine decarboxylases, ornithine decarboxylase, S-adenosylmethionine decarboxylase, and polyamine oxidase activities during drought stress. In addition, the Spm application not only significantly improved endogenous GABA content, glutamate content, activities of glutamate decarboxylase and α-ketoglutarase, but also alleviated decline in nitrite nitrogen content, nitrate reductase, glutamine synthetase, glutamate synthetase, and GABA aminotransferase activities under drought stress. The Spm-pretreated creeping bentgrass exhibited significantly lower ammonia nitrogen content and nitrite reductase activity as well as higher glutamate dehydrogenase activity than non-pretreated plants in response to drought stress. These results indicated beneficial roles of the Spm on regulating GABA and nitrogen metabolism contributing towards better maintenance of Tricarboxylic acid (TCA) cycle in creeping bentgrass. Interestingly, the Spm-enhanced Pro metabolism rather than more Pro accumulation could be the key regulatory mechanism for drought tolerance in creeping bentgrass. Current findings provide a comprehensive understanding of PAs interaction with other metabolic pathways to regulate drought tolerance in grass species.
Collapse
|
22
|
Dong B, Tang H, Zhu D, Yao Q, Han H, He K, Ding X. Benzothiazole Treatment Regulates the Reactive Oxygen Species Metabolism and Phenylpropanoid Pathway of Rosa roxburghii Fruit to Delay Senescence During Low Temperature Storage. FRONTIERS IN PLANT SCIENCE 2021; 12:753261. [PMID: 34759944 PMCID: PMC8573082 DOI: 10.3389/fpls.2021.753261] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 09/28/2021] [Indexed: 06/13/2023]
Abstract
Rosa roxburghii fruit were used as research objects to study the effects of different concentrations of benzothiazole (BTH) treatment on quality parameters, reactive oxygen species (ROS) metabolism, and the phenylpropanoid pathway during storage at 4°C for 14days. Results showed that BTH effectively delayed senescence with lower decay incidence, weight loss, and lipid peroxidation level and maintained the quality with higher contents of total soluble solid (TSS) content, titratable acidity (TA) in R. roxburghii fruit. Moreover, BTH increased hydrogen peroxide (H2O2) content, superoxide anion (O2 •-) production rate, and the activities and expression of superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), glutathione (GSH) reductase (GR), monodehydroascorbate reductase (MDHAR), dehydroascorbate reductase (DHAR), and peroxidase (POD), and the contents of GSH and ascorbic acid (AsA), but reduced the oxidized GSH (GSSG) content. In addition, the activities and gene expression of phenylalanine ammonia lyase (PAL), cinnamate 4-hydroxylase (C4H), and 4-coumarate-CoA ligase (4CL) and the concentrations of flavonoids, total phenols, and lignin were significantly elevated by BTH. These findings imply that BTH can delay senescence and maintain the quality of R. roxburghii fruit by modulating ROS metabolism and the phenylpropanoid pathway under low-temperature conditions.
Collapse
Affiliation(s)
- Boyu Dong
- College of Ethnic-Minority Medicine, Guizhou Minzu University, Guiyang, China
| | - Hongmin Tang
- College of Ethnic-Minority Medicine, Guizhou Minzu University, Guiyang, China
| | - Dequan Zhu
- College of Ethnic-Minority Medicine, Guizhou Minzu University, Guiyang, China
| | - Qiuping Yao
- College of Ethnic-Minority Medicine, Guizhou Minzu University, Guiyang, China
| | - Hongqiang Han
- College of Ethnic-Minority Medicine, Guizhou Minzu University, Guiyang, China
| | - Kequn He
- College of Ethnic-Minority Medicine, Guizhou Minzu University, Guiyang, China
| | - Xiaochun Ding
- State Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| |
Collapse
|
23
|
Zhang L, Bao G, Zhang M, Yu Z, Guan T, Li J, Su Y, Xi J. Physiological effects of different stubble height and freeze-thaw stress on Secale cereale L. seedlings. BMC PLANT BIOLOGY 2021; 21:451. [PMID: 34615488 PMCID: PMC8493682 DOI: 10.1186/s12870-021-03235-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 09/28/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND As a biennial plant, Secale cereale L is usually harvested in the autumn in the northern part of China where the temperature difference between day and night is of great disparity Through the pot experiment, the seedlings were cut to 2, 6 and 10 cm stubble height, and the simulated freeze-thaw (FT) stress (10/- 5 °C) was carried out after 6 days regrowth. The physiological effects of FT with different stubble height were revealed by analyzing the relative water content (RWC), osmotic adjustment substance concentration (soluble sugar and protein), membrane peroxidation (MDA) and catalase (CAT) activity. RESULTS The results demonstrated that under freeze stress (- 5 °C), the content of soluble protein and MDA decreased and the seedlings of 2 cm treatment kept higher level of soluble protein and MDA, while the seedlings of 6 and 10 cm treatments kept higher level of the RWC, soluble sugar content, and CAT activity. After FT stress, the content of soluble sugar and protein, RWC in the 6 cm treatment were higher than those in 2 cm and 10 cm treatments, and the CAT activity in 10 cm treatment was the highest while the MDA content is lower. CONCLUSION These data suggest that keeping high stubble height is more adaptive for short-term FT stress.
Collapse
Affiliation(s)
- Longtian Zhang
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education (Jilin University), Jilin Provincial Key Laboratory of Water Resources and Environment; College of New Energy and Environment, Jilin University, Changchun, 130012, China
| | - Guozhang Bao
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education (Jilin University), Jilin Provincial Key Laboratory of Water Resources and Environment; College of New Energy and Environment, Jilin University, Changchun, 130012, China.
| | - Mengyu Zhang
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education (Jilin University), Jilin Provincial Key Laboratory of Water Resources and Environment; College of New Energy and Environment, Jilin University, Changchun, 130012, China
| | - Zihang Yu
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education (Jilin University), Jilin Provincial Key Laboratory of Water Resources and Environment; College of New Energy and Environment, Jilin University, Changchun, 130012, China
| | - Tao Guan
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education (Jilin University), Jilin Provincial Key Laboratory of Water Resources and Environment; College of New Energy and Environment, Jilin University, Changchun, 130012, China
| | - Jingwen Li
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education (Jilin University), Jilin Provincial Key Laboratory of Water Resources and Environment; College of New Energy and Environment, Jilin University, Changchun, 130012, China
| | - Yidan Su
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education (Jilin University), Jilin Provincial Key Laboratory of Water Resources and Environment; College of New Energy and Environment, Jilin University, Changchun, 130012, China
| | - Jinghui Xi
- College of Plant Science, Jilin University, Changchun, 130062, China
| |
Collapse
|
24
|
Garai S, Bhowal B, Kaur C, Singla-Pareek SL, Sopory SK. What signals the glyoxalase pathway in plants? PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2021; 27:2407-2420. [PMID: 34744374 PMCID: PMC8526643 DOI: 10.1007/s12298-021-00991-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 03/15/2021] [Accepted: 04/04/2021] [Indexed: 05/06/2023]
Abstract
Glyoxalase (GLY) system, comprising of GLYI and GLYII enzymes, has emerged as one of the primary methylglyoxal (MG) detoxification pathways with an indispensable role during abiotic and biotic stresses. MG homeostasis is indeed very closely guarded by the cell as its higher levels are cytotoxic for the organism. The dynamic responsiveness of MG-metabolizing GLY pathway to both endogenous cues such as, phytohormones, nutrient status, etc., as well as external environmental fluctuations (abiotic and biotic stresses) indicates that a tight regulation occurs in the cell to maintain physiological levels of MG in the system. Interestingly, GLY pathway is also manipulated by its substrates and reaction products. Hence, an investigation of signalling and regulatory aspects of GLY pathway would be worthwhile. Herein, we have attempted to converge all known factors acting as signals or directly regulating GLYI/II enzymes in plants. Further, we also discuss how crosstalk between these different signal molecules might facilitate the regulation of glyoxalase pathway. We believe that MG detoxification is controlled by intricate mechanisms involving a plethora of signal molecules.
Collapse
Affiliation(s)
- Sampurna Garai
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067 India
| | - Bidisha Bhowal
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067 India
| | - Charanpreet Kaur
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067 India
| | - Sneh Lata Singla-Pareek
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067 India
| | - Sudhir K. Sopory
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067 India
| |
Collapse
|
25
|
Liao J, Shen Q, Li R, Cao Y, Li Y, Zou Z, Ren T, Li F, Fang W, Zhu X. GABA shunt contribution to flavonoid biosynthesis and metabolism in tea plants (Camellia sinensis). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 166:849-856. [PMID: 34229165 DOI: 10.1016/j.plaphy.2021.06.042] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 06/20/2021] [Accepted: 06/22/2021] [Indexed: 06/13/2023]
Abstract
γ-Aminobutyric acid (GABA), a signal molecule, is regarded as the intersection node of carbon and nitrogen metabolism, and its contributions to flavonoid metabolism in tea plant growth and development remain unclear. The correlation between the GABA shunt and flavonoid metabolism in tea plants is worth to explore. Secondary metabolites and their correlations with the taste of tea soup made from tea plants (Camellia sinensis) during different seasons were investigated. Related secondary metabolites and transcript profiles of genes encoding enzymes in the GABA shunt, flavonoid pathway and polyamine biosynthesis were measured throughout the tea plant growth seasons and after exogenous GABA applications. In addition, the abundance of differentially expressed proteins was quantified after treatments with or without exogenous GABA. The tea leaves showed the highest metabolite concentrations in spring season. CsGAD, CsGABAT, CsSPMS, CsODC, CsF3H and CsCHS were found to be important genes in the GABA and anthocyanin biosynthesis pathways. GABA and anthocyanin concentrations showed a positive correlation, to some extent, CsF3H and CsCHS played important roles in the GABA and anthocyanin biosynthesis.
