1
|
Ma X, Guan B, Pang L. Calycosin ameliorates albuminuria in nephrotic syndrome by targeting Notch1/Snail pathway. BMC Nephrol 2025; 26:198. [PMID: 40251522 PMCID: PMC12008911 DOI: 10.1186/s12882-025-04113-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 04/08/2025] [Indexed: 04/20/2025] Open
Abstract
BACKGROUND Heavy proteinuria is an important hallmark for kidney disease including nephrotic syndrome. Astragali Radix, a traditional Chinese herb, holds the potential to alleviate nephrotic syndrome; however, the underlying mechanism has not been completely clarified. The study aimed to explore the role of calycosin (C16H12O5), a major active component of Astragali Radix, in regulating adriamycin-induced proteinuria. METHODS A rat model of nephrotic syndrome was established through two adriamycin injections within two weeks (4 mg/kg for the first week and 2 mg/kg for the second week). After the induction of renal injury, 10 mg/kg or 20 mg/kg calycosin was intraperitoneally injected into rats for four weeks. Before euthanasia of rats, urine and blood samples were collected, and body weight was recorded. Then, 24 h urine protein content, kidney index, total cholesterol (TC), triglyceride (TG), as well as renal function indicators including blood urea nitrogen (BUN), serum creatinine (SCR), and urine albumin excretory rate (UAE) were measured. Hematoxylin-eosin staining for renal cortex tissues was performed to evaluate glomerular structural damage. TUNEL assay was performed to evaluate renal cell apoptosis. Western blotting was conducted to measure protein levels of podocyte-specific markers (podocin and nephrin), Notch1, and Snail in rat renal tissues. RESULTS Calycosin reversed adriamycin-induced increase in proteinuria content, kidney index, and concentrations of renal function indicators. Calycosin ameliorated glomerular structural damage, inflammatory cell infiltration, and basement membrane thickening in model rats. In addition, calycosin rescued the suppressive impact of adriamycin on renal cell apoptosis and protein levels of podocyte markers. The activated Notch1/Snail signaling in model rats was suppressed by calycosin intervention. CONCLUSION Calycosin exerts a protective role against adriamycin-induced nephrotic syndrome via inhibition of the Notch1/Snail signaling. CLINICAL TRIAL DETAILS Not applicable.
Collapse
Affiliation(s)
- Xiaohong Ma
- Department of Nephrology, Shenzhen Bao'an Authentic TCM Therapy Hospital, Room 1703, Block G, Jiazhou Business Center, Baomin 1 Road, Xin 'an Street, Bao 'an District, Shenzhen, Guangdong, 518100, China.
| | - Binghe Guan
- Department of Internal Medicine, Shenzhen Bao'an Authentic TCM Therapy Hospital, Shenzhen, 518100, China
| | - Linrong Pang
- Department of Internal Medicine, Shenzhen Bao'an Authentic TCM Therapy Hospital, Shenzhen, 518100, China
| |
Collapse
|
2
|
Chang J, Yao Y, Sun X, Wang W, Qian H, Liu Y, Xue C, Ye W, Jiang F. JAG1 mediates apoptosis in herpes simplex keratitis by suppressing autophagy via ROS/JAG1/NOTCH1/pULK1 signaling pathway. Cell Biol Toxicol 2024; 41:1. [PMID: 39704867 PMCID: PMC11662045 DOI: 10.1007/s10565-024-09968-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 12/10/2024] [Indexed: 12/21/2024]
Abstract
Herpes simplex keratitis (HSK), an ocular disease resulted from herpes simplex virus type 1 (HSV-1) infection, leads to the majority of infectious corneal blindness worldwide. The apoptosis of corneal epithelial cells (CECs) resulted from HSV-1 disrupts the epithelial barrier and exacerbates the infection; however, there is no definitive cure for HSK. Jagged1 (JAG1), one of the primary functional ligands for NOTCH receptors, plays a crucial role in regulating apoptosis and autophagy; however, its role in HSK is unclear. Our transcriptome analysis showed JAG1 was significantly upregulated in HSV-1-infected human CECs. We aimed to explore JAG1's role in regulating apoptosis in HSV-1-infected human CECs and in HSK mice. HSV-1 infection induced apoptosis and reactive oxygen species (ROS) generation in CECs. HSV-1 also activated the JAG1/NOTCH1 signaling pathway. The ROS scavenger N-acetylcysteine significantly mitigated these effects. Additionally, inhibiting the JAG1/NOTCH1 pathway with short hairpin RNA against JAG1 or a NOTCH1 inhibitor (N-[N-{3,5-difuorophenacetyl}-1-alanyl]-S-phenylglycine t-butyl ester [DAPT]) alleviated HSV-1-induced CEC apoptosis. Transmission electron microscopy and western blotting revealed that HSV-1 infection suppressed ULK1-mediated autophagy in CECs, while DAPT treatment enhanced autophagy by suppressing ULK1 phosphorylation. The activation of autophagy by rapamycin treatment markedly reduced ROS levels and apoptosis in HSV-1-infected CECs, revealing a synergistic effect between the suppressed autophagy and increased ROS levels, ultimately leading to apoptosis. Thus, HSV-1 induces CEC apoptosis by suppressing autophagy through ROS/JAG1/NOTCH1/pULK1 signaling pathway in vitro and in vivo, providing potential therapeutic targets for HSK.
Collapse
Affiliation(s)
- Jingyao Chang
- School of Medicine, Southeast University, Nanjing, 210009, Jiangsu, China
- Department of Ophthalmology, Jinling Hospital, Nanjing, 210002, Jiangsu, China
| | - Yao Yao
- Department of Ophthalmology, Jinling Hospital, Nanjing, 210002, Jiangsu, China
| | - Xinghong Sun
- Department of Ophthalmology, Nanjing Drum Tower Hospital, Nanjing, 210011, Jiangsu, China
| | - Wenzhe Wang
- Department of Ophthalmology, Jinling Hospital, Nanjing, 210002, Jiangsu, China
| | - Haochen Qian
- School of Medicine, Southeast University, Nanjing, 210009, Jiangsu, China
- Department of Ophthalmology, Jinling Hospital, Nanjing, 210002, Jiangsu, China
| | - Yumeilan Liu
- Department of Ophthalmology, Jinling Hospital, Nanjing, 210002, Jiangsu, China
| | - Chunyan Xue
- School of Medicine, Southeast University, Nanjing, 210009, Jiangsu, China.
- Department of Ophthalmology, Hainan Hospital of Chinese PLA General Hospital, Sanya, 572013, Hainan, China.
| | - Wei Ye
- Department of Ophthalmology, Jinling Hospital, Nanjing, 210002, Jiangsu, China.
| | - Feng Jiang
- Department of Ophthalmology, Nanjing Drum Tower Hospital, Nanjing, 210011, Jiangsu, China.
| |
Collapse
|
3
|
Sun T, Guo Y, Su Y, Shan S, Qian W, Zhang F, Li M, Zhang Z. Molecular mechanisms of diabetic nephropathy: A narrative review. Cell Biol Int 2024; 48:1240-1253. [PMID: 38946126 DOI: 10.1002/cbin.12212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/01/2024] [Accepted: 06/16/2024] [Indexed: 07/02/2024]
Abstract
Diabetic nephropathy (DN) is the predominant secondary nephropathy resulting in global end-stage renal disease. It is attracting significant attention in both domestic and international research due to its widespread occurrence, fast advancement, and limited choices for prevention and treatment. The pathophysiology of this condition is intricate and involves multiple molecular and cellular pathways at various levels. This article provides a concise overview of the molecular processes involved in the development of DN. It discusses various factors, such as signaling pathways, cytokines, inflammatory responses, oxidative stress, cellular damage, autophagy, and epigenetics. The aim is to offer clinicians a valuable reference for DN's diagnosis, treatment, and intervention.
Collapse
Affiliation(s)
- Tian Sun
- Hubei Key Laboratory of Diabetes and Angiopathy, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Yina Guo
- Hubei Key Laboratory of Diabetes and Angiopathy, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Yanting Su
- School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Shigang Shan
- School of Public Health and Nursing, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Wenbin Qian
- School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Feixue Zhang
- Hubei Key Laboratory of Diabetes and Angiopathy, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Mengxi Li
- School of Nuclear Technology and Chemistry & Biology, Hubei University of Science and Technology, Xianning, China
| | - Zhenwang Zhang
- Hubei Key Laboratory of Diabetes and Angiopathy, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| |
Collapse
|
4
|
Yamashiro A, Satoh Y, Endo S, Oshima N. Extracellular signal-regulated kinase is activated in podocytes from patients with diabetic nephropathy. Hum Cell 2024; 37:1553-1558. [PMID: 39052150 DOI: 10.1007/s13577-024-01108-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 07/22/2024] [Indexed: 07/27/2024]
Abstract
In the past few decades, the global prevalence of diabetes has provided us with a warning about future chronic complications. Diabetic nephropathy (DN) is the main cause of end-stage kidney disease. Podocytes in the glomerulus play a critical role in regulating glomerular permeability, and podocyte injury is one of the main causes of DN. Extracellular signal-regulated kinase (ERK) is a member of the mitogen-activated protein kinase family that plays critical roles in intracellular signal transduction. In human patients with DN, phosphorylated ERK (pERK), the active form of ERK, is increased in the glomeruli. However, information on the expression of pERK, specifically in podocytes in DN, is limited. Meanwhile, high glucose induces ERK activation in immortalized podocyte cell lines, suggesting the involvement of podocytic ERK in DN. We performed an immunohistochemical study using Wilms' tumor-1 (WT-1) as a podocyte-specific marker to investigate whether podocytic pERK levels are increased in patients with DN. In the glomeruli of the DN group, we observed remarkable co-staining for WT-1 and pERK. In contrast, the glomeruli of the control group contained only a few pERK-positive podocytes. Statistical analyses revealed that, relative to healthy controls, patients with DN showed significantly increased pERK expression levels in cells that were positive for WT-1 (DN: 51.3 ± 13.1% vs. control: 7.3 ± 1.6%, p = 0.0158, t-test, n = 4 for each group). This suggests that ERK activation in podocytes is involved in the pathogenesis of DN.
