1
|
Zhang X, Guo Z, Li Y, Xu Y. Splicing to orchestrate cell fate. MOLECULAR THERAPY. NUCLEIC ACIDS 2025; 36:102416. [PMID: 39811494 PMCID: PMC11729663 DOI: 10.1016/j.omtn.2024.102416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Alternative splicing (AS) plays a critical role in gene expression by generating protein diversity from single genes. This review provides an overview of the role of AS in regulating cell fate, focusing on its involvement in processes such as cell proliferation, differentiation, apoptosis, and tumorigenesis. We explore how AS influences the cell cycle, particularly its impact on key stages like G1, S, and G2/M. The review also examines AS in cell differentiation, highlighting its effects on mesenchymal stem cells and neurogenesis, and how it regulates differentiation into adipocytes, osteoblasts, and chondrocytes. Additionally, we discuss the role of AS in programmed cell death, including apoptosis and pyroptosis, and its contribution to cancer progression. Importantly, targeting aberrant splicing mechanisms presents promising therapeutic opportunities for restoring normal cellular function. By synthesizing recent findings, this review provides insights into how AS governs cellular fate and offers directions for future research into splicing regulatory networks.
Collapse
Affiliation(s)
- Xurui Zhang
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an 710061, P.R. China
| | - Zhonghao Guo
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an 710061, P.R. China
| | - Yachen Li
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an 710061, P.R. China
| | - Yungang Xu
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an 710061, P.R. China
| |
Collapse
|
2
|
Fernandes M, Mario de Andrade E, Reis da Silva SG, Romagnoli VDS, Ortega JM, Antônio de Oliveira Mendes T. Geneapp: A web application for visualizing alternative splicing for biomedicine. Comput Biol Med 2024; 178:108789. [PMID: 38936077 DOI: 10.1016/j.compbiomed.2024.108789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 06/17/2024] [Accepted: 06/18/2024] [Indexed: 06/29/2024]
Abstract
Alternative Splicing (AS) is an essential mechanism for eukaryotes. However, the consequences of deleting a single exon can be dramatic for the organism and can lead to cancer in humans. Additionally, alternative 5' and 3' splice sites, which define the boundaries of exons, also play key roles to human disorders. Therefore, Investigating AS events is crucial for understanding the molecular basis of human diseases and developing therapeutic strategies. Workflow for AS event analysis can be sampling followed by data analysis with bioinformatics to identify the different AS events in the control and case samples, data visualization for curation, and selection of relevant targets for experimental validation. The raw output of the analysis software does not favor the inspection of events by bioinformaticians requiring custom scripts for data visualization. In this work, we propose the Geneapp application with three modules: GeneappScript, GeneappServer, and GeneappExplorer. GeneappScript is a wrapper that assists in identifying AS in samples compared in two different approaches, while GeneappServer integrates data from AS analysis already performed by the user. In GeneappExplorer, the user visualizes the previous dataset by exploring AS events in genes with functional annotation. This targeted screens that Geneapp allows to perform helps in the identification of targets for experimental validation to confirm the hypotheses under study. The Geneapp is freely available for non-commercial use at https://geneapp.net to advance research on AS for bioinformatics.
Collapse
Affiliation(s)
- Miquéias Fernandes
- Postgraduation Program in Bioinformatics, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil; Department of Biochemistry and Molecular Biology, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil; Institute of Applied Biotechnology to Agriculture (BIOAGRO), Universidade Federal de Viçosa, Minas Gerais, Brazil.
| | - Edson Mario de Andrade
- Postgraduation Program in Bioinformatics, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil; Department of Biochemistry and Molecular Biology, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil; Institute of Applied Biotechnology to Agriculture (BIOAGRO), Universidade Federal de Viçosa, Minas Gerais, Brazil
| | - Saymon Gazolla Reis da Silva
- Department of Biochemistry and Molecular Biology, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil; Institute of Applied Biotechnology to Agriculture (BIOAGRO), Universidade Federal de Viçosa, Minas Gerais, Brazil
| | - Vinícius Dos Santos Romagnoli
- Department of Biochemistry and Molecular Biology, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil; Institute of Applied Biotechnology to Agriculture (BIOAGRO), Universidade Federal de Viçosa, Minas Gerais, Brazil
| | - José Miguel Ortega
- Postgraduation Program in Bioinformatics, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Tiago Antônio de Oliveira Mendes
- Postgraduation Program in Bioinformatics, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil; Department of Biochemistry and Molecular Biology, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil; Institute of Applied Biotechnology to Agriculture (BIOAGRO), Universidade Federal de Viçosa, Minas Gerais, Brazil.
