1
|
Rodrigues-Braz D, Bonnet C, Zhu L, Yesilirmak N, Gélizé E, Jonet L, Jaisser F, Bourges JL, Behar-Cohen F, Zhao M. Mineralocorticoid receptor antagonism improves corneal integrity in a rat model of limbal stem cell deficiency. Biomed Pharmacother 2025; 185:117979. [PMID: 40080998 DOI: 10.1016/j.biopha.2025.117979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 02/27/2025] [Accepted: 03/07/2025] [Indexed: 03/15/2025] Open
Abstract
Limbal stem cell deficiency (LSCD) is a sight-threatening condition caused by the loss and/or dysfunction of limbal stem cells (LSCs), which are essential for corneal epithelial regeneration and homeostasis and are critical for maintaining corneal transparency. We have previously shown that specific inactivation of the endothelial mineralocorticoid receptor (MR) inhibits corneal neovascularization (CN) and that MR antagonists (MRA) improve corneal epithelial wound healing. This study investigated the therapeutic potential of MRA in LSCD and their mechanisms of action. Using a rat model of LSCD, systemic administration of spironolactone (SPL) or a more specific MRA, eplerenone, similarly reduced CN and corneal oedema, demonstrating MR-specific effects. SPL further limited inflammation, enhanced the corneal epithelial barrier, reduced corneal conjunctivalization and promoted nerve regeneration, highlighting its potential to improve corneal integrity. Transcriptomic analysis revealed that SPL upregulated genes associated with LSC maintenance (Tp63, Wnt6), corneal epithelial differentiation (Vdr, Fermt1, Ehf) and nerve regeneration (Sprr1a, Anxa1), while downregulating genes associated with angiogenesis (Kdr, Scube2), inflammation (Ccl2, Cxcl1) and fibrosis (Fbln1, Snai1). Conversely, transgenic rats overexpressing human NR3C2 encoding MR showed corneal epithelial irregularities and dysregulation of genes related to extracellular matrix remodeling and fibrosis (Matn3, Serpine2, Fmod, Bgn, Ddr2), angiogenesis (Nrp2, Scube1) and limbal cell function (Ifitm3). These findings demonstrate that activation of the MR pathway disrupts limbal and corneal homeostasis and that SPL effectively modulates critical mechanisms in LSCD, offering promising therapeutic potential to reduce CN and improve corneal epithelial barrier integrity.
Collapse
Affiliation(s)
- Daniela Rodrigues-Braz
- Centre de Recherche des Cordeliers, Inserm, Université Paris Cité, Sorbonne Université, Paris, France.
| | - Clémence Bonnet
- Centre de Recherche des Cordeliers, Inserm, Université Paris Cité, Sorbonne Université, Paris, France; Stein Eye Institute, David Geffen School of Medicine, University of California, Los Angeles, CA, United States.
| | - Linxin Zhu
- Centre de Recherche des Cordeliers, Inserm, Université Paris Cité, Sorbonne Université, Paris, France.
| | - Nilufer Yesilirmak
- Centre de Recherche des Cordeliers, Inserm, Université Paris Cité, Sorbonne Université, Paris, France; Department of Ophthalmology, Ankara Yildirim Beyazit University, Ankara, Turkey.
| | - Emmanuelle Gélizé
- Centre de Recherche des Cordeliers, Inserm, Université Paris Cité, Sorbonne Université, Paris, France.
| | - Laurent Jonet
- Centre de Recherche des Cordeliers, Inserm, Université Paris Cité, Sorbonne Université, Paris, France.
| | - Frédéric Jaisser
- Centre de Recherche des Cordeliers, Inserm, Université Paris Cité, Sorbonne Université, Paris, France.
| | - Jean-Louis Bourges
- Centre de Recherche des Cordeliers, Inserm, Université Paris Cité, Sorbonne Université, Paris, France; Ophthalmopole, AP-HP, Cochin Hospital, Paris, France.
| | - Francine Behar-Cohen
- Centre de Recherche des Cordeliers, Inserm, Université Paris Cité, Sorbonne Université, Paris, France; Ophthalmopole, AP-HP, Cochin Hospital, Paris, France.
| | - Min Zhao
- Centre de Recherche des Cordeliers, Inserm, Université Paris Cité, Sorbonne Université, Paris, France.
| |
Collapse
|
2
|
Barnes AM, Mitra A, Knue MM, Derkyi A, Dang Do A, Dale RK, Marini JC. CRTAP-Null Osteoblasts Have Increased Proliferation, Protein Secretion, and Skeletal Morphogenesis Gene Expression with Downregulation of Cellular Adhesion. Cells 2025; 14:518. [PMID: 40214472 PMCID: PMC11988066 DOI: 10.3390/cells14070518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 03/24/2025] [Accepted: 03/26/2025] [Indexed: 04/14/2025] Open
Abstract
Type VII osteogenesis imperfecta (OI), caused by recessive CRTAP mutations, is predominantly lethal in the first year of life. Due to its early lethality, little is known about bone dysplasia mechanism. RNA-seq analysis of differentiated osteoblasts of siblings with a non-lethal homozygous CRTAP-null variant showed an enrichment of gene ontology terms involved in DNA replication and cell cycle compared to control. BrdU incorporation confirmed a ≈2-fold increase in proliferation in non-lethal proband osteoblasts in comparison to control cells. In addition, the expression of cyclin dependent kinase inhibitor 2A (CDKN2A), encoding a protein involved in cell cycle inhibition, was significantly reduced (>50%) in CRTAP-null osteoblasts, while cyclin B1 (CCNB1), encoding a promoter of the cell cycle, was enhanced. Ossification and bone and cartilage development gene ontology pathways were enriched among upregulated genes throughout osteoblast differentiation, as was protein secretion. Ingenuity pathway analysis indicated an upregulation of BMP2 signaling, supported by increase in both BMP2 and MSX2, an early BMP2-responsive gene, by qPCR. Throughout differentiation, CRTAP-null osteoblasts showed a decrease in transcripts related to cell adhesion and extracellular matrix organization pathways. We propose that increased proliferation and osteogenesis of type VII OI osteoblasts may be stimulated through upregulation of BMP2 signaling, altering bone homeostasis, and leading to weaker bones.
