1
|
Kong Y, Lu Z, Zhan J, Zhou X, Chen S, Chen Q, Gong H, Zhang X, Mao X, Wang Y, Huang W. Enhancing auricular reconstruction: A biomimetic scaffold with 3D-printed multiscale porous structure utilizing chondrogenic activity ink. Mater Today Bio 2025; 31:101516. [PMID: 39968521 PMCID: PMC11834130 DOI: 10.1016/j.mtbio.2025.101516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 01/18/2025] [Accepted: 01/20/2025] [Indexed: 02/20/2025] Open
Abstract
Auricular defects are highly prevalent and have a significant impact on the physical and mental well-being of patients. However, due to the intricate anatomy of the auricle, achieving personalized and precise reconstruction poses a major challenge. Currently, tissue engineering auricle scaffolds based on rigid materials are an effective therapeutic approach for auricle reconstruction. Nevertheless, these auricular scaffolds often fail to meet biomechanical requirements and lack biological activity, resulting in suboptimal treatment outcomes. In this study, polyvinyl alcohol and gelatin were used as printing inks, and nano-silica was employed as a filler to optimize the printability of the inks. Through layer-by-layer 3D printing, auricle scaffolds were fabricated that closely mimic human auricular biomechanical properties and possess a multi-scale pore structure. Subsequent in vitro experiments confirmed the biocompatibility of the scaffolds. Furthermore, a rabbit auricular cartilage defect model was established to evaluate the therapeutic efficacy of this bionic scaffold featuring a multi-scale pore structure for auricle defects. The findings demonstrated that the developed auricle scaffold not only exhibited excellent biomechanical strength and favorable biocompatibility but also provided an advantageous environment for chondrocyte growth due to its multi-scale pore structure, thereby significantly promoting chondrocyte proliferation. Overall, the 3D printed tissue engineering bionic scaffold with a multi-scale pore structure developed in this study is anticipated to significantly enhance the therapeutic efficacy for auricle defects and offer a novel therapeutic strategy for such defects.
Collapse
Affiliation(s)
- Yueying Kong
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, 421001, Hengyang, China
| | - Zijing Lu
- Department of Plastic and Aesthetic Surgery, Nanfan Hospital of Southern Medical University, No. 1838 N Guangzhou Rd, 510515, Guanzhou, China
| | - Jianan Zhan
- Department of Human Anatomy, School of Basic Medical Sciences Guangdong Medical University, 524000, Zhanjiang, China
| | - Xi Zhou
- Guangdong Provincial Key Laboratory of Medical Biomechanics, National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, 510515, Guangzhou, China
| | - Shenghua Chen
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, 421001, Hengyang, China
| | - Qiwei Chen
- Guangdong Provincial Key Laboratory of Medical Biomechanics, National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, 510515, Guangzhou, China
| | - Haihuan Gong
- Department of Periodontics, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, 510182, China
| | - Xianlin Zhang
- Guangdong Provincial Key Laboratory of Medical Biomechanics, National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, 510515, Guangzhou, China
| | - Xiaoyan Mao
- Department of Plastic and Aesthetic Surgery, Nanfan Hospital of Southern Medical University, No. 1838 N Guangzhou Rd, 510515, Guanzhou, China
| | - Yilin Wang
- Department of Human Anatomy, College of Basic Medical Science, China Medical University, 110122, Shenyang, China
| | - Wenhua Huang
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, 421001, Hengyang, China
- Guangdong Provincial Key Laboratory of Medical Biomechanics, National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, 510515, Guangzhou, China
- Department of Human Anatomy, School of Basic Medical Sciences Guangdong Medical University, 524000, Zhanjiang, China
| |
Collapse
|
2
|
Guo C, Ding T, Cheng Y, Zheng J, Fang X, Feng Z. The rational design, biofunctionalization and biological properties of orthopedic porous titanium implants: a review. Front Bioeng Biotechnol 2025; 13:1548675. [PMID: 40078794 PMCID: PMC11897010 DOI: 10.3389/fbioe.2025.1548675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 02/06/2025] [Indexed: 03/14/2025] Open
Abstract
Porous titanium implants are becoming an important tool in orthopedic clinical applications. This review provides a comprehensive survey of recent advances in porous titanium implants for orthopedic use. First, the review briefly describes the characteristics of bone and the design requirements of orthopedic implants. Subsequently, the pore size and structural design of porous titanium alloy materials are presented, then we introduce the application of porous titanium alloy implants in orthopedic clinical practice, including spine surgery, joint surgery, and the treatment of bone tumors. Following that, we describe the surface modifications applied to porous titanium implants to obtain better biological functions. Finally, we discuss incorporating environmental responsive mechanisms into porous titanium alloy materials to achieve additional functionalities.
Collapse
Affiliation(s)
- Chunliang Guo
- Wuxi People's Hospital, Wuxi, Jiangsu, China
- Nanjing Medical University, Nanjing, Jiangsu, China
| | - Tao Ding
- Wuxi People's Hospital, Wuxi, Jiangsu, China
- Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yuan Cheng
- Wuxi Xishan NJU Institute of Applied Biotechnology, Wuxi, Jiangsu, China
| | - Jianqing Zheng
- Wuxi People's Hospital, Wuxi, Jiangsu, China
- Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiule Fang
- Wuxi People's Hospital, Wuxi, Jiangsu, China
- Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zhiyun Feng
- Wuxi People's Hospital, Wuxi, Jiangsu, China
- Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
3
|
Shen C, Zhou Z, Li R, Yang S, Zhou D, Zhou F, Geng Z, Su J. Silk fibroin-based hydrogels for cartilage organoids in osteoarthritis treatment. Theranostics 2025; 15:560-584. [PMID: 39744693 PMCID: PMC11671376 DOI: 10.7150/thno.103491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 11/06/2024] [Indexed: 01/11/2025] Open
Abstract
Osteoarthritis (OA) is a common joint disease characterized by cartilage degeneration. It can cause severe pain, deformity and even amputation risk. However, existing clinical treatment methods for cartilage repair present certain deficiencies. Meanwhile, the repair effect of cartilage tissue engineering is also unsatisfactory. Cartilage organoids are multicellular aggregates with cartilage-like three-dimensional structure and function. On the one hand, cartilage organoids can be used to explore the pathogenesis of OA by constructing disease models. On the other hand, it can be used as filler for rapid cartilage repair. Extracellular matrix (ECM)-like three-dimensional environment is the key to construct cartilage organoids. Silk fibroin (SF)-based hydrogels not only have ECM-like structure, but also have unique mechanical properties and remarkable biocompatibility. Therefore, SF-based hydrogels are considered as ideal biomaterials for constructing cartilage organoids. In this review, we reviewed the studies of cartilage organoids and SF-based hydrogels. The advantages of SF-based hydrogels in constructing cartilage organoids and the iterative optimization of cartilage organoids through designing hydrogels by using artificial intelligence (AI) calculation are also discussed. This review aims to provide a theoretical basis for the treatment of OA using SF-based biomaterials and cartilage organoids.
Collapse
Affiliation(s)
- Congyi Shen
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- Organoid Research Center, Shanghai University, Shanghai, 200444, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, China
- School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Ziyang Zhou
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- Organoid Research Center, Shanghai University, Shanghai, 200444, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, China
- School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Ruiyang Li
- Department of Orthopedics, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Shike Yang
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- Organoid Research Center, Shanghai University, Shanghai, 200444, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, China
- School of Medicine, Shanghai University, Shanghai, 200444, China
- Department of Anesthesiology, Shanghai Zhongye Hospital, Shanghai, 200941, China
| | - Dongyang Zhou
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- Organoid Research Center, Shanghai University, Shanghai, 200444, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, China
| | - Fengjin Zhou
- Department of Orthopedics, Honghui Hospital, Xi'an Jiao Tong University, Xi'an, 710000, China
| | - Zhen Geng
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- Organoid Research Center, Shanghai University, Shanghai, 200444, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, China
| | - Jiacan Su
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- Organoid Research Center, Shanghai University, Shanghai, 200444, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, China
- Department of Orthopedics, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| |
Collapse
|
4
|
Liang X, Guo S, Kuang X, Wan X, Liu L, Zhang F, Jiang G, Cong H, He H, Tan SC. Recent advancements and perspectives on processable natural biopolymers: Cellulose, chitosan, eggshell membrane, and silk fibroin. Sci Bull (Beijing) 2024; 69:3444-3466. [PMID: 39244421 DOI: 10.1016/j.scib.2024.08.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/12/2024] [Accepted: 08/20/2024] [Indexed: 09/09/2024]
Abstract
With the rapid development of the global economy and the continuous consumption of fossil resources, sustainable and biodegradable natural biomass has garnered extensive attention as a promising substitute for synthetic polymers. Due to their hierarchical and nanoscale structures, natural biopolymers exhibit remarkable mechanical properties, along with excellent innate biocompatibility and biodegradability, demonstrating significant potential in various application scenarios. Among these biopolymers, proteins and polysaccharides are the most commonly studied due to their low cost, abundance, and ease of use. However, the direct processing/conversion of proteins and polysaccharides into their final products has been a long-standing challenge due to their natural morphology and compositions. In this review, we emphasize the importance of processing natural biopolymers into high-value-added products through sustainable and cost-effective methods. We begin with the extraction of four types of natural biopolymers: cellulose, chitosan, eggshell membrane, and silk fibroin. The processing and post-functionalization strategies for these natural biopolymers are then highlighted. Alongside their unique structures, the versatile potential applications of these processable natural biopolymers in biomedical engineering, biosensors, environmental engineering, and energy applications are illustrated. Finally, we provide a summary and future outlook on processable natural biopolymers, underscoring the significance of converting natural biopolymers into valuable biomaterial platforms.
Collapse
Affiliation(s)
- Xinhua Liang
- Engineering Research Center for Knitting Technology (Ministry of Education), Jiangnan University, Wuxi 214122, China
| | - Shuai Guo
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117574, Singapore
| | - Xiaoju Kuang
- Engineering Research Center for Knitting Technology (Ministry of Education), Jiangnan University, Wuxi 214122, China
| | - Xiaoqian Wan
- Engineering Research Center for Knitting Technology (Ministry of Education), Jiangnan University, Wuxi 214122, China
| | - Lu Liu
- Engineering Research Center for Knitting Technology (Ministry of Education), Jiangnan University, Wuxi 214122, China
| | - Fei Zhang
- Department of Sport Medicine, The Ninth People's Hospital affiliated to Soochow University, Wuxi 215200, China
| | - Gaoming Jiang
- Engineering Research Center for Knitting Technology (Ministry of Education), Jiangnan University, Wuxi 214122, China
| | - Honglian Cong
- Engineering Research Center for Knitting Technology (Ministry of Education), Jiangnan University, Wuxi 214122, China
| | - Haijun He
- Engineering Research Center for Knitting Technology (Ministry of Education), Jiangnan University, Wuxi 214122, China.
| | - Swee Ching Tan
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117574, Singapore.
| |
Collapse
|
5
|
Su Z, Yang T, Wu X, Liu P, Nuermaimaiti Y, Ran Y, Wang P, Cao P. Comparative Analysis and Regeneration Strategies for Three Types of Cartilage. TISSUE ENGINEERING. PART B, REVIEWS 2024. [PMID: 38970440 DOI: 10.1089/ten.teb.2024.0140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/08/2024]
Abstract
Cartilage tissue, encompassing hyaline cartilage, fibrocartilage, and elastic cartilage, plays a pivotal role in the human body because of its unique composition, structure, and biomechanical properties. However, the inherent avascularity and limited regenerative capacity of cartilage present significant challenges to its healing following injury. This review provides a comprehensive analysis of the current state of cartilage tissue engineering, focusing on the critical components of cell sources, scaffolds, and growth factors tailored to the regeneration of each cartilage type. We explore the similarities and differences in the composition, structure, and biomechanical properties of the three cartilage types and their implications for tissue engineering. A significant emphasis is placed on innovative strategies for cartilage regeneration, including the potential for in situ transformation of cartilage types through microenvironmental manipulation, which may offer novel avenues for repair and rehabilitation. The review underscores the necessity of a nuanced approach to cartilage tissue engineering, recognizing the distinct requirements of each cartilage type while exploring the potential of transforming one cartilage type into another as a flexible and adaptive repair strategy. Through this detailed examination, we aim to broaden the understanding of cartilage tissue engineering and inspire further research and development in this promising field.
Collapse
Affiliation(s)
- Zhan Su
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Tan Yang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xinze Wu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Peiran Liu
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Yisimayili Nuermaimaiti
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yuxuan Ran
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Peng Wang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Pinyin Cao
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
6
|
Lu P, Ruan D, Huang M, Tian M, Zhu K, Gan Z, Xiao Z. Harnessing the potential of hydrogels for advanced therapeutic applications: current achievements and future directions. Signal Transduct Target Ther 2024; 9:166. [PMID: 38945949 PMCID: PMC11214942 DOI: 10.1038/s41392-024-01852-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 04/02/2024] [Accepted: 04/28/2024] [Indexed: 07/02/2024] Open
Abstract
The applications of hydrogels have expanded significantly due to their versatile, highly tunable properties and breakthroughs in biomaterial technologies. In this review, we cover the major achievements and the potential of hydrogels in therapeutic applications, focusing primarily on two areas: emerging cell-based therapies and promising non-cell therapeutic modalities. Within the context of cell therapy, we discuss the capacity of hydrogels to overcome the existing translational challenges faced by mainstream cell therapy paradigms, provide a detailed discussion on the advantages and principal design considerations of hydrogels for boosting the efficacy of cell therapy, as well as list specific examples of their applications in different disease scenarios. We then explore the potential of hydrogels in drug delivery, physical intervention therapies, and other non-cell therapeutic areas (e.g., bioadhesives, artificial tissues, and biosensors), emphasizing their utility beyond mere delivery vehicles. Additionally, we complement our discussion on the latest progress and challenges in the clinical application of hydrogels and outline future research directions, particularly in terms of integration with advanced biomanufacturing technologies. This review aims to present a comprehensive view and critical insights into the design and selection of hydrogels for both cell therapy and non-cell therapies, tailored to meet the therapeutic requirements of diverse diseases and situations.
