1
|
Luo H, Gong WY, Zhang YY, Liu YY, Chen Z, Feng XL, Jiao QB, Zhang XW. IRE1β evolves to be a guardian of respiratory and gastrointestinal mucosa. Heliyon 2024; 10:e39011. [PMID: 39524875 PMCID: PMC11550042 DOI: 10.1016/j.heliyon.2024.e39011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/20/2024] [Accepted: 10/04/2024] [Indexed: 10/31/2024] Open
Abstract
Inositol-requiring enzyme 1 (IRE1), a mediator of the unfolded protein response, shows the highest degree of evolutionary conservation. Vertebrates express two IRE1 paralogs: IRE1α, which is universally expressed and IRE1β, which shows specific expression within mucus secreted cells in respiratory and gastrointestinal tracts. The biological properties and regulation of the two IRE1 duplicates show evolutionary differences. As recently suggested, IRE1β-deficient mice display impairment in secreted protein expression and mucosal homeostasis. Abnormal changes in IRE1β caused by external and internal factors can disrupt mucosal homeostasis and further lead to respiratory and gastrointestinal diseases. Here, we highlight the physiological functions of IRE1β in the respiratory and gastrointestinal tracts in response to environmental microbes, viruses, toxins, and food components.
Collapse
Affiliation(s)
- Hui Luo
- School of Clinical Medicine, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, 311121, China
| | - Wen-Yan Gong
- School of Clinical Medicine, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, 311121, China
| | - Yuan-Yuan Zhang
- Department of Cardiovascular Ultrasonic Center, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Ying-Ying Liu
- School of Clinical Medicine, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, 311121, China
| | - Zhen Chen
- School of Clinical Medicine, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, 311121, China
| | - Xing-Lin Feng
- School of Clinical Medicine, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, 311121, China
| | - Qi-Bin Jiao
- School of Clinical Medicine, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, 311121, China
| | - Xing-Wei Zhang
- School of Clinical Medicine, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, 311121, China
| |
Collapse
|
2
|
Paparini DE, Grasso E, Aguilera F, Arslanian MA, Lella V, Lara B, Schafir A, Gori S, Merech F, Hauk V, Schuster C, Martí M, Meller C, Ramhorst R, Vota D, Leirós CP. Sex-specific phenotypical, functional and metabolic profiles of human term placenta macrophages. Biol Sex Differ 2024; 15:80. [PMID: 39420346 PMCID: PMC11484421 DOI: 10.1186/s13293-024-00652-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 09/23/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND Placental macrophages, Hofbauer cells (HBC) are the only fetal immune cell population within the stroma of healthy placenta along pregnancy. They are central players in maintaining immune tolerance during pregnancy. Immunometabolism emerged a few years ago as a new field that integrates cellular metabolism with immune responses, however, the immunometabolism of HBC has not been explored yet. Here we studied the sex-specific differences in the phenotypic, functional and immunometabolic profile of HBC. METHODS HBC were isolated from human term placentas (N = 31, 16 from male and 15 female neonates). Ex vivo assays were carried out to assess active metabolic and endoplasmic reticulum stress pathways by flow cytometry, confocal microscopy, gene expression and in silico approaches. RESULTS HBC from female placentas displayed a stronger M2 phenotype accompanied by high rates of efferocytosis majorly sustained on lipid metabolism. On the other hand, male HBC expressed a weaker M2 phenotype with higher glycolytic metabolism. LPS stimulation reinforced the glycolytic metabolism in male but not in female HBC. Physiological endoplasmic reticulum stress activates IRE-1 differently, since its pharmacological inhibition increased lipid mobilization, accumulation and efferocytosis only in female HBC. Moreover, differential sex-associated pathways accompanying the phenotypic and functional profiles of HBC appeared related to the placental villi environment. CONCLUSIONS These results support sex-associated effects on the immunometabolism of the HBC and adds another layer of complexity to the intricate maternal-fetal immune interaction.
Collapse
Affiliation(s)
- Daniel E Paparini
- Immunopharmacology Laboratory, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Universidad de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.
| | - Esteban Grasso
- Immunopharmacology Laboratory, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Universidad de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Franco Aguilera
- Immunopharmacology Laboratory, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Universidad de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Bioinformatic Laboratory, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Universidad de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | | | - Victoria Lella
- Obstetric Service, Hospital Italiano, Buenos Aires, Argentina
| | - Brenda Lara
- Immunopharmacology Laboratory, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Universidad de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Ana Schafir
- Immunopharmacology Laboratory, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Universidad de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Soledad Gori
- Immunopharmacology Laboratory, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Universidad de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Fátima Merech
- Immunopharmacology Laboratory, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Universidad de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Vanesa Hauk
- Immunopharmacology Laboratory, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Universidad de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Claudio Schuster
- Bioinformatic Laboratory, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Universidad de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Marcelo Martí
- Bioinformatic Laboratory, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Universidad de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Cesar Meller
- Obstetric Service, Hospital Italiano, Buenos Aires, Argentina
| | - Rosanna Ramhorst
- Immunopharmacology Laboratory, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Universidad de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Daiana Vota
- Immunopharmacology Laboratory, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Universidad de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Claudia Pérez Leirós
- Immunopharmacology Laboratory, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Universidad de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.
| |
Collapse
|
3
|
Gentzsch M, Baker B, Cholon DM, Kam CW, McKinzie CJ, Despotes KA, Boyles SE, Quinney NL, Esther CR, Ribeiro CM. Cystic fibrosis airway inflammation enables elexacaftor/tezacaftor/ivacaftor-mediated rescue of N1303K CFTR mutation. ERJ Open Res 2024; 10:00746-2023. [PMID: 38226069 PMCID: PMC10789252 DOI: 10.1183/23120541.00746-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 10/18/2023] [Indexed: 01/17/2024] Open
Abstract
Rescue of N1303K CFTR by highly effective modulator therapy (HEMT) is enabled by CF airway inflammation. These findings suggest that evaluation of HEMT for rare CFTR mutations must be performed under inflammatory conditions relevant to CF airways. https://bit.ly/3tTcoJE.
Collapse
Affiliation(s)
- Martina Gentzsch
- Marsico Lung Institute and Cystic Fibrosis Research Center, The University of North Carolina, Chapel Hill, NC, USA
- Department of Pediatrics, The University of North Carolina, Chapel Hill, NC, USA
- Department of Cell Biology and Physiology, The University of North Carolina, Chapel Hill, NC, USA
- Joint first authors
| | - Brooke Baker
- Department of Pharmacy, Duke University Medical Center, Durham, NC, USA
- Joint first authors
| | - Deborah M. Cholon
- Marsico Lung Institute and Cystic Fibrosis Research Center, The University of North Carolina, Chapel Hill, NC, USA
| | - Charissa W. Kam
- Department of Pharmacy, University of North Carolina Medical Center, Chapel Hill, NC, USA
| | - Cameron J. McKinzie
- Department of Pharmacy, University of North Carolina Medical Center, Chapel Hill, NC, USA
| | | | - Susan E. Boyles
- Marsico Lung Institute and Cystic Fibrosis Research Center, The University of North Carolina, Chapel Hill, NC, USA
| | - Nancy L. Quinney
- Marsico Lung Institute and Cystic Fibrosis Research Center, The University of North Carolina, Chapel Hill, NC, USA
| | - Charles R. Esther
- Marsico Lung Institute and Cystic Fibrosis Research Center, The University of North Carolina, Chapel Hill, NC, USA
- Department of Pediatrics, The University of North Carolina, Chapel Hill, NC, USA
- Joint senior authors
| | - Carla M.P. Ribeiro
- Marsico Lung Institute and Cystic Fibrosis Research Center, The University of North Carolina, Chapel Hill, NC, USA
- Department of Cell Biology and Physiology, The University of North Carolina, Chapel Hill, NC, USA
- Department of Medicine, The University of North Carolina, Chapel Hill, NC, USA
- Joint senior authors
| |
Collapse
|
4
|
Wang Z, Li L, Yan H, Li W, Pang Y, Yuan Y. Salidroside Ameliorates Furan-Induced Testicular Inflammation in Relation to the Gut-Testis Axis and Intestinal Apoptosis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:17968-17987. [PMID: 37943949 DOI: 10.1021/acs.jafc.3c06587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Furan is a heat-induced food contaminant, and it causes damage to visceral organs, including the testis. To determine the mechanism of the damage to the testis, a mouse model treated with furan (8 mg/kg bw/day) and salidroside (SAL, 10/20/40 mg/kg bw/day) was established, and levels of testicular functional markers and changes of morphology were investigated in furan-induced mice treated with SAL. The change in related proteins and genes suggested that SAL restored the furan-mediated leaky tight junction and triggered the TLR4/MyD88/NF-κB pathway and NLRP3 inflammasome together with inflammation. To find out the gut-testis axis, microbiota PICRUSt analysis and correlation analysis were conducted to investigate the core microbiota and metabolites. The endoplasmic reticulum stress (ERS)-related key protein levels and the result of transmission electron microscopy suggested that SAL inhibited the furan-induced intestinal ERS. The result of TUNEL and levels of apoptosis-related proteins suggested that furan-induced intestinal apoptosis was alleviated by SAL. Collectively, SAL inhibited furan-induced ERS-mediated intestinal apoptosis through modulation of intestinal flora and metabolites, thus strengthening the gut barrier. It inhibited LPS from entering the circulatory system and suppressed the testicular TLR4/MyD88/NF-κB pathway and NLRP3 inflammasome, which alleviated testicular inflammation.