Collapse
Affiliation(s)
- Aileen M. Barnes
- Section on Heritable Disorders of Bone and Extracellular Matrix, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20892, USA
| | - Apratim Mitra
- Bioinformatics & Scientific Programming Core, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20892, USA
| | - Marianne M. Knue
- Office of the Clinical Director, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, USA; (M.M.K.)
| | - Alberta Derkyi
- Office of the Clinical Director, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, USA; (M.M.K.)
| | - An Dang Do
- Office of the Clinical Director, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, USA; (M.M.K.)
| | - Ryan K. Dale
- Bioinformatics & Scientific Programming Core, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20892, USA
| | - Joan C. Marini
- Section on Heritable Disorders of Bone and Extracellular Matrix, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20892, USA
| |
Collapse
|
3
|
Kim JS, Kwon HJ, Hwang IS, Lee YH, Yoon KN, Yun HW, Jang JH, Kim SJ, Aiana Z, Kim S, Moon M, Kim B, Kim BJ, Cha BH. Immunomodulation Effects of Porcine Cartilage Acellularized Matrix (pCAM) for Osteoarthritis Treatment. Tissue Eng Regen Med 2025:10.1007/s13770-024-00687-5. [PMID: 39786670 DOI: 10.1007/s13770-024-00687-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/07/2024] [Accepted: 11/11/2024] [Indexed: 01/12/2025] Open
Abstract
BACKGROUND Pain reduction, immunomodulation, and cartilage repair are key therapeutic goals in osteoarthritis (OA) treatment. In this study, we evaluated the therapeutic effects of porcine cartilage acellularized matrix (pCAM) derived from naive tissue and compared it with the synthetic material polynucleotides (PN) for OA treatment. METHODS pCAM was produced from porcine cartilage through physicochemical processing. LC-MS protein profiling identified the key proteins. In vitro experiments involved treating human synovial cell with pCAM and PN to assess cell viability and reductions in pro-inflammatory cytokines (IL-1β and IL-6). In vivo studies utilized a rat DMM-induced OA model. Pain was evaluated in weight-bearing tests, and inflammation reduction was confirmed using specific macrophage markers of CD68, CD86, and CD163 in immunohistochemical staining of synovial tissue. Cartilage regeneration was evaluated by histopathological analyses. RESULTS The major protein components of pCAM include factors integral to cartilage and ECM integrity. They also contain proteins that help reduce inflammation. In vitro studies revealed a decrease in pro-inflammatory cytokines and survival of synovial cells were observed. In vivo treatment with pCAM resulted in a reduction of pain and inflammation, while promoting cartilage regeneration, thereby accelerating the healing process in OA. CONCLUSION Our findings suggest that pCAM may contribute to the treatment of OA by alleviating synovial inflammation and supporting cartilage regeneration, thereby addressing both the inflammatory and degenerative aspects of the disease.
Collapse
Affiliation(s)
- Ji Seob Kim
- Division of Biomedical Convergence, College of Biomedical Science, Kangwon National University, Chuncheon-si, 24341, Republic of Korea
| | - Hyeon Jae Kwon
- ATEMs, Research and Development Institute, Seoul, 05836, Republic of Korea
| | - In Sun Hwang
- Division of Biomedical Convergence, College of Biomedical Science, Kangwon National University, Chuncheon-si, 24341, Republic of Korea
| | - Young Hwa Lee
- ATEMs, Research and Development Institute, Seoul, 05836, Republic of Korea
| | - Kyung-Noh Yoon
- ATEMs, Research and Development Institute, Seoul, 05836, Republic of Korea
| | - Hee-Woong Yun
- Department of Orthopedic Surgery, Ajou University School of Medicine, Suwon, 16499, Republic of Korea
| | - Jae-Hyeok Jang
- Division of Biomedical Convergence, College of Biomedical Science, Kangwon National University, Chuncheon-si, 24341, Republic of Korea
| | - Seo Jeong Kim
- Division of Biomedical Convergence, College of Biomedical Science, Kangwon National University, Chuncheon-si, 24341, Republic of Korea
| | - Zhoodatova Aiana
- Division of Biomedical Convergence, College of Biomedical Science, Kangwon National University, Chuncheon-si, 24341, Republic of Korea
| | - Seungwoo Kim
- Division of Biomedical Convergence, College of Biomedical Science, Kangwon National University, Chuncheon-si, 24341, Republic of Korea
| | - Minhee Moon
- Division of Biomedical Convergence, College of Biomedical Science, Kangwon National University, Chuncheon-si, 24341, Republic of Korea
| | - Bongki Kim
- Department of Animal Resources Science, Kongju National University, Yesan, 32439, Republic of Korea
| | - Byoung Ju Kim
- ATEMs, Research and Development Institute, Seoul, 05836, Republic of Korea.
| | - Byung-Hyun Cha
- Division of Biomedical Convergence, College of Biomedical Science, Kangwon National University, Chuncheon-si, 24341, Republic of Korea.
| |
Collapse
|
4
|
Iacobescu GL, Corlatescu AD, Popa M, Iacobescu L, Cirstoiu C, Orban C. Exploring the Implications of Golgi Apparatus Dysfunction in Bone Diseases. Cureus 2024; 16:e56982. [PMID: 38665758 PMCID: PMC11045246 DOI: 10.7759/cureus.56982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
The Golgi apparatus is an organelle responsible for protein processing, sorting, and transport in cells. Recent research has shed light on its possible role in the pathogenesis of various bone diseases. This review seeks to explore its significance in osteoporosis, osteogenesis imperfecta, and other bone conditions such as dysplasias. Numerous lines of evidence demonstrate that perturbations to Golgi apparatus function can disrupt post-translational protein modification, folding and trafficking functions crucial for bone formation, mineralization, and remodeling. Abnormalities related to glycosylation, protein sorting, or vesicular transport in Golgi have been associated with altered osteoblast and osteoclast function, compromised extracellular matrix composition, as well as disrupted signaling pathways involved with homeostasis of bones. Mutations or dysregulation of Golgi-associated proteins, including golgins and coat protein complex I and coat protein complex II coat components, have also been implicated in bone diseases. Such genetic alterations may disrupt Golgi structure, membrane dynamics, and protein transport, leading to bone phenotype abnormalities. Understanding the links between Golgi apparatus dysfunction and bone diseases could provide novel insights into disease pathogenesis and potential therapeutic targets. Future research should focus on unraveling specific molecular mechanisms underlying Golgi dysfunction associated with bone diseases to develop targeted interventions for restoring normal bone homeostasis while decreasing clinical manifestations associated with these issues.
Collapse
Affiliation(s)
- Georgian L Iacobescu
- Orthopaedics and Traumatology Department, University Emergency Hospital, Bucharest, ROU
- Orthopaedics and Traumatology, Carol Davila University of Medicine and Pharmacy, Bucharest, ROU
| | | | - Mihnea Popa
- Orthopaedics and Traumatology, Carol Davila University of Medicine and Pharmacy, Bucharest, ROU
- Orthopaedics and Traumatology Department, University Emergency Hospital, Bucharest, ROU
| | - Loredana Iacobescu
- Cardiology, Carol Davila University of Medicine and Pharmacy, Bucharest, ROU
- Cardiology Department, University Emergency Hospital, Bucharest, ROU
| | - Catalin Cirstoiu
- Orthopaedics and Traumatology, Carol Davila University of Medicine and Pharmacy, Bucharest, ROU
- Orthopaedics and Traumatology Department, University Emergency Hospital, Bucharest, ROU
| | - Carmen Orban
- Anaesthesiology and Critical Care, Carol Davila University of Medicine and Pharmacy, Bucharest, ROU
- Anaesthesiology and Critical Care Department, University Emergency Hospital, Bucharest, ROU
| |
Collapse
|
5
|
Iacobescu GL, Iacobescu L, Popa MIG, Covache-Busuioc RA, Corlatescu AD, Cirstoiu C. Genomic Determinants of Knee Joint Biomechanics: An Exploration into the Molecular Basis of Locomotor Function, a Narrative Review. Curr Issues Mol Biol 2024; 46:1237-1258. [PMID: 38392197 PMCID: PMC10888373 DOI: 10.3390/cimb46020079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/20/2024] [Accepted: 01/25/2024] [Indexed: 02/24/2024] Open
Abstract
In recent years, the nexus between genetics and biomechanics has garnered significant attention, elucidating the role of genomic determinants in shaping the biomechanical attributes of human joints, specifically the knee. This review seeks to provide a comprehensive exploration of the molecular basis underlying knee joint locomotor function. Leveraging advancements in genomic sequencing, we identified specific genetic markers and polymorphisms tied to key biomechanical features of the knee, such as ligament elasticity, meniscal resilience, and cartilage health. Particular attention was devoted to collagen genes like COL1A1 and COL5A1 and their influence on ligamentous strength and injury susceptibility. We further investigated the genetic underpinnings of knee osteoarthritis onset and progression, as well as the potential for personalized rehabilitation strategies tailored to an individual's genetic profile. We reviewed the impact of genetic factors on knee biomechanics and highlighted the importance of personalized orthopedic interventions. The results hold significant implications for injury prevention, treatment optimization, and the future of regenerative medicine, targeting not only knee joint health but joint health in general.