Collapse
Affiliation(s)
- Jieren Liao
- College of Horticulture, Nanjing Agricultural University, No.1 Weigang, Nanjing, 210095, Jiangsu, China.
| | - Qiang Shen
- Institute of Tea Sciences, Guizhou Provincial Academy of Agricultural Sciences, Guiyang, 417100, China.
| | - Ruiyang Li
- College of Horticulture, Nanjing Agricultural University, No.1 Weigang, Nanjing, 210095, Jiangsu, China.
| | - Yu Cao
- College of Horticulture, Nanjing Agricultural University, No.1 Weigang, Nanjing, 210095, Jiangsu, China.
| | - Yue Li
- College of Marine Life Sciences, Ocean University of China, Qingdao, PR China.
| | - Zhongwei Zou
- Department of Plant Science, University of Manitoba, 66 Dafoe Road, Winnipeg, Manitoba, R3T 2N2, Canada.
| | - Taiyu Ren
- College of Horticulture, Nanjing Agricultural University, No.1 Weigang, Nanjing, 210095, Jiangsu, China.
| | - Fang Li
- College of Horticulture, Nanjing Agricultural University, No.1 Weigang, Nanjing, 210095, Jiangsu, China.
| | - Wanping Fang
- College of Horticulture, Nanjing Agricultural University, No.1 Weigang, Nanjing, 210095, Jiangsu, China.
| | - Xujun Zhu
- College of Horticulture, Nanjing Agricultural University, No.1 Weigang, Nanjing, 210095, Jiangsu, China
| |
Collapse
|
26
|
Yan ZY, Zhao MR, Huang CY, Zhang LJ, Zhang JX. Trehalose alleviates high-temperature stress in Pleurotus ostreatus by affecting central carbon metabolism. Microb Cell Fact 2021; 20:82. [PMID: 33827585 PMCID: PMC8028756 DOI: 10.1186/s12934-021-01572-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 03/26/2021] [Indexed: 11/17/2022] Open
Abstract
Background Trehalose, an intracellular protective agent reported to mediate defense against many stresses, can alleviate high-temperature-induced damage in Pleurotus ostreatus. In this study, the mechanism by which trehalose relieves heat stress was explored by the addition of exogenous trehalose and the use of trehalose-6-phosphate synthase 1 (tps1) overexpression transformants. Results The results suggested that treatment with exogenous trehalose or overexpression of tps1 alleviated the accumulation of lactic acid under heat stress and downregulated the expression of the phosphofructokinase (pfk) and pyruvate kinase (pk) genes, suggesting an ameliorative effect of trehalose on the enhanced glycolysis in P. ostreatus under heat stress. However, the upregulation of hexokinase (hk) gene expression by trehalose indicated the involvement of the pentose phosphate pathway (PPP) in heat stress resistance. Moreover, treatment with exogenous trehalose or overexpression of tps1 increased the gene expression level and enzymatic activity of glucose-6-phosphate dehydrogenase (g6pdh) and increased the production of both the reduced form of nicotinamide adenine dinucleotide phosphate (NADPH) and glutathione (GSH), confirming the effect of trehalose on alleviating oxidative damage by enhancing PPP in P. ostreatus under heat stress. Furthermore, treatment with exogenous trehalose or overexpression of tps1 ameliorated the decrease in the oxygen consumption rate (OCR) caused by heat stress, suggesting a relationship between trehalose and mitochondrial function under heat stress. Conclusions Trehalose alleviates high-temperature stress in P. ostreatus by inhibiting glycolysis and stimulating PPP activity. This study may provide further insights into the heat stress defense mechanism of trehalose in edible fungi from the perspective of intracellular metabolism. Supplementary Information The online version contains supplementary material available at 10.1186/s12934-021-01572-9.
Collapse
Affiliation(s)
- Zhi-Yu Yan
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.,Key Laboratory of Microbial Resources, Ministry of Agriculture and Rural Affairs, Beijing, 100081, China
| | - Meng-Ran Zhao
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.,Key Laboratory of Microbial Resources, Ministry of Agriculture and Rural Affairs, Beijing, 100081, China
| | - Chen-Yang Huang
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.,Key Laboratory of Microbial Resources, Ministry of Agriculture and Rural Affairs, Beijing, 100081, China
| | - Li-Jiao Zhang
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.,Key Laboratory of Microbial Resources, Ministry of Agriculture and Rural Affairs, Beijing, 100081, China
| | - Jin-Xia Zhang
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China. .,Key Laboratory of Microbial Resources, Ministry of Agriculture and Rural Affairs, Beijing, 100081, China.
| |
Collapse
|
27
|
Alcázar R, Bueno M, Tiburcio AF. Polyamines: Small Amines with Large Effects on Plant Abiotic Stress Tolerance. Cells 2020; 9:E2373. [PMID: 33138071 PMCID: PMC7692116 DOI: 10.3390/cells9112373] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/20/2020] [Accepted: 10/23/2020] [Indexed: 12/15/2022] Open
Abstract
In recent years, climate change has altered many ecosystems due to a combination of frequent droughts, irregular precipitation, increasingly salinized areas and high temperatures. These environmental changes have also caused a decline in crop yield worldwide. Therefore, there is an urgent need to fully understand the plant responses to abiotic stress and to apply the acquired knowledge to improve stress tolerance in crop plants. The accumulation of polyamines (PAs) in response to many abiotic stresses is one of the most remarkable plant metabolic responses. In this review, we provide an update about the most significant achievements improving plant tolerance to drought, salinity, low and high temperature stresses by exogenous application of PAs or genetic manipulation of endogenous PA levels. We also provide some clues about possible mechanisms underlying PA functions, as well as known cross-talks with other stress signaling pathways. Finally, we discuss about the possible use of PAs for seed priming to induce abiotic stress tolerance in agricultural valuable crop plants.
Collapse
Affiliation(s)
- Rubén Alcázar
- Polyamine’s Laboratory, Department of Biology, Healthcare and Environment, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain;
| | - Milagros Bueno
- Laboratory of Plant Physiology, Department of Animal Biology, Plant Biology and Ecology, Faculty of Experimental Science, University of Jaén, 23071 Jaén, Spain;
| | - Antonio F. Tiburcio
- Polyamine’s Laboratory, Department of Biology, Healthcare and Environment, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain;
| |
Collapse
|
28
|
Tao MQ, Jahan MS, Hou K, Shu S, Wang Y, Sun J, Guo SR. Bitter Melon ( Momordica charantia L.) Rootstock Improves the Heat Tolerance of Cucumber by Regulating Photosynthetic and Antioxidant Defense Pathways. PLANTS (BASEL, SWITZERLAND) 2020; 9:E692. [PMID: 32485835 PMCID: PMC7356966 DOI: 10.3390/plants9060692] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 05/17/2020] [Accepted: 05/25/2020] [Indexed: 01/04/2023]
Abstract
High temperature is considered a critical abiotic stressor that is increasing continuously, which is severely affecting plant growth and development. The use of heat-resistant rootstock grafting is a viable technique that is practiced globally to improve plant resistance towards abiotic stresses. In this experiment, we explored the efficacy of bitter melon rootstock and how it regulates photosynthesis and the antioxidant defense system to alleviate heat stress (42 °C/32 °C) in cucumber. Our results revealed that bitter-melon-grafted seedlings significantly relieved heat-induced growth inhibition and photoinhibition, maintained better photosynthesis activity, and accumulated a greater biomass than self-grafted seedlings. We measured the endogenous polyamine and hydrogen peroxide (H2O2) contents to determine the inherent mechanism responsible for these effects, and the results showed that heat stress induced a transient increase in polyamines and H2O2 in the inner courtyard of grafted seedlings. This increment was greater and more robust in bitter-melon-grafted seedlings. In addition, the use of polyamine synthesis inhibitors MGBG (methylglyoxal bis-guanylhydrazone) and D-Arg (D-arginine), further confirmed that the production of H2O2 under heat stress is mediated by the accumulation of endogenous polyamines. Moreover, compared with other treatments, the bitter-melon-grafted seedlings maintained high levels of antioxidant enzyme activity under high temperature conditions. However, these activities were significantly inhibited by polyamine synthesis inhibitors and H2O2 scavengers (dimethylthiourea, DMTU), indicating that bitter melon rootstock not only maintained better photosynthetic activity under conditions of high temperature stress but also mediated the production of H2O2 through the regulation of the high level of endogenous polyamines, thereby boosting the antioxidant defense system and comprehensively improving the heat tolerance of cucumber seedlings. Taken together, these results indicate that grafting with a resistant cultivar is a promising alternative tool for reducing stress-induced damage.
Collapse
Affiliation(s)
- Mei-Qi Tao
- Key Laboratory of Southern Vegetable Crop Genetic Improvement in Ministry of Agriculture, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (M.-Q.T.); (M.S.J.); (K.H.); (S.S.); (Y.W.); (J.S.)
| | - Mohammad Shah Jahan
- Key Laboratory of Southern Vegetable Crop Genetic Improvement in Ministry of Agriculture, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (M.-Q.T.); (M.S.J.); (K.H.); (S.S.); (Y.W.); (J.S.)
- Department of Horticulture, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh
| | - Kun Hou
- Key Laboratory of Southern Vegetable Crop Genetic Improvement in Ministry of Agriculture, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (M.-Q.T.); (M.S.J.); (K.H.); (S.S.); (Y.W.); (J.S.)
| | - Sheng Shu
- Key Laboratory of Southern Vegetable Crop Genetic Improvement in Ministry of Agriculture, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (M.-Q.T.); (M.S.J.); (K.H.); (S.S.); (Y.W.); (J.S.)