| |
Collapse
|
3
|
Olotu O, Koskenniemi AR, Ma L, Paramonov V, Laasanen S, Louramo E, Bourgery M, Lehtiniemi T, Laasanen S, Rivero-Müller A, Löyttyniemi E, Sahlgren C, Westermarck J, Ventelä S, Visakorpi T, Poutanen M, Vainio P, Mäkelä JA, Kotaja N. Germline-specific RNA helicase DDX4 forms cytoplasmic granules in cancer cells and promotes tumor growth. Cell Rep 2024; 43:114430. [PMID: 38963760 DOI: 10.1016/j.celrep.2024.114430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 05/15/2024] [Accepted: 06/18/2024] [Indexed: 07/06/2024] Open
Abstract
Cancer cells undergo major epigenetic alterations and transcriptomic changes, including ectopic expression of tissue- and cell-type-specific genes. Here, we show that the germline-specific RNA helicase DDX4 forms germ-granule-like cytoplasmic ribonucleoprotein granules in various human tumors, but not in cultured cancer cells. These cancerous DDX4 complexes contain RNA-binding proteins and splicing regulators, including many known germ granule components. The deletion of DDX4 in cancer cells induces transcriptomic changes and affects the alternative splicing landscape of a number of genes involved in cancer growth and invasiveness, leading to compromised capability of DDX4-null cancer cells to form xenograft tumors in immunocompromised mice. Importantly, the occurrence of DDX4 granules is associated with poor survival in patients with head and neck squamous cell carcinoma and higher histological grade of prostate cancer. Taken together, these results show that the germ-granule-resembling cancerous DDX4 granules control gene expression and promote malignant and invasive properties of cancer cells.
Collapse
Affiliation(s)
- Opeyemi Olotu
- Institute of Biomedicine, Integrative Physiology and Pharmacology Unit, University of Turku, 20520 Turku, Finland
| | - Anna-Riina Koskenniemi
- Department of Pathology, Laboratory Division, Turku University Hospital and University of Turku, 20520 Turku, Finland
| | - Lin Ma
- Institute of Biomedicine, Integrative Physiology and Pharmacology Unit, University of Turku, 20520 Turku, Finland
| | - Valeriy Paramonov
- Institute of Biomedicine, Integrative Physiology and Pharmacology Unit, University of Turku, 20520 Turku, Finland; Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, 20500 Turku, Finland; Turku Bioscience, University of Turku and Åbo Akademi University, 20520 Turku, Finland
| | - Sini Laasanen
- Institute of Biomedicine, Integrative Physiology and Pharmacology Unit, University of Turku, 20520 Turku, Finland
| | - Elina Louramo
- Institute of Biomedicine, Integrative Physiology and Pharmacology Unit, University of Turku, 20520 Turku, Finland
| | - Matthieu Bourgery
- Institute of Biomedicine, Integrative Physiology and Pharmacology Unit, University of Turku, 20520 Turku, Finland; Centre for Population Health Research, Turku University Hospital and University of Turku, 20520 Turku, Finland
| | - Tiina Lehtiniemi
- Institute of Biomedicine, Integrative Physiology and Pharmacology Unit, University of Turku, 20520 Turku, Finland
| | - Samuli Laasanen
- Institute of Biomedicine, Integrative Physiology and Pharmacology Unit, University of Turku, 20520 Turku, Finland
| | - Adolfo Rivero-Müller
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 20-093 Lublin, Poland
| | - Eliisa Löyttyniemi
- Department of Biostatistics, University of Turku and Turku University Hospital, 20520 Turku, Finland
| | - Cecilia Sahlgren
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, 20500 Turku, Finland; Turku Bioscience, University of Turku and Åbo Akademi University, 20520 Turku, Finland
| | - Jukka Westermarck
- Institute of Biomedicine, Integrative Physiology and Pharmacology Unit, University of Turku, 20520 Turku, Finland; Turku Bioscience, University of Turku and Åbo Akademi University, 20520 Turku, Finland
| | - Sami Ventelä
- Turku Bioscience, University of Turku and Åbo Akademi University, 20520 Turku, Finland; Department for Otorhinolaryngology, Head, and Neck Surgery, University of Turku and Turku University Hospital, 20520 Turku, Finland
| | - Tapio Visakorpi
- Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Center, Tampere University Hospital, 33520 Tampere, Finland; Fimlab Laboratories, Tampere University Hospital, 33520 Tampere, Finland
| | - Matti Poutanen
- Institute of Biomedicine, Integrative Physiology and Pharmacology Unit, University of Turku, 20520 Turku, Finland; Turku Center for Disease Modeling, University of Turku, 20520 Turku, Finland; FICAN West Cancer Center, University of Turku, Turku University Hospital, 20500 Turku, Finland
| | - Paula Vainio
- Department of Pathology, Laboratory Division, Turku University Hospital and University of Turku, 20520 Turku, Finland
| | - Juho-Antti Mäkelä
- Institute of Biomedicine, Integrative Physiology and Pharmacology Unit, University of Turku, 20520 Turku, Finland
| | - Noora Kotaja
- Institute of Biomedicine, Integrative Physiology and Pharmacology Unit, University of Turku, 20520 Turku, Finland.