Collapse
Affiliation(s)
- Georgian-Longin Iacobescu
- Orthopaedics and Traumatology Department, "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
- University Emergency Hospital, 050098 Bucharest, Romania
| | - Loredana Iacobescu
- Orthopaedics and Traumatology Department, "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
- University Emergency Hospital, 050098 Bucharest, Romania
| | - Mihnea Ioan Gabriel Popa
- Orthopaedics and Traumatology Department, "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
- University Emergency Hospital, 050098 Bucharest, Romania
| | - Razvan-Adrian Covache-Busuioc
- Orthopaedics and Traumatology Department, "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Antonio-Daniel Corlatescu
- Orthopaedics and Traumatology Department, "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Catalin Cirstoiu
- Orthopaedics and Traumatology Department, "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
- University Emergency Hospital, 050098 Bucharest, Romania
| |
Collapse
|
6
|
Chen Y, Mehmood K, Chang YF, Tang Z, Li Y, Zhang H. The molecular mechanisms of glycosaminoglycan biosynthesis regulating chondrogenesis and endochondral ossification. Life Sci 2023; 335:122243. [PMID: 37949211 DOI: 10.1016/j.lfs.2023.122243] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/23/2023] [Accepted: 11/02/2023] [Indexed: 11/12/2023]
Abstract
Disorders of chondrocyte differentiation and endochondral osteogenesis are major underlying factors in skeletal developmental disorders, including tibial dysplasia (TD), osteoarthritis (OA), chondrodysplasia (ACH), and multiple epiphyseal dysplasia (MED). Understanding the cellular and molecular pathogenesis of these disorders is crucial for addressing orthopedic diseases resulting from impaired glycosaminoglycan synthesis. Glycosaminoglycan is a broad term that refers to the glycan component of proteoglycan macromolecules. It is an essential component of the cartilage extracellular matrix and plays a vital role in various biological processes, including gene transcription, signal transduction, and chondrocyte differentiation. Recent studies have demonstrated that glycosaminoglycan biosynthesis plays a regulatory role in chondrocyte differentiation and endochondral osteogenesis by modulating various growth factors and signaling molecules. For instance, glycosaminoglycan is involved in mediating pathways such as Wnt, TGF-β, FGF, Ihh-PTHrP, and O-GlcNAc glycosylation, interacting with transcription factors SOX9, BMPs, TGF-β, and Runx2 to regulate chondrocyte differentiation and endochondral osteogenesis. To propose innovative approaches for addressing orthopedic diseases caused by impaired glycosaminoglycan biosynthesis, we conducted a comprehensive review of the molecular mechanisms underlying chondrocyte glycosaminoglycan biosynthesis, which regulates chondrocyte differentiation and endochondral osteogenesis. Our analysis considers the role of genes, glycoproteins, and associated signaling pathways during chondrogenesis and endochondral ossification.
Collapse
Affiliation(s)
- Yongjian Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Khalid Mehmood
- Faculty of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, 63100, Pakistan
| | - Yung-Fu Chang
- College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Zhaoxin Tang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Ying Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Hui Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
7
|
Lee DH, Park KS, Shin HE, Kim SB, Choi H, An SB, Choi H, Kim JP, Han I. Safety and Feasibility of Intradiscal Administration of Matrilin-3-Primed Adipose-Derived Mesenchymal Stromal Cell Spheroids for Chronic Discogenic Low Back Pain: Phase 1 Clinical Trial. Int J Mol Sci 2023; 24:16827. [PMID: 38069151 PMCID: PMC10706656 DOI: 10.3390/ijms242316827] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/16/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023] Open
Abstract
Functionally enhanced mesenchymal stromal cells participate in the repair of intervertebral disc. This study aimed to assess the safety and tolerability of intradiscal administration of matrilin-3-primed adipose-derived stromal cell (ASC) spheroids with hyaluronic acid (HA) in patients with chronic discogenic low back pain (LBP). In this single-arm, open-label phase I clinical trial, eight patients with chronic discogenic LBP were observed over 6 months. Each patient underwent a one-time intradiscal injection of 1 mL of 6.0 × 106 cells/disc combined with HA under real-time fluoroscopic guidance. Safety and feasibility were gauged using Visual Analogue Scale (VAS) pain and Oswestry Disability Index (ODI) scores and magnetic resonance imaging. All participants remained in the trial, with no reported adverse events linked to the procedure or stem cells. A successful outcome-marked by a minimum 2-point improvement in the VAS pain score and a 10-point improvement in ODI score from the start were observed in six participants. Although the modified Pfirrmann grade remained consistent across all participants, radiological improvements were evident in four patients. Specifically, two patients exhibited reduced high-intensity zones while another two demonstrated decreased disc protrusion. In conclusion, the intradiscal application of matrilin-3-primed ASC spheroids with HA is a safe and feasible treatment option for chronic discogenic LBP.