Collapse
Affiliation(s)
- Peilin Lu
- Nanomedicine Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, PR China
- Department of Minimally Invasive Interventional Radiology, and Laboratory of Interventional Radiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, PR China
| | - Dongxue Ruan
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Department of Respiratory and Critical Care Medicine, Guangzhou Institute for Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, PR China
| | - Meiqi Huang
- Department of Minimally Invasive Interventional Radiology, and Laboratory of Interventional Radiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, PR China
| | - Mi Tian
- Department of Stomatology, Chengdu Second People's Hospital, Chengdu, 610021, PR China
| | - Kangshun Zhu
- Department of Minimally Invasive Interventional Radiology, and Laboratory of Interventional Radiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, PR China.
| | - Ziqi Gan
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510055, PR China.
| | - Zecong Xiao
- Nanomedicine Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, PR China.
| |
Collapse
|
7
|
Singh YP, Bandyopadhyay A, Dey S, Bhardwaj N, Mandal BB. Trends and advances in silk based 3D printing/bioprinting towards cartilage tissue engineering and regeneration. PROGRESS IN BIOMEDICAL ENGINEERING (BRISTOL, ENGLAND) 2024; 6:022002. [PMID: 39655857 DOI: 10.1088/2516-1091/ad2d59] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 02/27/2024] [Indexed: 12/18/2024]
Abstract
Cartilage repair remains a significant clinical challenge in orthopedics due to its limited self- regeneration potential and often progresses to osteoarthritis which reduces the quality of life. 3D printing/bioprinting has received vast attention in biofabrication of functional tissue substitutes due to its ability to develop complex structures such as zonally structured cartilage and osteochondral tissue as per patient specifications with precise biomimetic control. Towards a suitable bioink development for 3D printing/bioprinting, silk fibroin has garnered much attention due to its advantageous characteristics such as shear thinning behavior, cytocompatibility, good printability, structural fidelity, affordability, and ease of availability and processing. This review attempts to provide an overview of current trends/strategies and recent advancements in utilizing silk-based bioinks/biomaterial-inks for cartilage bioprinting. Herein, the development of silk-based bioinks/biomaterial-inks, its components and the associated challenges, along with different bioprinting techniques have been elaborated and reviewed. Furthermore, the applications of silk-based bioinks/biomaterial-inks in cartilage repair followed by challenges and future directions are discussed towards its clinical translations and production of next-generation biological implants.
Collapse
Affiliation(s)
- Yogendra Pratap Singh
- Biomaterials and Tissue Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Ashutosh Bandyopadhyay
- Biomaterials and Tissue Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Souradeep Dey
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Nandana Bhardwaj
- Department of Science and Mathematics, Indian Institute of Information Technology Guwahati, Bongora, Guwahati 781015, Assam, India
| | - Biman B Mandal
- Biomaterials and Tissue Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
- Jyoti and Bhupat Mehta School of Health Sciences and Technology, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| |
Collapse
|
8
|
Zhao Y, Dong H, Xia Q, Wang Y, Zhu L, Hu Z, Xia J, Mao Q, Weng Z, Yi J, Feng S, Jiang Y, Liao W, Xin Z. A new strategy for intervertebral disc regeneration: The synergistic potential of mesenchymal stem cells and their extracellular vesicles with hydrogel scaffolds. Biomed Pharmacother 2024; 172:116238. [PMID: 38308965 DOI: 10.1016/j.biopha.2024.116238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/28/2024] [Accepted: 01/30/2024] [Indexed: 02/05/2024] Open
Abstract
Intervertebral disc degeneration (IDD) is a disease that severely affects spinal health and is prevalent worldwide. Mesenchymal stem cells (MSCs) and their derived extracellular vesicles (EVs) have regenerative potential and have emerged as promising therapeutic tools for treating degenerative discs. However, challenges such as the harsh microenvironment of degenerated intervertebral discs and EVs' limited stability and efficacy have hindered their clinical application. In recent years, hydrogels have attracted much attention in the field of IDD therapy because they can mimic the physiologic microenvironment of the disc and provide a potential solution by providing a suitable growth environment for MSCs and EVs. This review introduced the biological properties of MSCs and their derived EVs, summarized the research on the application of MSCs and EVs in IDD, summarized the current clinical trial studies of MSCs and EVs, and also explored the mechanism of action of MSCs and EVs in intervertebral discs. In addition, plenty of research elaborated on the mechanism of action of different classified hydrogels in tissue engineering, the synergistic effect of MSCs and EVs in promoting intervertebral disc regeneration, and their wide application in treating IDD. Finally, the challenges and problems still faced by hydrogel-loaded MSCs and EVs in the treatment of IDD are summarized, and potential solutions are proposed. This paper outlines the synergistic effects of MSCs and EVs in treating IDD in combination with hydrogels and aims to provide theoretical references for future related studies.
Collapse
Affiliation(s)
- Yan Zhao
- Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, Guizhou, China
| | - Huaize Dong
- Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, Guizhou, China
| | - Qiuqiu Xia
- Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, Guizhou, China
| | - Yanyang Wang
- Department of Cell Engineering Laboratory, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, China
| | - Lu Zhu
- Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, Guizhou, China
| | - Zongyue Hu
- Department of Pain Rehabilitation, Affiliated Sinopharm Gezhouba Central Hospital, Third Clinical Medical College of Three Gorges University, Yichang 443003, Hubei, China
| | - Jiyue Xia
- Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, Guizhou, China
| | - Qiming Mao
- Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, Guizhou, China
| | - Zijing Weng
- Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, Guizhou, China
| | - Jiangbi Yi
- Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, Guizhou, China
| | - Shuai Feng
- Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, Guizhou, China
| | - Youhong Jiang
- Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, Guizhou, China
| | - Wenbo Liao
- Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, Guizhou, China
| | - Zhijun Xin
- Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, Guizhou, China; Institut Curie, PSL Research University, CNRS UMR3244, Dynamics of Genetic Information, Sorbonne Université, 75005 Paris, France.
| |
Collapse
|
9
|
Ortega-Sánchez C, Melgarejo-Ramírez Y, Rodríguez-Rodríguez R, Jiménez-Ávalos JA, Giraldo-Gomez DM, Gutiérrez-Gómez C, Rodriguez-Campos J, Luna-Bárcenas G, Velasquillo C, Martínez-López V, García-Carvajal ZY. Hydrogel Based on Chitosan/Gelatin/Poly(Vinyl Alcohol) for In Vitro Human Auricular Chondrocyte Culture. Polymers (Basel) 2024; 16:479. [PMID: 38399857 PMCID: PMC10892533 DOI: 10.3390/polym16040479] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/03/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
Three-dimensional (3D) hydrogels provide tissue-like complexities and allow for the spatial orientation of cells, leading to more realistic cellular responses in pathophysiological environments. There is a growing interest in developing multifunctional hydrogels using ternary mixtures for biomedical applications. This study examined the biocompatibility and suitability of human auricular chondrocytes from microtia cultured onto steam-sterilized 3D Chitosan/Gelatin/Poly(Vinyl Alcohol) (CS/Gel/PVA) hydrogels as scaffolds for tissue engineering applications. Hydrogels were prepared in a polymer ratio (1:1:1) through freezing/thawing and freeze-drying and were sterilized by autoclaving. The macrostructure of the resulting hydrogels was investigated by scanning electron microscopy (SEM), showing a heterogeneous macroporous structure with a pore size between 50 and 500 μm. Fourier-transform infrared (FTIR) spectra showed that the three polymers interacted through hydrogen bonding between the amino and hydroxyl moieties. The profile of amino acids present in the gelatin and the hydrogel was determined by ultra-performance liquid chromatography (UPLC), suggesting that the majority of amino acids interacted during the formation of the hydrogel. The cytocompatibility, viability, cell growth and formation of extracellular matrix (ECM) proteins were evaluated to demonstrate the suitability and functionality of the 3D hydrogels for the culture of auricular chondrocytes. The cytocompatibility of the 3D hydrogels was confirmed using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, reaching 100% viability after 72 h. Chondrocyte viability showed a high affinity of chondrocytes for the hydrogel after 14 days, using the Live/Dead assay. The chondrocyte attachment onto the 3D hydrogels and the formation of an ECM were observed using SEM. Immunofluorescence confirmed the expression of elastin, aggrecan and type II collagen, three of the main components found in an elastic cartilage extracellular matrix. These results demonstrate the suitability and functionality of a CS/Gel/PVA hydrogel as a 3D support for the auricular chondrocytes culture, suggesting that these hydrogels are a potential biomaterial for cartilage tissue engineering applications, aimed at the regeneration of elastic cartilage.
Collapse
Affiliation(s)
- Carmina Ortega-Sánchez
- Laboratorio de Biotecnología, Unidad de Gerociencias, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Ciudad de México 14389, Mexico; (C.O.-S.); (Y.M.-R.)
| | - Yaaziel Melgarejo-Ramírez
- Laboratorio de Biotecnología, Unidad de Gerociencias, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Ciudad de México 14389, Mexico; (C.O.-S.); (Y.M.-R.)
| | - Rogelio Rodríguez-Rodríguez
- Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C. (CIATEJ), Av. Normalistas No. 800, Col. Colinas de la Normal, Guadalajara 44270, Jalisco, Mexico; (R.R.-R.); (J.A.J.-Á.)
| | - Jorge Armando Jiménez-Ávalos
- Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C. (CIATEJ), Av. Normalistas No. 800, Col. Colinas de la Normal, Guadalajara 44270, Jalisco, Mexico; (R.R.-R.); (J.A.J.-Á.)
| | - David M. Giraldo-Gomez
- Unidad de Microscopia, Departamento de Biología Celular y Tisular, Facultad de Medicina, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Circuito Interior, Edificio “A” Planta Baja, Ciudad Universitaria, Coyoacán, Ciudad de México 04510, Mexico;
| | - Claudia Gutiérrez-Gómez
- División de Cirugía Plástica y Reconstructiva, Hospital General Dr. Manuel Gea González, Ciudad de México 14080, Mexico;
| | - Jacobo Rodriguez-Campos
- Servicios Analíticos y Metrológicos, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C. (CIATEJ), Av. Normalistas No. 800, Col. Colinas de la Normal, Guadalajara 44270, Jalisco, Mexico;
| | - Gabriel Luna-Bárcenas
- Institute of Advanced Materials for Sustainable Manufacturing Tecnológico de Monterrey, Epigmenio González 500, San Pablo, Santiago de Querétaro 76130, Querétaro, Mexico;
| | - Cristina Velasquillo
- Unidad de Ingeniería de Tejidos Terapia Celular y Medicina Regenerativa, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Ciudad de México 14389, Mexico
| | - Valentín Martínez-López
- Unidad de Ingeniería de Tejidos Terapia Celular y Medicina Regenerativa, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Ciudad de México 14389, Mexico
| | - Zaira Y. García-Carvajal
- Unidad de Microscopia, Departamento de Biología Celular y Tisular, Facultad de Medicina, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Circuito Interior, Edificio “A” Planta Baja, Ciudad Universitaria, Coyoacán, Ciudad de México 04510, Mexico;
| |
Collapse
|
10
|
Wang HY, Zhang Y, Zhang M, Zhang YQ. Functional modification of silk fibroin from silkworms and its application to medical biomaterials: A review. Int J Biol Macromol 2024; 259:129099. [PMID: 38176506 DOI: 10.1016/j.ijbiomac.2023.129099] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 12/26/2023] [Accepted: 12/26/2023] [Indexed: 01/06/2024]
Abstract
Silk fibroin (SF) from the silkworm Bombyx mori is a fibrous protein identified as a widely suitable biomaterial due to its biocompatibility, tunable degradation, and mechanical strength. Various modifications of SF protein can give SF fibers new properties and functions, broadening their applications in textile and biomedical industries. A diverse array of functional modifications on various forms of SF has been reported. In order to provide researchers with a more systematic understanding of the types of functional modifications of SF protein, as well as the corresponding applications, we comprehensively review the different types of functional modifications, including transgenic modification, modifications with chemical groups or biologically active substance, cross-linking and copolymerization without chemical reactions, their specific modification methods and applications. Furthermore, recent applications of SF in various medical biomaterials are briefly discussed.