Collapse
Affiliation(s)
- Aoi Yamashiro
- Department of Nephrology and Endocrinology, National Defense Medical College, Tokorozawa, Saitama, Japan.
| | - Yasushi Satoh
- Department of Biochemistry, National Defense Medical College, Tokorozawa, Saitama, Japan.
| | - Shogo Endo
- Aging Neuroscience Research Team, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Itabashi, Tokyo, Japan
| | - Naoki Oshima
- Department of Nephrology and Endocrinology, National Defense Medical College, Tokorozawa, Saitama, Japan
| |
Collapse
|
5
|
Marciniec K, Nowakowska J, Chrobak E, Bębenek E, Latocha M. Synthesis, Docking, and Machine Learning Studies of Some Novel Quinolinesulfonamides-Triazole Hybrids with Anticancer Activity. Molecules 2024; 29:3158. [PMID: 38999109 PMCID: PMC11243625 DOI: 10.3390/molecules29133158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 06/18/2024] [Accepted: 06/28/2024] [Indexed: 07/14/2024] Open
Abstract
In the presented work, a series of 22 hybrids of 8-quinolinesulfonamide and 1,4-disubstituted triazole with antiproliferative activity were designed and synthesised. The title compounds were designed using molecular modelling techniques. For this purpose, machine-learning, molecular docking, and molecular dynamics methods were used. Calculations of the pharmacokinetic parameters (connected with absorption, distribution, metabolism, excretion, and toxicity) of the hybrids were also performed. The new compounds were synthesised via a copper-catalysed azide-alkyne cycloaddition reaction (CuAAC). 8-N-Methyl-N-{[1-(7-chloroquinolin-4-yl)-1H-1,2,3-triazol-4-yl]methyl}quinolinesulfonamide was identified in in silico studies as a potential strong inhibitor of Rho-associated protein kinase and as a compound that has an appropriate pharmacokinetic profile. The results obtained from in vitro experiments confirm the cytotoxicity of derivative 9b in four selected cancer cell lines and the lack of cytotoxicity of this derivative towards normal cells. The results obtained from silico and in vitro experiments indicate that the introduction of another quinolinyl fragment into the inhibitor molecule may have a significant impact on increasing the level of cytotoxicity toward cancer cells and indicate a further direction for future research in order to find new substances suitable for clinical applications in cancer treatment.
Collapse
Affiliation(s)
- Krzysztof Marciniec
- Department of Organic Chemistry, Medical University of Silesia, Jagiellońska 4, 41-200 Sosnowiec, Poland; (J.N.); (E.C.); (E.B.)
| | - Justyna Nowakowska
- Department of Organic Chemistry, Medical University of Silesia, Jagiellońska 4, 41-200 Sosnowiec, Poland; (J.N.); (E.C.); (E.B.)
| | - Elwira Chrobak
- Department of Organic Chemistry, Medical University of Silesia, Jagiellońska 4, 41-200 Sosnowiec, Poland; (J.N.); (E.C.); (E.B.)
| | - Ewa Bębenek
- Department of Organic Chemistry, Medical University of Silesia, Jagiellońska 4, 41-200 Sosnowiec, Poland; (J.N.); (E.C.); (E.B.)
| | - Małgorzata Latocha
- Department of Molecular Biology, Jagiellońska 4, 41-200 Sosnowiec, Poland;
| |
Collapse
|
6
|
Matoba K, Nagai Y, Sekiguchi K, Ohashi S, Mitsuyoshi E, Shimoda M, Tachibana T, Kawanami D, Yokota T, Utsunomiya K, Nishimura R. Deletion of podocyte Rho-associated, coiled-coil-containing protein kinase 2 protects mice from focal segmental glomerulosclerosis. Commun Biol 2024; 7:402. [PMID: 38565675 PMCID: PMC10987559 DOI: 10.1038/s42003-024-06127-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 03/29/2024] [Indexed: 04/04/2024] Open
Abstract
Focal segmental glomerulosclerosis (FSGS) shares podocyte damage as an essential pathological finding. Several mechanisms underlying podocyte injury have been proposed, but many important questions remain. Rho-associated, coiled-coil-containing protein kinase 2 (ROCK2) is a serine/threonine kinase responsible for a wide array of cellular functions. We found that ROCK2 is activated in podocytes of adriamycin (ADR)-induced FSGS mice and cultured podocytes stimulated with ADR. Conditional knockout mice in which the ROCK2 gene was selectively disrupted in podocytes (PR2KO) were resistant to albuminuria, glomerular sclerosis, and podocyte damage induced by ADR injection. In addition, pharmacological intervention for ROCK2 significantly ameliorated podocyte loss and kidney sclerosis in a murine model of FSGS by abrogating profibrotic factors. RNA sequencing of podocytes treated with a ROCK2 inhibitor proved that ROCK2 is a cyclic nucleotide signaling pathway regulator. Our study highlights the potential utility of ROCK2 inhibition as a therapeutic option for FSGS.
Collapse
Affiliation(s)
- Keiichiro Matoba
- Division of Diabetes, Metabolism and Endocrinology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, 105-8461, Japan.
| | - Yosuke Nagai
- Division of Diabetes, Metabolism and Endocrinology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, 105-8461, Japan
| | - Kensuke Sekiguchi
- Division of Diabetes, Metabolism and Endocrinology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, 105-8461, Japan
| | - Shinji Ohashi
- Division of Diabetes, Metabolism and Endocrinology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, 105-8461, Japan
| | - Etsuko Mitsuyoshi
- Division of Diabetes, Metabolism and Endocrinology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, 105-8461, Japan
| | - Masayuki Shimoda
- Department of Pathology, The Jikei University School of Medicine, Tokyo, 105-8461, Japan
| | - Toshiaki Tachibana
- Core Research Facilities for Basic Science, Research Center for Medical Science, The Jikei University School of Medicine, Tokyo, 105-8461, Japan
| | - Daiji Kawanami
- Department of Endocrinology and Diabetes, Fukuoka University School of Medicine, Fukuoka, 814-0180, Japan
| | - Tamotsu Yokota
- Division of Diabetes, Metabolism and Endocrinology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, 105-8461, Japan
| | | | - Rimei Nishimura
- Division of Diabetes, Metabolism and Endocrinology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, 105-8461, Japan
| |
Collapse
|
7
|
Deng Z, Fan T, Xiao C, Tian H, Zheng Y, Li C, He J. TGF-β signaling in health, disease, and therapeutics. Signal Transduct Target Ther 2024; 9:61. [PMID: 38514615 PMCID: PMC10958066 DOI: 10.1038/s41392-024-01764-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 08/31/2023] [Accepted: 01/31/2024] [Indexed: 03/23/2024] Open
Abstract
Transforming growth factor (TGF)-β is a multifunctional cytokine expressed by almost every tissue and cell type. The signal transduction of TGF-β can stimulate diverse cellular responses and is particularly critical to embryonic development, wound healing, tissue homeostasis, and immune homeostasis in health. The dysfunction of TGF-β can play key roles in many diseases, and numerous targeted therapies have been developed to rectify its pathogenic activity. In the past decades, a large number of studies on TGF-β signaling have been carried out, covering a broad spectrum of topics in health, disease, and therapeutics. Thus, a comprehensive overview of TGF-β signaling is required for a general picture of the studies in this field. In this review, we retrace the research history of TGF-β and introduce the molecular mechanisms regarding its biosynthesis, activation, and signal transduction. We also provide deep insights into the functions of TGF-β signaling in physiological conditions as well as in pathological processes. TGF-β-targeting therapies which have brought fresh hope to the treatment of relevant diseases are highlighted. Through the summary of previous knowledge and recent updates, this review aims to provide a systematic understanding of TGF-β signaling and to attract more attention and interest to this research area.
Collapse
Affiliation(s)
- Ziqin Deng
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Tao Fan
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Chu Xiao
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - He Tian
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yujia Zheng
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Chunxiang Li
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Jie He
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
8
|
Yuan N, Diao J, Dong J, Yan Y, Chen Y, Yan S, Liu C, He Z, He J, Zhang C, Wang H, Wang M, He F, Xiao W. Targeting ROCK1 in diabetic kidney disease: Unraveling mesangial fibrosis mechanisms and introducing myricetin as a novel antagonist. Biomed Pharmacother 2024; 171:116208. [PMID: 38286036 DOI: 10.1016/j.biopha.2024.116208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/05/2024] [Accepted: 01/22/2024] [Indexed: 01/31/2024] Open
Abstract
Diabetic kidney disease (DKD) stands as a pressing health challenge, with mesangial cell fibrosis identified as a pivotal hallmark leading to glomerular sclerosis. Gaining a deeper grasp on the molecular dynamics behind this can potentially introduce groundbreaking therapeutic avenues. Recent revelations from studies on ROCK1-deficient mice, which displayed resilience against high-fat diet (HFD)-induced glomerulosclerosis and mitochondrial fragmentation, spurred our hypothesis regarding ROCK1's potential role in mesangial cell fibrosis. Subsequent rigorous experiments corroborated our theory, highlighting the critical role of ROCK1 in orchestrating mesangial cell proliferation and fibrosis, especially in high-glucose settings. Mechanistically, ROCK1 inhibition led to a notable hindrance in the high-glucose-triggered MAPK signaling pathway, particularly emphasizing the ROCK1/ERK/P38 axis. To translate this understanding into potential therapeutic interventions, we embarked on a comprehensive drug screening journey. Leveraging molecular modeling techniques, Myricetin surfaced as an efficacious inhibitor of ROCK1. Dose-dependent in vitro assays substantiated Myricetin's prowess in curtailing mesangial cell proliferation and fibrosis via ROCK1/ERK/P38 pathway. In vivo verifications paralleled these findings, with Myricetin treatment resulting in significant renal function enhancements and diminished DKD pathological markers, all pivoted around the ROCK1/ERK/P38 nexus. These findings not only deepen our comprehension of DKD molecular underpinnings but also elevate ROCK1 to the pedestal of a promising therapeutic beacon. Concurrently, Myricetin is spotlighted as a potent natural contender, heralding a new era in DKD therapeutic design.