Collapse
Affiliation(s)
- Dong Hyun Lee
- Department of Neurosurgery, Spine Center, The Leon Wiltse Memorial Hospital, Suwon 16480, Republic of Korea;
- Department of Neurosurgery, CHA Bundang Medical Center, CHA University, Seongnam-si 13496, Republic of Korea
| | - Kwang-Sook Park
- Department of Neurosurgery, CHA Bundang Medical Center, CHA University, Seongnam-si 13496, Republic of Korea
| | - Hae Eun Shin
- Department of Neurosurgery, CHA Bundang Medical Center, CHA University, Seongnam-si 13496, Republic of Korea
| | - Sung Bum Kim
- Department of Neurosurgery, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Hyejeong Choi
- Department of Radiology, CHA Bundang Medical Center, CHA University, Seongnam-si 13496, Republic of Korea
| | - Seong Bae An
- Department of Neurosurgery, CHA Bundang Medical Center, CHA University, Seongnam-si 13496, Republic of Korea
| | - Hyemin Choi
- Department of Neurosurgery, CHA Bundang Medical Center, CHA University, Seongnam-si 13496, Republic of Korea
| | - Joo Pyung Kim
- Department of Neurosurgery, CHA Bundang Medical Center, CHA University, Seongnam-si 13496, Republic of Korea
| | - Inbo Han
- Department of Neurosurgery, CHA Bundang Medical Center, CHA University, Seongnam-si 13496, Republic of Korea
| |
Collapse
|
8
|
Bakinowska E, Kiełbowski K, Pawlik A. The Role of Extracellular Vesicles in the Pathogenesis and Treatment of Rheumatoid Arthritis and Osteoarthritis. Cells 2023; 12:2716. [PMID: 38067147 PMCID: PMC10706487 DOI: 10.3390/cells12232716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/24/2023] [Accepted: 11/25/2023] [Indexed: 12/18/2023] Open
Abstract
Cells can communicate with each other through extracellular vesicles (EVs), which are membrane-bound structures that transport proteins, lipids and nucleic acids. These structures have been found to mediate cellular differentiation and proliferation apoptosis, as well as inflammatory responses and senescence, among others. The cargo of these vesicles may include immunomodulatory molecules, which can then contribute to the pathogenesis of various diseases. By contrast, EVs secreted by mesenchymal stem cells (MSCs) have shown important immunosuppressive and regenerative properties. Moreover, EVs can be modified and used as drug carriers to precisely deliver therapeutic agents. In this review, we aim to summarize the current evidence on the roles of EVs in the progression and treatment of rheumatoid arthritis (RA) and osteoarthritis (OA), which are important and prevalent joint diseases with a significant global burden.
Collapse
Affiliation(s)
| | | | - Andrzej Pawlik
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (E.B.); (K.K.)
| |
Collapse
|
9
|
Pan D, Zhong J, Zhang J, Dong H, Zhao D, Zhang H, Yao B. Function and regulation of nuclear factor 1 X-type on chondrocyte proliferation and differentiation. Gene 2023; 881:147620. [PMID: 37433356 DOI: 10.1016/j.gene.2023.147620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 05/26/2023] [Accepted: 07/05/2023] [Indexed: 07/13/2023]
Abstract
Nuclear factor 1 X-type (Nfix) is a transcription factor related to mental and physical development. However, very few studies have reported the effects of Nfix on cartilage. This study aims to reveal the influence of Nfix on the proliferation and differentiation of chondrocytes, and to explore its potential action mechanism. We isolated primary chondrocytes from the costal cartilage of newborn C57BL/6 mice and with Nfix overexpression or silencing treatment. We used Alcian blue staining and found that Nfix overexpression significantly promoted ECM synthesis in chondrocytes while silencing inhibited ECM synthesis. Using RNA-seq technology to study the expression pattern of Nfix in primary chondrocytes. We found that Nfix overexpression significantly up-regulated genes that are related to chondrocyte proliferation and extracellular matrix (ECM) synthesis and significantly down-regulated genes related to chondrocyte differentiation and ECM degradation. Nfix silencing, however, significantly up-regulated genes associated with cartilage catabolism and significantly down-regulated genes associated with cartilage growth promotion. Furthermore, Nfix exerted a positive regulatory effect on Sox9, and we propose that Nfix may promote chondrocyte proliferation and inhibit differentiation by stimulating Sox9 and its downstream genes. Our findings suggest that Nfix may be a potential target for the regulation of chondrocyte proliferation and differentiation.
Collapse
Affiliation(s)
- Daian Pan
- Research Center of Traditional Chinese Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun 130021, China; Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China; Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun 130117, China.
| | - Jinghong Zhong
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun 130117, China.
| | - Jingcheng Zhang
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun 130117, China.
| | - Haisi Dong
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China.
| | - Daqing Zhao
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China.
| | - He Zhang
- Research Center of Traditional Chinese Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun 130021, China; Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China.
| | - Baojin Yao
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China.
| |
Collapse
|
10
|
Pan D, Zhong J, Zhang J, Dong H, Zhao D, Zhang H, Yao B. Function and regulation of nuclear factor 1 X-type on chondrocyte proliferation and differentiation. Gene 2023; 881:147620. [DOI: org/10.1016/j.gene.2023.147620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
|
11
|
Loder S, Patel N, Morgani S, Sambon M, Leucht P, Levi B. Genetic models for lineage tracing in musculoskeletal development, injury, and healing. Bone 2023; 173:116777. [PMID: 37156345 PMCID: PMC10860167 DOI: 10.1016/j.bone.2023.116777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 04/07/2023] [Accepted: 04/17/2023] [Indexed: 05/10/2023]
Abstract
Musculoskeletal development and later post-natal homeostasis are highly dynamic processes, marked by rapid structural and functional changes across very short periods of time. Adult anatomy and physiology are derived from pre-existing cellular and biochemical states. Consequently, these early developmental states guide and predict the future of the system as a whole. Tools have been developed to mark, trace, and follow specific cells and their progeny either from one developmental state to the next or between circumstances of health and disease. There are now many such technologies alongside a library of molecular markers which may be utilized in conjunction to allow for precise development of unique cell 'lineages'. In this review, we first describe the development of the musculoskeletal system beginning as an embryonic germ layer and at each of the key developmental stages that follow. We then discuss these structures in the context of adult tissues during homeostasis, injury, and repair. Special focus is given in each of these sections to the key genes involved which may serve as markers of lineage or later in post-natal tissues. We then finish with a technical assessment of lineage tracing and the techniques and technologies currently used to mark cells, tissues, and structures within the musculoskeletal system.
Collapse
Affiliation(s)
- Shawn Loder
- Department of Plastic Surgery, University of Pittsburgh, Scaife Hall, Suite 6B, 3550 Terrace Street, Pittsburgh, PA 15261, USA
| | - Nicole Patel
- Center for Organogenesis and Trauma, Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | | | | | | | - Benjamin Levi
- Center for Organogenesis and Trauma, Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
12
|
Kornmuller A, Cooper TT, Jani A, Lajoie GA, Flynn LE. Probing the effects of matrix-derived microcarrier composition on human adipose-derived stromal cells cultured dynamically within spinner flask bioreactors. J Biomed Mater Res A 2023; 111:415-434. [PMID: 36210786 DOI: 10.1002/jbm.a.37459] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 09/23/2022] [Accepted: 09/28/2022] [Indexed: 01/20/2023]
Abstract
Recognizing the cell-instructive capacity of the extracellular matrix (ECM), this study investigated the effects of expanding human adipose-derived stromal cells (hASCs) on ECM-derived microcarriers fabricated from decellularized adipose tissue (DAT) or decellularized cartilage tissue (DCT) within spinner flask bioreactors. Protocols were established for decellularizing porcine auricular cartilage and electrospraying methods were used to generate microcarriers comprised exclusively of DAT or DCT, which were compositionally distinct, but had matching Young's moduli. Both microcarrier types supported hASC attachment and growth over 14 days within a low-shear spinner culture system, with a significantly higher cell density observed on the DCT microcarriers at 7 and 14 days. Irrespective of the ECM source, dynamic culture on the microcarriers altered the expression of genes and proteins associated with cell adhesion and ECM remodeling. Label-free mass spectrometry analysis showed upregulation of proteins associated with cartilage development and ECM in the hASCs expanded on the DCT microcarriers. Based on Luminex analysis, the hASCs expanded on the DCT microcarriers secreted significantly higher levels of IL-8 and PDGFAA, supporting that the ECM source can modulate hASC paracrine factor secretion. Finally, the hASCs expanded on the microcarriers were extracted for analysis of adipogenic and chondrogenic differentiation relative to baseline controls. The microcarrier-cultured hASCs showed enhanced intracellular lipid accumulation at 7 days post-induction of adipogenic differentiation. In the chondrogenic studies, a low level of differentiation was observed in all groups. Future studies are warranted using alternative cell sources with greater chondrogenic potential to further assess the chondro-inductive properties of the DCT microcarriers.