Collapse
Affiliation(s)
- Ziyue Wang
- College of Food Science and Engineering, Jilin University, Changchun, China 130062
| | - Lu Li
- College of Food Science and Engineering, Jilin University, Changchun, China 130062
| | - Haiyang Yan
- College of Food Science and Engineering, Jilin University, Changchun, China 130062
| | - Wenliang Li
- College of Food Science and Engineering, Jilin University, Changchun, China 130062
| | - Yong Pang
- College of Food Science and Engineering, Jilin University, Changchun, China 130062
| | - Yuan Yuan
- College of Food Science and Engineering, Jilin University, Changchun, China 130062
| |
Collapse
|
5
|
Yeap JW, Ali IAH, Ibrahim B, Tan ML. Chronic obstructive pulmonary disease and emerging ER stress-related therapeutic targets. Pulm Pharmacol Ther 2023; 81:102218. [PMID: 37201652 DOI: 10.1016/j.pupt.2023.102218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 05/05/2023] [Indexed: 05/20/2023]
Abstract
COPD pathogenesis is frequently associated with endoplasmic reticulum stress (ER stress) progression. Targeting the major unfolded protein response (UPR) branches in the ER stress pathway may provide pharmacotherapeutic selection strategies for treating COPD and enable relief from its symptoms. In this study, we aimed to systematically review the potential role of the ER stress inhibitors of major UPR branches (IRE1, PERK, and ATF6) in COPD-related studies and determine the current stage of knowledge in this field. The systematic review was carried out adhering to the PRISMA checklist based on published studies obtained from specific keyword searches of three databases, namely PubMed, ScienceDirect and Springer Database. The search was limited to the year 2000-2022 which includes all in vitro studies, in vivo studies and clinical trials related to the application of ER stress inhibitors toward COPD-induced models and disease. The risk of bias was evaluated using the QUIN, SYRCLE, revised Cochrane risk of bias tool for randomized trials (RoB 2.0) and NIH tool respectively. A total of 7828 articles were screened from three databases and a final total of 37 studies were included in the review. The ER stress and UPR pathways are potentially useful to prevent COPD progression and attenuate the exacerbation of COPD and related symptoms. Interestingly, the off-target effects from inhibition of the UPR pathway may be desirable or undesirable depending on context and therapeutic applications. Targeting the UPR pathway could have complex consequences as the production of ER molecules involved in folding may be impaired which could continuously provoke misfolding of proteins. Although several emerging compounds were noted to be potentially useful for targeted therapy against COPD, clinical studies have yet to be thoroughly explored.
Collapse
Affiliation(s)
- Jia Wen Yeap
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800, Pulau Pinang, Malaysia
| | - Irfhan Ali Hyder Ali
- Respiratory Department, Penang General Hospital, Jalan Residensi, 10990, Pulau Pinang, Malaysia
| | - Baharudin Ibrahim
- Department of Clinical Pharmacy & Pharmacy Practice, Faculty of Pharmacy, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Mei Lan Tan
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800, Pulau Pinang, Malaysia; Centre For Global Sustainability Studies (CGSS), Universiti Sains Malaysia, 11800, Pulau Pinang, Malaysia.
| |
Collapse
|
6
|
Ribeiro CMP, Higgs MG, Muhlebach MS, Wolfgang MC, Borgatti M, Lampronti I, Cabrini G. Revisiting Host-Pathogen Interactions in Cystic Fibrosis Lungs in the Era of CFTR Modulators. Int J Mol Sci 2023; 24:ijms24055010. [PMID: 36902441 PMCID: PMC10003689 DOI: 10.3390/ijms24055010] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/25/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
Cystic fibrosis transmembrane conductance regulator (CFTR) modulators, a new series of therapeutics that correct and potentiate some classes of mutations of the CFTR, have provided a great therapeutic advantage to people with cystic fibrosis (pwCF). The main hindrances of the present CFTR modulators are related to their limitations in reducing chronic lung bacterial infection and inflammation, the main causes of pulmonary tissue damage and progressive respiratory insufficiency, particularly in adults with CF. Here, the most debated issues of the pulmonary bacterial infection and inflammatory processes in pwCF are revisited. Special attention is given to the mechanisms favoring the bacterial infection of pwCF, the progressive adaptation of Pseudomonas aeruginosa and its interplay with Staphylococcus aureus, the cross-talk among bacteria, the bronchial epithelial cells and the phagocytes of the host immune defenses. The most recent findings of the effect of CFTR modulators on bacterial infection and the inflammatory process are also presented to provide critical hints towards the identification of relevant therapeutic targets to overcome the respiratory pathology of pwCF.
Collapse
Affiliation(s)
- Carla M. P. Ribeiro
- Marsico Lung Institute/Cystic Fibrosis Research Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Correspondence: (C.M.P.R.); (G.C.)
| | - Matthew G. Higgs
- Marsico Lung Institute/Cystic Fibrosis Research Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Marianne S. Muhlebach
- Marsico Lung Institute/Cystic Fibrosis Research Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Pediatrics, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Matthew C. Wolfgang
- Marsico Lung Institute/Cystic Fibrosis Research Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Monica Borgatti
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy
- Innthera4CF, Center on Innovative Therapies for Cystic Fibrosis, University of Ferrara, 44121 Ferrara, Italy
| | - Ilaria Lampronti
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy
- Innthera4CF, Center on Innovative Therapies for Cystic Fibrosis, University of Ferrara, 44121 Ferrara, Italy
| | - Giulio Cabrini
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy
- Innthera4CF, Center on Innovative Therapies for Cystic Fibrosis, University of Ferrara, 44121 Ferrara, Italy
- Correspondence: (C.M.P.R.); (G.C.)
| |
Collapse
|
7
|
Ding W, Xu W, Lu D, Sheng H, Xu X, Xu B, Zheng A. Inhibition of TERC inhibits neural apoptosis and inflammation in spinal cord injury through Akt activation and p-38 inhibition via the miR-34a-5p/XBP-1 axis. Open Med (Wars) 2023; 18:20220619. [PMID: 36742154 PMCID: PMC9883688 DOI: 10.1515/med-2022-0619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 10/31/2022] [Accepted: 11/21/2022] [Indexed: 01/25/2023] Open
Abstract
This study investigated the function of telomerase RNA component (TERC) in spinal cord injury (SCI). SCI models were established in rats via laminectomy and PC-12 cells were treated with lipopolysaccharide (LPS). TERC and miR-34a-5p expressions in cells and rat spinal cords were detected by quantitative reverse transcription polymerase chain reaction, followed by overexpression/knockdown of TERC/miR-34a-5p. Spinal cord histopathological changes were examined via hematoxylin-eosin staining. miR-34a-5p' relation with TERC and XBP-1 was predicted by TargetScan and checked by dual-luciferase reporter/RNA immunoprecipitation assays. Cell biological behaviors were assessed by Cell counting kit-8, wound healing, Transwell, and flow cytometry assays. XBP-1 and inflammation/apoptosis-related protein expressions were analyzed by western blot. TERC was upregulated and miR-34a-5p was low-expressed in SCI tissues and LPS-induced PC-12 cells. TERC-knockdown alleviated histopathological abnormalities yet upregulated miR-34a-5p in SCI tissues. In LPS-induced PC-12 cells, TERC knockdown promoted cell viability, migration, invasion, and inhibited apoptosis, while TERC overexpression ran oppositely. TERC knockdown downregulated the XBP-1, IL-6, TNF-α, Bax, p-p38/t-p38, and cleaved caspase-9/-3, but upregulated Bcl-2 and p-Akt/t-Akt. TERC targeted miR-34a-5p, which further targeted XBP-1. miR-34a-5p downregulation exerted effects opposite to and offset TERC knockdown-induced effects. TERC knockdown facilitated the regeneration of neuron tissues yet inhibited inflammation in SCI through Akt activation and p-38 inhibition via the miR-34a-5p/XBP-1 axis.
Collapse
Affiliation(s)
- Weiguo Ding
- Department of Orthopedics, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang Province, 310012, China
| | - Weixing Xu
- Department of Orthopedics, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang Province, 310012, China
| | - Di Lu
- Department of Orthopedics, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang Province, 310012, China
| | - Hongfeng Sheng
- Department of Orthopedics, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang Province, 310012, China
| | - Xinwei Xu
- Department of Orthopedics, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang Province, 310012, China
| | - Bin Xu
- Department of Orthopedics, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang Province, 310012, China
| | - Aote Zheng
- Department of Orthopedics, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang Province, 310012, China
| |
Collapse
|
8
|
Qi H, Liu H, Zheng P, He J. Lack of association between leptin concentrations and cystic fibrosis: A meta-analysis and regression. Front Endocrinol (Lausanne) 2023; 14:1126129. [PMID: 36992806 PMCID: PMC10040884 DOI: 10.3389/fendo.2023.1126129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 02/27/2023] [Indexed: 03/16/2023] Open
Abstract
BACKGROUND Leptin (LEP) acts as a proinflammatory cytokine and may play an important role in the pathophysiology of cystic fibrosis (CF). This review aimed to assess the quantitative difference in leptin status between CF patients and non-CF controls. METHODS In this study, the researchers conducted systematic searches of various databases, such as PubMed, Excerpta Medica Database, Google Scholar, Web of Science, and the China National Knowledge Infrastructure. The data collected from the above databases were assessed using the Stata 11.0 and R 4.1.3 software. The correlation coefficients and the Standardized Mean Differences (SMD) were employed to assess the effect size. A combination analysis was also carried out with the help of either a fixed-effects or random-effects model. In addition, the single-cell sequencing GSE193782 dataset was obtained to determine the mRNA expression levels of LEP and leptin receptor (LEPR) in the bronchoalveolar lavage fluid, to verify the different leptin expression between the CF patients and healthy controls. RESULTS A total of 919 CF patients and 397 controls from 14 articles were included in this study. CF patients and non-CF controls showed similar serum/plasma leptin levels. Gender, specimen testing, age, and study design were all taken into account for carrying out subgroup analyses. The results revealed no variations in serum/plasma leptin levels between the controls and CF patients in the various subgroups. Female CF patients exhibited higher leptin concentrations compared to male CF patients, and male healthy individuals showed lower leptin levels than female healthy participants. Aside from the fact that serum/plasma leptin appeared to be favorably linked to fat mass and BMI, the findings in this study also indicated that serum/plasma concentrations were not associated with Forced Expiratory Volume in the first second (FEV1). No statistically significant differences were observed in the leptin and leptin receptor mRNA expression levels between the healthy controls and CF patients. The leptin receptor and leptin expression levels in alveolar lavage fluid were low in various cells, without any distinctive distribution patterns. CONCLUSIONS The current meta-analysis indicated the absence of significant differences in leptin levels between CF patients and healthy individuals. Gender, fat mass, and BMI may all be correlated with leptin concentrations. SYSTEMATIC REVIEW REGISTRATION https://www.crd.york.ac.uk/prospero/, identifier CRD42022380118.