Collapse
Affiliation(s)
- Hai-Yan Wang
- Obstetrical department, The People's Hospital of Suzhou New District, Suzhou, China
| | - Yun Zhang
- Obstetrical department, The People's Hospital of Suzhou New District, Suzhou, China
| | - Meng Zhang
- Zhejiang Provincial Key Laboratory of Utilization and Innovation of Silkworm and Bee Resources, Institute of Applied Bioresource Research, College of Animal Science, Zhejiang University, Hangzhou, China
| | - Yu-Qing Zhang
- Silk Biotechnology Laboratory, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China.
| |
Collapse
|
11
|
Ronca A, D'Amora U, Capuana E, Zihlmann C, Stiefel N, Pattappa G, Schewior R, Docheva D, Angele P, Ambrosio L. Development of a highly concentrated collagen ink for the creation of a 3D printed meniscus. Heliyon 2023; 9:e23107. [PMID: 38144315 PMCID: PMC10746456 DOI: 10.1016/j.heliyon.2023.e23107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/14/2023] [Accepted: 11/27/2023] [Indexed: 12/26/2023] Open
Abstract
The most prevalent extracellular matrix (ECM) protein in the meniscus is collagen, which controls cell activity and aids in preserving the biological and structural integrity of the ECM. To create stable and high-precision 3D printed collagen scaffolds, ink formulations must possess good printability and cytocompatibility. This study aims to overlap the limitation in the 3D printing of pure collagen, and to develop a highly concentrated collagen ink for meniscus fabrication. The extrusion test revealed that 12.5 % collagen ink had the best combination of high collagen concentration and printability. The ink was specifically designed to have load-bearing capacity upon printing and characterized with respect to rheological and extrusion properties. Following printing of structures with different infill, a series of post-processing steps, including salt stabilization, pH shifting, washing, freeze-drying, crosslinking and sterilization were performed, and optimised to maintain the stability of the engineered construct. Mechanical testing highlighted a storage modulus of 70 kPa for the lower porous structure while swelling properties showed swelling ratio between 9 and 11 after 15 min of soaking. Moreover, human avascular and vascular meniscus cells cultured on the scaffolds deposited a meniscus-like matrix containing collagen I, II and glycosaminoglycans after 28 days of culture. Finally, as proof-of-concept, human size 3D printed meniscus scaffold were created.
Collapse
Affiliation(s)
- Alfredo Ronca
- Institute of Polymers, Composites and Biomaterials, National Research Council, Naples, Italy
| | - Ugo D'Amora
- Institute of Polymers, Composites and Biomaterials, National Research Council, Naples, Italy
| | - Elisa Capuana
- Institute of Polymers, Composites and Biomaterials, National Research Council, Naples, Italy
| | - Carla Zihlmann
- Geistlich Pharma AG (Geistlich), Bahnhofstrasse 40, CH-6110 Wolhusen, Switzerland
| | - Niklaus Stiefel
- Geistlich Pharma AG (Geistlich), Bahnhofstrasse 40, CH-6110 Wolhusen, Switzerland
| | - Girish Pattappa
- Experimental Trauma Surgery, Department of Trauma Surgery, University Regensburg Medical Centre, Regensburg, Germany
| | - Ruth Schewior
- Experimental Trauma Surgery, Department of Trauma Surgery, University Regensburg Medical Centre, Regensburg, Germany
| | - Denitsa Docheva
- Experimental Trauma Surgery, Department of Trauma Surgery, University Regensburg Medical Centre, Regensburg, Germany
- Department of Musculoskeletal Tissue Regeneration, Orthopaedic Hospital König-Ludwig-Haus, University of Wurzburg, Germany
| | - Peter Angele
- Experimental Trauma Surgery, Department of Trauma Surgery, University Regensburg Medical Centre, Regensburg, Germany
- Sporthopaedicum Regensburg, Hildegard von Bingen Strasse 1, 93053 Regensburg, Germany
| | - Luigi Ambrosio
- Institute of Polymers, Composites and Biomaterials, National Research Council, Naples, Italy
| |
Collapse
|
12
|
Shim KW. Medical Applications of 3D Printing and Standardization Issues. Brain Tumor Res Treat 2023; 11:159-165. [PMID: 37550814 PMCID: PMC10409621 DOI: 10.14791/btrt.2023.0001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 01/13/2023] [Accepted: 01/18/2023] [Indexed: 08/09/2023] Open
Abstract
The three-dimensional (3D) printing itself is not a novel technology, it is more than 30 years old. Stereolithographic (SLA) technology has been used as the first and popular technology for medical application of 3D printing. Since 1991 Radiology and Plastic Surgery have published articles about SLA for rapid prototyping anatomical 3D models. Medical applications of 3D printing have been popularizing and stabilizing so far. Implantable medical devices such as metal or absorbable implants, surgical guide systems, prosthesis and orthosis, and 3D anatomical models for normal or diseased anatomy have been developing and expanding its markets so far. There are many obstacles, such as insurance, authorization as a medical device, and lack of standards technology for further expansion of medical applications. Many technical specifications and guidelines for authorization as medical device have been published by regulatory bodies from many countries. Even though international standards for 3D printing have been developing more and more, there have been few standards for medical application of 3D printing. In this harsh environment academia, company, research institute, regulatory bodies, and government have been doing good job for the development of 3D printing industry.
Collapse
Affiliation(s)
- Kyu Won Shim
- Department of Pediatric Neurosurgery, Severance Children's Hospital, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
13
|
Lyu Y, Liu Y, He H, Wang H. Application of Silk-Fibroin-Based Hydrogels in Tissue Engineering. Gels 2023; 9:gels9050431. [PMID: 37233022 DOI: 10.3390/gels9050431] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/12/2023] [Accepted: 05/17/2023] [Indexed: 05/27/2023] Open
Abstract
Silk fibroin (SF) is an excellent protein-based biomaterial produced by the degumming and purification of silk from cocoons of the Bombyx mori through alkali or enzymatic treatments. SF exhibits excellent biological properties, such as mechanical properties, biocompatibility, biodegradability, bioabsorbability, low immunogenicity, and tunability, making it a versatile material widely applied in biological fields, particularly in tissue engineering. In tissue engineering, SF is often fabricated into hydrogel form, with the advantages of added materials. SF hydrogels have mostly been studied for their use in tissue regeneration by enhancing cell activity at the tissue defect site or counteracting tissue-damage-related factors. This review focuses on SF hydrogels, firstly summarizing the fabrication and properties of SF and SF hydrogels and then detailing the regenerative effects of SF hydrogels as scaffolds in cartilage, bone, skin, cornea, teeth, and eardrum in recent years.
Collapse
Affiliation(s)
- Yihan Lyu
- Department of Pharmacology, School of Medicine, Southeast University, Nanjing 210009, China
| | - Yusheng Liu
- Department of Pharmacology, School of Medicine, Southeast University, Nanjing 210009, China
| | - Houzhe He
- Department of Pharmacology, School of Medicine, Southeast University, Nanjing 210009, China
| | - Hongmei Wang
- Department of Pharmacology, School of Medicine, Southeast University, Nanjing 210009, China
| |
Collapse
|
14
|
Li Y, Li L, Li Y, Feng L, Wang B, Wang M, Wang H, Zhu M, Yang Y, Waldorff EI, Zhang N, Viohl I, Lin S, Bian L, Lee WYW, Li G. Enhancing cartilage repair with optimized supramolecular hydrogel-based scaffold and pulsed electromagnetic field. Bioact Mater 2023; 22:312-324. [PMID: 36263100 PMCID: PMC9576572 DOI: 10.1016/j.bioactmat.2022.10.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 10/05/2022] [Accepted: 10/05/2022] [Indexed: 11/05/2022] Open
Abstract
Functional tissue engineering strategies provide innovative approach for the repair and regeneration of damaged cartilage. Hydrogel is widely used because it could provide rapid defect filling and proper structure support, and is biocompatible for cell aggregation and matrix deposition. Efforts have been made to seek suitable scaffolds for cartilage tissue engineering. Here Alg-DA/Ac-β-CD/gelatin hydrogel was designed with the features of physical and chemical multiple crosslinking and self-healing properties. Gelation time, swelling ratio, biodegradability and biocompatibility of the hydrogels were systematically characterized, and the injectable self-healing adhesive hydrogel were demonstrated to exhibit ideal properties for cartilage repair. Furthermore, the new hydrogel design introduces a pre-gel state before photo-crosslinking, where increased viscosity and decreased fluidity allow the gel to remain in a semi-solid condition. This granted multiple administration routes to the hydrogels, which brings hydrogels the ability to adapt to complex clinical situations. Pulsed electromagnetic fields (PEMF) have been recognized as a promising solution to various health problems owing to their noninvasive properties and therapeutic potentials. PEMF treatment offers a better clinical outcome with fewer, if any, side effects, and wildly used in musculoskeletal tissue repair. Thereby we propose PEMF as an effective biophysical stimulation to be 4th key element in cartilage tissue engineering. In this study, the as-prepared Alg-DA/Ac-β-CD/gelatin hydrogels were utilized in the rat osteochondral defect model, and the potential application of PEMF in cartilage tissue engineering were investigated. PEMF treatment were proven to enhance the quality of engineered chondrogenic constructs in vitro, and facilitate chondrogenesis and cartilage repair in vivo. All of the results suggested that with the injectable self-healing adhesive hydrogel and PEMF treatment, this newly proposed tissue engineering strategy revealed superior clinical potential for cartilage defect treatment.
Collapse
Affiliation(s)
- Yucong Li
- Department of Orthopaedics & Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong Special Administrative Region
| | - Linlong Li
- Department of Orthopaedics & Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong Special Administrative Region
| | - Ye Li
- Department of Orthopaedics & Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong Special Administrative Region
- Department of Rehabilitation Sciences, Hong Kong Polytechnic University, Hong Kong Special Administrative Region
| | - Lu Feng
- Department of Orthopaedics & Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong Special Administrative Region
| | - Bin Wang
- Innovation Centre for Advanced Interdisciplinary Medicine, Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Ming Wang
- Department of Orthopaedics & Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong Special Administrative Region
| | - Haixing Wang
- Department of Orthopaedics & Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong Special Administrative Region
| | - Meiling Zhu
- The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, PR China
| | - Yongkang Yang
- Department of Orthopaedics & Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong Special Administrative Region
| | - Erik I. Waldorff
- Research & Clinical Affairs, Orthofix Medical Inc., Lewisville, TX, USA
| | - Nianli Zhang
- Research & Clinical Affairs, Orthofix Medical Inc., Lewisville, TX, USA
| | - Ingmar Viohl
- Research & Clinical Affairs, Orthofix Medical Inc., Lewisville, TX, USA
| | - Sien Lin
- Department of Orthopaedics & Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong Special Administrative Region
| | - Liming Bian
- School of Biomedical Sciences and Engineering, National Engineering Research Center for Tissue Restoration and Reconstruction, Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou, PR China
| | - Wayne Yuk-Wai Lee
- Department of Orthopaedics & Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong Special Administrative Region
- Department of Orthopaedics and Traumatology, SH Ho Scoliosis Research Laboratory, Joint Scoliosis Research Center of the Chinese University of Hong Kong and Nanjing University, The Chinese University of Hong Kong, Hong Kong Special Administrative Region
| | - Gang Li
- Department of Orthopaedics & Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong Special Administrative Region
| |
Collapse
|
15
|
Joo OY, Kim TH, Kim YS, Roh TS, Lee EJ, Shim JH, Cho HW, Yun IS. Fabrication of 3D-Printed Implant for Two-Stage Ear Reconstruction Surgery and Its Clinical Application. Yonsei Med J 2023; 64:291-296. [PMID: 36996901 PMCID: PMC10067794 DOI: 10.3349/ymj.2022.0547] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/05/2023] [Accepted: 02/10/2023] [Indexed: 04/01/2023] Open
Abstract
PURPOSE Ear reconstruction is one of the most difficult areas in the field of reconstructive surgery. Due to limitations of the current practice, a novel method of auricular reconstruction is needed. Major advancements in three-dimensional (3D) printing technique have rendered the process of ear reconstruction more favorable. Herein, we present our experience in designing and clinically using 3D implants in both 1st and 2nd stage ear reconstruction surgery. MATERIALS AND METHODS After obtaining 3D CT data from each patient, a 3D geometric ear model was created using mirroring and segmentation processes. The 3D-printed implant design resembles but does not exactly match the normal ear shape, and can be inserted in harmony with the currently used surgical technique. The 2nd stage implant was designed to minimize dead space and support the posterior ear helix. The 3D implants were finally fabricated with a 3D printing system and used in ear reconstruction surgery in our institute. RESULTS The 3D implants were manufactured for application to the currently used two-stage technique while maintaining the shape of the patient's normal ear. The implants were successfully used for ear reconstruction surgery in microtia patients. A few months later, the 2nd stage implant was used in the 2nd stage operation. CONCLUSION The authors were able to design, fabricate, and apply patient-specific 3D-printed ear implants for 1st and 2nd stage ear reconstruction surgeries. This design, combined with 3D bioprinting technique, may be a future alternative for ear reconstruction.