Collapse
Affiliation(s)
- Anna Kornmuller
- School of Biomedical Engineering, Faculty of Engineering, The University of Western Ontario, London, Canada
| | - Tyler T Cooper
- Department of Biochemistry, Don Rix Protein Identification Facility, The University of Western Ontario, London, Canada
| | - Ammi Jani
- Department of Chemical & Biochemical Engineering, Faculty of Engineering, The University of Western Ontario, London, Canada
| | - Gilles A Lajoie
- Department of Biochemistry, Don Rix Protein Identification Facility, The University of Western Ontario, London, Canada
| | - Lauren E Flynn
- School of Biomedical Engineering, Faculty of Engineering, The University of Western Ontario, London, Canada.,Department of Chemical & Biochemical Engineering, Faculty of Engineering, The University of Western Ontario, London, Canada.,Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Canada
| |
Collapse
|
13
|
Rapp AE, Zaucke F. Cartilage extracellular matrix-derived matrikines in osteoarthritis. Am J Physiol Cell Physiol 2023; 324:C377-C394. [PMID: 36571440 DOI: 10.1152/ajpcell.00464.2022] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Osteoarthritis (OA) is among the most frequent diseases of the musculoskeletal system. Degradation of cartilage extracellular matrix (ECM) is a hallmark of OA. During the degradation process, intact/full-length proteins and proteolytic fragments are released which then might induce different downstream responses via diverse receptors, therefore leading to different biological consequences. Collagen type II and the proteoglycan aggrecan are the most abundant components of the cartilage ECM. However, over the last decades, a large number of minor components have been identified and for some of those, a role in the manifold processes associated with OA has already been demonstrated. To date, there is still no therapy able to halt or cure OA. A better understanding of the matrikine landscape occurring with or even preceding obvious degenerative changes in joint tissues is needed and might help to identify molecules that could serve as biomarkers, druggable targets, or even be blueprints for disease modifying drug OA drugs. For this narrative review, we screened PubMed for relevant literature in the English language and summarized the current knowledge regarding the function of selected ECM molecules and the derived matrikines in the context of cartilage and OA.
Collapse
Affiliation(s)
- Anna E Rapp
- Dr. Rolf M. Schwiete Research Unit for Osteoarthritis, Department of Orthopedics (Friedrichsheim), University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| | - Frank Zaucke
- Dr. Rolf M. Schwiete Research Unit for Osteoarthritis, Department of Orthopedics (Friedrichsheim), University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| |
Collapse
|
14
|
Exosomes: A promising therapeutic strategy for intervertebral disc degeneration. Exp Gerontol 2022; 163:111806. [DOI: 10.1016/j.exger.2022.111806] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/25/2022] [Accepted: 04/06/2022] [Indexed: 11/23/2022]
|
15
|
The Induced Pluripotent Stem Cells in Articular Cartilage Regeneration and Disease Modelling: Are We Ready for Their Clinical Use? Cells 2022; 11:cells11030529. [PMID: 35159338 PMCID: PMC8834349 DOI: 10.3390/cells11030529] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 01/29/2022] [Accepted: 02/01/2022] [Indexed: 02/01/2023] Open
Abstract
The development of induced pluripotent stem cells has brought unlimited possibilities to the field of regenerative medicine. This could be ideal for treating osteoarthritis and other skeletal diseases, because the current procedures tend to be short-term solutions. The usage of induced pluripotent stem cells in the cell-based regeneration of cartilage damages could replace or improve on the current techniques. The patient’s specific non-invasive collection of tissue for reprogramming purposes could also create a platform for drug screening and disease modelling for an overview of distinct skeletal abnormalities. In this review, we seek to summarise the latest achievements in the chondrogenic differentiation of pluripotent stem cells for regenerative purposes and disease modelling.
Collapse
|
16
|
Duan A, Ma Z, Liu W, Shen K, Zhou H, Wang S, Kong R, Shao Y, Chen Y, Guo W, Liu F. 1,25-Dihydroxyvitamin D Inhibits Osteoarthritis by Modulating Interaction Between Vitamin D Receptor and NLRP3 in Macrophages. J Inflamm Res 2021; 14:6523-6542. [PMID: 34887675 PMCID: PMC8651053 DOI: 10.2147/jir.s339670] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 11/23/2021] [Indexed: 12/25/2022] Open
Abstract
Background Osteoarthritis (OA) is the most prevalent chronic joint disease globally. Loss of extracellular matrix (ECM) by chondrocytes is a classic feature of OA. Inflammatory cytokines, such as interleukin-1β (IL-1β) and interleukin-18 (IL-18), secreted mainly by macrophages, promote expression of matrix degrading proteins and further aggravate progression of OA. 1,25-dihydroxyvitamin D (1,25VD) modulates inflammation thus exerting protective effects on cartilage tissue. However, the underlying mechanisms of 1,25VD activity have not been fully elucidated. Methods The destabilization of the medial meniscus (DMM)-induced mice model of OA was established to investigate the protective effects of 1,25VD by micro-CT and Safranin-O and Fast Green staining. And the co-culture system between THP-1 cells and primary chondrocytes was constructed to explore the effects of vitamin D receptor (VDR) and 1,25VD on chondrogenic proliferation, apoptosis, and migration. The immunofluorescence staining and Western blot analysis were used to detect the expressions of ECM proteins and matrix degradation-associated proteases. Enzyme-linked immunosorbent assay (ELISA) was used to examine the expression levels of inflammatory cytokines. Results The findings of the study showed that 1,25VD prevented cartilage degeneration and osteophyte formation by inhibiting secretion of inflammatory cytokines in OA mice model. These protective effects were exerted through the vitamin D receptor (VDR). Further studies showed that 1,25VD increased ubiquitination level of NLRP3 by binding to VDR, resulting in decrease in IL-1β and IL-18 secretion. These findings indicate that 1,25VD binds to VDR thus preventing chondrogenic ECM degradation by modulating macrophage NLRP3 activation and secretion of inflammatory cytokines, thus alleviating OA progression. Conclusion Here, our study suggests that 1,25VD, targeting to VDR, prevents chondrogenic ECM degradation through regulating macrophage NLRP3 activation and inflammatory cytokines secretion, thereby alleviating OA. These findings provide information on a novel molecular mechanism for application of 1,25VD as OA therapy.