Collapse
Affiliation(s)
- Ningning Yuan
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Jianxin Diao
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Jiamei Dong
- Department of Pharmacy, Zhuhai People's Hospital, Zhuhai Hospital Affiliated With Jinan University, Jinan University, Zhuhai 519000, Guangdong, China
| | - Yangtian Yan
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Yuchi Chen
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Shihua Yan
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Changshun Liu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Zhuoen He
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Jinyue He
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Chi Zhang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Hao Wang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Mingqing Wang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China.
| | - Fei He
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China.
| | - Wei Xiao
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China; Ministry of Education, Guangdong Pharmaceutical University, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education, Guangdong Pharmaceutical University, Guangzhou, Guangdong, 510006, China.
| |
Collapse
|
9
|
Jiang H, Shen Z, Zhuang J, Lu C, Qu Y, Xu C, Yang S, Tian X. Understanding the podocyte immune responses in proteinuric kidney diseases: from pathogenesis to therapy. Front Immunol 2024; 14:1335936. [PMID: 38288116 PMCID: PMC10822972 DOI: 10.3389/fimmu.2023.1335936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 12/29/2023] [Indexed: 01/31/2024] Open
Abstract
The glomerular filtration barrier, comprising the inner layer of capillary fenestrated endothelial cells, outermost podocytes, and the glomerular basement membrane between them, plays a pivotal role in kidney function. Podocytes, terminally differentiated epithelial cells, are challenging to regenerate once injured. They are essential for maintaining the integrity of the glomerular filtration barrier. Damage to podocytes, resulting from intrinsic or extrinsic factors, leads to proteinuria in the early stages and eventually progresses to chronic kidney disease (CKD). Immune-mediated podocyte injury is a primary pathogenic mechanism in proteinuric glomerular diseases, including minimal change disease, focal segmental glomerulosclerosis, membranous nephropathy, and lupus nephritis with podocyte involvement. An extensive body of evidence indicates that podocytes not only contribute significantly to the maintenance of the glomerular filtration barrier and serve as targets of immune responses but also exhibit immune cell-like characteristics, participating in both innate and adaptive immunity. They play a pivotal role in mediating glomerular injury and represent potential therapeutic targets for CKD. This review aims to systematically elucidate the mechanisms of podocyte immune injury in various podocyte lesions and provide an overview of recent advances in podocyte immunotherapy. It offers valuable insights for a deeper understanding of the role of podocytes in proteinuric glomerular diseases, and the identification of new therapeutic targets, and has significant implications for the future clinical diagnosis and treatment of podocyte-related disorders.
Collapse
Affiliation(s)
- Hong Jiang
- Division of Nephrology, Department of Internal Medicine, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Zhirang Shen
- Division of Nephrology, Department of Internal Medicine, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Jing Zhuang
- Division of Nephrology, Department of Internal Medicine, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Chen Lu
- Division of Nephrology, Department of Internal Medicine, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Yue Qu
- Division of Nephrology, Department of Internal Medicine, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Chengren Xu
- Division of Nephrology, Department of Internal Medicine, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Shufen Yang
- Division of Nephrology, Department of Internal Medicine, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Xuefei Tian
- Section of Nephrology, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, United States
| |
Collapse
|
10
|
Xu X, Yao L. Recent advances in the development of Rho kinase inhibitors (2015-2021). Med Res Rev 2024; 44:406-421. [PMID: 37265266 DOI: 10.1002/med.21980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/27/2023] [Accepted: 05/23/2023] [Indexed: 06/03/2023]
Abstract
Rho-associated coiled-coil kinases (ROCKs) are key downstream effectors of small GTPases. ROCK plays a central role in diverse cellular events with accumulating evidence supporting the concept that ROCK is important in tumor development and progression. Numerous ROCK inhibitors have been investigated for their therapeutic potential in the treatment of cancers. In this article, we review recent research progress on ROCK inhibitors, especially those with potential for the treatment of cancers, reported in the literature from 2015 to 2021. Most ROCK inhibitors show potent in vitro and in vivo antitumor activities and have potential in the treatment of cancers.
Collapse
Affiliation(s)
- Xiangrong Xu
- Yantai University Hospital, Yantai University, Yantai, China
| | - Lei Yao
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China
| |
Collapse
|
11
|
Nagai Y, Matoba K, Yako H, Ohashi S, Sekiguchi K, Mitsuyoshi E, Sango K, Kawanami D, Utsunomiya K, Nishimura R. Rho-kinase inhibitor restores glomerular fatty acid metabolism in diabetic kidney disease. Biochem Biophys Res Commun 2023; 649:32-38. [PMID: 36739697 DOI: 10.1016/j.bbrc.2023.01.088] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 01/25/2023] [Accepted: 01/28/2023] [Indexed: 02/01/2023]
Abstract
The small GTPase Rho and its effector Rho-kinase (ROCK) are activated in the diabetic kidney, and recent studies decade have demonstrated that ROCK signaling is an integral pathway in the progression of diabetic kidney disease. We previously identified the distinct role of ROCK1, an isoform of ROCK, in fatty acid metabolism in diabetic glomeruli. However, the effect of pharmacological intervention for ROCK1 is not clear. In the present study, we show that the inhibition of ROCK1 by Y-27632 and fasudil restores fatty acid oxidation in the glomeruli. Mechanistically, these compounds optimize fatty acid utilization and redox balance in mesangial cells via AMPK phosphorylation and the subsequent induction of PGC-1α. A further in vivo study showed that the inhibition of ROCK1 suppressed the downregulation of the fatty acid oxidation-related gene expression in glomeruli and mitochondrial fragmentation in the mesangial cells of db/db mice. These observations indicate that ROCK1 could be a promising therapeutic target for diabetic kidney disease through a mechanism that improves glomerular fatty acid metabolism.
Collapse
Affiliation(s)
- Yosuke Nagai
- Division of Diabetes, Metabolism, and Endocrinology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Keiichiro Matoba
- Division of Diabetes, Metabolism, and Endocrinology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan.
| | - Hideji Yako
- Diabetic Neuropathy Project, Department of Diseases and Infection, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Shinji Ohashi
- Division of Diabetes, Metabolism, and Endocrinology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Kensuke Sekiguchi
- Division of Diabetes, Metabolism, and Endocrinology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Etsuko Mitsuyoshi
- Division of Diabetes, Metabolism, and Endocrinology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Kazunori Sango
- Diabetic Neuropathy Project, Department of Diseases and Infection, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Daiji Kawanami
- Department of Endocrinology and Diabetes Mellitus, Fukuoka University School of Medicine, Fukuoka, Japan
| | | | - Rimei Nishimura
- Division of Diabetes, Metabolism, and Endocrinology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| |
Collapse
|
12
|
Wang J, Luo J, Du L, Shu X, Guo C, Li T. Nuclear paraspeckle assembly transcript 1 promotes the podocyte injury via targeting miR-23b-3p/B-cell lymphoma-2 interacting protein 3 like axis. Ren Fail 2022; 44:1961-1975. [DOI: 10.1080/0886022x.2022.2091998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
- Jing Wang
- Department of Emergency, The First Medical Center to Chinese People's Liberation Army General Hospital, Beijing, China
| | - Junpeng Luo
- Department of Minimally Invasive Interventional Radiology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Cancer for Cancer Medicine, Guangzhou, China
| | - Li Du
- The Institute of Radiation Medicine, The Academy of Military Medical Science, Beijing, China
| | - Xin Shu
- Department of Dermatology, Third Medical Center of Chinese, PLA General Hospital, Beijing, China
| | - Chengyu Guo
- Department of Emergency, The First Medical Center to Chinese People's Liberation Army General Hospital, Beijing, China
| | - Tanshi Li
- Department of Emergency, The First Medical Center to Chinese People's Liberation Army General Hospital, Beijing, China
| |
Collapse
|
13
|
Tang J, Liu F, Cooper ME, Chai Z. Renal fibrosis as a hallmark of diabetic kidney disease: Potential role of targeting transforming growth factor-beta (TGF-β) and related molecules. Expert Opin Ther Targets 2022; 26:721-738. [PMID: 36217308 DOI: 10.1080/14728222.2022.2133698] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Diabetic kidney disease (DKD) is the most common cause of end-stage renal disease (ESRD) worldwide. Currently, there is no effective treatment to completely prevent DKD progression to ESRD. Renal fibrosis and inflammation are the major pathological features of DKD, being pursued as potential therapeutic targets for DKD. AREAS COVERED Inflammation and renal fibrosis are involved in the pathogenesis of DKD. Anti-inflammatory drugs have been developed to combat DKD but without efficacy demonstrated. Thus, we have focused on the mechanisms of TGF-β-induced renal fibrosis in DKD, as well as discussing the important molecules influencing the TGF-β signaling pathway and their potential development into new pharmacotherapies, rather than targeting the ligand TGF-β and/or its receptors, such options include Smads, microRNAs, histone deacetylases, connective tissue growth factor, bone morphogenetic protein 7, hepatocyte growth factor, and cell division autoantigen 1. EXPERT OPINION TGF-β is a critical driver of renal fibrosis in DKD. Molecules that modulate TGF-β signaling rather than TGF-β itself are potentially superior targets to safely combat DKD. A comprehensive elucidation of the pathogenesis of DKD is important, which requires a better model system and access to clinical samples via collaboration between basic and clinical researchers.