Collapse
Affiliation(s)
- Oh Young Joo
- Department of Plastic & Reconstructive Surgery, Institute of Human Tissue Restoration, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Tae Ho Kim
- Department of Plastic & Reconstructive Surgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Young Seok Kim
- Department of Plastic & Reconstructive Surgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Tai Suk Roh
- Department of Plastic & Reconstructive Surgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Eun-Ju Lee
- Research Institute of T&R Biofab Co.,Ltd, Seongnam, Korea
| | - Jin-Hyung Shim
- Research Institute of T&R Biofab Co.,Ltd, Seongnam, Korea
- Department of Mechanical Engineering, Tech University of Korea, Siheung, Korea
| | | | - In Sik Yun
- Department of Plastic & Reconstructive Surgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
16
|
3D-Printing of Silk Nanofibrils Reinforced Alginate for Soft Tissue Engineering. Pharmaceutics 2023; 15:pharmaceutics15030763. [PMID: 36986622 PMCID: PMC10054105 DOI: 10.3390/pharmaceutics15030763] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/16/2023] [Accepted: 02/17/2023] [Indexed: 03/03/2023] Open
Abstract
The main challenge of extrusion 3D bioprinting is the development of bioinks with the desired rheological and mechanical performance and biocompatibility to create complex and patient-specific scaffolds in a repeatable and accurate manner. This study aims to introduce non-synthetic bioinks based on alginate (Alg) incorporated with various concentrations of silk nanofibrils (SNF, 1, 2, and 3 wt.%) and optimize their properties for soft tissue engineering. Alg-SNF inks demonstrated a high degree of shear-thinning with reversible stress softening behavior contributing to extrusion in pre-designed shapes. In addition, our results confirmed the good interaction between SNFs and alginate matrix resulted in significantly improved mechanical and biological characteristics and controlled degradation rate. Noticeably, the addition of 2 wt.% SNF improved the compressive strength (2.2 times), tensile strength (5 times), and elastic modulus (3 times) of alginate. In addition, reinforcing 3D-printed alginate with 2 wt.% SNF resulted in increased cell viability (1.5 times) and proliferation (5.6 times) after 5 days of culturing. In summary, our study highlights the favorable rheological and mechanical performances, degradation rate, swelling, and biocompatibility of Alg-2SNF ink containing 2 wt.% SNF for extrusion-based bioprinting.
Collapse
|
17
|
Abdullah T, Su E, Memić A. Designing Silk-Based Cryogels for Biomedical Applications. Biomimetics (Basel) 2022; 8:5. [PMID: 36648791 PMCID: PMC9844337 DOI: 10.3390/biomimetics8010005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/17/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
There is a need to develop the next generation of medical products that require biomaterials with improved properties. The versatility of various gels has pushed them to the forefront of biomaterials research. Cryogels, a type of gel scaffold made by controlled crosslinking under subzero or freezing temperatures, have great potential to address many current challenges. Unlike their hydrogel counterparts, which are also able to hold large amounts of biologically relevant fluids such as water, cryogels are often characterized by highly dense and crosslinked polymer walls, macroporous structures, and often improved properties. Recently, one biomaterial that has garnered a lot of interest for cryogel fabrication is silk and its derivatives. In this review, we provide a brief overview of silk-based biomaterials and how cryogelation can be used for novel scaffold design. We discuss how various parameters and fabrication strategies can be used to tune the properties of silk-based biomaterials. Finally, we discuss specific biomedical applications of silk-based biomaterials. Ultimately, we aim to demonstrate how the latest advances in silk-based cryogel scaffolds can be used to address challenges in numerous bioengineering disciplines.
Collapse
Affiliation(s)
| | - Esra Su
- Department of Chemistry, Istanbul Technical University, Istanbul 34467, Turkey
- Faculty of Aquatic Sciences, Aquatic Biotechnology, Istanbul University, Istanbul 34134, Turkey
| | - Adnan Memić
- Center of Nanotechnology, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
18
|
Zhang H, Xu D, Zhang Y, Li M, Chai R. Silk fibroin hydrogels for biomedical applications. SMART MEDICINE 2022; 1:e20220011. [PMID: 39188746 PMCID: PMC11235963 DOI: 10.1002/smmd.20220011] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 09/15/2022] [Indexed: 08/28/2024]
Abstract
Silk fibroin hydrogels occupy an essential position in the biomedical field due to their remarkable biological properties, excellent mechanical properties, flexible processing properties, as well as abundant sources and low cost. Herein, we introduce the unique structures and physicochemical characteristics of silk fibroin, including mechanical properties, biocompatibility, and biodegradability. Then, various preparation strategies of silk fibroin hydrogels are summarized, which can be divided into physical cross-linking and chemical cross-linking. Emphatically, the applications of silk fibroin hydrogel biomaterials in various biomedical fields, including tissue engineering, drug delivery, and wearable sensors, are systematically summarized. At last, the challenges and future prospects of silk fibroin hydrogels in biomedical applications are discussed.
Collapse
Affiliation(s)
- Hui Zhang
- State Key Laboratory of BioelectronicsDepartment of Otolaryngology Head and Neck SurgeryZhongda HospitalSchool of Life Science and TechnologyJiangsu Province High‐Tech Key Laboratory for Bio‐Medical ResearchSoutheast UniversityNanjingChina
- School of Biological Science and Medical EngineeringSoutheast UniversityNanjingChina
| | - Dongyu Xu
- State Key Laboratory of BioelectronicsDepartment of Otolaryngology Head and Neck SurgeryZhongda HospitalSchool of Life Science and TechnologyJiangsu Province High‐Tech Key Laboratory for Bio‐Medical ResearchSoutheast UniversityNanjingChina
- School of Biological Science and Medical EngineeringSoutheast UniversityNanjingChina
| | - Yong Zhang
- School of PhysicsSoutheast UniversityNanjingChina
| | - Minli Li
- School of Biological Science and Medical EngineeringSoutheast UniversityNanjingChina
| | - Renjie Chai
- State Key Laboratory of BioelectronicsDepartment of Otolaryngology Head and Neck SurgeryZhongda HospitalSchool of Life Science and TechnologyJiangsu Province High‐Tech Key Laboratory for Bio‐Medical ResearchSoutheast UniversityNanjingChina
- Co‐innovation Center of NeuroregenerationNantong UniversityNantongChina
- Department of Otorhinolaryngology‐Head and Neck SurgeryAffiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjingChina
- Department of Otolaryngology Head and Neck SurgerySichuan Provincial People's HospitalUniversity of Electronic Science and Technology of ChinaChengduChina
- Institute for Stem Cell and RegenerationChinese Academy of SciencesBeijingChina
- Beijing Key Laboratory of Neural Regeneration and RepairCapital Medical UniversityBeijingChina
| |
Collapse
|
19
|
Elango J, Lijnev A, Zamora-Ledezma C, Alexis F, Wu W, Marín JMG, Sanchez de Val JEM. The Relationship of Rheological Properties and the Performance of Silk Fibroin Hydrogels in Tissue Engineering Application. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
20
|
Composite silk fibroin hydrogel scaffolds for cartilage tissue regeneration. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.104018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
21
|
Maksoud FJ, Velázquez de la Paz MF, Hann AJ, Thanarak J, Reilly GC, Claeyssens F, Green NH, Zhang YS. Porous biomaterials for tissue engineering: a review. J Mater Chem B 2022; 10:8111-8165. [PMID: 36205119 DOI: 10.1039/d1tb02628c] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The field of biomaterials has grown rapidly over the past decades. Within this field, porous biomaterials have played a remarkable role in: (i) enabling the manufacture of complex three-dimensional structures; (ii) recreating mechanical properties close to those of the host tissues; (iii) facilitating interconnected structures for the transport of macromolecules and cells; and (iv) behaving as biocompatible inserts, tailored to either interact or not with the host body. This review outlines a brief history of the development of biomaterials, before discussing current materials proposed for use as porous biomaterials and exploring the state-of-the-art in their manufacture. The wide clinical applications of these materials are extensively discussed, drawing on specific examples of how the porous features of such biomaterials impact their behaviours, as well as the advantages and challenges faced, for each class of the materials.
Collapse
Affiliation(s)
- Fouad Junior Maksoud
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA.
| | - María Fernanda Velázquez de la Paz
- Department of Materials Science and Engineering, Kroto Research Building, North Campus, Broad Lane, University of Sheffield, Sheffield, S3 7HQ, UK.
| | - Alice J Hann
- Department of Materials Science and Engineering, Kroto Research Building, North Campus, Broad Lane, University of Sheffield, Sheffield, S3 7HQ, UK.
| | - Jeerawan Thanarak
- Department of Materials Science and Engineering, Kroto Research Building, North Campus, Broad Lane, University of Sheffield, Sheffield, S3 7HQ, UK.
| | - Gwendolen C Reilly
- Department of Materials Science and Engineering, Kroto Research Building, North Campus, Broad Lane, University of Sheffield, Sheffield, S3 7HQ, UK. .,INSIGNEO Institute for in silico Medicine, University of Sheffield, S3 7HQ, UK
| | - Frederik Claeyssens
- Department of Materials Science and Engineering, Kroto Research Building, North Campus, Broad Lane, University of Sheffield, Sheffield, S3 7HQ, UK. .,INSIGNEO Institute for in silico Medicine, University of Sheffield, S3 7HQ, UK
| | - Nicola H Green
- Department of Materials Science and Engineering, Kroto Research Building, North Campus, Broad Lane, University of Sheffield, Sheffield, S3 7HQ, UK. .,INSIGNEO Institute for in silico Medicine, University of Sheffield, S3 7HQ, UK
| | - Yu Shrike Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA.
| |
Collapse
|
22
|
κ-Carrageenan and PVA blends as bioinks to 3D print scaffolds for cartilage reconstruction. Int J Biol Macromol 2022; 222:1861-1875. [DOI: 10.1016/j.ijbiomac.2022.09.275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/09/2022] [Accepted: 09/28/2022] [Indexed: 11/05/2022]
|
23
|
Kim SH, Hong H, Ajiteru O, Sultan MT, Lee YJ, Lee JS, Lee OJ, Lee H, Park HS, Choi KY, Lee JS, Ju HW, Hong IS, Park CH. 3D bioprinted silk fibroin hydrogels for tissue engineering. Nat Protoc 2021; 16:5484-5532. [PMID: 34716451 DOI: 10.1038/s41596-021-00622-1] [Citation(s) in RCA: 138] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 08/26/2021] [Indexed: 02/07/2023]
Abstract
The development of biocompatible and precisely printable bioink addresses the growing demand for three-dimensional (3D) bioprinting applications in the field of tissue engineering. We developed a methacrylated photocurable silk fibroin (SF) bioink for digital light processing 3D bioprinting to generate structures with high mechanical stability and biocompatibility for tissue engineering applications. Procedure 1 describes the synthesis of photocurable methacrylated SF bioink, which takes 2 weeks to complete. Digital light processing is used to fabricate 3D hydrogels using the bioink (1.5 h), which are characterized in terms of methacrylation, printability, mechanical and rheological properties, and biocompatibility. The physicochemical properties of the bioink can be modulated by varying photopolymerization conditions such as the degree of methacrylation, light intensity, and concentration of the photoinitiator and bioink. The versatile bioink can be used broadly in a range of applications, including nerve tissue engineering through co-polymerization of the bioink with graphene oxide, and for wound healing as a sealant. Procedure 2 outlines how to apply 3D-printed SF hydrogels embedded with chondrocytes and turbinate-derived mesenchymal stem cells in one specific in vivo application, trachea tissue engineering, which takes 2-9 weeks.
Collapse
Affiliation(s)
- Soon Hee Kim
- Nano-Bio Regenerative Medical Institute, College of Medicine, Hallym University, Chuncheon, Republic of Korea
| | - Heesun Hong
- Nano-Bio Regenerative Medical Institute, College of Medicine, Hallym University, Chuncheon, Republic of Korea
| | - Olatunji Ajiteru
- Nano-Bio Regenerative Medical Institute, College of Medicine, Hallym University, Chuncheon, Republic of Korea
| | - Md Tipu Sultan
- Nano-Bio Regenerative Medical Institute, College of Medicine, Hallym University, Chuncheon, Republic of Korea
| | - Young Jin Lee
- Nano-Bio Regenerative Medical Institute, College of Medicine, Hallym University, Chuncheon, Republic of Korea
| | - Ji Seung Lee
- Nano-Bio Regenerative Medical Institute, College of Medicine, Hallym University, Chuncheon, Republic of Korea
| | - Ok Joo Lee
- Nano-Bio Regenerative Medical Institute, College of Medicine, Hallym University, Chuncheon, Republic of Korea
| | - Hanna Lee
- Nano-Bio Regenerative Medical Institute, College of Medicine, Hallym University, Chuncheon, Republic of Korea
| | - Hae Sang Park
- Nano-Bio Regenerative Medical Institute, College of Medicine, Hallym University, Chuncheon, Republic of Korea.,Departments of Otorhinolaryngology-Head and Neck Surgery, Chuncheon Sacred Heart Hospital, School of Medicine, Hallym University, Chuncheon, Republic of Korea
| | - Kyu Young Choi
- Nano-Bio Regenerative Medical Institute, College of Medicine, Hallym University, Chuncheon, Republic of Korea.,Department of Otorhinolaryngology, Kangnam Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Republic of Korea
| | - Joong Seob Lee
- Nano-Bio Regenerative Medical Institute, College of Medicine, Hallym University, Chuncheon, Republic of Korea.,Department of Otorhinolaryngology, Hallym University Sacred Heart Hospital, Anyang, Republic of Korea
| | - Hyung Woo Ju
- Nano-Bio Regenerative Technology Company Ltd., Chuncheon, Republic of Korea
| | - In-Sun Hong
- Department of Molecular Medicine, School of Medicine, Gachon University, Incheon, Republic of Korea
| | - Chan Hum Park
- Nano-Bio Regenerative Medical Institute, College of Medicine, Hallym University, Chuncheon, Republic of Korea. .,Departments of Otorhinolaryngology-Head and Neck Surgery, Chuncheon Sacred Heart Hospital, School of Medicine, Hallym University, Chuncheon, Republic of Korea.
| |
Collapse
|
24
|
Abstract
Hydrogels have three-dimensional network structures, high water content, good flexibility, biocompatibility, and stimulation response, which have provided a unique role in many fields such as industry, agriculture, and medical treatment. Poly(vinyl alcohol) PVA hydrogel is one of the oldest composite hydrogels. It has been extensively explored due to its chemical stability, nontoxic, good biocompatibility, biological aging resistance, high water-absorbing capacity, and easy processing. PVA-based hydrogels have been widely investigated in drug carriers, articular cartilage, wound dressings, tissue engineering, and other intelligent materials, such as self-healing and shape-memory materials, supercapacitors, sensors, and other fields. In this paper, the discovery, development, preparation, modification methods, and applications of PVA functionalized hydrogels are reviewed, and their potential applications and future research trends are also prospected.