Collapse
Affiliation(s)
- Ao Duan
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, People's Republic of China
| | - Zemeng Ma
- Key Laboratory of Immune Microenvironment and Disease, Department of Immunology, Nanjing Medical University, Nanjing, 211100, People's Republic of China
| | - Wanshun Liu
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, People's Republic of China
| | - Kai Shen
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, People's Republic of China
| | - Hao Zhou
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, People's Republic of China
| | - Shunbing Wang
- Department of Rheumatology and Immunology, Affiliated Hospital of Hospital of North Sichuan Medical College, Nanchong, 637000, People's Republic of China
| | - Renyi Kong
- Department of Orthopedics, Xincheng Hospital of Traditional Chinese Medicine, Maanshan, 243131, Anhui, People's Republic of China
| | - Yuqi Shao
- Department of Orthopedics, The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221006, Jiangsu, People's Republic of China
| | - Yunzi Chen
- Key Laboratory of Immune Microenvironment and Disease, Department of Immunology, Nanjing Medical University, Nanjing, 211100, People's Republic of China
| | - Wei Guo
- Department of Urology, The Affiliated Wuxi No.2 People's Hospital of Nanjing Medical University, Wuxi, 214002, Jiangsu, People's Republic of China
| | - Feng Liu
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, People's Republic of China
| |
Collapse
|
17
|
Circ_SPG11 plays contributing effects on IL-1β-induced chondrocyte apoptosis and ECM degradation via miR-665 inhibition-mediated GREM1 upregulation. Clin Immunol 2021; 233:108889. [PMID: 34798237 DOI: 10.1016/j.clim.2021.108889] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 11/13/2021] [Indexed: 12/16/2022]
Abstract
The dysregulation of circular RNA (circRNA) has been monitored in osteoarthritis (OA) cartilage, hinting that circRNA deregulation modulates OA progression. We thus aimed to unveil the role of circRNA spastic paraplegia 11 (circ_SPG11) in OA conditions. The upregulation of circ_SPG11 was observed in OA cartilage and IL-1β-treated chondrocytes. Knockdown of circ_SPG11 restored IL-1β-depleted cell proliferation and alleviated IL-1β-induced cell apoptosis and ECM degradation. Circ_SPG11 bound to miR-665 and negatively regulated miR-665 expression. Inhibition of miR-665 reversed the inhibitory effect on IL-1β-induced chondrocyte injury caused by circ_SPG11 knockdown. GREM1 was a target of miR-665, and circ_SPG11 knockdown depleted GREM1 expression by enriching miR-665. Overexpression of GREM1 also reversed the inhibitory effect on IL-1β-induced chondrocyte injury caused by miR-665 enrichment. Circ_SPG11 might promote IL-1β-induced chondrocyte apoptosis and ECM degradation via increasing GREM1 expression by decoying miR-665.
Collapse
|
18
|
Zhou L, Zhang W, Lee J, Kuhn L, Chen Y. Controlled Self-Assembly of DNA-Mimicking Nanotubes to Form a Layer-by-Layer Scaffold for Homeostatic Tissue Constructs. ACS APPLIED MATERIALS & INTERFACES 2021; 13:51321-51332. [PMID: 34663065 PMCID: PMC8982526 DOI: 10.1021/acsami.1c13345] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Various biomaterial scaffolds have been developed for improving stem cell anchorage and function in tissue constructs for in vitro and in vivo uses. Growth factors are typically applied to scaffolds to mediate cell differentiation. Conventionally, growth factors are not strictly localized in the scaffolds; thus, they may leak into the surrounding environment, causing undesired side effects on tissues or cells. Hence, there is a need for improved tissue construct strategies based on highly localized drug delivery and a homeostatic microenvironment. This study developed an injectable nanomatrix (NM) scaffold with a layer-by-layer structure inside each nanosized fiber of the scaffold based on controlled self-assembly at the molecular level. The NM was hierarchically assembled from Janus base nanotubes (JBNTs), matrilin-3, and transforming growth factor β-1 (TGF-β1) via bioaffinity. JBNTs, which form the NM backbone, are novel DNA-inspired nanomaterials that mimic the natural helical nanostructures of collagens. The chondrogenic factor, TGF-β1, was enveloped in the inner layer inside the NM fibers to prevent its release. Matrilin-3 was incorporated into the outer layer to create a cartilage-mimicking microenvironment and to maintain tissue homeostasis. Interestingly, human mesenchymal stem cells (hMSCs) had a strong preference to anchor along the NM fibers and formed a localized homeostatic microenvironment. Therefore, this NM has successfully generated highly organized structures via molecular self-assembly and achieved localized drug delivery and stem cell anchorage for homeostatic tissue constructs.
Collapse
Affiliation(s)
- Libo Zhou
- Department of Biomedical Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Wuxia Zhang
- Department of Biomedical Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Jinhyung Lee
- Department of Biomedical Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Liisa Kuhn
- Department of Biomedical Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Yupeng Chen
- Department of Biomedical Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
| |
Collapse
|
19
|
Gögele C, Wiltzsch S, Lenhart A, Civilleri A, Weiger TM, Schäfer-Eckart K, Minnich B, Forchheimer L, Hornfeck M, Schulze-Tanzil G. Highly porous novel chondro-instructive bioactive glass scaffolds tailored for cartilage tissue engineering. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 130:112421. [PMID: 34702508 DOI: 10.1016/j.msec.2021.112421] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 08/23/2021] [Accepted: 09/06/2021] [Indexed: 12/11/2022]
Abstract
Cartilage injuries remain challenging since the regenerative capacity of cartilage is extremely low. The aim was to design a novel type of bioactive glass (BG) scaffold with suitable topology that allows the formation of cartilage-specific extracellular matrix (ECM) after colonization with chondrogenic cells for cartilage repair. Highly porous scaffolds with interconnecting pores consisting of 100 % BG were manufactured using a melting, milling, sintering and leaching technique. Scaffolds were colonized with porcine articular chondrocytes (pAC) and undifferentiated human mesenchymal stromal cells (hMSC) for up to 35 days. Scaffolds displayed high cytocompatibility with no major pH shift. Scanning electron microscopy revealed the intimate pAC-scaffold interaction with typical cell morphology. After 14 days MSCs formed cell clusters but still expressed cartilage markers. Both cell types showed aggrecan, SOX9 gene and protein expression, cartilage proteoglycan and sulfated glycosaminoglycan synthesis for the whole culture time. Despite type II collagen gene expression could not anymore be detected at day 35, protein synthesis was visualized for both cell types during the whole culturing period, increasing in pAC and declining after day 14 in hMSC cultures. The novel BG scaffold was stable, cytocompatible and cartilage-specific protein synthesis indicated maintenance of pAC's differentiated phenotype and chondro-instructive effects on hMSCs.