Collapse
Affiliation(s)
- Hong Qi
- Clinical Medical College of Chengdu Medical College, Chengdu, Sichuan, China
- Department of Geriatric Medicine, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, China
| | - Hairong Liu
- Clinical Medical College of Chengdu Medical College, Chengdu, Sichuan, China
- Department of Geriatric Medicine, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, China
| | - Pengcheng Zheng
- Clinical Medical College of Chengdu Medical College, Chengdu, Sichuan, China
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, China
| | - Jie He
- Clinical Medical College of Chengdu Medical College, Chengdu, Sichuan, China
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, China
| |
Collapse
|
9
|
Caverly LJ, Riquelme SA, Hisert KB. The Impact of Highly Effective Modulator Therapy on Cystic Fibrosis Microbiology and Inflammation. Clin Chest Med 2022; 43:647-665. [PMID: 36344072 PMCID: PMC10224747 DOI: 10.1016/j.ccm.2022.06.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Highly effective cystic fibrosis (CF) transmembrane conductance regulator (CFTR) modulator therapy (HEMT) corrects the underlying molecular defect causing CF disease. HEMT decreases symptom burden and improves clinical metrics and quality of life for most people with CF (PwCF) and eligible cftr mutations. Improvements in measures of pulmonary health suggest that restoration of function of defective CFTR anion channels by HEMT not only enhances airway mucociliary clearance, but also reduces chronic pulmonary infection and inflammation. This article reviews the evidence for how HEMT influences the dynamic and interdependent processes of infection and inflammation in the CF airway, and what questions remain unanswered.
Collapse
Affiliation(s)
- Lindsay J Caverly
- Department of Pediatrics, University of Michigan Medical School, L2221 UH South, 1500 East Medical Center Drive, Ann Arbor, MI 48109-5212, USA
| | - Sebastián A Riquelme
- Department of Pediatrics, College of Physicians and Surgeons, Columbia University, Columbia University Medical Center, 650West 168th Street, New York, NY 10032, USA
| | - Katherine B Hisert
- Department of Medicine, National Jewish Health, Smith A550, 1400 Jackson Street, Denver, CO 80205, USA.
| |
Collapse
|
10
|
Ribeiro CMP, Hull-Ryde EA. Functional role of the ER stress transducer IRE1α in CF airway epithelial inflammation. Curr Opin Pharmacol 2022; 65:102258. [PMID: 35749907 DOI: 10.1016/j.coph.2022.102258] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 05/10/2022] [Accepted: 05/16/2022] [Indexed: 11/19/2022]
Abstract
Excessive and chronic airway inflammation associated with increased morbidity and mortality is a hallmark of cystic fibrosis (CF) airway disease. Previous studies underscored the role of endoplasmic reticulum (ER) signaling in CF airway inflammatory responses. In this review we discuss 1) how airway inflammation induces ER stress-triggered activation of the unfolded protein response and 2) the functional importance of the ER stress transducer inositol requiring enzyme 1α (IRE1α) in CF airway epithelial inflammatory responses. We also briefly review the current understanding of IRE1α activation and the development of small molecules aimed at modulating IRE1α kinase and RNase activities. Inhibition of IRE1α kinase and RNase may be considered as a novel therapeutic strategy to ameliorate the robust inflammatory status of CF airways.
Collapse
Affiliation(s)
- Carla M P Ribeiro
- Marsico Lung Institute/Cystic Fibrosis Center, University of North Carolina, Chapel Hill, NC, 27599-7248, USA; Department of Medicine, University of North Carolina, Chapel Hill, NC, 27599-7248, USA; Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC, 27599-7248, USA.
| | - Emily A Hull-Ryde
- Marsico Lung Institute/Cystic Fibrosis Center, University of North Carolina, Chapel Hill, NC, 27599-7248, USA
| |
Collapse
|
11
|
Downregulated XBP-1 Rescues Cerebral Ischemia/Reperfusion Injury-Induced Pyroptosis via the NLRP3/Caspase-1/GSDMD Axis. Mediators Inflamm 2022; 2022:8007078. [PMID: 35497095 PMCID: PMC9050284 DOI: 10.1155/2022/8007078] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 03/10/2022] [Accepted: 03/23/2022] [Indexed: 11/17/2022] Open
Abstract
Ischemic stroke is a major condition that remains extremely problematic to treat. A cerebral reperfusion injury becomes apparent after an ischemic accident when reoxygenation of the afflicted area produces pathological side effects that are different than those induced by the initial oxygen and nutrient deprivation insult. Pyroptosis is a form of lytic programmed cell death that is distinct from apoptosis, which is initiated by inflammasomes and depends on the activation of Caspase-1. Then, Caspase-1 mobilizes the N-domain of gasdermin D (GSDMD), resulting in the release of cytokines, such as interleukin-1β (IL-1β) and interleukin-18 (IL-18). X-box binding protein l (XBP-1) is activated under endoplasmic reticulum (ER) stress to form an important transcription factor XBP-1 splicing (XBP-1s). The cerebral ischemia/reperfusion (CI/R) causes cytotoxicity, which correlates with the activation of splicing XBP-1 mRNA and NLRP3 (NOD-, LRR-, and pyrin domain-containing 3) inflammasomes, along with increases in the expression and secretion of proinflammatory cytokines and upregulation of pyroptosis-related genes in HT22 cells and in the middle cerebral artery occlusion (MCAO) rat model. However, whether XBP-1 plays a role in regulating pyroptosis involved in CI/R is still unknown. Our present study showed that behavior deficits, cerebral ischemic lesions, and neuronal death resulted from CI/R. CI/R increased the mRNA level of XBP-1s, NLRP3, IL-1β, and IL-18 and the expressions of XBP-1s, NLRP3, Caspase-1, GSDMD-N, IL-1β, and IL-18. We further repeated this process in HT22 cells and C8-B4 cells and found that OGD/R decreased cell viability and increased LDH release, XBP-1s, NLRP3, Caspase-1, GSDMD-N, IL-1β, IL-18, and especially the ratio of pyroptosis, which were reversed by Z-YVAD-FMK and downregulated XBP-1. Our results suggest that downregulated XBP-1 inhibited pyroptosis through the classical NLRP3/Caspase-1/GSDMD pathway to protect the neurons.
Collapse
|
12
|
Zhang LS, Zhang JS, Hou YL, Lu WW, Ni XQ, Lin F, Liu XY, Wang XJ, Yu YR, Jia MZ, Tang CS, Han L, Chai SB, Qi YF. Intermedin 1-53 Inhibits NLRP3 Inflammasome Activation by Targeting IRE1α in Cardiac Fibrosis. Inflammation 2022; 45:1568-1584. [PMID: 35175495 DOI: 10.1007/s10753-022-01642-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 01/27/2022] [Accepted: 01/29/2022] [Indexed: 11/24/2022]
Abstract
Intermedin (IMD), a paracrine/autocrine peptide, protects against cardiac fibrosis. However, the underlying mechanism remains poorly understood. Previous study reports that activation of nucleotide-binding oligomerization domain (NOD)-like receptor family pyrin domain containing 3 (NLRP3) inflammasome contributes to cardiac fibrosis. In this study, we aimed to investigate whether IMD mitigated cardiac fibrosis by inhibiting NLRP3. Cardiac fibrosis was induced by angiotensin II (Ang II) infusion for 2 weeks in rats. Western blot, real-time PCR, histological staining, immunofluorescence assay, RNA sequencing, echocardiography, and hemodynamics were used to detect the role and the mechanism of IMD in cardiac fibrosis. Ang II infusion resulted in rat cardiac fibrosis, shown as over-deposition of myocardial interstitial collagen and cardiac dysfunction. Importantly, NLRP3 activation and endoplasmic reticulum stress (ERS) were found in Ang II-treated rat myocardium. Ang II infusion decreased the expression of IMD and increased the expression of the receptor system of IMD in the fibrotic rat myocardium. IMD treatment attenuated the cardiac fibrosis and improved cardiac function. In addition, IMD inhibited the upregulation of NLRP3 markers and ERS markers induced by Ang II. In vitro, IMD knockdown by small interfering RNA significantly promoted the Ang II-induced cardiac fibroblast and NLRP3 activation. Moreover, silencing of inositol requiring enzyme 1 α (IRE1α) blocked the effects of IMD inhibiting fibroblast and NLRP3 activation. Pre-incubation with PKA pathway inhibitor H89 blocked the effects of IMD on the anti-ERS, anti-NLRP3, and anti-fibrotic response. In conclusion, IMD alleviated cardiac fibrosis by inhibiting NLRP3 inflammasome activation through suppressing IRE1α via the cAMP/PKA pathway.