Collapse
|
25
|
Abstract
Silk is a functional protein biomaterial produced by a variety of insects like flies, silkworms, scorpions, spiders, and mites. Silk synthesized by silkworms is extensively studied for its applications in tissue engineering and wound healing. Silk is undoubtedly a natural biocompatible material with humans and has its role in medical treatments from ancient times. The silk worm protein comprises two types of proteins namely fibroin and sericin. Silk fibroin makes up approximately 70% of cocoon weight and has wide applications in textiles and in all biomedical applications owing to its biocompatible, nontoxic, biodegradable, less immunogenic, and noncarcinogenic nature. It possesses outstanding toughness and mechanical strength, while silk sericin possesses high defensive ability against ultraviolet light and oxidation. Silk fibroin has been known to induce wound healing by increasing cell proliferation and growth and migrating various types of cells which are involved in different stages of wound healing process. With several silk varieties like silk worm fibroin, silk sericin, recombinant silk materials, and native spider silk have been investigated for its wound healing applications over the last several decades. With an objective of harnessing the silk regenerative properties, plentiful strategies have been studied and applied to develop bioartificial skin grafts and bioactive wound dressings in recent times. This review gives a detailed insight into the structure, general properties, fibroin structure-properties relationship, and biomedical applications of silk fibroin.
Collapse
|
26
|
Zheng H, Zuo B. Functional silk fibroin hydrogels: preparation, properties and applications. J Mater Chem B 2021; 9:1238-1258. [PMID: 33406183 DOI: 10.1039/d0tb02099k] [Citation(s) in RCA: 153] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Over the past decade, the hydrogels prepared from silk fibroin have received immense research attention due to the advantages of safe nature, biocompatibility, controllable degradation and capability to combine with other materials. They have broad application prospects in biomedicine and other fields. However, the traditional silk protein hydrogels have a simple network structure and single functionality, thus, leading to poor adaptability towards complex application environments. As a result, the application fields and development have been significantly restricted. However, the development of functional silk protein hydrogels has provided the opportunities to overcome the limitations of the silk protein hydrogels. In recent years, the functional design of the silk protein hydrogels and their potential applications have attracted the attention of scholars worldwide. Nevertheless, a comprehensive review on functional silk protein hydrogels is missing so far. In order to gain an in-depth understanding of the development status of the functional silk protein hydrogels, this article reviews the current status of the preparation, properties and application of the functional silk protein hydrogels. The article first briefly introduces the current cross-linking methods (including physical and chemical cross-linking), principles, advantages and limitations of the silk protein hydrogels. Subsequently, the types of functional silk protein hydrogels (e.g., high strength, injectable, self-healing, adhesive, conductive, environmental stimuli-responsive, 3D printable, etc.) and design principles for functional implementation have been introduced. Next, based on the advantages of the various functional aspects of the silk protein hydrogels, the applications of these hydrogels in the biomedical field (tissue engineering, sustained drug release, wound repair, adhesives, etc.) and bioelectronics are reviewed. Finally, the development prospects and challenges associated with silk protein functional hydrogels have been analyzed. It is hoped that this study will contribute towards the future innovation of the silk protein hydrogels by promoting the rational design of new mechanisms and successful realization of the target applications.
Collapse
Affiliation(s)
- Haiyan Zheng
- School of Textile and Clothing Engineering, Soochow University, Suzhou, 215100, China.
| | - Baoqi Zuo
- School of Textile and Clothing Engineering, Soochow University, Suzhou, 215100, China.
| |
Collapse
|
27
|
Dadgar N, Ghiaseddin A, Irani S, Tafti SHA, Soufi-Zomorrod M, Soleimani M. Bioartificial injectable cartilage implants from demineralized bone matrix/PVA and related studies in rabbit animal model. J Biomater Appl 2021; 35:1315-1326. [PMID: 33307942 DOI: 10.1177/0885328220976552] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Functional cartilage tissue engineering needs a substantial, easy to handle scaffold with proper mechanical strength to repair defected area in articular cartilage. In this study, we report the development and characterization of demineralized bone matrix (DBM) in with a poly vinyl alcohol (PVA) to have a proper homogenous injectable scaffold. Injectabiliy of the biodegradable scaffolds, degradation rate, swelling ratio compression and tensile mechanical properties, and viability and proliferation of bone marrow mesenchymal stem cells (BM-MSCs) followed by differentiation of them In-vitro and In-vivo seeded within the scaffold were studied. It demonstrated that the PVA 20% could increase significantly (p < 0.05) the biodegradability of DBM after 720 hours.DBM with 20% of PVA scaffold has significantly higher (p < 0.05) compression and tensile mechanical strength and viscosity. SEM images showed a multilayer of cells on DBM scaffold incorporated with PVA 20%.BM-MSCs on scaffolds, DBM+PVA 20% had a significant growth rate (p < 0.0001) compare to 2D and low concentration of PVA after 21 days of culture. Viability of cells was significantly higher (p < 0.05) on DBM+PVA scaffold compare to DBM. DBM+PVA 20% enhanced cell viability (P < 0.05) compare to DBM scaffold. The PVA presence enhanced chondrogenesis differentiation at the cellular and molecular levels, as evidenced by increased COL II (P < 0.05) and SOX2 upregulation of Chondrogensis-specific genes (p < 0.001). Hyline-like cartilage covered the defect which was confirmed by microscopy and histology assessments. Having considered percentages of PVA with a constant amount of DBM, injectability, compressive mechanical properties, homogeneity of the scaffold, and providing sufficient surface area (12.25 cm2/ml) for cell attachment; 0.35 g/ml of DBM in 20% PVA (w/v) has applicable properties within the ranges of studies which can be proposed for the injectable engineered articular cartilage.
Collapse
Affiliation(s)
- Neda Dadgar
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Ali Ghiaseddin
- Biomedical Engineering Division, Chemical Engineering Department, Tarbiat Modares University, Tehran, Iran
| | - Shiva Irani
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | | | | | - Masoud Soleimani
- Department of Chemistry, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
28
|
Affatato S, Trucco D, Taddei P, Vannozzi L, Ricotti L, Nessim GD, Lisignoli G. Wear Behavior Characterization of Hydrogels Constructs for Cartilage Tissue Replacement. MATERIALS (BASEL, SWITZERLAND) 2021; 14:428. [PMID: 33467142 PMCID: PMC7830039 DOI: 10.3390/ma14020428] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/12/2021] [Accepted: 01/12/2021] [Indexed: 02/07/2023]
Abstract
This paper aims to characterize the wear behavior of hydrogel constructs designed for human articular cartilage replacement. To this purpose, poly (ethylene glycol) diacrylate (PEGDA) 10% w/v and gellan gum (GG) 1.5% w/v were used to reproduce the superior (SUP) cartilage layer and PEGDA 15% w/v and GG 1.5% w/v were used to reproduce the deep (DEEP) cartilage layer, with or without graphene oxide (GO). These materials (SUP and DEEP) were analyzed alone and in combination to mimic the zonal architecture of human articular cartilage. The developed constructs were tested using a four-station displacement control knee joint simulator under bovine calf serum. Roughness and micro-computer tomography (µ-CT) measurements evidenced that the hydrogels with 10% w/v of PEGDA showed a worse behavior both in terms of roughness increase and loss of uniformly distributed density than 15% w/v of PEGDA. The simultaneous presence of GO and 15% w/v PEGDA contributed to keeping the hydrogel construct's characteristics. The Raman spectra of the control samples showed the presence of unreacted C=C bonds in all the hydrogels. The degree of crosslinking increased along the series SUP < DEEP + SUP < DEEP without GO. The Raman spectra of the tested hydrogels showed the loss of diacrylate groups in all the samples, due to the washout of unreacted PEGDA in bovine calf serum aqueous environment. The loss decreased along the series SUP > DEEP + SUP > DEEP, further confirming that the degree of photo-crosslinking of the starting materials plays a key role in determining their wear behavior. μ-CT and Raman spectroscopy proved to be suitable techniques to characterize the structure and composition of hydrogels.
Collapse
Affiliation(s)
- Saverio Affatato
- IRCSS Istituto Ortopedico Rizzoli, Laboratorio di Tecnologia Medica, 40136 Bologna, Italy
| | - Diego Trucco
- IRCSS Istituto Ortopedico Rizzoli, SC Laboratorio di Immunoreumatologia e Rigenerazione Tissutale, 40136 Bologna, Italy; (D.T.); (G.L.)
- The BioRobotics Institute, Scuola Superiore Sant’Anna, Piazza Martiri della Libertà 33, 56127 Pisa, Italy; (L.V.); (L.R.)
- Department of Excellence in Robotics & AI, Scuola Superiore Sant’Anna, Piazza Martiri della Libertà 33, 56127 Pisa, Italy
| | - Paola Taddei
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Via Belmeloro 8/2, 40126 Bologna, Italy;
| | - Lorenzo Vannozzi
- The BioRobotics Institute, Scuola Superiore Sant’Anna, Piazza Martiri della Libertà 33, 56127 Pisa, Italy; (L.V.); (L.R.)
- Department of Excellence in Robotics & AI, Scuola Superiore Sant’Anna, Piazza Martiri della Libertà 33, 56127 Pisa, Italy
| | - Leonardo Ricotti
- The BioRobotics Institute, Scuola Superiore Sant’Anna, Piazza Martiri della Libertà 33, 56127 Pisa, Italy; (L.V.); (L.R.)
- Department of Excellence in Robotics & AI, Scuola Superiore Sant’Anna, Piazza Martiri della Libertà 33, 56127 Pisa, Italy
| | - Gilbert Daniel Nessim
- Department of Chemistry, Bar-Ilan Institute for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan 52900, Israel;
| | - Gina Lisignoli
- IRCSS Istituto Ortopedico Rizzoli, SC Laboratorio di Immunoreumatologia e Rigenerazione Tissutale, 40136 Bologna, Italy; (D.T.); (G.L.)
| |
Collapse
|
29
|
Wei W, Ma Y, Yao X, Zhou W, Wang X, Li C, Lin J, He Q, Leptihn S, Ouyang H. Advanced hydrogels for the repair of cartilage defects and regeneration. Bioact Mater 2020; 6:998-1011. [PMID: 33102942 PMCID: PMC7557878 DOI: 10.1016/j.bioactmat.2020.09.030] [Citation(s) in RCA: 179] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 09/30/2020] [Accepted: 09/30/2020] [Indexed: 02/08/2023] Open
Abstract
Cartilage defects are one of the most common symptoms of osteoarthritis (OA), a degenerative disease that affects millions of people world-wide and places a significant socio-economic burden on society. Hydrogels, which are a class of biomaterials that are elastic, and display smooth surfaces while exhibiting high water content, are promising candidates for cartilage regeneration. In recent years, various kinds of hydrogels have been developed and applied for the repair of cartilage defects in vitro or in vivo, some of which are hopeful to enter clinical trials. In this review, recent research findings and developments of hydrogels for cartilage defects repair are summarized. We discuss the principle of cartilage regeneration, and outline the requirements that have to be fulfilled for the deployment of hydrogels for medical applications. We also highlight the development of advanced hydrogels with tailored properties for different kinds of cartilage defects to meet the requirements of cartilage tissue engineering and precision medicine. The biotechnology of developing hydrogels for cartilage defects repair is promising. The principle for cartilage regeneration using hydrogels and requirements for clinical transformation are summarized. Advanced hydrogels with tailored properties for different kinds of cartilage defects are discussed.