Collapse
Affiliation(s)
- Clemens Gögele
- Institute of Anatomy and Cell Biology, Paracelsus Medical University, Nuremberg and Salzburg, Prof. Ernst-Nathan Str. 1, 90419 Nuremberg, Germany; Department of Biosciences, Paris Lodron University Salzburg, Hellbrunnerstraße 34, 5020 Salzburg, Austria.
| | - Sven Wiltzsch
- Faculty of Material Engineering, Nuremberg, Institute of Technology Georg Simon Ohm, Nuremberg, Germany.
| | - Armin Lenhart
- Faculty of Material Engineering, Nuremberg, Institute of Technology Georg Simon Ohm, Nuremberg, Germany.
| | - Aurelio Civilleri
- Institute of Anatomy and Cell Biology, Paracelsus Medical University, Nuremberg and Salzburg, Prof. Ernst-Nathan Str. 1, 90419 Nuremberg, Germany; Department of Civil, Environmental, Aerospace, Materials Engineering, Universita' di Palermo, Palermo, Italy.
| | - Thomas Martin Weiger
- Department of Biosciences, Paris Lodron University Salzburg, Hellbrunnerstraße 34, 5020 Salzburg, Austria.
| | - Kerstin Schäfer-Eckart
- Bone marrow Transplantation Unit, Medizinische Klinik 5, Klinikum Nürnberg, Paracelsus Medizinische Privatuniversität, Nuremberg, Germany.
| | - Bernd Minnich
- Department of Biosciences, Paris Lodron University Salzburg, Hellbrunnerstraße 34, 5020 Salzburg, Austria.
| | - Lukas Forchheimer
- Faculty of Material Engineering, Nuremberg, Institute of Technology Georg Simon Ohm, Nuremberg, Germany
| | - Markus Hornfeck
- Faculty of Material Engineering, Nuremberg, Institute of Technology Georg Simon Ohm, Nuremberg, Germany.
| | - Gundula Schulze-Tanzil
- Institute of Anatomy and Cell Biology, Paracelsus Medical University, Nuremberg and Salzburg, Prof. Ernst-Nathan Str. 1, 90419 Nuremberg, Germany.
| |
Collapse
|
20
|
Pan D, Qian B, Zhao D, Yao B. Nfib promotes chondrocyte proliferation and inhibits differentiation by mildly regulating Sox9 and its downstream genes. Mol Biol Rep 2021; 48:7487-7497. [PMID: 34651294 DOI: 10.1007/s11033-021-06767-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 09/15/2021] [Indexed: 01/18/2023]
Abstract
BACKGROUND Chondrocyte proliferation and differentiation play pivotal roles in regulating cartilage formation, endochondral bone formation, and repair. Cartilage damage and underdevelopment may cause severe joint diseases. Various transcription factors regulate cartilage development. Nuclear factor 1 B (Nfib) is a transcription factor that plays a regulatory role in various organs. However, the effect and mechanism of Nfib on the proliferation and differentiation of chondrocytes in cartilage are still largely unknown. METHODS AND RESULTS In the present study, we investigated the gene expression patterns in primary chondrocytes with Nfib overexpression or silencing by RNA sequencing (RNA-seq) technology. The results showed that Nfib overexpression significantly up-regulated genes that are related to chondrocyte proliferation and extracellular matrix (ECM) synthesis and significantly down-regulated genes related to chondrocyte differentiation and ECM degradation. However, with Nfib silencing, the genes involved in promoting chondrocyte differentiation were significantly up-regulated, whereas those involved in promoting chondrocyte proliferation were significantly down-regulated. Furthermore, quantitative real-time PCR (qRT-PCR), western blot, alcian blue staining and immunofluorescence staining assays further confirmed that Nfib potentially promotes chondrocyte proliferation and extracellular synthesis but inhibits differentiation. CONCLUSIONS The molecular mechanism of Nfib in promoting chondrocyte proliferation and inhibiting differentiation was probably achieved by stimulating Sox9 and its downstream genes. Thus, this study adds new insights regarding the underlying molecular mechanism of transcriptional regulation in cartilage.
Collapse
Affiliation(s)
- Daian Pan
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
| | - Benxin Qian
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, China
| | - Daqing Zhao
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China.
| | - Baojin Yao
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China.
| |
Collapse
|
21
|
Puzanov GA, Senchenko VN. SCP Phosphatases and Oncogenesis. Mol Biol 2021. [DOI: 10.1134/s0026893321030092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
22
|
Abstract
The growth plate is the cartilaginous portion of long bones where the longitudinal growth of the bone takes place. Its structure comprises chondrocytes suspended in a collagen matrix that go through several stages of maturation until they finally die, and are replaced by osteoblasts, osteoclasts, and lamellar bone.The process of endochondral ossification is coordinated by chondrocytes and a variety of humoral factors including growth hormone, parathyroid hormone, oestrogen, growth factors, cytokines, and various signalling pathways.Chondrocytes progress from a resting state to enter the phases of proliferation and hypertrophy. Under the influence of oestrogen, the proliferation of chondrocytes decreases as the resting chondrocytes are consumed. During the terminal phase of differentiation, cartilage is replaced by blood vessels and organized bone tissue, and once chondrocytes have died, the longitudinal growth of the bone ceases and the growth plate closes.The highly complex regulatory signals involved in this process are genetically determined, and genetic perturbations in any of the associated genes can result in abnormalities of bone growth. Hundreds of chondrodysplasias have been described, pointing to the complexity of the humoral control systems involved in endochondral ossification.While our knowledge of the mechanisms behind the various bone growth control systems is improving, a deeper understanding of the underlying processes could aid clinicians to better understand bone health and bone growth abnormalities. This review describes the current clinical research into the physiology of the growth plate. Cite this article: EFORT Open Rev 2020;5:498-507. DOI: 10.1302/2058-5241.5.190088.
Collapse
Affiliation(s)
- Yücel Ağırdil
- Department of Orthopaedics and Traumatology, İzzet Baysal State Hospital, Bolu, Turkey
| |
Collapse
|
23
|
Trachana V, Mourmoura E, Papathanasiou I, Tsezou A. Understanding the role of chondrocytes in osteoarthritis: utilizing proteomics. Expert Rev Proteomics 2019; 16:201-213. [DOI: 10.1080/14789450.2019.1571918] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Varvara Trachana
- Laboratory of Biology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Evanthia Mourmoura
- Laboratory of Cytogenetics and Molecular Genetics, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Ioanna Papathanasiou
- Laboratory of Cytogenetics and Molecular Genetics, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Aspasia Tsezou
- Laboratory of Biology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
- Laboratory of Cytogenetics and Molecular Genetics, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| |
Collapse
|
24
|
Deng ZH, Li YS, Gao X, Lei GH, Huard J. Bone morphogenetic proteins for articular cartilage regeneration. Osteoarthritis Cartilage 2018; 26:1153-1161. [PMID: 29580979 DOI: 10.1016/j.joca.2018.03.007] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 02/18/2018] [Accepted: 03/19/2018] [Indexed: 02/02/2023]
Abstract
Degeneration of articular cartilage (AC) tissue is the most common cause of osteoarthritis (OA) and rheumatoid arthritis. Bone morphogenetic proteins (BMPs) play important roles in bone and cartilage formation. This article reviews the experimental and clinical applications of BMPs in cartilage regeneration. Experimental evidence indicates that BMPs play an important role in protection against cartilage damage caused by inflammation or trauma, by binding to different receptor combinations and, consequently, activating different intracellular signaling pathways. Loss of function of BMP-related receptors contributes to the decreased intrinsic repair capacity of damaged cartilage and, thus, the multifunctional effects of BMPs make them attractive tools for the treatment of cartilage damage in patients with degenerative diseases. However, the development of BMP therapy as a treatment modality for cartilage regeneration has been hampered by certain factors, such as the eligibility of participants in clinical trials, financial support, drug delivery carrier safety, availabilities of effective scaffolds, appropriate selection of optimal dose and timing of administration, and side effects. Further research is needed to overcome these issues for future routine clinical applications. Research and development leading to the successful application of BMPs can initiate a new era in the treatment of cartilage degenerative diseases like OA.