- Suqian Academy of Protected Horticulture, Nanjing Agricultural University, Suqian 223800, China
| | - Yu Wang
- Key Laboratory of Southern Vegetable Crop Genetic Improvement in Ministry of Agriculture, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (M.-Q.T.); (M.S.J.); (K.H.); (S.S.); (Y.W.); (J.S.)
| | - Jin Sun
- Key Laboratory of Southern Vegetable Crop Genetic Improvement in Ministry of Agriculture, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (M.-Q.T.); (M.S.J.); (K.H.); (S.S.); (Y.W.); (J.S.)
- Suqian Academy of Protected Horticulture, Nanjing Agricultural University, Suqian 223800, China
| | - Shi-Rong Guo
- Key Laboratory of Southern Vegetable Crop Genetic Improvement in Ministry of Agriculture, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (M.-Q.T.); (M.S.J.); (K.H.); (S.S.); (Y.W.); (J.S.)
- Suqian Academy of Protected Horticulture, Nanjing Agricultural University, Suqian 223800, China
| |
Collapse
|
29
|
Ahmad S, Yuan C, Yang Q, Yang Y, Cheng T, Wang J, Pan H, Zhang Q. Morpho-physiological integrators, transcriptome and coexpression network analyses signify the novel molecular signatures associated with axillary bud in chrysanthemum. BMC PLANT BIOLOGY 2020; 20:145. [PMID: 32264822 PMCID: PMC7140574 DOI: 10.1186/s12870-020-02336-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 03/09/2020] [Indexed: 05/20/2023]
Abstract
BACKGROUND Axillary bud is an important agronomic and economic trait in cut chrysanthemum. Bud outgrowth is an intricate process controlled by complex molecular regulatory networks, physio-chemical integrators and environmental stimuli. Temperature is one of the key regulators of bud's fate. However, little is known about the temperature-mediated control of axillary bud at molecular levels in chrysanthemum. A comprehensive study was designed to study the bud outgrowth at normal and elevated temperature in cut chrysanthemum. Leaf morphology, histology, physiological parameters were studied to correlate the leaf activity with bud morphology, sucrose and hormonal regulation and the molecular controllers. RESULTS Temperature caused differential bud outgrowth along bud positions. Photosynthetic leaf area, physiological indicators and sucrose utilization were changed considerable due to high temperature. Comparative transcriptome analysis identified a significant proportion of bud position-specific genes.Weighted Gene Co-expression Network Analysis (WGCNA) showed that axillary bud control can be delineated by modules of coexpressed genes; especially, MEtan3, MEgreen2 and MEantiquewhite presented group of genes specific to bud length. A comparative analysis between different bud positions in two temperatures revealed the morpho-physiological traits associated with specific modules. Moreover, the transcriptional regulatory networks were configured to identify key determinants of bud outgrowth. Cell division, organogenesis, accumulation of storage compounds and metabolic changes were prominent during the bud emergence. CONCLUSIONS RNA-seq data coupled with morpho-physiological integrators from three bud positions at two temperature regimes brings a robust source to understand bud outgrowth status influenced by high temperature in cut chrysanthemum. Our results provide helpful information for elucidating the regulatory mechanism of temperature on axillary bud growth in chrysanthemum.
Collapse
Affiliation(s)
- Sagheer Ahmad
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Cunquan Yuan
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Qingqing Yang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Yujie Yang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Tangren Cheng
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Jia Wang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Huitang Pan
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Qixiang Zhang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China.
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
30
|
Xiang N, Hu J, Wen T, Brennan MA, Brennan CS, Guo X. Effects of temperature stress on the accumulation of ascorbic acid and folates in sweet corn (Zea mays L.) seedlings. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2020; 100:1694-1701. [PMID: 31803938 DOI: 10.1002/jsfa.10184] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 11/05/2019] [Accepted: 11/28/2019] [Indexed: 05/26/2023]
Abstract
BACKGROUND Extreme temperatures are among the primary abiotic stresses that affect plant growth and development. Ascorbic acid (AsA) is an efficient antioxidant for scavenging relative oxygen species accumulated under stress. Folates play a significant role in DNA synthesis and protect plants against oxidative stress. Sweet corn (Zea mays L.), a crop grown worldwide, is sensitive to extreme temperatures at seedling stage, which may cause yield loss. This study was conducted to explore the biosynthetic regulative mechanism of AsA and folates in sweet corn seedlings under temperature stress. RESULTS The AsA and folate composition and relative gene expression in sweet corn seedlings grown under different temperature stresses (10, 25, and 40 °C) were evaluated. The imposition of temperature stress altered the AsA content mainly by modulating the expression of Zm DHAR, whose encoded enzyme dehydroascorbic reductase (DHAR) is essential in the AsA recycle pathway. Low temperature stress raised the expressions of relative genes, leading to folate accumulation. High temperature stress modulated the folate content by influencing the expression of the correspondence gene for aminodeoxychorismate synthase, Zm ADCS, as well as downstream genes that connected with DNA methylation. CONCLUSION These results provided a theoretical basis, at a genetic level, for understanding the stress responses mechanism in sweet corn seedlings, offering guidance for sweet corn cultivation. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Nan Xiang
- School of Food Science and Engineering, South China University of Technology, Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou, China
| | - Jianguang Hu
- Key Laboratory of Crops Genetics Improvement of Guangdong Province, Crop Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Tianxiang Wen
- Key Laboratory of Crops Genetics Improvement of Guangdong Province, Crop Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Margaret Anne Brennan
- Department of Wine, Food Molecular Biosciences, Lincoln University, Lincoln, New Zealand
| | - Charles Stephen Brennan
- School of Food Science and Engineering, South China University of Technology, Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou, China
- Department of Wine, Food Molecular Biosciences, Lincoln University, Lincoln, New Zealand
| | - Xinbo Guo
- School of Food Science and Engineering, South China University of Technology, Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou, China
| |
Collapse
|
31
|
Banerjee A, Singh A, Roychoudhury A. Spermidine application reduces fluoride uptake and ameliorates physiological injuries in a susceptible rice cultivar by activating diverse regulators of the defense machinery. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:36598-36614. [PMID: 31734839 DOI: 10.1007/s11356-019-06711-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Accepted: 10/07/2019] [Indexed: 06/10/2023]
Abstract
The manuscript illustrates the ameliorative effects of exogenously applied higher polyamine (PA), spermidine (Spd) in the susceptible indica rice cultivar IR-64 subjected to prolonged fluoride stress. The Spd treatment drastically reduced fluoride bioaccumulation by restricting entry of the anions through chloride channels and enabled better maintenance of the proton gradient via accumulation of P-H+/ATPase, thereby improving the root and shoot lengths, fresh and dry weights, RWC, chlorophyll content and activities of pyruvate dehydrogenase (PyrDH), α-amylase, and nitrate reductase (NR) in the Spd-treated, stressed plants. Expression of RuBisCo, PyrDH, α-amylase, and NR was stimulated. Spd supplementation reduced the molecular damage indices like malondialdehyde, lipoxygenase, protease activity, electrolyte leakage, protein carbonylation, H2O2, and methylglyoxal (detoxified by glyoxalase II). Mitigation of oxidative damage was facilitated by the accumulation and utilization of proline, glycine-betaine, total amino acids, higher PAs, anthocyanin, flavonoids, β-carotene, xanthophyll, and phenolics as verified from the expression of genes like P5CS, BADH1, SAMDC, SPDS, SPMS, DAO, PAO, and PAL. Spd treatment activated the ascorbate-glutathione cycle in the stressed seedlings. Expression and activities of enzymatic antioxidants showed that GPOX, APX, GPX, and GST were the chief ROS scavengers. Exogenous Spd promoted ABA accumulation by upregulating NCED3 and suppressing ABA8ox1 expression. ABA-dependent osmotic stress-responsive genes like Osem, WRKY71, and TRAB1 as well as ABA-independent transcription factor encoding gene DREB2A were induced by Spd. Thus, Spd treatment ameliorated fluoride-mediated injuries in IR-64 by restricting fluoride uptake, refining the defense machinery and activating the ABA-dependent as well as ABA-independent stress-responsive genes.
Collapse
Affiliation(s)
- Aditya Banerjee
- Post Graduate Department of Biotechnology, St. Xavier's College (Autonomous), 30, Mother Teresa Sarani, Kolkata, West Bengal, 700016, India
| | - Ankur Singh
- Post Graduate Department of Biotechnology, St. Xavier's College (Autonomous), 30, Mother Teresa Sarani, Kolkata, West Bengal, 700016, India
| | - Aryadeep Roychoudhury
- Post Graduate Department of Biotechnology, St. Xavier's College (Autonomous), 30, Mother Teresa Sarani, Kolkata, West Bengal, 700016, India.
| |
Collapse
|
32
|
Yuan L, Wang J, Xie S, Zhao M, Nie L, Zheng Y, Zhu S, Hou J, Chen G, Wang C. Comparative Proteomics Indicates That Redox Homeostasis Is Involved in High- and Low-Temperature Stress Tolerance in a Novel Wucai ( Brassica campestris L.) Genotype. Int J Mol Sci 2019; 20:ijms20153760. [PMID: 31374822 PMCID: PMC6696267 DOI: 10.3390/ijms20153760] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 07/28/2019] [Accepted: 07/30/2019] [Indexed: 02/06/2023] Open
Abstract
The genotype WS-1, previously identified from novel wucai germplasm, is tolerant to both low-temperature (LT) and high-temperature (HT) stress. However, it is unclear which signal transduction pathway or acclimation mechanisms are involved in the temperature-stress response. In this study, we used the proteomic method of tandem mass tag (TMT) coupled with liquid chromatography-mass spectrometry (LC-MS/MS) to identify 1022 differentially expressed proteins (DEPs) common to WS-1, treated with either LT or HT. Among these 1022 DEPs, 172 were upregulated in response to both LT and HT, 324 were downregulated in response to both LT and HT, and 526 were upregulated in response to one temperature stress and downregulated in response to the other. To illustrate the common regulatory pathway in WS-1, 172 upregulated DEPs were further analyzed. The redox homeostasis, photosynthesis, carbohydrate metabolism, heat-shockprotein, and chaperones and signal transduction pathways were identified to be associated with temperature stress tolerance in wucai. In addition, 35S:BcccrGLU1 overexpressed in Arabidopsis, exhibited higher reduced glutathione (GSH) content and reduced glutathione/oxidized glutathione (GSH/GSSG) ratio and less oxidative damage under temperature stress. This result is consistent with the dynamic regulation of the relevant proteins involved in redox homeostasis. These data demonstrate that maintaining redox homeostasis is an important common regulatory pathway for tolerance to temperature stress in novel wucai germplasm.