Collapse
Affiliation(s)
- Lin-Shuang Zhang
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University Health Science Center, Beijing, China.,Department of Pathogen Biology, School of Basic Medical Sciences, Peking University Health Science Center, HaidianDistrict, No. 38 Xueyuan Road, Beijing, 100083, China.,School of Nursing, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Jin-Sheng Zhang
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University Health Science Center, Beijing, China.,Department of Pathogen Biology, School of Basic Medical Sciences, Peking University Health Science Center, HaidianDistrict, No. 38 Xueyuan Road, Beijing, 100083, China
| | - Yue-Long Hou
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University Health Science Center, Beijing, China
| | - Wei-Wei Lu
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University Health Science Center, Beijing, China.,Department of Pathogen Biology, School of Basic Medical Sciences, Peking University Health Science Center, HaidianDistrict, No. 38 Xueyuan Road, Beijing, 100083, China
| | - Xian-Qiang Ni
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University Health Science Center, Beijing, China.,Department of Pathogen Biology, School of Basic Medical Sciences, Peking University Health Science Center, HaidianDistrict, No. 38 Xueyuan Road, Beijing, 100083, China
| | - Fan Lin
- Department of Respiratory Disease, Peking University Third Hospital, Beijing, China
| | - Xiu-Ying Liu
- Key Laboratory of Genetic Network Biology, Collaborative Innovation Center of Genetics and Development, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Xiu-Jie Wang
- Key Laboratory of Genetic Network Biology, Collaborative Innovation Center of Genetics and Development, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yan-Rong Yu
- Department of Pathogen Biology, School of Basic Medical Sciences, Peking University Health Science Center, HaidianDistrict, No. 38 Xueyuan Road, Beijing, 100083, China
| | - Mo-Zhi Jia
- Department of Pathogen Biology, School of Basic Medical Sciences, Peking University Health Science Center, HaidianDistrict, No. 38 Xueyuan Road, Beijing, 100083, China
| | - Chao-Shu Tang
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University Health Science Center, Beijing, China
| | - Ling Han
- Department of Cardiology, Fu Xing Hospital, Capital Medical University, A20 Fuxingmenwai Street, Xicheng District, Beijing, 100038, China.
| | - San-Bao Chai
- Department of Endocrinology, Peking University International Hospital, Life Park Road No. 1, Zhongguancun Life Science Park, Changping District, Beijing, 102206, China.
| | - Yong-Fen Qi
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University Health Science Center, Beijing, China. .,Department of Pathogen Biology, School of Basic Medical Sciences, Peking University Health Science Center, HaidianDistrict, No. 38 Xueyuan Road, Beijing, 100083, China.
| |
Collapse
|
13
|
Ghafouri M, Gauss CB, Fribley AM. HTS Identification of Activators and Inhibitors of Endoplasmic Reticulum (ER) Stress and the Unfolded Protein Response (UPR). Methods Mol Biol 2022; 2378:317-327. [PMID: 34985709 DOI: 10.1007/978-1-0716-1732-8_20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The identification of small molecules and natural product extracts that enhance or interfere with the productivity of protein folding in the endoplasmic reticulum (ER) has the potential to improve a wide variety of human pathologies. Every protein that is destined for a lysosome, integral to the cell membrane, or secreted, is folded, post-translationally modified, and exported to the cytoplasm from the ER-Golgi complex. The following protocols have successfully employed several high-fidelity cell-based luciferase high-throughput screens (HTS) to identify activators and inhibitors of ER stress and the unfolded protein response (UPR).
Collapse
Affiliation(s)
- Mehrnoosh Ghafouri
- Carman and Ann Adams Department of Pediatrics, Wayne State University School of Medicine, Detroit, MI, USA
| | - Chester B Gauss
- Carman and Ann Adams Department of Pediatrics, Wayne State University School of Medicine, Detroit, MI, USA
| | - Andrew M Fribley
- Carman and Ann Adams Department of Pediatrics, Wayne State University School of Medicine, Detroit, MI, USA.
- Department of Otolaryngology-Head and Neck Surgery, Wayne State University School of Medicine, Detroit, MI, USA.
- Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Detroit, MI, USA.
| |
Collapse
|
14
|
Trouvé P, Férec C, Génin E. The Interplay between the Unfolded Protein Response, Inflammation and Infection in Cystic Fibrosis. Cells 2021; 10:2980. [PMID: 34831204 PMCID: PMC8616505 DOI: 10.3390/cells10112980] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 10/25/2021] [Accepted: 10/29/2021] [Indexed: 12/15/2022] Open
Abstract
In cystic fibrosis (CF), p.Phe508del is the most frequent mutation in the Cystic Fibrosis Transmembrane conductance Regulator (CFTR) gene. The p.Phe508del-CFTR protein is retained in the ER and rapidly degraded. This retention likely triggers an atypical Unfolded Protein Response (UPR) involving ATF6, which reduces the expression of p.Phe508del-CFTR. There are still some debates on the role of the UPR in CF: could it be triggered by the accumulation of misfolded CFTR proteins in the endoplasmic reticulum as was proposed for the most common CFTR mutation p.Phe508del? Or, is it the consequence of inflammation and infection that occur in the disease? In this review, we summarize recent findings on UPR in CF and show how infection, inflammation and UPR act together in CF. We propose to rethink their respective role in CF and to consider them as a whole.
Collapse
Affiliation(s)
- Pascal Trouvé
- Inserm, Univ Brest, EFS, UMR 1078, GGB, F-29200 Brest, France; (C.F.); (E.G.)
| | | | | |
Collapse
|
15
|
Yang G, Zhang X. TMAO promotes apoptosis and oxidative stress of pancreatic acinar cells by mediating IRE1α-XBP-1 pathway. Saudi J Gastroenterol 2021; 27:361-369. [PMID: 34755714 PMCID: PMC8656330 DOI: 10.4103/sjg.sjg_12_21] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 03/12/2021] [Accepted: 04/15/2021] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Acute pancreatitis caused by hyperlipidemia is a severe life-threatening condition. Therefore, it is urgent to develop new therapeutic methods to treat this disease. METHODS Cell viability was determined by the Cell Counting Kit-8 (CCK-8) assay. Western blotting (WB) was used to detect the expression levels of apoptotic and endoribonuclease inositol-requiring enzyme 1α (IRE1α)/X-box binding protein 1 (XBP-1) pathway-associated proteins. The induction of cell apoptosis was determined using flow cytometry. The expression levels of the oxidative stress indicators were measured by an enzyme-linked immunosorbent assay. RESULTS WB analysis and the CCK-8 assay demonstrated that trimethylamine-N-oxide (TMAO) decreased cell viability and facilitated apoptosis of MPC-83 cells in a dose-dependent manner. Furthermore, the induction of oxidative stress was assessed by evaluating the levels of specific markers, including hydrogen peroxide, reactive oxygen species, nitric oxide, and superoxide dismutase. The levels of the aforementioned markers were increased in the TMAO-treated group. Subsequently, the IRE1α/XBP-1 pathway-associated proteins were analyzed by WB analysis and the data demonstrated that the regulatory effects of TMAO on MPC-83 cells were meditated by the IRE1α/XBP-1 signaling pathway. Subsequently, rescue experiments were performed to further assess the effects of TMAO. CONCLUSION The present study provides evidence on the application of TMAO as a potential diagnostic and therapeutic strategy for the therapeutic intervention of hyperlipidemic acute pancreatitis.
Collapse
Affiliation(s)
- Guodong Yang
- Department of Gastroenterology and Hepatology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Xiaoying Zhang
- School of Basic Medicine, North Sichuan Medical College, Nanchong, China
| |
Collapse
|
16
|
Yuan Y, Wang Z, Nan B, Yang C, Wang M, Ye H, Xi C, Zhang Y, Yan H. Salidroside alleviates liver inflammation in furan-induced mice by regulating oxidative stress and endoplasmic reticulum stress. Toxicology 2021; 461:152905. [PMID: 34450210 DOI: 10.1016/j.tox.2021.152905] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/11/2021] [Accepted: 08/20/2021] [Indexed: 01/04/2023]
Abstract
Furan is a genotoxic and carcinogenic toxicant formed during the food thermal processing. Our previous studies confirmed that salidroside (SAL) displayed excellent protective effects against furan-induced hepatotoxicity and inflammation, whereas the underlying mechanism was still unclear. In the current study, Balb/c mice were divided to the control group (CON), the furan model group (FUR8, 8 mg/kg BW furan for 30 days) and SAL intervention groups (SAL10/20/40, 8 mg/kg BW furan for 30 days + 10/20/40 mg/kg BW SAL from day 16 to day 30). The alleviative effects and the mechanisms of SAL against furan-induced liver inflammation in mice were investigated through oxidative stress (OS) and endoplasmic reticulum stress (ERS). Liver metabonomics data, molecular docking and Western-blotting results implied that SAL suppressed the activity and the high expression of hepatic CYP2E1, and alleviated liver OS induced by furan. Levels of key markers (GRP78, CHOP and Caspase-12) of ERS and proteins in IRE1α pathway of the UPR branch increased by furan were prominently reduced after SAL treatment. Levels of phosphorylated proteins JNK, ERK, p38, IKKα/β, IκB and p65 in MAPK and NF-κB pathways were also suppressed by SAL. We further confirmed that SAL inhibited furan-induced inflammation by reducing the levels of NLRP3, ASC, Cleaved Caspase-1 and IL-1β and decreasing the production of pro-inflammatory cytokines. Our results shed light into the alleviating mechanisms behind furan-induced liver inflammation, and suggested that SAL inhibited OS, ERS and related MAPK and NF-κB pathways and therefore inhibited the NLRP3 inflammasome activation, which may be its potential mechanism of alleviating liver inflammation.
Collapse
Affiliation(s)
- Yuan Yuan
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Ziyue Wang
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Bo Nan
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Chaoyue Yang
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Minghua Wang
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Haiqing Ye
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Chunyu Xi
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Yan Zhang
- College of Physics, Jilin University, Changchun, 130062, China
| | - Haiyang Yan
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China.
| |
Collapse
|
17
|
Kouadri A, Cormenier J, Gemy K, Macari L, Charbonnier P, Richaud P, Michaud-Soret I, Alfaidy N, Benharouga M. Copper-Associated Oxidative Stress Contributes to Cellular Inflammatory Responses in Cystic Fibrosis. Biomedicines 2021; 9:329. [PMID: 33805052 PMCID: PMC8064106 DOI: 10.3390/biomedicines9040329] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/17/2021] [Accepted: 03/19/2021] [Indexed: 12/17/2022] Open
Abstract
Cystic fibrosis (CF) is caused by mutations in the gene encoding the CF Transmembrane Conductance Regulator (CFTR), an apical chloride channel. An early inflammation (EI) in the lung of CF patients occurring in the absence of any bacterial infection has been reported. This EI has been proposed to be associated with oxidative stress (OX-S), generated by deregulations of the oxidant/antioxidant status. Recently, we demonstrated that copper (Cu), an essential trace element, mediates OX-S in bronchial cells. However, the role of this element in the development of CF-EI, in association with OX-S, has never been investigated. Using healthy (16HBE14o-; HBE), CF (CFBE14o-; CFBE), and corrected-wild type CFTR CF (CFBE-wt) bronchial cells, we characterized the inflammation and OX-S profiles in relation to the copper status and CFTR expression and function. We demonstrated that CFBE cells exhibited a CFTR-independent intrinsic inflammation. These cells also exhibited an alteration in mitochondria, UPR (Unfolded Protein Response), catalase, Cu/Zn- and Mn-SOD activities, and an increase in the intracellular content of iron, zinc, and Cu. The increase in Cu concentration was associated with OX-S and inflammatory responses. These data identify cellular Cu as a key factor in the generation of CF-associated OX-S and opens new areas of investigation to better understand CF-associated EI.