Collapse
Affiliation(s)
- Z H Deng
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan Province, China; Department of Orthopaedic Surgery, Center for Tissue Engineering and Aging Research, Brown Foundation Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA; Department of Orthopedics, Shenzhen Second People's Hospital (The First Hospital Affiliated to Shenzhen University), Shenzhen, Guangdong Province, China
| | - Y S Li
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - X Gao
- Department of Orthopaedic Surgery, Center for Tissue Engineering and Aging Research, Brown Foundation Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA; The Steadman Philippon Research Institute, Vail, CO, USA
| | - G H Lei
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan Province, China.
| | - J Huard
- Department of Orthopaedic Surgery, Center for Tissue Engineering and Aging Research, Brown Foundation Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA; The Steadman Philippon Research Institute, Vail, CO, USA.
| |
Collapse
|
25
|
Muttigi MS, Kim BJ, Choi B, Yoshie A, Kumar H, Han I, Park H, Lee SH. Matrilin-3 codelivery with adipose-derived mesenchymal stem cells promotes articular cartilage regeneration in a rat osteochondral defect model. J Tissue Eng Regen Med 2017; 12:667-675. [PMID: 28556569 DOI: 10.1002/term.2485] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 05/12/2017] [Accepted: 05/19/2017] [Indexed: 12/14/2022]
Abstract
Matrilin-3 is an essential extracellular matrix component present only in cartilaginous tissues. Matrilin-3 exerts chondroprotective effects by regulating an anti-inflammatory function and extracellular matrix components. We hypothesized that the codelivery of matrilin-3 with infrapatellar adipose-tissue-derived mesenchymal stem cells (Ad-MSCs) may enhance articular cartilage regeneration. Matrilin-3 treatment of Ad-MSCs in serum-free media induced collagen II and aggrecan expression, and matrilin-3 in chondrogenic media also enhanced in vitro chondrogenic differentiation. Next, the in vivo effect of matrilin-3 codelivery with Ad-MSCs on cartilage regeneration was assessed in an osteochondral defect model in Sprague Dawley rats: Ad-MSCs and hyaluronic acid were implanted at the defect site with or without matrilin-3 (140, 280, and 700 ng). Safranin O staining revealed that matrilin-3 (140 and 280 ng) treatment significantly improved cartilage regeneration and glycosaminoglycan accumulation. In the animals treated with 140-ng matrilin-3, in particular, the defect site exhibited complete integration with surrounding tissue and a smooth glistening surface. The International Cartilage Repair Society macroscopic and O'Driscoll microscopic scores for regenerated cartilage were furthermore shown to be considerably higher for this group (matrilin-3; 140 ng) compared with the other groups. Furthermore, the defects treated with 140-ng matrilin-3 revealed significant hyaline-like cartilage regeneration in the osteochondral defect model; in contrast, the defects treated with 700-ng matrilin-3 exhibited drastically reduced cartilage regeneration with mixed hyaline-fibrocartilage morphology. Codelivery of matrilin-3 with Ad-MSCs significantly influenced articular cartilage regeneration, supporting the potential use of this tissue-specific protein for a cartilage-targeted stem cell therapy.
Collapse
Affiliation(s)
- Manjunatha S Muttigi
- Department of Biomedical Science, CHA University, Seongnam, South Korea.,School of Integrative Engineering, Chung-Ang University, Seoul, South Korea
| | - Byoung Ju Kim
- Department of Biomedical Science, CHA University, Seongnam, South Korea
| | - Bogyu Choi
- Department of Biomedical Science, CHA University, Seongnam, South Korea
| | - Arai Yoshie
- Department of Biomedical Science, CHA University, Seongnam, South Korea
| | - Hemant Kumar
- Department of Biomedical Science, CHA University, Seongnam, South Korea.,Department of Neurosurgery, CHA Bundang Medical Center, CHA University, Seongnam, South Korea
| | - Inbo Han
- Department of Neurosurgery, CHA Bundang Medical Center, CHA University, Seongnam, South Korea
| | - Hansoo Park
- School of Integrative Engineering, Chung-Ang University, Seoul, South Korea
| | - Soo-Hong Lee
- Department of Biomedical Science, CHA University, Seongnam, South Korea
| |
Collapse
|
26
|
Multiplexed mass spectrometry monitoring of biomarker candidates for osteoarthritis. J Proteomics 2016; 152:216-225. [PMID: 27865793 DOI: 10.1016/j.jprot.2016.11.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 11/10/2016] [Accepted: 11/14/2016] [Indexed: 12/22/2022]
Abstract
The methods currently available for the diagnosis and monitoring of osteoarthritis (OA) are very limited and lack sensitivity. Being the most prevalent rheumatic disease, one of the most disabling pathologies worldwide and currently untreatable, there is a considerable interest pointed in the verification of specific biological markers for improving its diagnosis and disease progression studies. Considering the remarkable development of targeted proteomics methodologies in the frame of the Human Proteome Project, the aim of this work was to develop and apply a MRM-based method for the multiplexed analysis of a panel of 6 biomarker candidates for OA encoded by the Chromosome 16, and another 8 proteins identified in previous shotgun studies as related with this pathology, in specimens derived from the human joint and serum. The method, targeting 35 different peptides, was applied to samples from human articular chondrocytes, healthy and osteoarthritic cartilage, synovial fluid and serum. Subsequently, a verification analysis of the biomarker value of these proteins was performed by single point measurements on a set of 116 serum samples, leading to the identification of increased amounts of Haptoglobin and von Willebrand Factor in OA patients. Altogether, the present work provides a tool for the multiplexed monitoring of 14 biomarker candidates for OA, and verifies for the first time the increased amount of two of these circulating markers in patients diagnosed with this disease. SIGNIFICANCE We have developed an MRM method for the identification and relative quantification of a panel of 14 protein biomarker candidates for osteoarthritis. This method has been applied to analyze human articular chondrocytes, articular cartilage, synovial fluid, and finally a collection of 116 serum samples from healthy controls and patients suffering different degrees of osteoarthritis, in order to verify the biomarker usefulness of the candidates. HPT and VWF were validated as increased in OA patients.
Collapse
|