Collapse
Affiliation(s)
- Lingyun Yuan
- College of Horticulture, Vegetable Genetics and Breeding Laboratory, Anhui Agricultural University, 130 West Changjiang Road, Hefei 230036, China
- Provincial Engineering Laboratory for Horticultural Crop Breeding of Anhui, 130 West of Changjiang Road, Hefei 230036, China
- Department of vegetable culture and breeding, Wanjiang Vegetable Industrial Technology Institute, Maanshan 238200, China
| | - Jie Wang
- College of Horticulture, Vegetable Genetics and Breeding Laboratory, Anhui Agricultural University, 130 West Changjiang Road, Hefei 230036, China
- Provincial Engineering Laboratory for Horticultural Crop Breeding of Anhui, 130 West of Changjiang Road, Hefei 230036, China
| | - Shilei Xie
- College of Horticulture, Vegetable Genetics and Breeding Laboratory, Anhui Agricultural University, 130 West Changjiang Road, Hefei 230036, China
- Provincial Engineering Laboratory for Horticultural Crop Breeding of Anhui, 130 West of Changjiang Road, Hefei 230036, China
| | - Mengru Zhao
- College of Horticulture, Vegetable Genetics and Breeding Laboratory, Anhui Agricultural University, 130 West Changjiang Road, Hefei 230036, China
- Provincial Engineering Laboratory for Horticultural Crop Breeding of Anhui, 130 West of Changjiang Road, Hefei 230036, China
| | - Libing Nie
- College of Horticulture, Vegetable Genetics and Breeding Laboratory, Anhui Agricultural University, 130 West Changjiang Road, Hefei 230036, China
- Provincial Engineering Laboratory for Horticultural Crop Breeding of Anhui, 130 West of Changjiang Road, Hefei 230036, China
| | - Yushan Zheng
- College of Horticulture, Vegetable Genetics and Breeding Laboratory, Anhui Agricultural University, 130 West Changjiang Road, Hefei 230036, China
- Provincial Engineering Laboratory for Horticultural Crop Breeding of Anhui, 130 West of Changjiang Road, Hefei 230036, China
| | - Shidong Zhu
- College of Horticulture, Vegetable Genetics and Breeding Laboratory, Anhui Agricultural University, 130 West Changjiang Road, Hefei 230036, China
- Provincial Engineering Laboratory for Horticultural Crop Breeding of Anhui, 130 West of Changjiang Road, Hefei 230036, China
- Department of vegetable culture and breeding, Wanjiang Vegetable Industrial Technology Institute, Maanshan 238200, China
| | - Jinfeng Hou
- College of Horticulture, Vegetable Genetics and Breeding Laboratory, Anhui Agricultural University, 130 West Changjiang Road, Hefei 230036, China
- Provincial Engineering Laboratory for Horticultural Crop Breeding of Anhui, 130 West of Changjiang Road, Hefei 230036, China
- Department of vegetable culture and breeding, Wanjiang Vegetable Industrial Technology Institute, Maanshan 238200, China
| | - Guohu Chen
- College of Horticulture, Vegetable Genetics and Breeding Laboratory, Anhui Agricultural University, 130 West Changjiang Road, Hefei 230036, China
- Provincial Engineering Laboratory for Horticultural Crop Breeding of Anhui, 130 West of Changjiang Road, Hefei 230036, China
| | - Chenggang Wang
- College of Horticulture, Vegetable Genetics and Breeding Laboratory, Anhui Agricultural University, 130 West Changjiang Road, Hefei 230036, China.
- Provincial Engineering Laboratory for Horticultural Crop Breeding of Anhui, 130 West of Changjiang Road, Hefei 230036, China.
- Department of vegetable culture and breeding, Wanjiang Vegetable Industrial Technology Institute, Maanshan 238200, China.
| |
Collapse
|
33
|
Liu T, Du Q, Li S, Yang J, Li X, Xu J, Chen P, Li J, Hu X. GSTU43 gene involved in ALA-regulated redox homeostasis, to maintain coordinated chlorophyll synthesis of tomato at low temperature. BMC PLANT BIOLOGY 2019; 19:323. [PMID: 31319801 PMCID: PMC6639942 DOI: 10.1186/s12870-019-1929-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 07/09/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Exogenous 5-aminolevulinic acid (ALA) positively regulates plants chlorophyll synthesis and protects them against environmental stresses, although the protection mechanism is not fully clear. Here, we explored the effects of ALA on chlorophyll synthesis in tomato plants, which are sensitive to low temperature. We also examined the roles of the glutathione S-transferase (GSTU43) gene, which is involved in ALA-induced tolerance to oxidation stress and regulation of chlorophyll synthesis under low temperature. RESULTS Exogenous ALA alleviated low temperature caused chlorophyll synthesis obstacle of uroporphyrinogen III (UROIII) conversion to protoporphyrin IX (Proto IX), and enhanced the production of chlorophyll and its precursors, including endogenous ALA, Proto IX, Mg-protoporphyrin IX (Mg-proto IX), and protochlorophyll (Pchl), under low temperature in tomato leaves. However, ALA did not regulate chlorophyll synthesis at the level of transcription. Notably, ALA up-regulated the GSTU43 gene and protein expression and increased GST activity. Silencing of GSTU43 with virus-induced gene silencing reduced the activities of GST, superoxide dismutase, catalase, ascorbate peroxidase, and glutathione reductase, and increased the membrane lipid peroxidation; while fed with ALA significant increased all these antioxidase activities and antioxidant contents, and alleviated the membrane damage. CONCLUSIONS ALA triggered GST activity encoded by GSTU43, and increased tomato tolerance to low temperature-induced oxidative stress, perhaps with the assistance of ascorbate- and/or a glutathione-regenerating cycles, and actively regulated the plant redox homeostasis. This latter effect reduced the degree of membrane lipid peroxidation, which was essential for the coordinated synthesis of chlorophyll.
Collapse
Affiliation(s)
- Tao Liu
- College of Horticulture, Northwest A & F University, Yangling, 712100 Shaanxi China
- Key Laboratory of Protected Horticultural Engineering in Northwest, Ministry of Agriculture, Yangling, 712100 Shaanxi China
- Shaanxi Protected Agriculture Research Centre, Yangling, 712100 Shaanxi China
| | - Qingjie Du
- College of Horticulture, Northwest A & F University, Yangling, 712100 Shaanxi China
- Key Laboratory of Protected Horticultural Engineering in Northwest, Ministry of Agriculture, Yangling, 712100 Shaanxi China
- Shaanxi Protected Agriculture Research Centre, Yangling, 712100 Shaanxi China
| | - Suzhi Li
- College of Horticulture, Northwest A & F University, Yangling, 712100 Shaanxi China
- Key Laboratory of Protected Horticultural Engineering in Northwest, Ministry of Agriculture, Yangling, 712100 Shaanxi China
- Shaanxi Protected Agriculture Research Centre, Yangling, 712100 Shaanxi China
| | - Jianyu Yang
- College of Horticulture, Northwest A & F University, Yangling, 712100 Shaanxi China
- Key Laboratory of Protected Horticultural Engineering in Northwest, Ministry of Agriculture, Yangling, 712100 Shaanxi China
- Shaanxi Protected Agriculture Research Centre, Yangling, 712100 Shaanxi China
| | - Xiaojing Li
- College of Horticulture, Northwest A & F University, Yangling, 712100 Shaanxi China
- Key Laboratory of Protected Horticultural Engineering in Northwest, Ministry of Agriculture, Yangling, 712100 Shaanxi China
- Shaanxi Protected Agriculture Research Centre, Yangling, 712100 Shaanxi China
| | - Jiaojiao Xu
- College of Horticulture, Northwest A & F University, Yangling, 712100 Shaanxi China
- Key Laboratory of Protected Horticultural Engineering in Northwest, Ministry of Agriculture, Yangling, 712100 Shaanxi China
- Shaanxi Protected Agriculture Research Centre, Yangling, 712100 Shaanxi China
| | - Pengxiang Chen
- College of Horticulture, Northwest A & F University, Yangling, 712100 Shaanxi China
| | - Jianming Li
- College of Horticulture, Northwest A & F University, Yangling, 712100 Shaanxi China
- Key Laboratory of Protected Horticultural Engineering in Northwest, Ministry of Agriculture, Yangling, 712100 Shaanxi China
- Shaanxi Protected Agriculture Research Centre, Yangling, 712100 Shaanxi China
| | - Xiaohui Hu
- College of Horticulture, Northwest A & F University, Yangling, 712100 Shaanxi China
- Key Laboratory of Protected Horticultural Engineering in Northwest, Ministry of Agriculture, Yangling, 712100 Shaanxi China
- Shaanxi Protected Agriculture Research Centre, Yangling, 712100 Shaanxi China
| |
Collapse
|
34
|
Li X, Yang W, Liu S, Li XQ, Jia J, Zhao P, Cheng L, Qi D, Chen S, Liu G. LcFIN2, a novel chloroplast protein gene from sheepgrass, enhances tolerance to low temperature in Arabidopsis and rice. PHYSIOLOGIA PLANTARUM 2019; 166:628-645. [PMID: 30051480 DOI: 10.1111/ppl.12811] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 07/09/2018] [Accepted: 07/18/2018] [Indexed: 05/25/2023]
Abstract
Adverse environmental stresses affect plant growth and crop yields. Sheepgrass (Leymus chinensis (Trin.) Tzvel), an important forage grass that is widely distributed in the east of Eurasia steppe, has high tolerance to extreme low temperature. Many genes that respond to cold stress were identified in sheepgrass by RNA-sequencing, but more detailed studies are needed to dissect the function of those genes. Here, we found that LcFIN2, a sheepgrass freezing-induced protein 2, encoded a chloroplast-targeted protein. Expression of LcFIN2 was upregulated by freezing, chilling, NaCl and abscisic acid (ABA) treatments. Overexpression of LcFIN2 enhanced the survival rate of transgenic Arabidopsis after freezing stress. Importantly, heterologous expression of LcFIN2 in rice exhibited not only higher survival rate but also accumulated various soluble substances and reduced membrane damage in rice under chilling stress. Furthermore, the chlorophyll content, the quantum photochemistry efficiency of photosystem II (ΦPSII), the non-photochemical quenching (NPQ), the net photosynthesis rate (Pn) and the expression of some chloroplast ribosomal-related and photosynthesis-related genes were higher in the transgenic rice under chilling stress. These findings suggested that the LcFIN2 gene could potentially be used to improve low-temperature tolerance in crops.