Collapse
Affiliation(s)
- Jiali Tang
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, Australia
| | - Fang Liu
- Department of Nephrology and Laboratory of Diabetic Kidney Disease, Centre of Diabetes and Metabolism Research, West China Hospital, Sichuan University, Chengdu, China
| | - Mark E Cooper
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, Australia
| | - Zhonglin Chai
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, Australia
| |
Collapse
|
14
|
Yang J, Liu Z. Mechanistic Pathogenesis of Endothelial Dysfunction in Diabetic Nephropathy and Retinopathy. Front Endocrinol (Lausanne) 2022; 13:816400. [PMID: 35692405 PMCID: PMC9174994 DOI: 10.3389/fendo.2022.816400] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 03/28/2022] [Indexed: 12/15/2022] Open
Abstract
Diabetic nephropathy (DN) and diabetic retinopathy (DR) are microvascular complications of diabetes. Microvascular endothelial cells are thought to be the major targets of hyperglycemic injury. In diabetic microvasculature, the intracellular hyperglycemia causes damages to the vascular endothelium, via multiple pathophysiological process consist of inflammation, endothelial cell crosstalk with podocytes/pericytes and exosomes. In addition, DN and DR diseases development are involved in several critical regulators including the cell adhesion molecules (CAMs), the vascular endothelial growth factor (VEGF) family and the Notch signal. The present review attempts to gain a deeper understanding of the pathogenesis complexities underlying the endothelial dysfunction in diabetes diabetic and retinopathy, contributing to the development of new mechanistic therapeutic strategies against diabetes-induced microvascular endothelial dysfunction.
Collapse
Affiliation(s)
- Jing Yang
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, China
- Henan Province Research Center For Kidney Disease, Zhengzhou, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
| | - Zhangsuo Liu
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, China
- Henan Province Research Center For Kidney Disease, Zhengzhou, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
- Department of Integrated Traditional and Western Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
15
|
Rho-associated, coiled-coil-containing protein kinase 1 regulates development of diabetic kidney disease via modulation of fatty acid metabolism. Kidney Int 2022; 102:536-545. [PMID: 35597365 DOI: 10.1016/j.kint.2022.04.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 03/08/2022] [Accepted: 04/06/2022] [Indexed: 11/20/2022]
Abstract
Dysregulation of fatty acid utilization is increasingly recognized as a significant component of diabetic kidney disease. Rho-associated, coiled-coil-containing protein kinase (ROCK) is activated in the diabetic kidney, and studies over the past decade have illuminated ROCK signaling as an essential pathway in diabetic kidney disease. Here, we confirmed the distinct role of ROCK1, an isoform of ROCK, in fatty acid metabolism using glomerular mesangial cells and ROCK1 knockout mice. Mesangial cells with ROCK1 deletion were protected from mitochondrial dysfunction and redox imbalance driven by transforming growth factor β, a cytokine upregulated in diabetic glomeruli. We found that high-fat diet-induced obese ROCK1 knockout mice exhibited reduced albuminuria and histological abnormalities along with the recovery of impaired fatty acid utilization and mitochondrial fragmentation. Mechanistically, we found that ROCK1 regulates the induction of critical mediators in fatty acid metabolism, including peroxisome proliferator-activated receptor gamma coactivator 1α, carnitine palmitoyltransferase 1, and widespread program-associated cellular metabolism. Thus, our findings highlight ROCK1 as an important regulator of energy homeostasis in mesangial cells in the overall pathogenesis of diabetic kidney disease.
Collapse
|
16
|
Steichen C, Hervé C, Hauet T, Bourmeyster N. Rho GTPases in kidney physiology and diseases. Small GTPases 2022; 13:141-161. [PMID: 34138686 PMCID: PMC9707548 DOI: 10.1080/21541248.2021.1932402] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 05/08/2021] [Accepted: 05/17/2021] [Indexed: 02/06/2023] Open
Abstract
Rho family GTPases are molecular switches best known for their pivotal role in dynamic regulation of the actin cytoskeleton, but also of cellular morphology, motility, adhesion and proliferation. The prototypic members of this family (RhoA, Rac1 and Cdc42) also contribute to the normal kidney function and play important roles in the structure and function of various kidney cells including tubular epithelial cells, mesangial cells and podocytes. The kidney's vital filtration function depends on the structural integrity of the glomerulus, the proximal portion of the nephron. Within the glomerulus, the architecturally actin-based cytoskeleton podocyte forms the final cellular barrier to filtration. The glomerulus appears as a highly dynamic signalling hub that is capable of integrating intracellular cues from its individual structural components. Dynamic regulation of the podocyte cytoskeleton is required for efficient barrier function of the kidney. As master regulators of actin cytoskeletal dynamics, Rho GTPases are therefore of critical importance for sustained kidney barrier function. Dysregulated activities of the Rho GTPases and of their effectors are implicated in the pathogenesis of both hereditary and idiopathic forms of kidney diseases. Diabetic nephropathy is a progressive kidney disease that is caused by injury to kidney glomeruli. High glucose activates RhoA/Rho-kinase in mesangial cells, leading to excessive extracellular matrix production (glomerulosclerosis). This RhoA/Rho-kinase pathway also seems involved in the post-transplant hypertension frequently observed during treatment with calcineurin inhibitors, whereas Rac1 activation was observed in post-transplant ischaemic acute kidney injury.
Collapse
Affiliation(s)
- Clara Steichen
- Inserm UMR-1082 Irtomit, Poitiers, France
- Faculté De Médecine Et De Pharmacie, Université De Poitiers, Poitiers, France
| | | | - Thierry Hauet
- Inserm UMR-1082 Irtomit, Poitiers, France
- Faculté De Médecine Et De Pharmacie, Université De Poitiers, Poitiers, France
- Department of Medical Biology, Service De Biochimie, CHU De Poitiers, Poitiers, France
| | - Nicolas Bourmeyster
- Faculté De Médecine Et De Pharmacie, Université De Poitiers, Poitiers, France
- Department of Medical Biology, Service De Biochimie, CHU De Poitiers, Poitiers, France
- Laboratoire STIM CNRS ERL 7003, Université de Poitiers, Poitiers Cédex, France
| |
Collapse
|
17
|
Notch1 participates in the activation of autophagy in the hippocampus of type I diabetic mice. Neurochem Int 2021; 150:105156. [PMID: 34389314 DOI: 10.1016/j.neuint.2021.105156] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 08/05/2021] [Accepted: 08/09/2021] [Indexed: 01/01/2023]
Abstract
Notch1 not only plays a key role in the development of the nervous system but also modulates synaptic plasticity and memory. However, the role of Notch1 in the brain of diabetes is still unclear. We hypothesize that Notch1 is involved in type I diabetes-induced cognitive dysfunction. In this study, adult male C57BL/6J mice carrying a heterozygous null mutation in the Notch1 gene (Notch1+/-) and wild-type littermate controls were used in this experiment. They were subjected to streptozocin (55 mg/kg, i.p.) for consecutive five days. After 12 weeks, the cognitive function of all mice was detected by novel object recognition (NOR) test and electrophysiological recording. Our results demonstrated that the levels of Notch1 mRNA and Notch1 receptor were increased in the hippocampus of the wild-type diabetic mice at 12 weeks. It suggested that the Notch1 signal pathway was activated. Compared with the wild-type diabetic mice, the discrimination index and the long-term potentiation was further decreased in the Notch1+/- diabetic group, the impairment of neuronal ultrastructure was exacerbated in the hippocampus of the Notch1+/- diabetic mice, and the number of synapses and autophagic vacuoles were significantly reduced in the Notch1+/- diabetic group. Moreover, some postsynaptic associated protein expressions were down-regulated, as well as the Beclin1 expression and the ratio of LC3II/LC3I were reduced in the hippocampus of the Notch1+/- diabetic mice. Interestingly, the phosphorylation of mTOR, Akt, and ERK1/2 were all inhibited in the Notch1+/- diabetic group. Taken together, these results suggest that Notch1 deficiency deteriorates the synaptic plasticity and inhibits the activation of autophagy partly via the mTOR-independent signal pathway in the hippocampus of type I diabetic mice.
Collapse
|
18
|
Wang J, Xiang H, Lu Y, Wu T, Ji G. New progress in drugs treatment of diabetic kidney disease. Biomed Pharmacother 2021; 141:111918. [PMID: 34328095 DOI: 10.1016/j.biopha.2021.111918] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 07/08/2021] [Accepted: 07/12/2021] [Indexed: 02/08/2023] Open
Abstract
Diabetic kidney disease (DKD) is not only one of the main complications of diabetes, but also the leading cause of the end-stage renal disease (ESRD). The occurrence and development of DKD have always been a serious clinical problem that leads to the increase of morbidity and mortality and the severe damage to the quality of life of human beings. Controlling blood glucose, blood pressure, blood lipids, and improving lifestyle can help slow the progress of DKD. In recent years, with the extensive research on the pathological mechanism and molecular mechanism of DKD, there are more and more new drugs based on this, such as new hypoglycemic drugs sodium-glucose cotransporter 2 (SGLT2) inhibitors, glucagon-like peptide-1 (GLP-1) inhibitors, and dipeptidyl peptidase-4 (DPP-4) inhibitors with good efficacy in clinical treatment. Besides, there are some newly developed drugs, including protein kinase C (PKC) inhibitors, advanced glycation end product (AGE) inhibitors, aldosterone receptor inhibitors, endothelin receptor (ETR) inhibitors, transforming growth factor-β (TGF-β) inhibitors, Rho kinase (ROCK) inhibitors and so on, which show positive effects in animal or clinical trials and bring hope for the treatment of DKD. In this review, we sort out the progress in the treatment of DKD in recent years, the research status of some emerging drugs, and the potential drugs for the treatment of DKD in the future, hoping to provide some directions for clinical treatment of DKD.