Collapse
Affiliation(s)
- Wei Wei
- Department of Orthopaedic Surgery, Second Affiliated Hospital & Zhejiang University-University of Edinburgh Institute & School of Basic Medicine, Zhejiang University School of Medicine, Hangzhou, China.,Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuanzhu Ma
- Department of Orthopaedic Surgery, Second Affiliated Hospital & Zhejiang University-University of Edinburgh Institute & School of Basic Medicine, Zhejiang University School of Medicine, Hangzhou, China.,Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Xudong Yao
- Department of Orthopaedic Surgery, Second Affiliated Hospital & Zhejiang University-University of Edinburgh Institute & School of Basic Medicine, Zhejiang University School of Medicine, Hangzhou, China.,Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Wenyan Zhou
- Department of Orthopaedic Surgery, Second Affiliated Hospital & Zhejiang University-University of Edinburgh Institute & School of Basic Medicine, Zhejiang University School of Medicine, Hangzhou, China.,Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaozhao Wang
- Department of Orthopaedic Surgery, Second Affiliated Hospital & Zhejiang University-University of Edinburgh Institute & School of Basic Medicine, Zhejiang University School of Medicine, Hangzhou, China.,Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Chenglin Li
- Department of Orthopaedic Surgery, Second Affiliated Hospital & Zhejiang University-University of Edinburgh Institute & School of Basic Medicine, Zhejiang University School of Medicine, Hangzhou, China.,Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Junxin Lin
- Department of Orthopaedic Surgery, Second Affiliated Hospital & Zhejiang University-University of Edinburgh Institute & School of Basic Medicine, Zhejiang University School of Medicine, Hangzhou, China.,Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Qiulin He
- Department of Orthopaedic Surgery, Second Affiliated Hospital & Zhejiang University-University of Edinburgh Institute & School of Basic Medicine, Zhejiang University School of Medicine, Hangzhou, China.,Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Sebastian Leptihn
- Department of Orthopaedic Surgery, Second Affiliated Hospital & Zhejiang University-University of Edinburgh Institute & School of Basic Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Hongwei Ouyang
- Department of Orthopaedic Surgery, Second Affiliated Hospital & Zhejiang University-University of Edinburgh Institute & School of Basic Medicine, Zhejiang University School of Medicine, Hangzhou, China.,Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China.,Department of Sports Medicine, Zhejiang University School of Medicine, China.,China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, China
| |
Collapse
|
30
|
Sultan MT, Choi BY, Ajiteru O, Hong DK, Lee SM, Kim HJ, Ryu JS, Lee JS, Hong H, Lee YJ, Lee H, Suh YJ, Lee OJ, Kim SH, Suh SW, Park CH. Reinforced-hydrogel encapsulated hMSCs towards brain injury treatment by trans-septal approach. Biomaterials 2020; 266:120413. [PMID: 33038593 DOI: 10.1016/j.biomaterials.2020.120413] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 09/11/2020] [Accepted: 09/18/2020] [Indexed: 12/14/2022]
Abstract
Encapsulated stem cells in various biomaterials have become a potentially promising cell transplantation strategy in the treatment of various neurologic disorders. However, there is no ideal cell delivery material and method for clinical application in brain diseases. Here we show silk fibroin (SF)-based hydrogel encapsulated engineered human mesenchymal stem cells (hMSCs) to overproduce brain-derived neurotrophic factor (BDNF) (BDNF-hMSC) is an effective approach to treat brain injury through trans-septal cell transplantation in the rat model. In this study, we observed SF induced sustained BDNF production by BDNF-hMSC both in 2D (9.367 ± 1.969 ng/ml) and 3D (7.319 ± 0.1025 ng/ml) culture conditions for 3 days. Through immunohistochemistry using α-tubulin, BDNF-hMSCs showed a significant increased average neurite length of co-cultured neuro 2a (N2a) cells, suggested that BDNF-hMSCs induced neurogenesis in vitro. Encapsulated BDNF-hMSC, pre-labeled with the red fluorescent dye PKH-26, exhibited intense fluorescence up to 14 days trans-septal transplantation, indicated excellent viability of the transplanted cells. Compared to the vehicle-treated, encapsulated BDNF- hMSC demonstrated significantly increased BDNF level both in the sham-operated and injured hippocampus (Hip) through immunoblot analysis after 7 days implantation. Transplantation of the encapsulated BDNF-hMSC promoted neurological functional recovery via significantly reduced neuronal death in the Hip 7 days post-injury. Using magnetic resonance imaging (MRI) analysis, we demonstrated that encapsulated BDNF-hMSC reduced lesion area significantly at 14 and 21 days in the damaged brain following trans-septal implantation. This stem cell transplantation approach represents a critical set up towards brain injury treatment for clinical application.
Collapse
Affiliation(s)
- Md Tipu Sultan
- Nano-Bio Regenerative Medical Institute, College of Medicine, Hallym University, 1 Hallymdaehak-gil, Chuncheon, Gangwon-do, 24252, Republic of Korea
| | - Bo Young Choi
- Department of Physiology, Hallym University College of Medicine, Chuncheon, 24252, Republic of Korea
| | - Olatunji Ajiteru
- Nano-Bio Regenerative Medical Institute, College of Medicine, Hallym University, 1 Hallymdaehak-gil, Chuncheon, Gangwon-do, 24252, Republic of Korea
| | - Dae Ki Hong
- Department of Physiology, Hallym University College of Medicine, Chuncheon, 24252, Republic of Korea
| | - Soon Min Lee
- SL BiGen, Inc. SL BIGEN Research Hall, 85 Songdogwahak-ro, Yeonsu-gu, Incheon, 21983, Republic of Korea
| | - Hyo-Jin Kim
- SL BiGen, Inc. SL BIGEN Research Hall, 85 Songdogwahak-ro, Yeonsu-gu, Incheon, 21983, Republic of Korea
| | - Jun Sun Ryu
- Department of Otorhinolaryngology-Head and Neck Surgery, National Cancer Center, Goyang, 10408, Republic of Korea
| | - Ji Seung Lee
- Nano-Bio Regenerative Medical Institute, College of Medicine, Hallym University, 1 Hallymdaehak-gil, Chuncheon, Gangwon-do, 24252, Republic of Korea
| | - Heesun Hong
- Nano-Bio Regenerative Medical Institute, College of Medicine, Hallym University, 1 Hallymdaehak-gil, Chuncheon, Gangwon-do, 24252, Republic of Korea
| | - Young Jin Lee
- Nano-Bio Regenerative Medical Institute, College of Medicine, Hallym University, 1 Hallymdaehak-gil, Chuncheon, Gangwon-do, 24252, Republic of Korea
| | - Hanna Lee
- Nano-Bio Regenerative Medical Institute, College of Medicine, Hallym University, 1 Hallymdaehak-gil, Chuncheon, Gangwon-do, 24252, Republic of Korea
| | - Ye Ji Suh
- Nano-Bio Regenerative Medical Institute, College of Medicine, Hallym University, 1 Hallymdaehak-gil, Chuncheon, Gangwon-do, 24252, Republic of Korea
| | - Ok Joo Lee
- Nano-Bio Regenerative Medical Institute, College of Medicine, Hallym University, 1 Hallymdaehak-gil, Chuncheon, Gangwon-do, 24252, Republic of Korea
| | - Soon Hee Kim
- Nano-Bio Regenerative Medical Institute, College of Medicine, Hallym University, 1 Hallymdaehak-gil, Chuncheon, Gangwon-do, 24252, Republic of Korea
| | - Sang Won Suh
- Department of Physiology, Hallym University College of Medicine, Chuncheon, 24252, Republic of Korea
| | - Chan Hum Park
- Nano-Bio Regenerative Medical Institute, College of Medicine, Hallym University, 1 Hallymdaehak-gil, Chuncheon, Gangwon-do, 24252, Republic of Korea; Department of Otorhinolaryngology-Head and Neck Surgery, Chuncheon Sacred Heart Hospital, School of Medicine, Hallym University, Chuncheon, 24253, Republic of Korea.
| |
Collapse
|
31
|
Mu X, Fitzpatrick V, Kaplan DL. From Silk Spinning to 3D Printing: Polymer Manufacturing using Directed Hierarchical Molecular Assembly. Adv Healthc Mater 2020; 9:e1901552. [PMID: 32109007 PMCID: PMC7415583 DOI: 10.1002/adhm.201901552] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 12/18/2019] [Indexed: 12/25/2022]
Abstract
Silk spinning offers an evolution-based manufacturing strategy for industrial polymer manufacturing, yet remains largely inaccessible as the manufacturing mechanisms in biological and synthetic systems, especially at the molecular level, are fundamentally different. The appealing characteristics of silk spinning include the sustainable sourcing of the protein material, the all-aqueous processing into fibers, and the unique material properties of silks in various formats. Substantial progress has been made to mimic silk spinning in artificial manufacturing processes, despite the gap between natural and artificial systems. This report emphasizes the universal spinning conditions utilized by both spiders and silkworms to generate silk fibers in nature, as a scientific and technical framework for directing molecular assembly into high-performance structures. The preparation of regenerated silk feedstocks and mimicking native spinning conditions in artificial manufacturing are discussed, as is progress and challenges in fiber spinning and 3D printing of silk-composites. Silk spinning is a biomimetic model for advanced and sustainable artificial polymer manufacturing, offering benefits in biomedical applications for tissue scaffolds and implantable devices.
Collapse
Affiliation(s)
- Xuan Mu
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
| | - Vincent Fitzpatrick
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
| |
Collapse
|
32
|
Niermeyer WL, Rodman C, Li MM, Chiang T. Tissue engineering applications in otolaryngology-The state of translation. Laryngoscope Investig Otolaryngol 2020; 5:630-648. [PMID: 32864434 PMCID: PMC7444782 DOI: 10.1002/lio2.416] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 04/06/2020] [Accepted: 05/11/2020] [Indexed: 12/14/2022] Open
Abstract
While tissue engineering holds significant potential to address current limitations in reconstructive surgery of the head and neck, few constructs have made their way into routine clinical use. In this review, we aim to appraise the state of head and neck tissue engineering over the past five years, with a specific focus on otologic, nasal, craniofacial bone, and laryngotracheal applications. A comprehensive scoping search of the PubMed database was performed and over 2000 article hits were returned with 290 articles included in the final review. These publications have addressed the hallmark characteristics of tissue engineering (cellular source, scaffold, and growth signaling) for head and neck anatomical sites. While there have been promising reports of effective tissue engineered interventions in small groups of human patients, the majority of research remains constrained to in vitro and in vivo studies aimed at furthering the understanding of the biological processes involved in tissue engineering. Further, differences in functional and cosmetic properties of the ear, nose, airway, and craniofacial bone affect the emphasis of investigation at each site. While otolaryngologists currently play a role in tissue engineering translational research, continued multidisciplinary efforts will likely be required to push the state of translation towards tissue-engineered constructs available for routine clinical use. LEVEL OF EVIDENCE NA.
Collapse
Affiliation(s)
| | - Cole Rodman
- The Ohio State University College of MedicineColumbusOhioUSA
| | - Michael M. Li
- Department of Otolaryngology—Head and Neck SurgeryThe Ohio State University Wexner Medical CenterColumbusOhioUSA
| | - Tendy Chiang
- Department of OtolaryngologyNationwide Children's HospitalColumbusOhioUSA
- Department of Otolaryngology—Head and Neck SurgeryThe Ohio State University Wexner Medical CenterColumbusOhioUSA
| |
Collapse
|
33
|
Lamponi S, Leone G, Consumi M, Nelli N, Magnani A. Porous multi-layered composite hydrogel as cell substrate for in vitro culture of chondrocytes. INT J POLYM MATER PO 2020. [DOI: 10.1080/00914037.2020.1765351] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Stefania Lamponi
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy
| | - Gemma Leone
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy
| | - Marco Consumi
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy
| | - Nicola Nelli
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy
| | - Agnese Magnani
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy
| |
Collapse
|
34
|
Vasile C, Pamfil D, Stoleru E, Baican M. New Developments in Medical Applications of Hybrid Hydrogels Containing Natural Polymers. Molecules 2020; 25:E1539. [PMID: 32230990 PMCID: PMC7180755 DOI: 10.3390/molecules25071539] [Citation(s) in RCA: 154] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 03/21/2020] [Accepted: 03/24/2020] [Indexed: 01/08/2023] Open
Abstract
New trends in biomedical applications of the hybrid polymeric hydrogels, obtained by combining natural polymers with synthetic ones, have been reviewed. Homopolysaccharides, heteropolysaccharides, as well as polypeptides, proteins and nucleic acids, are presented from the point of view of their ability to form hydrogels with synthetic polymers, the preparation procedures for polymeric organic hybrid hydrogels, general physico-chemical properties and main biomedical applications (i.e., tissue engineering, wound dressing, drug delivery, etc.).