Collapse
Affiliation(s)
- Amal Kouadri
- Institut National de la Santé et de la Recherche Médicale U1292, Biologie et Biotechnologie Pour la Santé, 38000 Grenoble, France; (A.K.); (J.C.); (K.G.)
- Commissariat à l’Energie Atomique et Aux Energies Alternatives (CEA), 38000 Grenoble, France; (L.M.); (P.C.); (I.M.-S.)
- Université Grenoble Alpes (UGA), 38043 Grenoble, France
| | - Johanna Cormenier
- Institut National de la Santé et de la Recherche Médicale U1292, Biologie et Biotechnologie Pour la Santé, 38000 Grenoble, France; (A.K.); (J.C.); (K.G.)
- Commissariat à l’Energie Atomique et Aux Energies Alternatives (CEA), 38000 Grenoble, France; (L.M.); (P.C.); (I.M.-S.)
- Université Grenoble Alpes (UGA), 38043 Grenoble, France
| | - Kevin Gemy
- Institut National de la Santé et de la Recherche Médicale U1292, Biologie et Biotechnologie Pour la Santé, 38000 Grenoble, France; (A.K.); (J.C.); (K.G.)
- Commissariat à l’Energie Atomique et Aux Energies Alternatives (CEA), 38000 Grenoble, France; (L.M.); (P.C.); (I.M.-S.)
- Université Grenoble Alpes (UGA), 38043 Grenoble, France
| | - Laurence Macari
- Commissariat à l’Energie Atomique et Aux Energies Alternatives (CEA), 38000 Grenoble, France; (L.M.); (P.C.); (I.M.-S.)
- Université Grenoble Alpes (UGA), 38043 Grenoble, France
- Centre National de la Recherche Scientifique (CNRS), LCBM-UMR 5249, 38000 Grenoble, France
| | - Peggy Charbonnier
- Commissariat à l’Energie Atomique et Aux Energies Alternatives (CEA), 38000 Grenoble, France; (L.M.); (P.C.); (I.M.-S.)
- Université Grenoble Alpes (UGA), 38043 Grenoble, France
- Centre National de la Recherche Scientifique (CNRS), LCBM-UMR 5249, 38000 Grenoble, France
| | - Pierre Richaud
- CEA, CNRS, Institut de Biosciences et Biotechnologies d’Aix-Marseille (BIAM), Université Aix-Marseille, UMR 7265, CEA Cadarache, 13108 Saint-Paul-lez Durance, France;
| | - Isabelle Michaud-Soret
- Commissariat à l’Energie Atomique et Aux Energies Alternatives (CEA), 38000 Grenoble, France; (L.M.); (P.C.); (I.M.-S.)
- Université Grenoble Alpes (UGA), 38043 Grenoble, France
- Centre National de la Recherche Scientifique (CNRS), LCBM-UMR 5249, 38000 Grenoble, France
| | - Nadia Alfaidy
- Institut National de la Santé et de la Recherche Médicale U1292, Biologie et Biotechnologie Pour la Santé, 38000 Grenoble, France; (A.K.); (J.C.); (K.G.)
- Commissariat à l’Energie Atomique et Aux Energies Alternatives (CEA), 38000 Grenoble, France; (L.M.); (P.C.); (I.M.-S.)
- Université Grenoble Alpes (UGA), 38043 Grenoble, France
| | - Mohamed Benharouga
- Institut National de la Santé et de la Recherche Médicale U1292, Biologie et Biotechnologie Pour la Santé, 38000 Grenoble, France; (A.K.); (J.C.); (K.G.)
- Commissariat à l’Energie Atomique et Aux Energies Alternatives (CEA), 38000 Grenoble, France; (L.M.); (P.C.); (I.M.-S.)
- Université Grenoble Alpes (UGA), 38043 Grenoble, France
| |
Collapse
|
18
|
Hull-Ryde EA, Minges JT, Martino MEB, Kato T, Norris-Drouin JL, Ribeiro CMP. IRE1α Is a Therapeutic Target for Cystic Fibrosis Airway Inflammation. Int J Mol Sci 2021; 22:3063. [PMID: 33802742 PMCID: PMC8002512 DOI: 10.3390/ijms22063063] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/14/2021] [Accepted: 03/15/2021] [Indexed: 12/15/2022] Open
Abstract
New anti-inflammatory treatments are needed for CF airway disease. Studies have implicated the endoplasmic reticulum stress transducer inositol requiring enzyme 1α (IRE1α) in CF airway inflammation. The activation of IRE1α promotes activation of its cytoplasmic kinase and RNase, resulting in mRNA splicing of X-box binding protein-1 (XBP-1s), a transcription factor required for cytokine production. We tested whether IRE1α kinase and RNase inhibition decreases cytokine production induced by the exposure of primary cultures of homozygous F508del CF human bronchial epithelia (HBE) to supernatant of mucopurulent material (SMM) from CF airways. We evaluated whether IRE1α expression is increased in freshly isolated and native CF HBE, and couples with increased XBP-1s levels. A FRET assay confirmed binding of the IRE1α kinase and RNase inhibitor, KIRA6, to the IRE1α kinase. F508del HBE cultures were exposed to SMM with or without KIRA6, and we evaluated the mRNA levels of XBP-1s, IL-6, and IL-8, and the secretion of IL-6 and IL-8. IRE1α mRNA levels were up-regulated in freshly isolated CF vs. normal HBE and coupled to increased XBP-1s mRNA levels. SMM increased XBP-1s, IL-6, and IL-8 mRNA levels and up-regulated IL-6 and IL-8 secretion, and KIRA6 blunted these responses in a dose-dependent manner. Moreover, a triple combination of CFTR modulators currently used in the clinic had no effect on SMM-increased XBP-1s levels coupled with increased cytokine production in presence or absence of KIRA6. These findings indicate that IRE1α mediates cytokine production in CF airways. Small molecule IRE1α kinase inhibitors that allosterically reduce RNase-dependent XBP-1s may represent a new therapeutic strategy for CF airway inflammation.
Collapse
Affiliation(s)
- Emily A. Hull-Ryde
- Marsico Lung Institute and Cystic Fibrosis Research Center, School of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA; (E.A.H.-R.); (J.T.M.); (M.E.B.M.); (T.K.)
| | - John T. Minges
- Marsico Lung Institute and Cystic Fibrosis Research Center, School of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA; (E.A.H.-R.); (J.T.M.); (M.E.B.M.); (T.K.)
| | - Mary E. B. Martino
- Marsico Lung Institute and Cystic Fibrosis Research Center, School of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA; (E.A.H.-R.); (J.T.M.); (M.E.B.M.); (T.K.)
| | - Takafumi Kato
- Marsico Lung Institute and Cystic Fibrosis Research Center, School of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA; (E.A.H.-R.); (J.T.M.); (M.E.B.M.); (T.K.)
| | - Jacqueline L. Norris-Drouin
- Center for Integrative Chemical Biology and Drug Discovery, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA;
| | - Carla M. P. Ribeiro
- Marsico Lung Institute and Cystic Fibrosis Research Center, School of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA; (E.A.H.-R.); (J.T.M.); (M.E.B.M.); (T.K.)
- Division of Pulmonary Diseases, Department of Medicine, School of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
- Department of Cell Biology and Physiology, School of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| |
Collapse
|
19
|
Rimessi A, Vitto VAM, Patergnani S, Pinton P. Update on Calcium Signaling in Cystic Fibrosis Lung Disease. Front Pharmacol 2021; 12:581645. [PMID: 33776759 PMCID: PMC7990772 DOI: 10.3389/fphar.2021.581645] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 01/19/2021] [Indexed: 12/15/2022] Open
Abstract
Cystic fibrosis (CF) is an autosomal recessive disorder characterized by mutations in the cystic fibrosis transmembrane conductance regulator gene, which causes multifunctional defects that preferentially affect the airways. Abnormal viscosity of mucus secretions, persistent pathogen infections, hyperinflammation, and lung tissue damage compose the classical pathological manifestation referred to as CF lung disease. Among the multifunctional defects associated with defective CFTR, increasing evidence supports the relevant role of perturbed calcium (Ca2+) signaling in the pathophysiology of CF lung disease. The Ca2+ ion is a critical player in cell functioning and survival. Its intracellular homeostasis is maintained by a fine balance between channels, transporters, and exchangers, mediating the influx and efflux of the ion across the plasma membrane and the intracellular organelles. An abnormal Ca2+ profile has been observed in CF cells, including airway epithelial and immune cells, with heavy repercussions on cell function, viability, and susceptibility to pathogens, contributing to proinflammatory overstimulation, organelle dysfunction, oxidative stress, and excessive cytokines release in CF lung. This review discusses the role of Ca2+ signaling in CF and how its dysregulation in airway epithelial and immune cells contributes to hyperinflammation in the CF lung. Finally, we provide an outlook on the therapeutic options that target the Ca2+ signaling to treat the CF lung disease.