Collapse
Affiliation(s)
- Junmin Wang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Hongjiao Xiang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yifei Lu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Tao Wu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Guang Ji
- Institute of Digestive Disease, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
19
|
Doi K, Kimura H, Wada T, Tanaka T, Hiromura K, Saleem MA, Inagi R, Nangaku M, Fujii T. A novel method for successful induction of interdigitating process formation in conditionally immortalized podocytes from mice, rats, and humans. Biochem Biophys Res Commun 2021; 570:47-52. [PMID: 34271436 DOI: 10.1016/j.bbrc.2021.07.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 07/08/2021] [Indexed: 11/29/2022]
Abstract
Formation of processes in podocytes is regarded as the hallmark of maturity and normal physical condition for the cell. There are many accumulated findings about molecular mechanisms that cause retraction of podocyte processes; however, there is little knowledge of the positive mechanisms that promote process formation in vitro, and most previous reports about this topic have been limited to low-density cultures. Here, we found that process formation can be induced in 100% confluent cultures of conditionally immortalized podocytes in mouse, rat, and human species by combining serum depletion and Y-27632 ROCK inhibitor supplementation on the scaffold of laminin-521(L521). We noted the cytoskeletal reorganization of the radial extension pattern of vimentin filaments and downregulation of actin stress fiber formation under that condition. We also found that additional standard amount of serum, depletion of ROCK inhibitor, or slight mismatch of the scaffold as laminin-511(L511) hinder process formation. These findings suggest that the combination of reduced serum, podocyte-specific scaffold, and intracellular signaling to reduce the overexpression of ROCK are required factors for process formation.
Collapse
Affiliation(s)
- Kotaro Doi
- Institute of Industrial Science, The University of Tokyo, 153-8503, Japan
| | - Hiroshi Kimura
- Department of Mechanical Engineering, School of Engineering, Tokai University, Japan
| | - Takehiko Wada
- Division of Nephrology, Endocrinology and Metabolism, Tokai University School of Medicine, Japan
| | - Tetsuhiro Tanaka
- Department of Nephrology and Endocrinology, Faculty of Medicine, The University of Tokyo, Japan
| | - Keiju Hiromura
- Department of Nephrology and Rheumatology, Gunma University Graduate School of Medicine, Japan
| | - Moin A Saleem
- University of Bristol, And Bristol Royal Hospital for Children, UK
| | - Reiko Inagi
- Division of Chronic Kidney Disease Pathophysiology the University of Tokyo Graduate School of Medicine, Japan
| | - Masaomi Nangaku
- Department of Nephrology and Endocrinology, Faculty of Medicine, The University of Tokyo, Japan
| | - Teruo Fujii
- Institute of Industrial Science, The University of Tokyo, 153-8503, Japan.
| |
Collapse
|
20
|
Ying C, Dai J, Fan G, Zhou Z, Gan T, Zhang Y, Song Y, Zhou X. Ras-Related C3 Botulinum Toxin Substrate 1 Combining With the Mixed Lineage Kinase 3- Mitogen-Activated Protein Kinase 7- c-Jun N-Terminal Kinase Signaling Module Accelerates Diabetic Nephropathy. Front Physiol 2021; 12:679166. [PMID: 34194338 PMCID: PMC8236718 DOI: 10.3389/fphys.2021.679166] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 05/04/2021] [Indexed: 12/12/2022] Open
Abstract
Ras-related C3 botulinum toxin substrate 1 (RAC1) activation plays a vital role in diabetic nephropathy (DN), but the exact mechanism remains unclear. In this study, we attempted to elucidate the precise mechanism of how RAC1 aggravates DN through cellular and animal experiments. In this study, DN was induced in mice by intraperitoneal injection of streptozotocin (STZ, 150mg/kg), and the RAC1 inhibitor NSC23766 was administered by tail vein injection. Biochemical indicators, cell proliferation and apoptosis, and morphological changes in the kidney were detected. The expression of phosphorylated c-Jun N-terminal kinase (p-JNK), nuclear factor-κB (NF-κB), and cleaved caspase-3 and the interaction between RAC1 and the mixed lineage kinase 3 (MLK3)-mitogen-activated protein kinase 7 (MKK7)-JNK signaling module were determined. Furthermore, the colocalization and direct co-interaction of RAC1 and MLK3 were confirmed. Our results showed that RAC1 accelerates renal damage and increases the expression of p-JNK, NF-κB, and cleaved caspase-3. However, inhibition of RAC1 ameliorated DN by downregulating p-JNK, NF-κB, and cleaved caspase-3. Also, RAC1 promoted the assembly of MLK3-MKK7-JNK, and NSC23766 blocked the interaction between RAC1 and MLK3-MKK7-JNK and inhibited the assembly of the MLK3-MKK7-JNK signaling module. Furthermore, RAC1 was combined with MLK3 directly, but the RAC1 Y40C mutant inhibited the interaction between RAC1 and MLK3. We demonstrated that RAC1 combining with MLK3 activates the MLK3-MKK7-JNK signaling module, accelerating DN occurrence and development, and RAC1 Y40 is an important site for binding of RAC1 to MLK3. This study illustrates the cellular and molecular mechanisms of how RAC1 accelerates DN and provides evidence of DN-targeted therapy.
Collapse
Affiliation(s)
- Changjiang Ying
- Department of Endocrinology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Jiao Dai
- The Graduate School, Xuzhou Medical University, Xuzhou, China
| | - Gaoxia Fan
- The Graduate School, Xuzhou Medical University, Xuzhou, China
| | - Zhongyuan Zhou
- The Graduate School, Xuzhou Medical University, Xuzhou, China
| | - Tian Gan
- Department of Endocrinology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Yusheng Zhang
- The Graduate School, Xuzhou Medical University, Xuzhou, China
| | - Yuanjian Song
- Department of Genetics, School of Life Sciences, Xuzhou Medical University, Xuzhou, China
| | - Xiaoyan Zhou
- Department of Genetics, School of Life Sciences, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
21
|
Kuo MC, Liang PI, Chang JM. Podocentric view of glomerular proteinuria: Focused on cytoskeletal changes and toward promising targeted therapies and challenges. Kaohsiung J Med Sci 2021; 37:539-546. [PMID: 33942997 DOI: 10.1002/kjm2.12385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 02/26/2021] [Accepted: 03/15/2021] [Indexed: 11/09/2022] Open
Abstract
Among renal cells, podocytes (glomerular epithelial cells) are the most critical to prevent plasma proteins from excessive loss by forming their sophisticated foot processes (FP) and slit diaphragms (SD). A general finding in the glomeruli of patients with nephrotic syndrome is the foot processes "effacement" resulted from dysregulated actin cytoskeleton reorganization. Ultrastructural analysis in patients with nephrotic syndrome has demonstrated that such changes tend to be dynamic and can sometimes be reversible. In a more molecular sense, injured podocytes can no longer maintain their tight regulation and "retract" their FP, but not "efface" them. Past studies have revealed multiple exquisite mechanisms and arrays of proteins participating in the regulation of cytoskeletal rearrangement, and these mechanisms serve as potential targets to treat. A major challenge to develop specific therapies is the targeted mechanism has to be crucial and specific enough for podocyte-oriented kidney diseases, and it would be even better to manifest in most of the glomerulonephritis. Studies have shown many approaches targeting different mechanisms, but none of them has been proved to be effective in clinical medicine. Up to the present, Abatacept (Orencia) is the first (and the only) clinical targeted therapy demonstrating limited success. It inhibits the co-stimulatory response of B7-1 (CD80) induced in various types of glomerulonephritis. Future clinical studies have to be expanded to substantiate this highly specific targeted therapy because the Abatacept effect is not generally accepted even within the nephrology community. Nevertheless, there are ongoing searches for specific treatment targeting podocytes through various approaches.
Collapse
Affiliation(s)
- Mei-Chuan Kuo
- Division of Nephrology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Department of Renal Care, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Peir-In Liang
- Department of Pathology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Jer-Ming Chang
- Division of Nephrology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Department of Renal Care, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
22
|
Zhang Y, Zhang GX, Che LS, Shi SH, Li YT. miR‑212 promotes renal interstitial fibrosis by inhibiting hypoxia‑inducible factor 1‑α inhibitor. Mol Med Rep 2021; 23:189. [PMID: 33495813 PMCID: PMC7809912 DOI: 10.3892/mmr.2021.11828] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 08/18/2020] [Indexed: 12/19/2022] Open
Abstract
Renal interstitial fibrosis is one of the common causes, and a major pathological basis for the development of various types of chronic progressive renal to end-stage renal diseases. Therefore, it is important to clarify the underlying mechanisms of disease progression in order to develop effective strategies for the treatment and prevention of these pathologies. The aim of the present study was to investigate the association between microRNA (miR)-212 expression and the development of renal interstitial fibrosis, as well as analyzing the role of miR-212 in the disease. The expression of miR-212 was significantly increased in the peripheral blood of patients with renal interstitial fibrosis and in the kidney tissues of unilateral ureteral obstruction (UUO) mice. Angiotensin (Ang) II, TGF-β1 and hypoxia were found to increase the expression of miR-212 and α smooth muscle actin (α-SMA) in NRK49F cells. Ang II stimulation induced the expression of miR-212 and α-SMA in NRK49F cells, while transfection of miR-212 mimics further upregulated the expression of α-SMA. miR-212 was also revealed to target hypoxia-inducible factor 1α inhibitor (HIF1AN) and to upregulate the expression of hypoxia-inducible factor 1α, α-SMA, connective tissue growth factor, collagen α-1(I) chain and collagen α-1(III) chain, whereas HIF1AN overexpression reversed the regulatory effects of miR-212. In UUO mice, miR-212 overexpression promoted the progression of renal interstitial fibrosis, whereas inhibiting miR-212 resulted in the opposite effect. These results indicated that high expression of miR-212 was closely associated with the occurrence of renal interstitial fibrosis, and that miR-212 may promote its development by targeting HIF1AN.