Collapse
Affiliation(s)
- Cornelia Vasile
- Physical Chemistry of Polymers Department, “P. Poni” Institute of Macromolecular Chemistry, 41A Gr. Ghica Voda Alley, RO, Iaşi 700484, Romania; (D.P.); (E.S.)
| | - Daniela Pamfil
- Physical Chemistry of Polymers Department, “P. Poni” Institute of Macromolecular Chemistry, 41A Gr. Ghica Voda Alley, RO, Iaşi 700484, Romania; (D.P.); (E.S.)
| | - Elena Stoleru
- Physical Chemistry of Polymers Department, “P. Poni” Institute of Macromolecular Chemistry, 41A Gr. Ghica Voda Alley, RO, Iaşi 700484, Romania; (D.P.); (E.S.)
| | - Mihaela Baican
- Pharmaceutical Physics Department, “Grigore T. Popa” Medicine and Pharmacy University, 16, University Str., Iaşi 700115, Romania
| |
Collapse
|
35
|
Silk Fibroin Bioinks for Digital Light Processing (DLP) 3D Bioprinting. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1249:53-66. [DOI: 10.1007/978-981-15-3258-0_4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
36
|
Gandhimathi C, Quek YJ, Ezhilarasu H, Ramakrishna S, Bay BH, Srinivasan DK. Osteogenic Differentiation of Mesenchymal Stem Cells with Silica-Coated Gold Nanoparticles for Bone Tissue Engineering. Int J Mol Sci 2019; 20:E5135. [PMID: 31623264 PMCID: PMC6834165 DOI: 10.3390/ijms20205135] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 10/14/2019] [Accepted: 10/14/2019] [Indexed: 01/23/2023] Open
Abstract
Multifunctional nanofibrous scaffolds for effective bone tissue engineering (BTE) application must incorporate factors to promote neovascularization and tissue regeneration. In this study, silica-coated gold nanoparticles Au(SiO2) were tested for their ability to promote differentiation of human mesenchymal stem cells (hMSCs) into osteoblasts. Biocompatible poly-ε-caprolactone (PCL), PCL/silk fibroin (SF) and PCL/SF/Au(SiO2) loaded nanofibrous scaffolds were first fabricated by an electrospinning method. Electrospun nanofibrous scaffolds were characterized for fiber architecture, porosity, pore size distribution, fiber wettability and the relevant mechanical properties using field emission scanning electron microscopy (FESEM), porosimetry, determination of water contact angle, measurements by a surface analyzer and tabletop tensile-tester measurements. FESEM images of the scaffolds revealed beadless, porous, uniform fibers with diameters in the range of 164 ± 18.65 nm to 215 ± 32.12 nm and porosity of around 88-92% and pore size distribution around 1.45-2.35 µm. Following hMSCs were cultured on the composite scaffolds. Cell-scaffold interaction, morphology and proliferation of were analyzed by FESEM analysis, MTS (3-(4,5-dimethyl thiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium inner salt) and CMFDA (5-choromethyl fluorescein acetate) dye assays. Osteogenic differentiation of MSCs into osteogenic cells were determined by alkaline phosphatase (ALP) activity, mineralization by alizarin red S (ARS) staining and osteocalcin expression by immunofluorescence staining. The results revealed that the addition of SF and Au(SiO2) to PCL scaffolds enhanced the mechanical strength, interconnecting porous structure and surface roughness of the scaffolds. This, in turn, led to successful osteogenic differentiation of hMSCs with improved cell adhesion, proliferation, differentiation, mineralization and expression of pro-osteogenic cellular proteins. This provides huge support for Au(SiO2) as a suitable material in BTE.
Collapse
Affiliation(s)
- Chinnasamy Gandhimathi
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore 117604, Singapore.
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 636921, Singapore.
| | - Ying Jie Quek
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 636921, Singapore.
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore.
| | - Hariharan Ezhilarasu
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117594, Singapore.
| | - Seeram Ramakrishna
- Department of Mechanical Engineering, Center for Nanofibers & Nanotechnology, Faculty of Engineering, National University of Singapore, Singapore 117576, Singapore.
| | - Boon-Huat Bay
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117594, Singapore.
| | - Dinesh Kumar Srinivasan
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 636921, Singapore.
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117594, Singapore.
| |
Collapse
|
37
|
Neres Santos AM, Duarte Moreira AP, Piler Carvalho CW, Luchese R, Ribeiro E, McGuinness GB, Fernandes Mendes M, Nunes Oliveira R. Physically Cross-Linked Gels of PVA with Natural Polymers as Matrices for Manuka Honey Release in Wound-Care Applications. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E559. [PMID: 30781788 PMCID: PMC6416547 DOI: 10.3390/ma12040559] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 02/08/2019] [Accepted: 02/10/2019] [Indexed: 12/29/2022]
Abstract
Manuka honey is a well-known natural material from New Zealand, considered to have properties beneficial for burn treatment. Gels created from polyvinyl alcohol (PVA) blended with natural polymers are potential burn-care dressings, combining biocompatibility with high fluid uptake. Controlled release of manuka honey from such materials is a possible strategy for improving burn healing. This work aimed to produce polyvinyl alcohol (PVA), PVA⁻sodium carboxymethylcellulose (PVA-CMC), PVA⁻gelatin (PVA-G), and PVA⁻starch (PVA-S) cryogels infused with honey and to characterize these materials physicochemically, morphologically, and thermally, followed by in vitro analysis of swelling capacity, degradation/weight loss, honey delivery kinetics, and possible activity against Staphylococcus aureus. The addition of honey to PVA led to many PVA crystals with defects, while PVA⁻starch⁻honey and PVA⁻sodium carboxymethylcellulose⁻honey (PVA-CMC-H) formed amorphous gels. PVA-CMC presented the highest swelling degree of all. PVA-CMC-H and PVA⁻gelatin⁻honey presented the highest swelling capacities of the honey-laden samples. Weight loss/degradation was significantly higher for samples containing honey. Layers submitted to more freeze⁻thawing cycles were less porous in SEM images. With the honey concentration used, samples did not inhibit S. aureus, but pure manuka honey was bactericidal and dilutions superior to 25% honey were bacteriostatic, indicating the need for higher concentrations to be more effective.
Collapse
Affiliation(s)
| | | | - Carlos W Piler Carvalho
- Brazilian Agricultural Research Corporation/Embrapa Food Technology, Brasília 70770-901, Brazil.
| | - Rosa Luchese
- Department of food engineering, UFRRJ, Seropédica-RJ 23890-000, Brazil.
| | - Edlene Ribeiro
- Department of food engineering, UFRRJ, Seropédica-RJ 23890-000, Brazil.
| | - Garrett B McGuinness
- Centre for Medical Engineering Research, School of Mechanical and Manufacturing Engineering, Dublin City University, Dublin 9, Ireland.
| | | | - Renata Nunes Oliveira
- Postgraduate Program of Chemical Engineering/DEQ, UFRRJ, Seropédica-RJ 23890-000, Brazil.
| |
Collapse
|
38
|
Geão C, Costa-Pinto AR, Cunha-Reis C, Ribeiro VP, Vieira S, Oliveira JM, Reis RL, Oliveira AL. Thermal annealed silk fibroin membranes for periodontal guided tissue regeneration. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2019; 30:27. [PMID: 30747338 DOI: 10.1007/s10856-019-6225-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 01/24/2019] [Indexed: 06/09/2023]
Abstract
Guided tissue regeneration (GTR) is a surgical procedure applied in the reconstruction of periodontal defects, where an occlusive membrane is used to prevent the fast-growing connective tissue from migrating into the defect. In this work, silk fibroin (SF) membranes were developed for periodontal guided tissue regeneration. Solutions of SF with glycerol (GLY) or polyvinyl alcohol (PVA) where prepared at several weight ratios up to 30%, followed by solvent casting and thermal annealing at 85 °C for periods of 6 and 12 h to produce high flexible and stable membranes. These were characterized in terms of their morphology, physical integrity, chemical structure, mechanical and thermal properties, swelling capability and in vitro degradation behavior. The developed blended membranes exhibited high ductility, which is particular relevant considering the need for physical handling and adaptability to the defect. Moreover, the membranes were cultured with human periodontal ligament fibroblast cells (hPDLs) up to 7 days. Also, the higher hydrophilicity and consequent in vitro proteolytic degradability of these blends was superior to pure silk fibroin membranes. In particular SF/GLY blends demonstrated to support high cell adhesion and viability with an adequate hPDLs' morphology, make them excellent candidates for applications in periodontal regeneration.
Collapse
Affiliation(s)
- Catarina Geão
- CBQF-Centro de Biotecnologia e Química Fina, Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Arquiteto Lobão Vital, 4200-072, Porto, Portugal
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradable and Biomimetics, Headquarters of the European Institute of Excellence on tissue Engineering and Regenerative Medicine, AvePark, 4805-17, Barco, Guimarães, Portugal
| | - Ana R Costa-Pinto
- CBQF-Centro de Biotecnologia e Química Fina, Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Arquiteto Lobão Vital, 4200-072, Porto, Portugal
| | - Cassilda Cunha-Reis
- CBQF-Centro de Biotecnologia e Química Fina, Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Arquiteto Lobão Vital, 4200-072, Porto, Portugal
| | - Viviana P Ribeiro
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradable and Biomimetics, Headquarters of the European Institute of Excellence on tissue Engineering and Regenerative Medicine, AvePark, 4805-17, Barco, Guimarães, Portugal
- ICVS/3B's-PT Government Associated Laboratory, Braga/Guimarães, Portugal
| | - Sílvia Vieira
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradable and Biomimetics, Headquarters of the European Institute of Excellence on tissue Engineering and Regenerative Medicine, AvePark, 4805-17, Barco, Guimarães, Portugal
- ICVS/3B's-PT Government Associated Laboratory, Braga/Guimarães, Portugal
| | - Joaquim M Oliveira
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradable and Biomimetics, Headquarters of the European Institute of Excellence on tissue Engineering and Regenerative Medicine, AvePark, 4805-17, Barco, Guimarães, Portugal
- ICVS/3B's-PT Government Associated Laboratory, Braga/Guimarães, Portugal
- The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, AvePark, 4805-017, Barco, Guimarães, Portugal
| | - Rui L Reis
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradable and Biomimetics, Headquarters of the European Institute of Excellence on tissue Engineering and Regenerative Medicine, AvePark, 4805-17, Barco, Guimarães, Portugal
- ICVS/3B's-PT Government Associated Laboratory, Braga/Guimarães, Portugal
- The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, AvePark, 4805-017, Barco, Guimarães, Portugal
| | - Ana L Oliveira
- CBQF-Centro de Biotecnologia e Química Fina, Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Arquiteto Lobão Vital, 4200-072, Porto, Portugal.
| |
Collapse
|
39
|
Memic A, Colombani T, Eggermont LJ, Rezaeeyazdi M, Steingold J, Rogers ZJ, Navare KJ, Mohammed HS, Bencherif SA. Latest Advances in Cryogel Technology for Biomedical Applications. ADVANCED THERAPEUTICS 2019. [DOI: 10.1002/adtp.201800114] [Citation(s) in RCA: 121] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Adnan Memic
- Center of NanotechnologyKing Abdulaziz University Jeddah 21589 Saudi Arabia
- Center for Biomedical EngineeringDepartment of MedicineBrigham and Women's HospitalHarvard Medical School Cambridge MA 02139 USA
- Department of Chemical EngineeringNortheastern University Boston MA 02115 USA
| | - Thibault Colombani
- Department of Chemical EngineeringNortheastern University Boston MA 02115 USA
| | - Loek J. Eggermont
- Department of Chemical EngineeringNortheastern University Boston MA 02115 USA
- Department of Tumor ImmunologyOncode Institute, Radboud Institute for Molecular Life SciencesRadboud University Medical Center Nijmegen 6500 The Netherlands
| | | | - Joseph Steingold
- Department of Pharmaceutical SciencesNortheastern University Boston MA 02115 USA
| | - Zach J. Rogers
- Department of Chemical EngineeringNortheastern University Boston MA 02115 USA
| | | | | | - Sidi A. Bencherif
- Department of Chemical EngineeringNortheastern University Boston MA 02115 USA
- Department of BioengineeringNortheastern University Boston MA 02115 USA
- Harvard John A. Paulson School of Engineering and Applied SciencesHarvard University Cambridge MA 02138 USA
- Sorbonne UniversityUTC CNRS UMR 7338Biomechanics and Bioengineering (BMBI)University of Technology of Compiègne Compiègne 60159 France
| |
Collapse
|
40
|
Niu C, Li X, Wang Y, Liu X, Shi J, Wang X. Design and performance of a poly(vinyl alcohol)/silk fibroin enzymatically crosslinked semi-interpenetrating hydrogel for a potential hydrophobic drug delivery. RSC Adv 2019; 9:41074-41082. [PMID: 35540084 PMCID: PMC9076402 DOI: 10.1039/c9ra09344c] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Accepted: 11/21/2019] [Indexed: 01/24/2023] Open
Abstract
In this study, in order to obtain hydrogels with good properties for sustained release of hydrophobic drugs or for tissue engineering, poly(vinyl alcohol) (PVA)/silk fibroin (SF) semi-interpenetrating (semi-IPN) hydrogels with varied ratios of PVA/SF were enzymatically cross-linked using horseradish peroxidase. A vial inversion test determined approximate gelation times of PVA/SF hydrogels ranging from 5 to 10 min. The hydrogels with varied ratios showed differences in pore size and morphology. Mass loss rate of hydrogels increased from 15% to 58% with increasing PVA concentration. Stable hydrogels with PVA/SF at 0.5 : 1 w/w showed the best swelling ratio values in distilled water (7.36). FTIR analysis revealed that silk fibroin in these hydrogels exhibited the coexistence of amorphous and silk I crystalline structures and the SF and PVA molecules interacted with each other well. The mechanical properties of the composite hydrogels were controlled by the SF content. From the cell viability results, it was found that the hydrogels exerted very low cytotoxicity. Paeonol was chosen as the hydrophobic drug model for release studies from the hydrogels. Paeonol can be uniformly loaded into the composite hydrogels using the emulsifying property of PVA and paeonol release from the hydrogels was dependent on the PVA/SF ratio. This study applied a novel type of enzymatically crosslinked semi-IPN hydrogel that may have potential applications in drug delivery. Enzymatically cross-linked PVA/SF semi-IPN hydrogels with tunable pore structure have potential applications in sustained release of hydrophobic drug.![]()
Collapse
Affiliation(s)
- Chunqing Niu
- Hubei Province Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients
- Hubei Engineering University
- Xiaogan 432000
- People's Republic of China
| | - Xiang Li
- Hubei Province Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients
- Hubei Engineering University
- Xiaogan 432000
- People's Republic of China
| | - Yiyu Wang
- Hubei Province Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients
- Hubei Engineering University
- Xiaogan 432000
- People's Republic of China
| | - Xinyu Liu
- Hubei Province Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients
- Hubei Engineering University
- Xiaogan 432000
- People's Republic of China
| | - Jian Shi
- Department of Machine Intelligence and Systems Engineering
- Faculty of Systems Science and Technology
- Akita Prefectural University
- Akita 015-0055
- Japan
| | - Xinyu Wang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing
- Wuhan University of Technology
- Wuhan 430070
- People's Republic of China
- Biomedical Materials and Engineering Research Center of Hubei Province
| |
Collapse
|
41
|
Sultan MT, Moon BM, Yang JW, Lee OJ, Kim SH, Lee JS, Lee YJ, Seo YB, Kim DY, Ajiteru O, Sung GY, Park CH. Recirculating peritoneal dialysis system using urease-fixed silk fibroin membrane filter with spherical carbonaceous adsorbent. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 97:55-66. [PMID: 30678941 DOI: 10.1016/j.msec.2018.12.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 11/10/2018] [Accepted: 12/07/2018] [Indexed: 12/12/2022]
Abstract
The chronic kidney disease (CKD) patients are undergoing continuous ambulatory peritoneal dialysis (CAPD). However, there are some constraints, the frequent exchange of the dialysate and limitation of outside activity, associated with CAPD remain to be solved. In this study, we designed the wearable artificial kidney (WAK) system for peritoneal dialysis (PD) using urease-immobilized silk fibroin (SF) membrane and polymer-based spherical carbonaceous adsorbent (PSCA). We evaluated this kit's removal abilities of uremic toxins such as urea, creatinine, uric acid, phosphorus, and β2-microglobulin from the dialysate of end-stage renal disease (ESRD) patients in vitro. The uremic toxins including urea, creatinine, uric acid, and phosphorus were removed about 99% by immobilized SF membrane and PSCA filter after 24 h treatment. However, only 50% of β2-microglobulin was removed by this filtering system after 24 h treatment. In vivo study result shows that our filtering system has more uremic toxins removal efficiency than exchanged dialysate at every 6 h. We suggest that recirculating PD system using urease-immobilized SF membrane with PSCA could be more efficient than traditional dialysate exchange system for a WAK for PD.