Collapse
Affiliation(s)
- Alessandro Rimessi
- Department of Medical Sciences and Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy.,Center of Research for Innovative Therapies in Cystic Fibrosis, University of Ferrara, Ferrara, Italy
| | - Veronica A M Vitto
- Department of Medical Sciences and Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Simone Patergnani
- Department of Medical Sciences and Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Paolo Pinton
- Department of Medical Sciences and Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy.,Center of Research for Innovative Therapies in Cystic Fibrosis, University of Ferrara, Ferrara, Italy
| |
Collapse
|
20
|
Chen X, Li C, Liu J, He Y, Wei Y, Chen J. Inhibition of ER stress by targeting the IRE1α-TXNDC5 pathway alleviates crystalline silica-induced pulmonary fibrosis. Int Immunopharmacol 2021; 95:107519. [PMID: 33691254 DOI: 10.1016/j.intimp.2021.107519] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 02/06/2021] [Accepted: 02/17/2021] [Indexed: 01/26/2023]
Abstract
Long-term exposure to crystalline silica (CS) results in silicosis, which is characterized by progressive pulmonary fibrosis. The endoplasmic reticulum (ER) plays a critical role in protein processing, and the accumulation of unfolded proteins triggered by external stimuli often leads to ER stress. In the present study, we found that inhibition of ER stress alleviated CS-induced pulmonary fibrosis. Moreover, we observed that TXNDC5, a resident ER protein, was involved in the activation of fibroblasts. Mechanistically, we explored the relationship between ER stress and TXNDC5 and demonstrated that IRE1α-XBP-1 signaling was closely related to TXNDC5. Pharmacological inhibition of IRE1α endoribonuclease activity, in addition to knockdown of Xbp1 expression, reduced TXNDC5 expression in activated fibroblasts. Furthermore, pharmacological inhibition of IRE1α in vivo ameliorated pulmonary function and delayed CS-induced lung fibrosis. In conclusion, the present study illuminates the role of ER stress-related IRE1α-TXNDC5 signaling in fibroblast activation and its effects on CS-induced pulmonary fibrogenesis, which may provide novel targets for silicosis therapy.
Collapse
Affiliation(s)
- Xi Chen
- Division of Pneumoconiosis, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China.
| | - Chao Li
- Division of Pneumoconiosis, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China.
| | - Jiali Liu
- Division of Pneumoconiosis, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China.
| | - Yangyang He
- Division of Pneumoconiosis, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China.
| | - Yungeng Wei
- Division of Pneumoconiosis, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China.
| | - Jie Chen
- Division of Pneumoconiosis, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China.
| |
Collapse
|
21
|
Lara-Reyna S, Holbrook J, Jarosz-Griffiths HH, Peckham D, McDermott MF. Dysregulated signalling pathways in innate immune cells with cystic fibrosis mutations. Cell Mol Life Sci 2020; 77:4485-4503. [PMID: 32367193 PMCID: PMC7599191 DOI: 10.1007/s00018-020-03540-9] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 04/22/2020] [Accepted: 04/24/2020] [Indexed: 12/12/2022]
Abstract
Cystic fibrosis (CF) is one of the most common life-limiting recessive genetic disorders in Caucasians, caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR). CF is a multi-organ disease that involves the lungs, pancreas, sweat glands, digestive and reproductive systems and several other tissues. This debilitating condition is associated with recurrent lower respiratory tract bacterial and viral infections, as well as inflammatory complications that may eventually lead to pulmonary failure. Immune cells play a crucial role in protecting the organs against opportunistic infections and also in the regulation of tissue homeostasis. Innate immune cells are generally affected by CFTR mutations in patients with CF, leading to dysregulation of several cellular signalling pathways that are in continuous use by these cells to elicit a proper immune response. There is substantial evidence to show that airway epithelial cells, neutrophils, monocytes and macrophages all contribute to the pathogenesis of CF, underlying the importance of the CFTR in innate immune responses. The goal of this review is to put into context the important role of the CFTR in different innate immune cells and how CFTR dysfunction contributes to the pathogenesis of CF, highlighting several signalling pathways that may be dysregulated in cells with CFTR mutations.
Collapse
Affiliation(s)
- Samuel Lara-Reyna
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, LS9 7TF, UK.
- Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, LS9 7TF, UK.
- Leeds Cystic Fibrosis Trust Strategic Research Centre, University of Leeds, Leeds, LS9 7TF, UK.
| | - Jonathan Holbrook
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, LS9 7TF, UK
- Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, LS9 7TF, UK
- Leeds Cystic Fibrosis Trust Strategic Research Centre, University of Leeds, Leeds, LS9 7TF, UK
| | - Heledd H Jarosz-Griffiths
- Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, LS9 7TF, UK
- Leeds Cystic Fibrosis Trust Strategic Research Centre, University of Leeds, Leeds, LS9 7TF, UK
| | - Daniel Peckham
- Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, LS9 7TF, UK
- Leeds Cystic Fibrosis Trust Strategic Research Centre, University of Leeds, Leeds, LS9 7TF, UK
- Adult Cystic Fibrosis Unit, St James's University Hospital, Leeds, LS9 7TF, UK
| | - Michael F McDermott
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, LS9 7TF, UK.
- Leeds Cystic Fibrosis Trust Strategic Research Centre, University of Leeds, Leeds, LS9 7TF, UK.
| |
Collapse
|
22
|
Moss RB. Mucosal humoral immunity in cystic fibrosis - a tangled web of failed proteostasis, infection and adaptive immunity. EBioMedicine 2020; 60:103035. [PMID: 32971469 PMCID: PMC7516060 DOI: 10.1016/j.ebiom.2020.103035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 09/14/2020] [Indexed: 12/15/2022] Open
Affiliation(s)
- Richard B Moss
- Center of Excellence in Pulmonary Biology, Department of Pediatrics, Stanford University School of Medicine, 770 Welch Rd, Suite 350, Palo Alto, CA 94304, United States.
| |
Collapse
|
23
|
Cabrini G, Rimessi A, Borgatti M, Lampronti I, Finotti A, Pinton P, Gambari R. Role of Cystic Fibrosis Bronchial Epithelium in Neutrophil Chemotaxis. Front Immunol 2020; 11:1438. [PMID: 32849500 PMCID: PMC7427443 DOI: 10.3389/fimmu.2020.01438] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 06/03/2020] [Indexed: 12/11/2022] Open
Abstract
A hallmark of cystic fibrosis (CF) chronic respiratory disease is an extensive neutrophil infiltrate in the mucosa filling the bronchial lumen, starting early in life for CF infants. The genetic defect of the CF Transmembrane conductance Regulator (CFTR) ion channel promotes dehydration of the airway surface liquid, alters mucus properties, and decreases mucociliary clearance, favoring the onset of recurrent and, ultimately, chronic bacterial infection. Neutrophil infiltrates are unable to clear bacterial infection and, as an adverse effect, contribute to mucosal tissue damage by releasing proteases and reactive oxygen species. Moreover, the rapid cellular turnover of lumenal neutrophils releases nucleic acids that further alter the mucus viscosity. A prominent role in the recruitment of neutrophil in bronchial mucosa is played by CF bronchial epithelial cells carrying the defective CFTR protein and are exposed to whole bacteria and bacterial products, making pharmacological approaches to regulate the exaggerated neutrophil chemotaxis in CF a relevant therapeutic target. Here we revise: (a) the major receptors, kinases, and transcription factors leading to the expression, and release of neutrophil chemokines in bronchial epithelial cells; (b) the role of intracellular calcium homeostasis and, in particular, the calcium crosstalk between endoplasmic reticulum and mitochondria; (c) the epigenetic regulation of the key chemokines; (d) the role of mutant CFTR protein as a co-regulator of chemokines together with the host-pathogen interactions; and (e) different pharmacological strategies to regulate the expression of chemokines in CF bronchial epithelial cells through novel drug discovery and drug repurposing.
Collapse
Affiliation(s)
- Giulio Cabrini
- Center for Innovative Therapies in Cystic Fibrosis, University of Ferrara, Ferrara, Italy.,Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy.,Department of Neurosciences, Biomedicine and Movement, University of Verona, Verona, Italy
| | - Alessandro Rimessi
- Center for Innovative Therapies in Cystic Fibrosis, University of Ferrara, Ferrara, Italy.,Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Monica Borgatti
- Center for Innovative Therapies in Cystic Fibrosis, University of Ferrara, Ferrara, Italy.,Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Ilaria Lampronti
- Center for Innovative Therapies in Cystic Fibrosis, University of Ferrara, Ferrara, Italy.,Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Alessia Finotti
- Center for Innovative Therapies in Cystic Fibrosis, University of Ferrara, Ferrara, Italy.,Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Paolo Pinton
- Center for Innovative Therapies in Cystic Fibrosis, University of Ferrara, Ferrara, Italy.,Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Roberto Gambari
- Center for Innovative Therapies in Cystic Fibrosis, University of Ferrara, Ferrara, Italy.,Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| |
Collapse
|
24
|
Yap J, Chen X, Delmotte P, Sieck GC. TNFα selectively activates the IRE1α/XBP1 endoplasmic reticulum stress pathway in human airway smooth muscle cells. Am J Physiol Lung Cell Mol Physiol 2020; 318:L483-L493. [PMID: 31940218 DOI: 10.1152/ajplung.00212.2019] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Airway inflammation is a key aspect of diseases such as asthma. Proinflammatory cytokines such as TNFα mediate the inflammatory response. In various diseases, inflammation leads to endoplasmic reticulum (ER) stress, the accumulation of unfolded proteins, which triggers homeostatic responses to restore normal cellular function. We hypothesized that TNFα triggers ER stress through an increase in reactive oxygen species generation in human airway smooth muscle (hASM) with a downstream effect on mitofusin 2 (Mfn2). In hASM cells isolated from lung specimens incidental to patient surgery, dose- and time-dependent effects of TNFα exposure were assessed. Exposure of hASM to tunicamycin was used as a positive control. Tempol (500 μM) was used as superoxide scavenger. Activation of three ER stress pathways were evaluated by Western blotting: 1) autophosphorylation of inositol-requiring enzyme1 (IRE1α) leading to splicing of X-box binding protein 1 (XBP1); 2) autophosphorylation of protein kinase RNA-like endoplasmic reticulum kinase (PERK) leading to phosphorylation of eukaryotic initiation factor 2α; and 3) translocation and cleavage of activating transcription factor 6 (ATF6). We found that exposure of hASM cells to tunicamycin activated all three ER stress pathways. In contrast, TNFα selectively activated the IRE1α/XBP1 pathway in a dose- and time-dependent fashion. Our results indicate that TNFα does not activate the PERK and ATF6 pathways. Exposure of hASM cells to TNFα also decreased Mfn2 protein expression. Concurrent exposure to TNFα and tempol reversed the effect of TNFα on IRE1α phosphorylation and Mfn2 protein expression. Selective activation of the IRE1α/XBP1 pathway in hASM cells after exposure to TNFα may reflect a unique homeostatic role of this pathway in the inflammatory response of hASM cells.