Collapse
Affiliation(s)
- Yun Zhang
- Department of Renal Medicine, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian 362000, P.R. China
| | - Guo-Xin Zhang
- Department of Geriatrics, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, Fujian 362000, P.R. China
| | - Li-Shuang Che
- Department of Renal Medicine, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian 362000, P.R. China
| | - Shu-Han Shi
- Department of Renal Medicine, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian 362000, P.R. China
| | - Yue-Ting Li
- Department of Renal Medicine, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian 362000, P.R. China
| |
Collapse
|
23
|
Zoja C, Xinaris C, Macconi D. Diabetic Nephropathy: Novel Molecular Mechanisms and Therapeutic Targets. Front Pharmacol 2020; 11:586892. [PMID: 33519447 PMCID: PMC7845653 DOI: 10.3389/fphar.2020.586892] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 11/20/2020] [Indexed: 12/13/2022] Open
Abstract
Diabetic nephropathy (DN) is one of the major microvascular complications of diabetes mellitus and the leading cause of end-stage kidney disease. The standard treatments for diabetic patients are glucose and blood pressure control, lipid lowering, and renin-angiotensin system blockade; however, these therapeutic approaches can provide only partial renoprotection if started late in the course of the disease. One major limitation in developing efficient therapies for DN is the complex pathobiology of the diabetic kidney, which undergoes a set of profound structural, metabolic and functional changes. Despite these difficulties, experimental models of diabetes have revealed promising therapeutic targets by identifying pathways that modulate key functions of podocytes and glomerular endothelial cells. In this review we will describe recent advances in the field, analyze key molecular pathways that contribute to the pathogenesis of the disease, and discuss how they could be modulated to prevent or reverse DN.
Collapse
Affiliation(s)
- Carlamaria Zoja
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Bergamo, Italy
| | - Christodoulos Xinaris
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Bergamo, Italy.,University of Nicosia Medical School, Nicosia, Cyprus
| | - Daniela Macconi
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Bergamo, Italy
| |
Collapse
|
24
|
Matoba K, Takeda Y, Nagai Y, Sekiguchi K, Yokota T, Utsunomiya K, Nishimura R. The Physiology, Pathology, and Therapeutic Interventions for ROCK Isoforms in Diabetic Kidney Disease. Front Pharmacol 2020; 11:585633. [PMID: 33101039 PMCID: PMC7545791 DOI: 10.3389/fphar.2020.585633] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 09/07/2020] [Indexed: 01/14/2023] Open
Abstract
Rho-associated coiled-coil-containing protein kinase (ROCK) is a serine/threonine kinase that was originally identified as RhoA interacting protein. A diverse array of cellular functions, including migration, proliferation, and phenotypic modulation, are orchestrated by ROCK through a mechanism involving cytoskeletal rearrangement. Mammalian cells express two ROCK isoforms: ROCK1 (Rho-kinase β/ROKβ) and ROCK2 (Rho-kinase α/ROKα). While both isoforms have structural similarities and are widely expressed across multiple tissues, investigations in gene knockout animals and cell-based studies have revealed distinct functions of ROCK1 and ROCK2. With respect to the kidney, inhibiting ROCK activity has proven effective for the preventing diabetic kidney disease (DKD) in both type 1 and type 2 diabetic rodent models. However, despite significant progress in the understanding of the renal ROCK biology over the past decade, the pathogenic roles of the ROCK isoforms is only beginning to be elucidated. Recent studies have demonstrated the involvement of renal ROCK1 in mitochondrial dynamics and cellular transdifferentiation, whereas ROCK2 activation leads to inflammation, fibrosis, and cell death in the diabetic kidney. This review provides a conceptual framework for dissecting the molecular underpinnings of ROCK-driven renal injury, focusing on the differences between ROCK1 and ROCK2.
Collapse
Affiliation(s)
- Keiichiro Matoba
- Division of Diabetes, Metabolism, and Endocrinology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Yusuke Takeda
- Division of Diabetes, Metabolism, and Endocrinology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Yosuke Nagai
- Division of Diabetes, Metabolism, and Endocrinology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Kensuke Sekiguchi
- Division of Diabetes, Metabolism, and Endocrinology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Tamotsu Yokota
- Division of Diabetes, Metabolism, and Endocrinology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Kazunori Utsunomiya
- Center for Preventive Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Rimei Nishimura
- Division of Diabetes, Metabolism, and Endocrinology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| |
Collapse
|
25
|
Wang F, Li R, Zhao L, Ma S, Qin G. Resveratrol ameliorates renal damage by inhibiting oxidative stress-mediated apoptosis of podocytes in diabetic nephropathy. Eur J Pharmacol 2020; 885:173387. [PMID: 32710953 DOI: 10.1016/j.ejphar.2020.173387] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 07/14/2020] [Accepted: 07/20/2020] [Indexed: 02/07/2023]
Abstract
Diabetic nephropathy (DN) is the major cause of end-stage renal disease. Resveratrol (RSV) has been shown to exert a renoprotective effect against DN, but despite research progress, the protective mechanisms of RSV have not been fully elucidated. Here, we demonstrated that RSV relieved a series of pathological characteristics of DN and attenuated oxidative stress and apoptosis in the renal tissues of diabetic (db/db) mice. In addition, RSV inhibited oxidative stress production and apoptosis in human podocytes exposed to high glucose. Furthermore, inhibition of reactive oxygen species generation by reactive oxygen species scavengers N-acetylcysteine and 2,2,6,6-tetramethyl-1-piperidinyloxy had the same anti-apoptosis effects on podocytes as did RSV. Finally, we found that 5' adenosine monophosphate-activated protein kinase (AMPK) was activated by RSV in db/db mice and podocytes exposed to high glucose. The protective effects of RSV on podocytes were suppressed by Compound C, a pharmacological inhibitor of AMPK. Together, our results indicate that RSV effectively attenuated renal damage by suppressing oxidative stress-mediated apoptosis of podocytes, which was dependent on AMPK activation. This study revealed a possible mechanism to protect podocytes against apoptosis in DN.
Collapse
Affiliation(s)
- Fang Wang
- Department of Endocrinology, The First Affiliated Hospital of Zhengzhou University, China
| | - Ran Li
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, China
| | - Linlin Zhao
- Department of Endocrinology, The First Affiliated Hospital of Zhengzhou University, China
| | - Shuang Ma
- The Nephrology Center of the First Affiliated Hospital of Zhengzhou University, China
| | - Guijun Qin
- Department of Endocrinology, The First Affiliated Hospital of Zhengzhou University, China.
| |
Collapse
|
26
|
Takeda Y, Matoba K, Sekiguchi K, Nagai Y, Yokota T, Utsunomiya K, Nishimura R. Endothelial Dysfunction in Diabetes. Biomedicines 2020; 8:E182. [PMID: 32610588 PMCID: PMC7400447 DOI: 10.3390/biomedicines8070182] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/25/2020] [Accepted: 06/26/2020] [Indexed: 12/14/2022] Open
Abstract
Diabetes is a worldwide health issue closely associated with cardiovascular events. Given the pandemic of obesity, the identification of the basic underpinnings of vascular disease is strongly needed. Emerging evidence has suggested that endothelial dysfunction is a critical step in the progression of atherosclerosis. However, how diabetes affects the endothelium is poorly understood. Experimental and clinical studies have illuminated the tight link between insulin resistance and endothelial dysfunction. In addition, macrophage polarization from M2 towards M1 contributes to the process of endothelial damage. The possibility that novel classes of anti-hyperglycemic agents exert beneficial effects on the endothelial function and macrophage polarization has been raised. In this review, we discuss the current status of knowledge regarding the pathological significance of insulin signaling in endothelium. Finally, we summarize recent therapeutic strategies against endothelial dysfunction with an emphasis on macrophage polarity.
Collapse
Affiliation(s)
- Yusuke Takeda
- Division of Diabetes, Metabolism, and Endocrinology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo 105-8461, Japan; (Y.T.); (K.S.); (Y.N.); (T.Y.); (R.N.)
| | - Keiichiro Matoba
- Division of Diabetes, Metabolism, and Endocrinology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo 105-8461, Japan; (Y.T.); (K.S.); (Y.N.); (T.Y.); (R.N.)
| | - Kensuke Sekiguchi
- Division of Diabetes, Metabolism, and Endocrinology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo 105-8461, Japan; (Y.T.); (K.S.); (Y.N.); (T.Y.); (R.N.)
| | - Yosuke Nagai
- Division of Diabetes, Metabolism, and Endocrinology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo 105-8461, Japan; (Y.T.); (K.S.); (Y.N.); (T.Y.); (R.N.)
| | - Tamotsu Yokota
- Division of Diabetes, Metabolism, and Endocrinology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo 105-8461, Japan; (Y.T.); (K.S.); (Y.N.); (T.Y.); (R.N.)
| | - Kazunori Utsunomiya
- Center for Preventive Medicine, The Jikei University School of Medicine, Tokyo 105-8461, Japan;
| | - Rimei Nishimura
- Division of Diabetes, Metabolism, and Endocrinology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo 105-8461, Japan; (Y.T.); (K.S.); (Y.N.); (T.Y.); (R.N.)