Collapse
Affiliation(s)
- Md Tipu Sultan
- Nano-Bioregenerative Medical Institute, Hallym University, Chuncheon, Gangwon-do, Republic of Korea
| | - Bo Mi Moon
- Nano-Bioregenerative Medical Institute, Hallym University, Chuncheon, Gangwon-do, Republic of Korea
| | - Jae Won Yang
- Department of Nephrology, Yonsei University Wonju College of Medicine, Wonju 220-701, Republic of Korea
| | - Ok Joo Lee
- Nano-Bioregenerative Medical Institute, Hallym University, Chuncheon, Gangwon-do, Republic of Korea
| | - Soon Hee Kim
- Nano-Bioregenerative Medical Institute, Hallym University, Chuncheon, Gangwon-do, Republic of Korea
| | - Ji Seung Lee
- Nano-Bioregenerative Medical Institute, Hallym University, Chuncheon, Gangwon-do, Republic of Korea
| | - Young Jin Lee
- Nano-Bioregenerative Medical Institute, Hallym University, Chuncheon, Gangwon-do, Republic of Korea
| | - Ye Been Seo
- Nano-Bioregenerative Medical Institute, Hallym University, Chuncheon, Gangwon-do, Republic of Korea
| | - Do Yeon Kim
- Nano-Bioregenerative Medical Institute, Hallym University, Chuncheon, Gangwon-do, Republic of Korea
| | - Olatunji Ajiteru
- Nano-Bioregenerative Medical Institute, Hallym University, Chuncheon, Gangwon-do, Republic of Korea
| | - Gun Yong Sung
- Department of Materials Science and Engineering, College of Information and Electronic Engineering, Hallym University, Chuncheon 200-702, Republic of Korea
| | - Chan Hum Park
- Nano-Bioregenerative Medical Institute, Hallym University, Chuncheon, Gangwon-do, Republic of Korea; Department of Otorhinolaryngology-Head and Neck Surgery, Chuncheon Sacred Heart Hospital, School of Medicine, Hallym University, Chuncheon, Gangwon, Republic of Korea.
| |
Collapse
|
42
|
In Vivo Investigation of Soft Tissue Response of Novel Silver/Poly(Vinyl Alcohol)/ Graphene and Silver/Poly(Vinyl Alcohol)/Chitosan/Graphene Hydrogels Aimed for Medical Applications – The First Experience. ACTA VET-BEOGRAD 2018. [DOI: 10.2478/acve-2018-0027] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
In this paper, we have shown for the fi rst time the soft tissue response of novel silver/ poly(vinyl alcohol)/graphene (Ag/PVA/Gr) and silver/poly(vinyl alcohol)/chitosan/ graphene (Ag/PVA/CHI/Gr) nanocomposite hydrogels aimed for medical applications. These novel hydrogels were produced by in situ electrochemical synthesis of silver nanoparticles in the polymer matrices as described in our previously published works. Both Ag/PVA/Gr and Ag/PVA/CHI/Gr, as well as controls Ag/PVA, Ag/PVA/CHI and commercial Suprasorb©hydrogel discs, were implanted in the subcutaneous tissue of rats. Implants with the surrounding tissue were dissected after post-implantation on days 7, 15, 30 and 60, and then processed for histological examination. The tissue irritation index (TIrI) score, according to ISO 10993-6, 2007, as well as the number of leukocytes in the peri-implant zone and connective tissue capsule thickness were examined. The results show that each TIrI score, the leukocyte number around the implanted materials and capsule thickness gradually decreased during the observation period. At the endpoint of follow-up, the Ag/PVA/CHI/Gr implant was surrounded with a thinner capsule, while both the TIrI score and the number of leukocytes of the peri-implant zone were greater compared to the Ag/PVA/Gr implant. Despite the observed differences, we can conclude that our in vivo experiment suggested that both novel hydrogels were biocompatible and suitable for medical use.
Collapse
|
43
|
Ideal scaffold design for total ear reconstruction using a three‐dimensional printing technique. J Biomed Mater Res B Appl Biomater 2018; 107:1295-1303. [DOI: 10.1002/jbm.b.34222] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 06/27/2018] [Accepted: 08/02/2018] [Indexed: 11/07/2022]
|
44
|
Liu J, Fang Q, Yu X, Wan Y, Xiao B. Chitosan-Based Nanofibrous Membrane Unit with Gradient Compositional and Structural Features for Mimicking Calcified Layer in Osteochondral Matrix. Int J Mol Sci 2018; 19:E2330. [PMID: 30096842 PMCID: PMC6121876 DOI: 10.3390/ijms19082330] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 08/03/2018] [Accepted: 08/06/2018] [Indexed: 01/03/2023] Open
Abstract
Chitosan (CH), silk fibroin (SF), and hydroxyapatite (HA) were used to prepare CH/SF/HA composites and the resulting composites were electrospun into nanofibrous membrane units with gradient compositional and structural features. The optimal membrane unit was used together with CH/HA and CH/SF composites to fabricate a type of three-layer scaffold that is intended for osteochondral repair. The bottom layer of the scaffold was built with CH/HA composites and it served as a subchondral layer, the integrated nanofibrous membrane unit functioned as the middle layer for mimicking the calcified layer and the top layer was constructed using CH/SF composites for acting as a chondral layer. The nanofibrous membrane unit was found to be permeable to some molecules with limited molecular weight and was able to prevent the seeded cells from migrating cross the unit, functioning approximately like the calcified layer in the osteochondral matrix. Layered scaffolds showed abilities to promote the growth of both chondrocytes and osteoblasts that were seeded in their chondral layer and bony layer, respectively, and they were also able to support the phenotype preservation of seeded chondrocytes and the mineralization of neotissue in the bony layer. Results suggest that this type of layered scaffolds can function as an analogue of the osteochondral matrix and it has potential in osteochondral repair.
Collapse
Affiliation(s)
- Jiaoyan Liu
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Qing Fang
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Xiaofeng Yu
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Ying Wan
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Bo Xiao
- Institute for Clean Energy and Advanced Materials, Faculty for Materials and Energy, Southwest University, Chongqing 400715, China.
| |
Collapse
|
45
|
Cheng G, Davoudi Z, Xing X, Yu X, Cheng X, Li Z, Deng H, Wang Q. Advanced Silk Fibroin Biomaterials for Cartilage Regeneration. ACS Biomater Sci Eng 2018; 4:2704-2715. [DOI: 10.1021/acsbiomaterials.8b00150] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Gu Cheng
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST), and Key Laboratory of Oral Biomedicine, Ministry of Education, Wuhan University, Wuhan 430079, China
- Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, School of Resource and Environmental Science, Wuhan University, Wuhan 430079, China
| | - Zahra Davoudi
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa 50014, United States
| | - Xin Xing
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST), and Key Laboratory of Oral Biomedicine, Ministry of Education, Wuhan University, Wuhan 430079, China
| | - Xin Yu
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST), and Key Laboratory of Oral Biomedicine, Ministry of Education, Wuhan University, Wuhan 430079, China
| | - Xin Cheng
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST), and Key Laboratory of Oral Biomedicine, Ministry of Education, Wuhan University, Wuhan 430079, China
| | - Zubing Li
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST), and Key Laboratory of Oral Biomedicine, Ministry of Education, Wuhan University, Wuhan 430079, China
| | - Hongbing Deng
- Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, School of Resource and Environmental Science, Wuhan University, Wuhan 430079, China
| | - Qun Wang
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa 50014, United States
| |
Collapse
|
46
|
Lim KS, Levato R, Costa PF, Castilho MD, Alcala-Orozco CR, van Dorenmalen KMA, Melchels FPW, Gawlitta D, Hooper GJ, Malda J, Woodfield TBF. Bio-resin for high resolution lithography-based biofabrication of complex cell-laden constructs. Biofabrication 2018; 10:034101. [DOI: 10.1088/1758-5090/aac00c] [Citation(s) in RCA: 146] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
47
|
Sheik S, Sheik S, Nairy R, Nagaraja GK, Prabhu A, Rekha PD, Prashantha K. Study on the morphological and biocompatible properties of chitosan grafted silk fibre reinforced PVA films for tissue engineering applications. Int J Biol Macromol 2018; 116:45-53. [PMID: 29733927 DOI: 10.1016/j.ijbiomac.2018.05.019] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 05/03/2018] [Accepted: 05/03/2018] [Indexed: 11/25/2022]
Abstract
The current study delineates the preparation of novel chitosan grafted silk fibre reinforced Poly (vinyl alcohol) (PVA) composite films with desirable properties. Although silk fibroin has been extensively used for various biomedical applications, its properties could be further re-tailored for its suitability in the field of regenerative medicine. Chitosan was successfully grafted over silk, via acylation with succinic anhydride and thereby the fibres were incised and used for the preparation of the films. The grafted silk fibre reinforced PVA films were subjected to FTIR studies, microscopic analysis by atomic force microscopy (AFM) and optical microscopy techniques, X-ray diffraction (XRD) analysis and further evaluated for in vitro biocompatibility studies. The composite films demonstrated improved surface roughness with increasing concentration of the fibre and its dispersion in the polymer matrix was observed. Furthermore, in vitro biocompatibility and cellular behaviour such as adhesion and proliferation of mouse fibroblasts as well as astrocyte cells was studied and the results showed improved proliferative activity, when compared to the pristine PVA films. These results were further supported by the results confirmed by MTT assay demonstrating the films to be non-toxic. The efficiency and feasibility of the films to be used for tissue engineering, was further evaluated by haemocompatibility studies using human erythrocytes, thus making them a potential material to be used for biomedical applications.
Collapse
Affiliation(s)
- Sareen Sheik
- Department of Post-Graduate Studies & Research in Chemistry, Mangalore University, Mangalagangothri, 574199, (D.K.), Karnataka, India
| | - Sana Sheik
- Department of Applied Botany, Mangalore University, Mangalagangothri, 574199, (D.K.), Karnataka, India
| | - Rajesha Nairy
- Department of Physics, P.A. College of Engineering, Mangalore, 574153, (D.K.), Karnataka, India
| | - G K Nagaraja
- Department of Post-Graduate Studies & Research in Chemistry, Mangalore University, Mangalagangothri, 574199, (D.K.), Karnataka, India.
| | - Ashwini Prabhu
- Yenepoya Research Centre, Yenepoya University, University Road Deralakatte, Mangalore, 575018, (D.K.), Karnataka, India
| | - P D Rekha
- Yenepoya Research Centre, Yenepoya University, University Road Deralakatte, Mangalore, 575018, (D.K.), Karnataka, India
| | - Kalappa Prashantha
- IMT Lille Douai, Institut Mines-Télécom, Polymers and Composites Technology & Mechanical Engineering Department, 941 rue Charles Bourseul, 59508 Douai, France; Université de Lille, 59000 Lille, France
| |
Collapse
|
48
|
Sultan MT, Lee OJ, Kim SH, Ju HW, Park CH. Silk Fibroin in Wound Healing Process. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1077:115-126. [DOI: 10.1007/978-981-13-0947-2_7] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|