Collapse
Affiliation(s)
- Xiaoxia Li
- Key Laboratory of Plant Resources, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China
| | - Weiguang Yang
- Key Laboratory of Plant Resources, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shu Liu
- Key Laboratory of Plant Resources, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiu-Qing Li
- Fredericton Research and Development Centre, Agriculture and Agri-Food Canada, Fredericton, NB, E3B 4Z7, Canada
| | - Junting Jia
- Key Laboratory of Plant Resources, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Pincang Zhao
- Key Laboratory of Plant Resources, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China
| | - Liqin Cheng
- Key Laboratory of Plant Resources, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China
| | - Dongmei Qi
- Key Laboratory of Plant Resources, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China
| | - Shuangyan Chen
- Key Laboratory of Plant Resources, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China
| | - Gongshe Liu
- Key Laboratory of Plant Resources, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China
| |
Collapse
|
35
|
Jin X, Liu T, Xu J, Gao Z, Hu X. Exogenous GABA enhances muskmelon tolerance to salinity-alkalinity stress by regulating redox balance and chlorophyll biosynthesis. BMC PLANT BIOLOGY 2019; 19:48. [PMID: 30709373 PMCID: PMC6359809 DOI: 10.1186/s12870-019-1660-y] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 01/24/2019] [Indexed: 05/19/2023]
Abstract
BACKGROUND Salinity-alkalinity stress is one of the major abiotic stresses affecting plant growth and development. γ-Aminobutyrate (GABA) is a non-protein amino acid that functions in stress tolerance. However, the interactions between cellular redox signaling and chlorophyll (Chl) metabolism involved in GABA-induced salinity-alkalinity stress tolerance in plants remains largely unknown. Here, we investigated the role of GABA in perceiving and regulating chlorophyll biosynthesis and oxidative stress induced by salinity-alkalinity stress in muskmelon leaves. We also evaluated the effects of hydrogen peroxide (H2O2), glutathione (GSH), and ascorbate (AsA) on GABA-induced salinity-alkalinity stress tolerance. RESULTS Salinity-alkalinity stress increased malondialdehyde (MDA) content, relative electrical conductivity (REC), and the activities of superoxide dismutase (SOD), ascorbate peroxidase (APX) and dehydroascorbate reductase (DHAR). Salinity-alkalinity stress decreased shoot dry and fresh weight and leaf area, reduced glutathione and ascorbate (GSH and AsA) contents, activities of glutathione reductase (GR) and monodehydroascorbate reductase (MDAR). By contrast, pretreatment with GABA, H2O2, GSH, or AsA significantly inhibited these salinity-alkalinity stress-induced effects. The ability of GABA to relieve salinity-alkalinity stress was significantly reduced when the production of endogenous H2O2 was inhibited, but was not affected by inhibiting endogenous AsA and GSH production. Exogenous GABA induced respiratory burst oxidase homologue D (RBOHD) genes expression and H2O2 accumulation under normal conditions but reduced the H2O2 content under salinity-alkalinity stress. Salinity-alkalinity stress increased the accumulation of the chlorophyll synthesis precursors glutamate (Glu), δ-aminolevulinic acid (ALA), porphobilinogen (PBG), uroporphyrinogen III (URO III), Mg-protoporphyrin IX (Mg-proto IX), protoporphyrin IX (Proto IX), protochlorophyll (Pchl), thereby increasing the Chl content. Under salinity-alkalinity stress, exogenous GABA increased ALA content, but reduced the contents of Glu, PBG, URO III, Mg-proto IX, Proto IX, Pchl, and Chl. However, salinity-alkalinity stress or GABA treated plant genes expression involved in Chl synthesis had no consistent trends with Chl precursor contents. CONCLUSIONS Exogenous GABA elevated H2O2 may act as a signal molecule, while AsA and GSH function as antioxidants, in GABA-induced salinity-alkalinity tolerance. These factors maintain membrane integrity which was essential for the ordered chlorophyll biosynthesis. Pretreatment with exogenous GABA mitigated salinity-alkalinity stress caused excessive accumulation of Chl and its precursors, to avoid photooxidation injury.
Collapse
Affiliation(s)
- Xiaoqing Jin
- College of Horticulture, Northwest A & F University, Yangling, 712100 Shaanxi China
- Key Laboratory of Protected Horticultural Engineering in Northwest, Ministry of Agriculture, Yangling, 712100 Shaanxi China
| | - Tao Liu
- College of Horticulture, Northwest A & F University, Yangling, 712100 Shaanxi China
- Key Laboratory of Protected Horticultural Engineering in Northwest, Ministry of Agriculture, Yangling, 712100 Shaanxi China
| | - Jiaojiao Xu
- College of Horticulture, Northwest A & F University, Yangling, 712100 Shaanxi China
- Key Laboratory of Protected Horticultural Engineering in Northwest, Ministry of Agriculture, Yangling, 712100 Shaanxi China
| | - Zixing Gao
- College of Horticulture, Northwest A & F University, Yangling, 712100 Shaanxi China
- Key Laboratory of Protected Horticultural Engineering in Northwest, Ministry of Agriculture, Yangling, 712100 Shaanxi China
| | - Xiaohui Hu
- College of Horticulture, Northwest A & F University, Yangling, 712100 Shaanxi China
- Key Laboratory of Protected Horticultural Engineering in Northwest, Ministry of Agriculture, Yangling, 712100 Shaanxi China
| |
Collapse
|
36
|
Wang L, Ma R, Yin Y, Jiao Z. Role of carbon ion beams irradiation in mitigating cold stress in Arabidopsis thaliana. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 162:341-347. [PMID: 30005407 DOI: 10.1016/j.ecoenv.2018.07.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 06/21/2018] [Accepted: 07/03/2018] [Indexed: 05/25/2023]
Abstract
Carbon ion beams irradiation as an important type of ionizing radiation is one of the major approaches used to create mutants in plants. This study investigated the role of carbon ion beams irradiation in mitigating cold stress in Arabidopsis thaliana seedlings. The results showed that 50-Gy carbon ion beam irradiation appeared stimulatory effects on root length and fresh weight in Arabidopsis seedlings under cold stress. In comparison with control, the content of hydrogen peroxide, the production rate of superoxide anion radical, hydroxyl radical generation activity, and malondialdehyde content were obviously decreased in 50-Gy carbon ion beam irradiated seedlings in response to cold stress. Moreover, irradiated 50-Gy carbon ion beam in Arabidopsis seedlings were significantly triggered the efficiency of antioxidant under cold stress. Furthermore, we investigated the expression of cold-related genes in irradiated and non-irradiated samples. Carbon ion beams irradiation up-regulated the expression levels of C-REPEAT BINDING FACTORS (CBFs), INDUCER OF CBF EXPRESSION 1 (ICE1), ICE2, CALMODULIN-BINDING TRANSCRIPTION ACTIVATOR 3 (CAMTA3) and cold-regulated COR genes, in response to cold stress. This study suggests that low-dose carbon ion beams irradiation can modulate the physiological responses and up-regulate cold signaling genes in mitigating cold stress in the growth of Arabidopsis seedlings.
Collapse
Affiliation(s)
- Lin Wang
- Henan Key Laboratory of Ion-beam Bioengineering, Zhengzhou University, Zhengzhou 450052, China
| | - Ruonan Ma
- Henan Key Laboratory of Ion-beam Bioengineering, Zhengzhou University, Zhengzhou 450052, China
| | - Yue Yin
- Henan Key Laboratory of Ion-beam Bioengineering, Zhengzhou University, Zhengzhou 450052, China
| | - Zhen Jiao
- Henan Key Laboratory of Ion-beam Bioengineering, Zhengzhou University, Zhengzhou 450052, China; Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, China.
| |
Collapse
|
37
|
Growth and Physiological Responses of Adenophora triphylla (Thunb.) A.DC. Plug Seedlings to Day and Night Temperature Regimes. AGRONOMY-BASEL 2018. [DOI: 10.3390/agronomy8090173] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Adenophora triphylla (Thunb.) A.DC., three-leaf lady bell, is an important medicinal plant used against cancers and obesity. It has been well-established that the temperature regime affects plant growth and development in many ways. However, there is no study available correlating the growth of A. triphylla seedlings with different day and night temperature regimes. In order to find an optimal temperature regime, growth and physiology were investigated in A. triphylla plug seedlings grown in environment-controlled chambers at different day and night temperatures: 20/20 °C (day/night) (TA), 25/15 °C (TB), and 20/15 °C (TC). The seedlings in plug trays were grown under a light intensity of 150 μmol·m−2·s−1 PPFD (photosynthetic photon flux density) provided by white LEDs, a 70% relative humidity, and a 16 h (day)/8 h (night) photoperiod for six weeks. The results showed that the stem diameter, number of roots, and biomass were significantly larger for seedlings in TB than those in TA or TC. Moreover, the contents of total flavonoid, total phenol, and soluble sugar in seedlings grown in TB were markedly higher than those in seedlings in the other two treatments. Soluble protein content was the lowest in seedlings in TC, while starch content was the lowest in seedlings grown in TA. Furthermore, seedlings grown in TB showed significantly lower activities of antioxidant enzymes such as superoxide dismutase, catalase, ascorbate peroxidase, and guaiacol peroxidase. Native PAGE (polyacrylamide gel electrophoresis) analysis further proved low activities of antioxidant isozymes in TB treatment. Meanwhile, the lowest content of hydrogen peroxide was observed in seedlings grown in TB. In conclusion, the results suggested that the 25/15 °C (day/night) temperature regime is the most suitable for the growth and physiological development of A. triphylla seedlings.