| |
Collapse
|
27
|
Matoba K, Takeda Y, Nagai Y, Kanazawa Y, Kawanami D, Yokota T, Utsunomiya K, Nishimura R. ROCK Inhibition May Stop Diabetic Kidney Disease. JMA J 2020; 3:154-163. [PMID: 33150249 PMCID: PMC7590381 DOI: 10.31662/jmaj.2020-0014] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 03/31/2020] [Indexed: 12/20/2022] Open
Abstract
Diabetic kidney disease (DKD) is the leading cause of end-stage renal disease and is strongly associated with cardiovascular mortality. Given the pandemic of obesity and diabetes, the elucidation of the molecular underpinnings of DKD and establishment of effective therapy are urgently required. Studies over the past decade have identified the activated renin-angiotensin system (RAS) and hemodynamic changes as important therapeutic targets. However, given the residual risk observed in patients treated with RAS inhibitors and/or sodium glucose co-transporter 2 inhibitors, the involvement of other molecular machinery is likely, and the elucidation of such pathways represents fertile ground for the development of novel strategies. Rho-kinase (ROCK) is a serine/threonine kinase that is under the control of small GTPase protein Rho. Many fundamental cellular processes, including migration, proliferation, and survival are orchestrated by ROCK through a mechanism involving cytoskeletal reorganization. From a pathological standpoint, several analyses provide compelling evidence supporting the hypothesis that ROCK is an important regulator of DKD that is highly pertinent to cardiovascular disease. In cell-based studies, ROCK is activated in response to a diverse array of external stimuli associated with diabetes, and renal ROCK activity is elevated in the context of type 1 and 2 diabetes. Experimental studies have demonstrated the efficacy of pharmacological or genetic inhibition of ROCK in the prevention of diabetes-related histological and functional abnormalities in the kidney. Through a bird’s eye view of ROCK in renal biology, the present review provides a conceptual framework that may be widely applicable to the pathological processes of multiple organs and illustrate novel therapeutic promise in diabetology.
Collapse
Affiliation(s)
- Keiichiro Matoba
- Division of Diabetes, Metabolism, and Endocrinology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Yusuke Takeda
- Division of Diabetes, Metabolism, and Endocrinology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Yosuke Nagai
- Division of Diabetes, Metabolism, and Endocrinology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Yasushi Kanazawa
- Division of Diabetes, Metabolism, and Endocrinology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Daiji Kawanami
- Department of Endocrinology and Diabetes Mellitus, Fukuoka University School of Medicine, Fukuoka, Japan
| | - Tamotsu Yokota
- Division of Diabetes, Metabolism, and Endocrinology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Kazunori Utsunomiya
- Center for Preventive Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Rimei Nishimura
- Division of Diabetes, Metabolism, and Endocrinology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| |
Collapse
|
28
|
Wei H, Huang L, Wei F, Li G, Huang B, Li J, Cao C. Up-regulation of miR-139-5p protects diabetic mice from liver tissue damage and oxidative stress through inhibiting Notch signaling pathway. Acta Biochim Biophys Sin (Shanghai) 2020; 52:390-400. [PMID: 32293663 DOI: 10.1093/abbs/gmaa008] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 06/25/2019] [Accepted: 06/26/2019] [Indexed: 12/20/2022] Open
Abstract
The occurrence and development of diabetes seriously threaten the health of patients. Therefore, the mechanism exploration of diabetes is of great significance for more effective control of this disease. In this study, we aimed to investigate the regulatory mechanism of miR-139-5p and Notch signaling pathway on liver damage and oxidative stress in diabetic mice. The mouse model of diabetes was established, and the mice were divided into normal group, model group, negative control (NC) group, miR-139-5p mimic group, miR-139-5p inhibitor group, DAPT group, and miR-139-5p inhibitor + DAPT group. The mRNA expressions of miR-139-5p, Notch1, Jagged1, and NICD1, and the protein expressions of Notch1, Jagged1, and NICD1 were detected. In addition, HepG2 cells were cultured for high glucose induction, and cell cycle distribution and apoptosis were detected by flow cytometry. The results showed that the body weights of mice in the model, NC, miR-139-5p mimic, miR-139-5p inhibitor, DAPT, and miR-139-5p inhibitor + DAPT groups were all lower than that in the normal group. Co-localization of miR-139-5p and Notch1 was observed in the fluorescence in situ hybridization assay, and miR-139-5p was found to negatively regulate Notch1. Furthermore, reduced blood glucose level and inhibited liver oxidative stress were observed in mice with miR-139-5p overexpression or DAPT treatment. DAPT treatment reversed the increase of blood glucose level and oxidative stress injury caused by miR-139-5p silencing. In conclusion, up-regulation of miR-139-5p expression can protect liver tissue from oxidative stress injury in diabetic mice, and its mechanism may be related to the inhibition of Notch signaling pathway.
Collapse
Affiliation(s)
- Hua Wei
- Department of General Practice Medicine Affiliated Hospital of Youjiang Medical College for Nationalities, Baise 533000, China
| | - Liwei Huang
- Department of General Practice Medicine Affiliated Hospital of Youjiang Medical College for Nationalities, Baise 533000, China
| | - Fenghua Wei
- Department of General Practice Medicine Affiliated Hospital of Youjiang Medical College for Nationalities, Baise 533000, China
| | - Guangzhi Li
- Department of General Practice Medicine Affiliated Hospital of Youjiang Medical College for Nationalities, Baise 533000, China
| | - Bin Huang
- Department of General Practice Medicine Affiliated Hospital of Youjiang Medical College for Nationalities, Baise 533000, China
| | - Jun Li
- Department of General Practice Medicine Affiliated Hospital of Youjiang Medical College for Nationalities, Baise 533000, China
| | - Cong Cao
- Department of General Practice Medicine Affiliated Hospital of Youjiang Medical College for Nationalities, Baise 533000, China
| |
Collapse
|
29
|
Hung PS, Huang MH, Kuo YY, Yang JCH. The Inhibition of Wnt Restrain KRAS G12V-Driven Metastasis in Non-Small-Cell Lung Cancer. Cancers (Basel) 2020; 12:cancers12040837. [PMID: 32244355 PMCID: PMC7226522 DOI: 10.3390/cancers12040837] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 03/25/2020] [Accepted: 03/25/2020] [Indexed: 12/22/2022] Open
Abstract
The KRAS mutations have been an obstacle to identify therapeutic targets in cancer treatment. In this work, we clarified the distinct metastasis pattern of non-small-cell lung carcinoma (NSCLC) induced by KRASG12V/KRASG12D mutations and inhibited the KRASG12V mediated metastasis by Wnt inhibitor. First, we found that KRASG12V induced more aggressive phenotype in vitro and in vivo experiments. The Gene Set Enrichment Analysis (GSEA) results of H838 KRASG12V cells showed a significant negative correlation with RhoA-related signaling. Following this clue, we observed KRASG12D induced higher activation of RhoA and suppressed activation of Wnt/β-catenin in H838KRASG12D cells. The restored activation of Wnt/β-catenin in H838KRASG12D cells could be detected when expression with a dominant-negative mutant of RhoA or treatment with RhoA inhibitor. Furthermore, the Wnt inhibitor abolished the KRASG12V-induced migration. We elucidated the importance of the axis of RhoA/Wnt in regulatory NSCLC metastasis driven by KRAS mutations. Our data indicate that KRASG12V driven NSCLC metastasis is Wnt-dependent and the mechanisms of NSCLC metastasis induced by KRASG12V/KRASG12D is distinct.
Collapse
Affiliation(s)
- Pei-Shan Hung
- Graduate Institute of Oncology, College of Medicine, National Taiwan University, Taipei 100, Taiwan; (P.-S.H.); (M.-H.H.)
| | - Ming-Hung Huang
- Graduate Institute of Oncology, College of Medicine, National Taiwan University, Taipei 100, Taiwan; (P.-S.H.); (M.-H.H.)
| | - Yuan-Yeh Kuo
- Tai-Chen Cell Therapy Center, National Taiwan University, Taipei 100, Taiwan;
| | - James Chih-Hsin Yang
- Graduate Institute of Oncology, College of Medicine, National Taiwan University, Taipei 100, Taiwan; (P.-S.H.); (M.-H.H.)
- Department of Oncology, National Taiwan University Hospital, Taipei 100, Taiwan
- National Taiwan University Cancer Center, College of Medicine, National Taiwan University, Taipei 100, Taiwan
- Correspondence:
| |
Collapse
|
30
|
Zhao L, Zou Y, Liu F. Transforming Growth Factor-Beta1 in Diabetic Kidney Disease. Front Cell Dev Biol 2020; 8:187. [PMID: 32266267 PMCID: PMC7105573 DOI: 10.3389/fcell.2020.00187] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Accepted: 03/05/2020] [Indexed: 02/05/2023] Open
Abstract
Diabetic kidney disease (DKD) is the leading cause of end-stage renal disease (ESRD) worldwide. Renin-angiotensin-aldosterone system (RAAS) inhibitors and sodium-glucose co-transporter 2 (SGLT2) inhibitors have shown efficacy in reducing the risk of ESRD. However, patients vary in their response to RAAS blockades, and the pharmacodynamic responses to SGLT2 inhibitors decline with increasing severity of renal impairment. Thus, effective therapy for DKD is yet unmet. Transforming growth factor-β1 (TGF-β1), expressed by nearly all kidney cell types and infiltrating leukocytes and macrophages, is a pleiotropic cytokine involved in angiogenesis, immunomodulation, and extracellular matrix (ECM) formation. An overactive TGF-β1 signaling pathway has been implicated as a critical profibrotic factor in the progression of chronic kidney disease in human DKD. In animal studies, TGF-β1 neutralizing antibodies and TGF-β1 signaling inhibitors were effective in ameliorating renal fibrosis in DKD. Conversely, a clinical study of TGF-β1 neutralizing antibodies failed to demonstrate renal efficacy in DKD. However, overexpression of latent TGF-β1 led to anti-inflammatory and anti-fibrosis effects in non-DKD. This evidence implied that complete blocking of TGF-β1 signaling abolished its multiple physiological functions, which are highly associated with undesirable adverse events. Ideal strategies for DKD therapy would be either specific and selective inhibition of the profibrotic-related TGF-β1 pathway or blocking conversion of latent TGF-β1 to active TGF-β1.