Collapse
Affiliation(s)
- John Yap
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| | - Xujiao Chen
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| | - Philippe Delmotte
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| | - Gary C Sieck
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
25
|
Protein Misfolding and Endoplasmic Reticulum Stress in Chronic Lung Disease: Will Cell-Specific Targeting Be the Key to the Cure? Chest 2019; 157:1207-1220. [PMID: 31778676 DOI: 10.1016/j.chest.2019.11.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 11/07/2019] [Accepted: 11/10/2019] [Indexed: 12/31/2022] Open
Abstract
Chronic lung disease accounts for a significant global burden with respect to death, disability, and health-care costs. Due to the heterogeneous nature and limited treatment options for these diseases, it is imperative that the cellular and molecular mechanisms underlying the disease pathophysiology are further understood. The lung is a complex organ with a diverse cell population, and each cell type will likely have different roles in disease initiation, progression, and resolution. The effectiveness of a given therapeutic agent may depend on the net effect on each of these cell types. Over the past decade, it has been established that endoplasmic reticulum stress and the unfolded protein response are involved in the development of several chronic lung diseases. These conserved cellular pathways are important for maintaining cellular proteostasis, but their aberrant activation can result in pathology. This review discusses the current understanding of endoplasmic reticulum stress and the unfolded protein response at the cellular level in the development and progression of various chronic lung diseases. We highlight the need for increased understanding of the specific cellular contributions of unfolded protein response activation to these pathologies and suggest that the development of cell-specific targeted therapies is likely required to further decrease disease progression and to promote resolution of chronic lung disease.
Collapse
|
26
|
Lara-Reyna S, Scambler T, Holbrook J, Wong C, Jarosz-Griffiths HH, Martinon F, Savic S, Peckham D, McDermott MF. Metabolic Reprograming of Cystic Fibrosis Macrophages via the IRE1α Arm of the Unfolded Protein Response Results in Exacerbated Inflammation. Front Immunol 2019; 10:1789. [PMID: 31428093 PMCID: PMC6687873 DOI: 10.3389/fimmu.2019.01789] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 07/16/2019] [Indexed: 11/27/2022] Open
Abstract
Cystic Fibrosis (CF) is a recessive genetic disorder caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR). CFTR mutations cause dysregulation of channel function with intracellular accumulation of misfolded proteins and endoplasmic reticulum (ER) stress, with activation of the IRE1α-XBP1 pathway that regulates a subset of unfolded protein response (UPR) genes. This pathway regulates a group of genes that control proinflammatory and metabolic responses in different immune cells; however, the metabolic state of immune cells and the role of this pathway in CF remain elusive. Our results indicate that only innate immune cells from CF patients present increased levels of ER stress, mainly affecting neutrophils, monocytes, and macrophages. An overactive IRE1α-XBP1 pathway reprograms CF M1 macrophages toward an increased metabolic state, with increased glycolytic rates and mitochondrial function, associated with exaggerated production of TNF and IL-6. This hyper-metabolic state, seen in CF macrophages, is reversed by inhibiting the RNase domain of IRE1α, thereby decreasing the increased glycolic rates, mitochondrial function and inflammation. Altogether, our results indicate that innate immune cells from CF patients are primarily affected by ER stress. Moreover, the IRE1α-XBP1 pathway of the UPR is responsible for the hyper-metabolic state seen in CF macrophages, which is associated with the exaggerated inflammatory response. Modulating ER stress, metabolism and inflammation, by targeting IRE1α, may improve the metabolic fitness of macrophages, and other immune cells in CF and other immune-related disorders.
Collapse
Affiliation(s)
- Samuel Lara-Reyna
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, United Kingdom.,Leeds Institute of Medical Research at St. James's, University of Leeds, Leeds, United Kingdom.,Leeds Cystic Fibrosis Trust Strategic Research Centre, University of Leeds, Leeds, United Kingdom
| | - Thomas Scambler
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, United Kingdom.,Leeds Cystic Fibrosis Trust Strategic Research Centre, University of Leeds, Leeds, United Kingdom
| | - Jonathan Holbrook
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, United Kingdom.,Leeds Institute of Medical Research at St. James's, University of Leeds, Leeds, United Kingdom.,Leeds Cystic Fibrosis Trust Strategic Research Centre, University of Leeds, Leeds, United Kingdom
| | - Chi Wong
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, United Kingdom.,Leeds Institute of Medical Research at St. James's, University of Leeds, Leeds, United Kingdom.,Leeds Cystic Fibrosis Trust Strategic Research Centre, University of Leeds, Leeds, United Kingdom
| | - Heledd H Jarosz-Griffiths
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, United Kingdom.,Leeds Institute of Medical Research at St. James's, University of Leeds, Leeds, United Kingdom.,Leeds Cystic Fibrosis Trust Strategic Research Centre, University of Leeds, Leeds, United Kingdom
| | - Fabio Martinon
- Leeds Cystic Fibrosis Trust Strategic Research Centre, University of Leeds, Leeds, United Kingdom.,Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| | - Sinisa Savic
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, United Kingdom.,Leeds Cystic Fibrosis Trust Strategic Research Centre, University of Leeds, Leeds, United Kingdom.,Department of Clinical Immunology and Allergy, St. James's University Hospital, Leeds, United Kingdom
| | - Daniel Peckham
- Leeds Institute of Medical Research at St. James's, University of Leeds, Leeds, United Kingdom.,Leeds Cystic Fibrosis Trust Strategic Research Centre, University of Leeds, Leeds, United Kingdom.,Adult Cystic Fibrosis Unit, St. James's University Hospital, Leeds, United Kingdom
| | - Michael F McDermott
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, United Kingdom.,Leeds Cystic Fibrosis Trust Strategic Research Centre, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
27
|
Khan MA, Ali ZS, Sweezey N, Grasemann H, Palaniyar N. Progression of Cystic Fibrosis Lung Disease from Childhood to Adulthood: Neutrophils, Neutrophil Extracellular Trap (NET) Formation, and NET Degradation. Genes (Basel) 2019; 10:genes10030183. [PMID: 30813645 PMCID: PMC6471578 DOI: 10.3390/genes10030183] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Accepted: 02/11/2019] [Indexed: 12/11/2022] Open
Abstract
Genetic defects in cystic fibrosis (CF) transmembrane conductance regulator (CFTR) gene cause CF. Infants with CFTR mutations show a peribronchial neutrophil infiltration prior to the establishment of infection in their lung. The inflammatory response progressively increases in children that include both upper and lower airways. Infectious and inflammatory response leads to an increase in mucus viscosity and mucus plugging of small and medium-size bronchioles. Eventually, neutrophils chronically infiltrate the airways with biofilm or chronic bacterial infection. Perpetual infection and airway inflammation destroy the lungs, which leads to increased morbidity and eventual mortality in most of the patients with CF. Studies have now established that neutrophil cytotoxins, extracellular DNA, and neutrophil extracellular traps (NETs) are associated with increased mucus clogging and lung injury in CF. In addition to opportunistic pathogens, various aspects of the CF airway milieux (e.g., airway pH, salt concentration, and neutrophil phenotypes) influence the NETotic capacity of neutrophils. CF airway milieu may promote the survival of neutrophils and eventual pro-inflammatory aberrant NETosis, rather than the anti-inflammatory apoptotic death in these cells. Degrading NETs helps to manage CF airway disease; since DNAse treatment release cytotoxins from the NETs, further improvements are needed to degrade NETs with maximal positive effects. Neutrophil-T cell interactions may be important in regulating viral infection-mediated pulmonary exacerbations in patients with bacterial infections. Therefore, clarifying the role of neutrophils and NETs in CF lung disease and identifying therapies that preserve the positive effects of neutrophils, while reducing the detrimental effects of NETs and cytotoxic components, are essential in achieving innovative therapeutic advances.
Collapse
Affiliation(s)
- Meraj A Khan
- Translational Medicine, Peter Gilgan Center for Research and Learning, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada.
| | - Zubair Sabz Ali
- Translational Medicine, Peter Gilgan Center for Research and Learning, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada.
| | - Neil Sweezey
- Translational Medicine, Peter Gilgan Center for Research and Learning, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada.
- Institute of Medical Sciences, Faculty of Medicine, University of Toronto, Toronto, ON M5G 1X8, Canada.
- Division of Respiratory Medicine, Department of Paediatrics, The Hospital for Sick Children, and University of Toronto, Toronto, ON M5G 1X8, Canada.
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON M5G 1X8, Canada.
| | - Hartmut Grasemann
- Translational Medicine, Peter Gilgan Center for Research and Learning, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada.
- Institute of Medical Sciences, Faculty of Medicine, University of Toronto, Toronto, ON M5G 1X8, Canada.
- Division of Respiratory Medicine, Department of Paediatrics, The Hospital for Sick Children, and University of Toronto, Toronto, ON M5G 1X8, Canada.
| | - Nades Palaniyar
- Translational Medicine, Peter Gilgan Center for Research and Learning, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada.
- Institute of Medical Sciences, Faculty of Medicine, University of Toronto, Toronto, ON M5G 1X8, Canada.
- Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, ON M5G 1X8, Canada.
| |
Collapse
|
28
|
Zhang M, Gao Y, Zhao W, Yu G, Jin F. ACE-2/ANG1-7 ameliorates ER stress-induced apoptosis in seawater aspiration-induced acute lung injury. Am J Physiol Lung Cell Mol Physiol 2018; 315:L1015-L1027. [PMID: 30335496 DOI: 10.1152/ajplung.00163.2018] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Previous studies have shown that apoptosis of alveolar cells can be regulated by autocrine of angiotensin (ANG)II and its counter regulatory ACE-2/ANG1-7 axis. Our earlier study has shown that endoplasmic reticulum (ER) stress in response to seawater aspiration eventually led to apoptosis in lung tissue. In this study, we examined the hypothesis that ER stress-induced apoptosis in seawater aspiration-induced acute lung injury (ALI) might also be regulated by the ANGII/ANG1-7 system. ER stress was induced by seawater stimulation and proteasome inhibitor MG132 (an ER stress inductor). Moreover, ER stress in seawater-stimulated lung tissues and rat pulmonary microvascular endothelial cells (RPMVECs) promoted ANGII expression and decreased ACE-2/ANG1-7 expression. ER stress induced by seawater stimulation also led to apoptosis. Apoptosis induced by seawater stimulation and MG132 were inhibited by ANGII receptor blocker and abrogated by the addition of ANG1-7. These results suggest that apoptosis induced by ER stress in seawater aspiration-induced ALI is regulated by ANG II/ANG1-7 in lung tissues and RPMVECs. In addition, the active form of X-box binding protein 1 (XBP1), spliced XBP1 (XBP1s), a transcription factor that regulates ER-associated degradation genes during ER stress was significantly activated in seawater stimulated cells. Based on this phenomenon we designed a tandem gene, Wfs1 promoter (a target gene promoter of XBP1s)- ACE2 and ANG1-7 and transfected this tandem gene into seawater-stimulated cells. ACE-2/ANG1-7 expression were significantly promoted and apoptosis was inhibited in cells transfected with the tandem gene. These results suggest that stimulation of ACE-2/ANG1-7 may be a therapeutic target of ER stress-induced apoptosis in seawater aspiration-induced ALI.
Collapse
Affiliation(s)
- MinLong Zhang
- Department of Respiration, Tangdu Hospital, Fourth Military Medical University , Xi'an , People's Republic of China.,Department of Respiration, The 309th Hospital of the Chinese People's Liberation Army, Beijing , People's Republic of China
| | - Yongheng Gao
- Department of Respiration, Tangdu Hospital, Fourth Military Medical University , Xi'an , People's Republic of China
| | - Weiguo Zhao
- Department of Respiration, The 309th Hospital of the Chinese People's Liberation Army, Beijing , People's Republic of China
| | - Gaole Yu
- Department of Respiration, Tangdu Hospital, Fourth Military Medical University , Xi'an , People's Republic of China
| | - Faguang Jin
- Department of Respiration, Tangdu Hospital, Fourth Military Medical University , Xi'an , People's Republic of China
| |
Collapse
|
29
|
Chen ACH, Burr L, McGuckin MA. Oxidative and endoplasmic reticulum stress in respiratory disease. Clin Transl Immunology 2018; 7:e1019. [PMID: 29928501 PMCID: PMC5999202 DOI: 10.1002/cti2.1019] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 05/01/2018] [Accepted: 05/03/2018] [Indexed: 01/01/2023] Open
Abstract
Oxidative stress and endoplasmic reticulum (ER) stress are related states that can occur in cells as part of normal physiology but occur frequently in diseases involving inflammation. In this article, we review recent findings relating to the role of oxidative and ER stress in the pathophysiology of acute and chronic nonmalignant diseases of the lung, including infections, cystic fibrosis, idiopathic pulmonary fibrosis and asthma. We also explore the potential of drugs targeting oxidative and ER stress pathways to alleviate disease.
Collapse
Affiliation(s)
- Alice C-H Chen
- Diamantina Institute Faculty of Medicine The University of Queensland Brisbane QLD Australia.,Department of Cell and Molecular Therapy Royal Prince Alfred Hospital Sydney NSW Australia
| | - Lucy Burr
- Department of Respiratory Medicine Mater Adult Hospital and Mater Research Institute - The University of Queensland Raymond Tce, South Brisbane QLD Australia
| | - Michael A McGuckin
- Inflammatory Disease Biology and Therapeutics Group Translational Research Institute Mater Research Institute - The University of Queensland Brisbane QLD Australia
| |
Collapse
|
30
|
Gao Y, Zhu H, Yang F, Wang Q, Feng Y, Zhang C. Glucocorticoid-activated IRE1α/XBP-1s signaling: an autophagy-associated protective pathway against endotheliocyte damage. Am J Physiol Cell Physiol 2018; 315:C300-C309. [PMID: 29768047 DOI: 10.1152/ajpcell.00009.2018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Glucocorticoid-induced endothelial injury has been reported in several diseases. Although there are several theories, the exact mechanism underlying the role of glucocorticoids in this process remains unclear. Autophagy has been reported to occur as a response to different stimuli and can affect cell survival and function. In this study, we found that glucocorticoids induced apoptosis and endoplasmic reticulum (ER) stress in endotheliocytes. Furthermore, we discovered that glucocorticoids induced autophagy in these cells and the inositol requiring protein 1 (IRE1α)/X-box binding protein 1s (XBP-1s) axis, one of the downstream signaling pathways of ER stress, was associated with the glucocorticoid-induced autophagy. The autophagy partly protected endotheliocytes from glucocorticoid-induced apoptosis and inhibition of proliferation. In conclusion, glucocorticoid-induced endoplasmic reticulum stress activated the IRE1α/XBP-1s signaling and induced autophagy, which, in turn, played a protective role in endotheliocyte survival and proliferation, avoiding further cellular damage caused by glucocorticoids.
Collapse
Affiliation(s)
- Yanchun Gao
- Department of Orthopedic Surgery, Shanghai Jiaotong University Affiliated Sixth People's Hospital , Shanghai , China
| | - Hongyi Zhu
- Department of Orthopedic Surgery, Shanghai Jiaotong University Affiliated Sixth People's Hospital , Shanghai , China
| | - Fan Yang
- Department of Orthopedic Surgery, Shanghai Jiaotong University Affiliated Sixth People's Hospital , Shanghai , China
| | - Qiyang Wang
- Department of Orthopedic Surgery, Shanghai Jiaotong University Affiliated Sixth People's Hospital , Shanghai , China
| | - Yong Feng
- Department of Orthopedic Surgery, Shanghai Jiaotong University Affiliated Sixth People's Hospital , Shanghai , China
| | - Changqing Zhang
- Department of Orthopedic Surgery, Shanghai Jiaotong University Affiliated Sixth People's Hospital , Shanghai , China
| |
Collapse
|
31
|
Santoro A, Ciaglia E, Nicolin V, Pescatore A, Prota L, Capunzo M, Ursini MV, Nori SL, Bifulco M. The isoprenoid end product N6-isopentenyladenosine reduces inflammatory response through the inhibition of the NFκB and STAT3 pathways in cystic fibrosis cells. Inflamm Res 2017; 67:315-326. [PMID: 29230506 PMCID: PMC5843674 DOI: 10.1007/s00011-017-1123-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 12/03/2017] [Accepted: 12/06/2017] [Indexed: 12/26/2022] Open
Abstract
Objective N6-isopentenyladenosine (iPA) is an intermediate of the mevalonate pathway that exhibits various anti-cancer effects. However, studies on its anti-inflammatory activity are scarce and underlying molecular mechanisms are unknown. Therefore, we aimed to investigate the ability of iPA to exert anti-inflammatory effects in the human cystic fibrosis (CF) cell model of exacerbated inflammation. Materials and methods TNFα-stimulated CF cells CuFi-1 and its normal counterpart NuLi-1 were pre-treated with increasing concentrations of iPA and cell viability and proliferation were assessed by MTT and BrdU assays. The effect of iPA on IL-8 and RANTES secretion was determined by ELISA, and the activation and expression of signaling molecules and selenoproteins were studied by Western blot. To assess the direct effect of iPA on NFκB activity, luciferase assay was performed on TNFα-stimulated HEK293/T cells transfected with a NFκB reporter plasmid. Results We demonstrated for the first time that iPA prevents IL-8 and RANTES release in TNFα-stimulated CF cells and this effect is mediated by increasing the expression of the direct NFκB inhibitor IκBα and decreasing the levels of STAT3. Consistent with this, we showed that iPA inhibited TNFα-mediated NFκB activation in HEK/293T cells. Finally, we also found that iPA improved the levels of glutathione peroxidase 1 and thioredoxin reductase 1 only in CF cells suggesting its ability to maintain sufficient expression of these anti-oxidant selenoproteins. Conclusions Our findings indicate that iPA can exert anti-inflammatory activity especially in the cases of excessive inflammatory response as in CF.
Collapse
Affiliation(s)
- Antonietta Santoro
- Department of Medicine, Surgery and Dentistry, "Scuola Medica Salernitana" University of Salerno, Via S. Allende, 84081, Baronissi, Salerno, Italy
| | - Elena Ciaglia
- Department of Medicine, Surgery and Dentistry, "Scuola Medica Salernitana" University of Salerno, Via S. Allende, 84081, Baronissi, Salerno, Italy
| | - Vanessa Nicolin
- Clinical Department of Medical, Surgical and Health Science, University of Trieste, Strada di Fiume 447, 34149, Trieste, Italy
| | - Alessandra Pescatore
- Institute of Genetics and Biophysics "Adriano Buzzati-Traverso" CNR, Via P. Castellino, 80131, Naples, Italy
| | - Lucia Prota
- Department of Medicine, Surgery and Dentistry, "Scuola Medica Salernitana" University of Salerno, Via S. Allende, 84081, Baronissi, Salerno, Italy
| | - Mario Capunzo
- Department of Medicine, Surgery and Dentistry, "Scuola Medica Salernitana" University of Salerno, Via S. Allende, 84081, Baronissi, Salerno, Italy
| | - Matilde V Ursini
- Institute of Genetics and Biophysics "Adriano Buzzati-Traverso" CNR, Via P. Castellino, 80131, Naples, Italy
| | - Stefania L Nori
- Department of Medicine, Surgery and Dentistry, "Scuola Medica Salernitana" University of Salerno, Via S. Allende, 84081, Baronissi, Salerno, Italy.
| | - Maurizio Bifulco
- Department of Medicine, Surgery and Dentistry, "Scuola Medica Salernitana" University of Salerno, Via S. Allende, 84081, Baronissi, Salerno, Italy. .,Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", Via Pansini, 80131, Naples, Italy.
| |
Collapse
|