Collapse
|
38
|
Li L, Gu W, Li J, Li C, Xie T, Qu D, Meng Y, Li C, Wei S. Exogenously applied spermidine alleviates photosynthetic inhibition under drought stress in maize (Zea mays L.) seedlings associated with changes in endogenous polyamines and phytohormones. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 129:35-55. [PMID: 29793181 DOI: 10.1016/j.plaphy.2018.05.017] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 05/09/2018] [Accepted: 05/10/2018] [Indexed: 05/21/2023]
Abstract
Drought stress (DS) is a major environmental factor limiting plant growth and crop productivity worldwide. It has been established that exogenous spermidine (Spd) stimulates plant tolerance to DS. The effects of exogenous Spd on plant growth, photosynthetic performance, and chloroplast ultrastructure as well as changes in endogenous polyamines (PAs) and phytohormones were investigate in DS-resistant (Xianyu 335) and DS-sensitive (Fenghe 1) maize seedlings under well-watered and DS treatments. Exogenous Spd alleviated the stress-induced reduction in growth, photosynthetic pigment content, photosynthesis rate (Pn) and photochemical quenching (qP) parameters, including the maximum photochemistry efficiency of photosystem II (PSII) (Fv/Fm), PSII operating efficiency (ФPSII), and qP coefficient. Exogenous Spd further enhanced stress-induced elevation in non-photochemical quenching (NPQ) and the de-epoxidation state of the xanthophyll cycle (DEPS). Microscopic analysis revealed that seedlings displayed a more ordered arrangement of chloroplast ultrastructure upon Spd application during DS. Exogenous Spd increased the endogenous PA concentrations in the stressed plants. Additionally, exogenous Spd increased indoleacetic acid (IAA), zeatin riboside (ZR) and gibberellin A3 (GA3) and decreased salicylic acid (SA) and jasmonate (JA) concentrations under DS. These results indicate that exogenous Spd can alleviate the growth inhibition and damage to the structure and function of the photosynthetic apparatus caused by DS and that this alleviation may be associated with changes in endogenous PAs and phytohormones. This study contributes to advances in the knowledge of Spd-induced drought tolerance.
Collapse
Affiliation(s)
- Lijie Li
- College of Agriculture, Northeast Agricultural University, Harbin 150030, Heilongjiang, China
| | - Wanrong Gu
- College of Agriculture, Northeast Agricultural University, Harbin 150030, Heilongjiang, China
| | - Jing Li
- College of Agriculture, Northeast Agricultural University, Harbin 150030, Heilongjiang, China
| | - Congfeng Li
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 10081, China
| | - Tenglong Xie
- College of Agriculture, Northeast Agricultural University, Harbin 150030, Heilongjiang, China
| | - Danyang Qu
- College of Agriculture, Northeast Agricultural University, Harbin 150030, Heilongjiang, China
| | - Yao Meng
- Heilongjiang Academy of Land Reclamation Sciences, Harbin, 150038, Heilongjiang, China
| | - Caifeng Li
- College of Agriculture, Northeast Agricultural University, Harbin 150030, Heilongjiang, China
| | - Shi Wei
- College of Agriculture, Northeast Agricultural University, Harbin 150030, Heilongjiang, China.
| |
Collapse
|
39
|
Mostofa MG, Ghosh A, Li ZG, Siddiqui MN, Fujita M, Tran LSP. Methylglyoxal - a signaling molecule in plant abiotic stress responses. Free Radic Biol Med 2018; 122:96-109. [PMID: 29545071 DOI: 10.1016/j.freeradbiomed.2018.03.009] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 02/16/2018] [Accepted: 03/06/2018] [Indexed: 01/03/2023]
Abstract
Abiotic stresses are the most common harmful factors, adversely affecting all aspects of plants' life. Plants have to elicit appropriate responses against multifaceted effects of abiotic stresses by reprogramming various cellular processes. Signaling molecules play vital roles in sensing environmental stimuli to modulate gene expression, metabolism and physiological processes in plants to cope with the adverse effects. Methylglyoxal (MG), a dicarbonyl compound, is known to accumulate in cells as a byproduct of various metabolic pathways, including glycolysis. Several works in recent years have demonstrated that MG could play signaling roles via Ca2+, reactive oxygen species (ROS), K+ and abscisic acid. Recently, global gene expression profiling has shown that MG could induce signaling cascades, and an overlap between MG-responsive and stress-responsive signaling events might exist in plants. Once overaccumulated in cells, MG can provoke detrimental effects by generating ROS, forming advanced glycation end products and inactivating antioxidant systems. Plants are also equipped with MG-detoxifying glyoxalase system to save cellular organelles from MG toxicity. Since MG has regulatory functions in plant growth and development, and glyoxalase system is an integral component of abiotic stress adaptation, an in-depth understanding on MG metabolism and glyoxalase system will help decipher mechanisms underlying plant responses to abiotic stresses. Here, we provide a comprehensive update on the current knowledge of MG production and detoxification in plants, and highlight the putative functions of glyoxalase system in mediating plant defense against abiotic stresses. We particularly emphasize on the dual roles of MG and its connection with glutathione-related redox regulation, which is crucial for plant defense and adaptive responses under changing environmental conditions.
Collapse
Affiliation(s)
- Mohammad Golam Mostofa
- Department of Biochemistry and Molecular Biology, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh.
| | - Ajit Ghosh
- Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet, Bangladesh.
| | - Zhong-Guang Li
- School of Life Sciences, Yunnan Normal University, Kunming 650500, PR China.
| | - Md Nurealam Siddiqui
- Department of Biochemistry and Molecular Biology, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh.
| | - Masayuki Fujita
- Laboratory of Plant Stress Responses, Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, Miki, Kagawa 761-0795, Japan.
| | - Lam-Son Phan Tran
- Plant Stress Research Group & Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, 700000, Vietnam; Signaling Pathway Research Unit, RIKEN Center for Sustainable Resource Science, 1-7-22, Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan.
| |
Collapse
|
40
|
Wang Y, Tam NFY. Glutathione-Ascorbate Cycle Is an Early Warning Indicator of Toxicity of BDE-47 in Mangroves. JOURNAL OF ENVIRONMENTAL QUALITY 2018; 47:212-220. [PMID: 29634796 DOI: 10.2134/jeq2016.04.0141] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Mangroves are often exposed to contamination by polybrominated diphenyl ethers (PBDEs) from wastewater discharges and solid waste dumping. As one of the most prevalent and toxic PBDE congeners in the environment, 2,2',4,4'-tetrabromodiphenyl ether (BDE-47) and its oxidative stress deserves more attention. In plants, the glutathione-ascorbate (GSH-AsA) cycle plays an important role in the defensive processes against oxidative stress. However, the importance of this cycle in mangroves to defend against PBDE toxicity has not been reported. We conducted a study to evaluate the effects of BDE-47 on GSH-AsA cycle-related antioxidants in a mangrove species, namely Sheue, H.Y. Liu & J. Yong. An 8-wk hydroponic culture experiment was conducted with 1-yr-old seedlings of exposed to five levels of BDE-47 contamination. At the two high BDE-47 levels (5 and 10 mg L), seedling growth, expressed as dry biomass of leaves and roots, was suppressed from Weeks 4 to 8. Parameters in the GSH-AsA cycle in roots and leaves changed significantly within the first week after exposure, indicating that they were more sensitive indicators to BDE-47 toxicity than growth. The suppression of seedling growth, expressed as final biomass production, at the end of the 8-wk experiment was positively correlated to the antioxidative responses in the first week, confirming the indicative roles of these antioxidants. This is the first study to demonstrate that GSH-AsA cycle-related antioxidants in mangrove plants are sensitive indicators of BDE-47 toxicity. These antioxidants, in particular, ascorbate and glutathione peroxidase, could provide early warning of the toxicity of PBDEs.