Collapse
Affiliation(s)
- Lijun Zhao
- Division of Nephrology, West China Hospital, Sichuan University, Chengdu, China
| | - Yutong Zou
- Division of Nephrology, West China Hospital, Sichuan University, Chengdu, China
| | - Fang Liu
- Division of Nephrology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
31
|
Targeting Redox Imbalance as an Approach for Diabetic Kidney Disease. Biomedicines 2020; 8:biomedicines8020040. [PMID: 32098346 PMCID: PMC7167917 DOI: 10.3390/biomedicines8020040] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 02/20/2020] [Accepted: 02/20/2020] [Indexed: 12/14/2022] Open
Abstract
Diabetic kidney disease (DKD) is a worldwide public health problem. It is the leading cause of end-stage renal disease and is associated with increased mortality from cardiovascular complications. The tight interactions between redox imbalance and the development of DKD are becoming increasingly evident. Numerous cascades, including the polyol and hexosamine pathways have been implicated in the oxidative stress of diabetes patients. However, the precise molecular mechanism by which oxidative stress affects the progression of DKD remains to be elucidated. Given the limited therapeutic options for DKD, it is essential to understand how oxidants and antioxidants are controlled in diabetes and how oxidative stress impacts the progression of renal damage. This review aims to provide an overview of the current status of knowledge regarding the pathological roles of oxidative stress in DKD. Finally, we summarize recent therapeutic approaches to preventing DKD with a focus on the anti-oxidative effects of newly developed anti-hyperglycemic agents.
Collapse
|
32
|
Wei B, Liu YS, Guan HX. MicroRNA-145-5p attenuates high glucose-induced apoptosis by targeting the Notch signaling pathway in podocytes. Exp Ther Med 2020; 19:1915-1924. [PMID: 32104249 DOI: 10.3892/etm.2020.8427] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 07/12/2019] [Indexed: 02/07/2023] Open
Abstract
MicroRNAs (miRNAs/miRs) are considered to serve essential roles in podocyte apoptosis, and to be critical in the development of diabetic nephropathy (DN). Activation of the Notch signaling pathway has been demonstrated to serve an important role in DN development; however, its regulatory mechanisms are not fully understood. The present study used a high glucose (HG)-induced in vitro apoptosis model using mouse podocytes. Expression levels of miR-145-5p and its target, Notch1, and other key factors involved in the apoptosis signaling pathway were detected and measured by reverse transcription-quantitative PCR and western blotting. A luciferase reporter assay was performed to elucidate the miRNA-target interactions. The functions of miR-145-5p in apoptosis were detected using flow cytometry and TUNEL staining. The present study demonstrated that in HG conditions, miR-145-5p overexpression inhibited Notch1, Notch intracellular domain, Hes1 and Hey1 expression at the mRNA and protein levels. Notch1 was identified as a direct target of miR-145-5p. Furthermore, cleaved caspase-3, Bcl-2 and Bax levels were reduced significantly by miR-145-5p overexpression. These results indicate that miR-145-5p overexpression inhibited the Notch signaling pathway and podocyte lesions induced by HG. In conclusion, the results of the present study suggested that miR-145-5p may be a regulator of DN. Additionally, miR-145-5p inhibited HG-induced apoptosis by directly targeting Notch1 and dysregulating apoptotic factors, including cleaved caspase-3, Bcl-2 and Bax. The results of the present study provided evidence that miR-145-5p may offer a novel approach for the treatment of DN.
Collapse
Affiliation(s)
- Bing Wei
- Department of Endocrinology, Daqing Oil Field General Hospital, Daqing, Heilongjiang 163411, P.R. China
| | - Yi-Song Liu
- Dental Department, Daqing Oil Field General Hospital, Daqing, Heilongjiang 163411, P.R. China
| | - Hai-Xia Guan
- Department of Endocrinology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| |
Collapse
|
33
|
Neves KB, Harvey AP, Moreton F, Montezano AC, Rios FJ, Alves-Lopes R, Nguyen Dinh Cat A, Rocchicciolli P, Delles C, Joutel A, Muir K, Touyz RM. ER stress and Rho kinase activation underlie the vasculopathy of CADASIL. JCI Insight 2019; 4:131344. [PMID: 31647781 PMCID: PMC6962020 DOI: 10.1172/jci.insight.131344] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 10/18/2019] [Indexed: 12/21/2022] Open
Abstract
Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) leads to premature stroke and vascular dementia. Mechanism-specific therapies for this aggressive cerebral small vessel disease are lacking. CADASIL is caused by NOTCH3 mutations that influence vascular smooth muscle cell (VSMC) function through unknown processes. We investigated molecular mechanisms underlying the vasculopathy in CADASIL focusing on endoplasmic reticulum (ER) stress and RhoA/Rho kinase (ROCK). Peripheral small arteries and VSMCs were isolated from gluteal biopsies of CADASIL patients and mesentery of TgNotch3R169C mice (CADASIL model). CADASIL vessels exhibited impaired vasorelaxation, blunted vasoconstriction, and hypertrophic remodeling. Expression of NOTCH3 and ER stress target genes was amplified and ER stress response, Rho kinase activity, superoxide production, and cytoskeleton-associated protein phosphorylation were increased in CADASIL, processes associated with Nox5 upregulation. Aberrant vascular responses and signaling in CADASIL were ameliorated by inhibitors of Notch3 (γ-secretase inhibitor), Nox5 (mellitin), ER stress (4-phenylbutyric acid), and ROCK (fasudil). Observations in human CADASIL were recapitulated in TgNotch3R169C mice. These findings indicate that vascular dysfunction in CADASIL involves ER stress/ROCK interplay driven by Notch3-induced Nox5 activation and that NOTCH3 mutation-associated vascular pathology, typical in cerebral vessels, also manifests peripherally. We define Notch3-Nox5/ER stress/ROCK signaling as a putative mechanism-specific target and suggest that peripheral artery responses may be an accessible biomarker in CADASIL.
Collapse
Affiliation(s)
- Karla B. Neves
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, United Kingdom
| | - Adam P. Harvey
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, United Kingdom
| | - Fiona Moreton
- Institute of Neuroscience and Psychology, University of Glasgow and Queen Elizabeth University Hospital, Glasgow, United Kingdom
| | - Augusto C. Montezano
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, United Kingdom
| | - Francisco J. Rios
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, United Kingdom
| | - Rhéure Alves-Lopes
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, United Kingdom
| | | | | | - Christian Delles
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, United Kingdom
| | - Anne Joutel
- Institute of Psychiatry and Neurosciences of Paris Inserm, Paris Descartes University, Paris, France
| | - Keith Muir
- Institute of Neuroscience and Psychology, University of Glasgow and Queen Elizabeth University Hospital, Glasgow, United Kingdom
| | - Rhian M. Touyz
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, United Kingdom
- Kidney Research Centre, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
34
|
Nagai Y, Matoba K, Kawanami D, Takeda Y, Akamine T, Ishizawa S, Kanazawa Y, Yokota T, Utsunomiya K, Nishimura R. ROCK2 regulates TGF-β-induced expression of CTGF and profibrotic genes via NF-κB and cytoskeleton dynamics in mesangial cells. Am J Physiol Renal Physiol 2019; 317:F839-F851. [PMID: 31364374 DOI: 10.1152/ajprenal.00596.2018] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The small GTPase Rho and its effector Rho kinase (ROCK) are involved in the pathogenesis of diabetic kidney disease. Rho kinase has two isoforms: ROCK1 and ROCK2. However, it remains unclear which is mainly involved in the progression of diabetic glomerulosclerosis and the regulation of profibrotic mediators. Glomeruli isolated from type 2 diabetic db/db mice demonstrated increased gene expression of transforming growth factor (TGF)-β and its downstream profibrotic mediators. Chemical inhibition of ROCK suppressed the expression of profibrotic mediators in both isolated glomeruli and cultured mesangial cells. An investigation of mechanisms underlying this observation revealed activated ROCK functions through the phosphorylation of JNK and Erk and the nuclear translocation of NF-κB via actin dynamics. Knockdown by siRNA against ROCK1 and ROCK2 showed that ROCK2 but not ROCK1 controls this fibrotic machinery. Further in vivo experiments showed that ROCK2 activity in the renal cortex of db/db mice was elevated compared with control db/m mice. Importantly, oral administration of ROCK2 inhibitor attenuated renal ROCK2 activity, albuminuria, and glomerular fibrosis in db/db mice. These observations indicate that ROCK2 is a key player in the development of diabetic renal injury. Glomerular ROCK2 may be a potential therapeutic target for the treatment of diabetic kidney disease.
Collapse
Affiliation(s)
- Yosuke Nagai
- Division of Diabetes, Metabolism, and Endocrinology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Keiichiro Matoba
- Division of Diabetes, Metabolism, and Endocrinology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Daiji Kawanami
- Department of Endocrinology and Diabetes Mellitus, Fukuoka University School of Medicine, Fukuoka, Japan
| | - Yusuke Takeda
- Division of Diabetes, Metabolism, and Endocrinology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Tomoyo Akamine
- Division of Diabetes, Metabolism, and Endocrinology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Sho Ishizawa
- Division of Diabetes, Metabolism, and Endocrinology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Yasushi Kanazawa
- Division of Diabetes, Metabolism, and Endocrinology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Tamotsu Yokota
- Division of Diabetes, Metabolism, and Endocrinology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Kazunori Utsunomiya
- Center for Preventive Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Rimei Nishimura
- Division of Diabetes, Metabolism, and Endocrinology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| |
Collapse
|