Collapse
|
41
|
Liu T, Hu X, Zhang J, Zhang J, Du Q, Li J. H 2O 2 mediates ALA-induced glutathione and ascorbate accumulation in the perception and resistance to oxidative stress in Solanum lycopersicum at low temperatures. BMC PLANT BIOLOGY 2018; 18:34. [PMID: 29448924 PMCID: PMC5815209 DOI: 10.1186/s12870-018-1254-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 02/08/2018] [Indexed: 05/07/2023]
Abstract
BACKGROUND Low temperature is a crucial factor influencing plant growth and development. The chlorophyll precursor, 5-aminolevulinic acid (ALA) is widely used to improve plant cold tolerance. However, the interaction between H2O2 and cellular redox signaling involved in ALA-induced resistance to low temperature stress in plants remains largely unknown. Here, the roles of ALA in perceiving and regulating low temperature-induced oxidative stress in tomato plants, together with the roles of H2O2 and cellular redox states, were characterized. RESULTS Low concentrations (10-25 mg·L- 1) of ALA enhanced low temperature-induced oxidative stress tolerance of tomato seedlings. The most effective concentration was 25 mg·L- 1, which markedly increased the ratio of reduced glutathione and ascorbate (GSH and AsA), and enhanced the activities of superoxide dismutase, catalase, ascorbate peroxidase, dehydroascorbate reductase, and glutathione reductase. Furthermore, gene expression of respiratory burst oxidase homolog1 and H2O2 content were upregulated with ALA treatment under normal conditions. Treatment with exogenous H2O2, GSH, and AsA also induced plant tolerance to oxidative stress at low temperatures, while inhibition of GSH and AsA syntheses significantly decreased H2O2-induced oxidative stress tolerance. Meanwhile, scavenging or inhibition of H2O2 production weakened, but did not eliminate, GSH- or AsA- induced tomato plant tolerance to oxidative stress at low temperatures. CONCLUSIONS Appropriate concentrations of ALA alleviated the low temperature-induced oxidative stress in tomato plants via an antioxidant system. The most effective concentration was 25 mg·L- 1. The results showed that H2O2 induced by exogenous ALA under normal conditions is crucial and may be the initial step for perception and signaling transmission, which then improves the ratio of GSH and AsA. GSH and AsA may then interact with H2O2 signaling, resulting in enhanced antioxidant capacity in tomato plants at low temperatures.
Collapse
Affiliation(s)
- Tao Liu
- College of Horticulture, Northwest Agriculture & Forestry University, Yangling, Shaanxi 712100 China
- Key Laboratory of Protected Horticultural Engineering in Northwest, Ministry of Agriculture, Yangling, Shaanxi 712100 China
| | - Xiaohui Hu
- College of Horticulture, Northwest Agriculture & Forestry University, Yangling, Shaanxi 712100 China
- Key Laboratory of Protected Horticultural Engineering in Northwest, Ministry of Agriculture, Yangling, Shaanxi 712100 China
| | - Jiao Zhang
- College of Horticulture, Northwest Agriculture & Forestry University, Yangling, Shaanxi 712100 China
- Key Laboratory of Protected Horticultural Engineering in Northwest, Ministry of Agriculture, Yangling, Shaanxi 712100 China
| | - Junheng Zhang
- College of Horticulture, Northwest Agriculture & Forestry University, Yangling, Shaanxi 712100 China
- Key Laboratory of Protected Horticultural Engineering in Northwest, Ministry of Agriculture, Yangling, Shaanxi 712100 China
| | - Qingjie Du
- College of Horticulture, Northwest Agriculture & Forestry University, Yangling, Shaanxi 712100 China
- Key Laboratory of Protected Horticultural Engineering in Northwest, Ministry of Agriculture, Yangling, Shaanxi 712100 China
| | - Jianming Li
- College of Horticulture, Northwest Agriculture & Forestry University, Yangling, Shaanxi 712100 China
- Key Laboratory of Protected Horticultural Engineering in Northwest, Ministry of Agriculture, Yangling, Shaanxi 712100 China
| |
Collapse
|
42
|
Madeo F, Eisenberg T, Pietrocola F, Kroemer G. Spermidine in health and disease. Science 2018; 359:359/6374/eaan2788. [DOI: 10.1126/science.aan2788] [Citation(s) in RCA: 438] [Impact Index Per Article: 62.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
43
|
Wang Y, Fan K, Wang J, Ding ZT, Wang H, Bi CH, Zhang YW, Sun HW. Proteomic analysis of Camellia sinensis (L.) reveals a synergistic network in the response to drought stress and recovery. JOURNAL OF PLANT PHYSIOLOGY 2017; 219:91-99. [PMID: 29096085 DOI: 10.1016/j.jplph.2017.10.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 10/13/2017] [Accepted: 10/13/2017] [Indexed: 06/07/2023]
Abstract
Drought is a crucial limiting factor for tea yield and quality. To systematically characterize the molecular response of tea plants to drought stress and its capacity to recover, we used iTRAQ-based comparative proteomic approach to investigate the effects of drought on protein expression profiles in tea seedlings subjected to different drought treatments. A total of 3274 proteins were identified, of which 2169 and 2300 showed differential expressions during drought and recovery, respectively. Functional annotation showed that multiple biological processes were regulated, suggesting that tea plants probably employed multiple and synergistic resistance mechanisms in dealing with drought stress. Hierarchical clustering showed that chlorophyll a/b-binding proteins were up-regulated in DB and RE, suggesting that tea plants might regulate expression of chlorophyll a/b-binding proteins to maintain the photosystem II function during drought stress. Abundant proteins involved in sulfur-containing metabolite pathways, such as glutathione, taurine, hypotaurine, methionine, and cysteine, changed significantly during drought stress. Among them, TL29 interacted with LHCb6 to connect S-containing metabolites with chlorophyll a/b-binding proteins. This suggests that sulfur-containing compounds play important roles in the response to drought stress in tea plants. In addition, the expression of PAL was up-regulated in DA and down-regulated in DB. Cinnamyl alcohol dehydrogenase, caffeic acid O-methyltransferase, and 4-coumarate-CoA ligase also showed significant changes in expression levels, which regulated the biosynthesis of polyphenols. The results indicate that slight drought stress might promote polyphenol biosynthesis, while serious drought stress leads to inhibition. The expression of lipoxygenase and short-chain dehydrogenase increased during slight drought stress and some volatile metabolite pathways were enriched, indicating that drought stress might affect the tea aroma. The study provides valuable information that will lay the foundation for studies investigating the functions of drought response genes in tea leaves.
Collapse
Affiliation(s)
- Yu Wang
- Tea Research Institute, Qingdao Agricultural University, Qingdao, Shandong 266109, China.
| | - Kai Fan
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China.
| | - Jing Wang
- Tea Research Institute, Qingdao Agricultural University, Qingdao, Shandong 266109, China
| | - Zhao-Tang Ding
- Tea Research Institute, Qingdao Agricultural University, Qingdao, Shandong 266109, China.
| | - Hui Wang
- Rizhao Tea Research Institute of Shandong, 276800, China
| | - Cai-Hong Bi
- Linyi Fruit and Tea Technology Extension Center, Shandong, China
| | - Yun-Wei Zhang
- Qingdao Fruit, Tea and Flower Workstation, Qingdao 266071, China
| | - Hai-Wei Sun
- Taishan Academy of Forestry Sciences, Taian, Shandong 271000, China
| |
Collapse
|
44
|
Size effects of chitooligomers with certain degrees of polymerization on the chilling tolerance of wheat seedlings. Carbohydr Polym 2017; 160:194-202. [DOI: 10.1016/j.carbpol.2016.12.058] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 12/20/2016] [Accepted: 12/22/2016] [Indexed: 12/23/2022]
|
45
|
|
46
|
Hasanuzzaman M, Nahar K, Hossain MS, Mahmud JA, Rahman A, Inafuku M, Oku H, Fujita M. Coordinated Actions of Glyoxalase and Antioxidant Defense Systems in Conferring Abiotic Stress Tolerance in Plants. Int J Mol Sci 2017; 18:ijms18010200. [PMID: 28117669 PMCID: PMC5297830 DOI: 10.3390/ijms18010200] [Citation(s) in RCA: 126] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 12/31/2016] [Accepted: 01/10/2017] [Indexed: 12/02/2022] Open
Abstract
Being sessile organisms, plants are frequently exposed to various environmental stresses that cause several physiological disorders and even death. Oxidative stress is one of the common consequences of abiotic stress in plants, which is caused by excess generation of reactive oxygen species (ROS). Sometimes ROS production exceeds the capacity of antioxidant defense systems, which leads to oxidative stress. In line with ROS, plants also produce a high amount of methylglyoxal (MG), which is an α-oxoaldehyde compound, highly reactive, cytotoxic, and produced via different enzymatic and non-enzymatic reactions. This MG can impair cells or cell components and can even destroy DNA or cause mutation. Under stress conditions, MG concentration in plants can be increased 2- to 6-fold compared with normal conditions depending on the plant species. However, plants have a system developed to detoxify this MG consisting of two major enzymes: glyoxalase I (Gly I) and glyoxalase II (Gly II), and hence known as the glyoxalase system. Recently, a novel glyoxalase enzyme, named glyoxalase III (Gly III), has been detected in plants, providing a shorter pathway for MG detoxification, which is also a signpost in the research of abiotic stress tolerance. Glutathione (GSH) acts as a co-factor for this system. Therefore, this system not only detoxifies MG but also plays a role in maintaining GSH homeostasis and subsequent ROS detoxification. Upregulation of both Gly I and Gly II as well as their overexpression in plant species showed enhanced tolerance to various abiotic stresses including salinity, drought, metal toxicity, and extreme temperature. In the past few decades, a considerable amount of reports have indicated that both antioxidant defense and glyoxalase systems have strong interactions in conferring abiotic stress tolerance in plants through the detoxification of ROS and MG. In this review, we will focus on the mechanisms of these interactions and the coordinated action of these systems towards stress tolerance.
Collapse
Affiliation(s)
- Mirza Hasanuzzaman
- Molecular Biotechnology Group, Center of Molecular Biosciences, Tropical Biosphere Research Center, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa 903-0213, Japan.
- Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh.
| | - Kamrun Nahar
- Department of Agricultural Botany, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh.
- Laboratory of Plant Stress Responses, Faculty of Agriculture, Kagawa University, Miki-cho, Kita-gun, Kagawa 761-0795, Japan.
| | - Md Shahadat Hossain
- Laboratory of Plant Stress Responses, Faculty of Agriculture, Kagawa University, Miki-cho, Kita-gun, Kagawa 761-0795, Japan.
| | - Jubayer Al Mahmud
- Laboratory of Plant Stress Responses, Faculty of Agriculture, Kagawa University, Miki-cho, Kita-gun, Kagawa 761-0795, Japan.
- Department of Agroforestry and Environmental Science, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh.
| | - Anisur Rahman
- Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh.
- Laboratory of Plant Stress Responses, Faculty of Agriculture, Kagawa University, Miki-cho, Kita-gun, Kagawa 761-0795, Japan.
| | - Masashi Inafuku
- Molecular Biotechnology Group, Center of Molecular Biosciences, Tropical Biosphere Research Center, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa 903-0213, Japan.
| | - Hirosuke Oku
- Molecular Biotechnology Group, Center of Molecular Biosciences, Tropical Biosphere Research Center, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa 903-0213, Japan.
| | - Masayuki Fujita
- Laboratory of Plant Stress Responses, Faculty of Agriculture, Kagawa University, Miki-cho, Kita-gun, Kagawa 761-0795, Japan.
| |
Collapse
|
47
|
Versluys M, Tarkowski ŁP, Van den Ende W. Fructans As DAMPs or MAMPs: Evolutionary Prospects, Cross-Tolerance, and Multistress Resistance Potential. FRONTIERS IN PLANT SCIENCE 2017; 7:2061. [PMID: 28123393 PMCID: PMC5225100 DOI: 10.3389/fpls.2016.02061] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 12/26/2016] [Indexed: 05/19/2023]
Abstract
This perspective paper proposes that endogenous apoplastic fructans in fructan accumulating plants, released after stress-mediated cellular leakage, or increased by exogenous application, can act as damage-associated molecular patterns (DAMPs), priming plant innate immunity through ancient receptors and defense pathways that most probably evolved to react on microbial fructans acting as microbe-associated molecular patterns (MAMPs). The proposed model is placed in an evolutionary perspective. How this type of DAMP signaling may contribute to cross-tolerance and multistress resistance effects in plants is discussed. Besides apoplastic ATP, NAD and fructans, apoplastic polyamines, secondary metabolites, and melatonin may be considered potential players in DAMP-mediated stress signaling. It is proposed that mixtures of DAMP priming formulations hold great promise as natural and sustainable alternatives for toxic agrochemicals.
Collapse
|
48
|
Pal S, Zhao J, Khan A, Yadav NS, Batushansky A, Barak S, Rewald B, Fait A, Lazarovitch N, Rachmilevitch S. Paclobutrazol induces tolerance in tomato to deficit irrigation through diversified effects on plant morphology, physiology and metabolism. Sci Rep 2016; 6:39321. [PMID: 28004823 PMCID: PMC5177942 DOI: 10.1038/srep39321] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 11/16/2016] [Indexed: 12/28/2022] Open
Abstract
Dwindling water resources combined with meeting the demands for food security require maximizing water use efficiency (WUE) both in rainfed and irrigated agriculture. In this regard, deficit irrigation (DI), defined as the administration of water below full crop-water requirements (evapotranspiration), is a valuable practice to contain irrigation water use. In this study, the mechanism of paclobutrazol (Pbz)-mediated improvement in tolerance to water deficit in tomato was thoroughly investigated. Tomato plants were subjected to normal irrigated and deficit irrigated conditions plus Pbz application (0.8 and 1.6 ppm). A comprehensive morpho-physiological, metabolomics and molecular analysis was undertaken. Findings revealed that Pbz application reduced plant height, improved stem diameter and leaf number, altered root architecture, enhanced photosynthetic rates and WUE of tomato plants under deficit irrigation. Pbz differentially induced expression of genes and accumulation of metabolites of the tricarboxylic acid (TCA) cycle, γ-aminobutyric acid (GABA-shunt pathway), glutathione ascorbate (GSH-ASC)-cycle, cell wall and sugar metabolism, abscisic acid (ABA), spermidine (Spd) content and expression of an aquaporin (AP) protein under deficit irrigation. Our results suggest that Pbz application could significantly improve tolerance in tomato plants under limited water availability through selective changes in morpho-physiology and induction of stress-related molecular processes.
Collapse
Affiliation(s)
- Sikander Pal
- Jacob Blaustein Institutes for Desert Research, Sede Boqer Campus, Ben-Gurion University of the Negev, Israel
| | - Jiangsan Zhao
- Jacob Blaustein Institutes for Desert Research, Sede Boqer Campus, Ben-Gurion University of the Negev, Israel
| | - Asif Khan
- Jacob Blaustein Institutes for Desert Research, Sede Boqer Campus, Ben-Gurion University of the Negev, Israel
| | - Narendra Singh Yadav
- Jacob Blaustein Institutes for Desert Research, Sede Boqer Campus, Ben-Gurion University of the Negev, Israel
| | - Albert Batushansky
- Jacob Blaustein Institutes for Desert Research, Sede Boqer Campus, Ben-Gurion University of the Negev, Israel
| | - Simon Barak
- Jacob Blaustein Institutes for Desert Research, Sede Boqer Campus, Ben-Gurion University of the Negev, Israel
| | - Boris Rewald
- Jacob Blaustein Institutes for Desert Research, Sede Boqer Campus, Ben-Gurion University of the Negev, Israel
| | - Aaron Fait
- Jacob Blaustein Institutes for Desert Research, Sede Boqer Campus, Ben-Gurion University of the Negev, Israel
| | - Naftali Lazarovitch
- Jacob Blaustein Institutes for Desert Research, Sede Boqer Campus, Ben-Gurion University of the Negev, Israel
| | - Shimon Rachmilevitch
- Jacob Blaustein Institutes for Desert Research, Sede Boqer Campus, Ben-Gurion University of the Negev, Israel
| |
Collapse
|
49
|
Wang Q, Liu N, Yang X, Tu L, Zhang X. Small RNA-mediated responses to low- and high-temperature stresses in cotton. Sci Rep 2016; 6:35558. [PMID: 27752116 PMCID: PMC5067717 DOI: 10.1038/srep35558] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 09/30/2016] [Indexed: 01/06/2023] Open
Abstract
MicroRNAs (miRNAs) are one class of endogenous non-coding RNAs modulating the expression of target genes involved in plant development and stress tolerance, by degrading mRNA or repressing translation. In this study, small RNA and mRNA degradome sequencing were used to identify low- and high-temperature stress-responsive miRNAs and their targets in cotton (Gossypium hirsutum). Cotton seedlings were treated under different temperature conditions (4, 12, 25, 35, and 42 °C) and then the effects were investigated. In total, 319 known miRNAs and 800 novel miRNAs were identified, and 168 miRNAs were differentially expressed between different treatments. The targets of these miRNAs were further analysed by degradome sequencing. Based on studies from Gene Ontology and Kyoto Encyclopedia of Genes and Genomes, the majority of the miRNAs are from genes that are likely involved in response to hormone stimulus, oxidation-reduction reaction, photosynthesis, plant-pathogen interaction and plant hormone signal transduction pathways. This study provides new insight into the molecular mechanisms of plant response to extreme temperature stresses, and especially the roles of miRNAs under extreme temperatures.
Collapse
Affiliation(s)
- Qiongshan Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Nian Liu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Xiyan Yang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Lili Tu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Xianlong Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| |
Collapse
|
50
|
Li T, Zhang J, Zhu H, Qu H, You S, Duan X, Jiang Y. Proteomic Analysis of Differentially Expressed Proteins Involved in Peel Senescence in Harvested Mandarin Fruit. FRONTIERS IN PLANT SCIENCE 2016; 7:725. [PMID: 27303420 PMCID: PMC4885882 DOI: 10.3389/fpls.2016.00725] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 05/11/2016] [Indexed: 05/15/2023]
Abstract
Mandarin (Citrus reticulata), a non-climacteric fruit, is an economically important fruit worldwide. The mechanism underlying senescence of non-climacteric fruit is poorly understood. In this study, a gel-based proteomic study followed by LC-ESI-MS/MS analysis was carried out to investigate the proteomic changes involved in peel senescence in harvested mandarin "Shatangju" fruit stored for 18 days. Over the course of the storage period, the fruit gradually senesced, accompanied by a decreased respiration rate and increased chlorophyll degradation and disruption of membrane integrity. Sixty-three proteins spots that showed significant differences in abundance were identified. The up-regulated proteins were mainly associated with cell wall degradation, lipid degradation, protein degradation, senescence-related transcription factors, and transcription-related proteins. In contrast, most proteins associated with ATP synthesis and scavenging of reactive oxygen species were significantly down-regulated during peel senescence. Three thioredoxin proteins and three Ca(2+) signaling-related proteins were significantly up-regulated during peel senescence. It is suggested that mandarin peel senescence is associated with energy supply efficiency, decreased antioxidant capability, and increased protein and lipid degradation. In addition, activation of Ca(2+) signaling and transcription factors might be involved in cell wall degradation and primary or secondary metabolism.
Collapse
Affiliation(s)
- Taotao Li
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of SciencesGuangzhou, China
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of SciencesGuangzhou, China
- College of Life Science, University of Chinese Academy of SciencesBeijing, China
| | - Jingying Zhang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of SciencesGuangzhou, China
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of SciencesGuangzhou, China
- College of Life Science, University of Chinese Academy of SciencesBeijing, China
| | - Hong Zhu
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of SciencesGuangzhou, China
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of SciencesGuangzhou, China
| | - Hongxia Qu
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of SciencesGuangzhou, China
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of SciencesGuangzhou, China
| | - Shulin You
- Zhangzhou Xiangcheng District Agricultural BureauFujian, China
| | - Xuewu Duan
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of SciencesGuangzhou, China
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of SciencesGuangzhou, China
| | - Yueming Jiang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of SciencesGuangzhou, China
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of SciencesGuangzhou, China
| |
Collapse
|