| |
Collapse
|
4
|
Zhang Y, Lu Y, Wang N, Yang Y, Hao F, Fei X, Chen Y, Wang J. Alternative splicing-related long noncoding RNA ANRIL facilitates hepatocellular carcinoma by targeting the miR-199a-5p/SRSF1 axis and impacting Anillin. Mol Carcinog 2024; 63:1064-1078. [PMID: 38411272 DOI: 10.1002/mc.23709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 01/27/2024] [Accepted: 02/12/2024] [Indexed: 02/28/2024]
Abstract
Hepatocellular carcinoma (HCC) is characterized by aberrant alternative splicing (AS), which plays an important part in the pathological process of this disease. However, available reports about genes and mechanisms involved in AS process are limited. Our previous research has identified ANRIL as a long noncoding RNA related to the AS process of HCC. Here, we investigated the exact effect and the mechanism of ANRIL on HCC progress. The ANRIL expression profile was validated using the real-time quantitative polymerase chain reaction assay. The western blot analysis and IHC assay were conducted on candidate targets, including SRSF1 and Anillin. The clinicopathological features of 97 patients were collected and analyzed. Loss-of and gain-of-function experiments were conducted. The dual-luciferase reporter assay was applied to verify the interaction between ANRIL, miR-199a-5p, and SRSF1. Anomalous upregulation of ANRIL in HCC was observed, correlating with worse clinicopathological features of HCC. HCC cell proliferation, mobility, tumorigenesis, and metastasis were impaired by depleting ANRIL. We found that ANRIL acts as a sponger of miRNA-199a-5p, resulting in an elevated level of its target protein SRSF1. The phenotypes induced by ANRIL/miR-199a-5p/SRSF1 alteration are associated with Anillin, a validated HCC promoter. ANRIL is an AS-related lncRNA promoting HCC progress by modulating the miR-199a-5p/SRSF1 axis. The downstream effector of this axis in the development of HCC is Anillin.
Collapse
Affiliation(s)
- Yifan Zhang
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Yiquan Lu
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Nan Wang
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Yuchen Yang
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Fengjie Hao
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Xiaochun Fei
- Department of Pathology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Yongjun Chen
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Junqing Wang
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| |
Collapse
|
5
|
Kansara S, Sawant P, Kaur T, Garg M, Pandey AK. LncRNA-mediated orchestrations of alternative splicing in the landscape of breast cancer. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2024; 1867:195017. [PMID: 38341138 DOI: 10.1016/j.bbagrm.2024.195017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/19/2024] [Accepted: 02/03/2024] [Indexed: 02/12/2024]
Abstract
Alternative splicing (AS) is a fundamental post-transcriptional process in eukaryotes, enabling a single gene to generate diverse mRNA transcripts, thereby enhancing protein variability. This process involves the excision of introns and the joining of exons in pre-mRNA(s) to form mature mRNA. The resulting mature mRNAs exhibit various combinations of exons, contributing to functional diversity. Dysregulation of AS can substantially modulate protein functions, impacting the onset and progression of numerous diseases, including cancer. Non-coding RNAs (ncRNAs) are distinct from protein-coding RNAs and consist of short and long types. Long non-coding RNAs (lncRNAs) play an important role in regulating several cellular processes, particularly alternative splicing, according to new research. This review provides insight into the latest discoveries concerning how lncRNAs influence alternative splicing within the realm of breast cancer. Additionally, it explores potential therapeutic strategies focused on targeting lncRNAs.
Collapse
Affiliation(s)
- Samarth Kansara
- Amity Institute of Biotechnology, Amity University Haryana, Panchgaon, Manesar, Haryana 122413, India
| | - Prajwali Sawant
- Amity Institute of Biotechnology, Amity University Haryana, Panchgaon, Manesar, Haryana 122413, India
| | - Taranjeet Kaur
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, 382355, Gujarat, India
| | - Manoj Garg
- Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University, Uttar Pradesh, Sector-125, Noida 201313, India
| | - Amit Kumar Pandey
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, 382355, Gujarat, India.
| |
Collapse
|
6
|
Wang Y, Xu X, Zhang A, Yang S, Li H. Role of alternative splicing in fish immunity. FISH & SHELLFISH IMMUNOLOGY 2024; 149:109601. [PMID: 38701992 DOI: 10.1016/j.fsi.2024.109601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/22/2024] [Accepted: 04/30/2024] [Indexed: 05/06/2024]
Abstract
Alternative splicing serves as a pivotal source of complexity in the transcriptome and proteome, selectively connecting various coding elements to generate a diverse array of mRNAs. This process encodes multiple proteins with either similar or distinct functions, contributing significantly to the intricacies of cellular processes. The role of alternative splicing in mammalian immunity has been well studied. Remarkably, the immune system of fish shares substantial similarities with that of humans, and alternative splicing also emerges as a key player in the immune processes of fish. In this review, we offer an overview of alternative splicing and its associated functions in the immune processes of fish, and summarize the research progress on alternative splicing in the fish immunity. Furthermore, we review the impact of alternative splicing on the fish immune system's response to external stimuli. Finally, we present our perspectives on future directions in this field. Our aim is to provide valuable insights for the future investigations into the role of alternative splicing in immunity.
Collapse
Affiliation(s)
- Yunchao Wang
- College of Marine Life Sciences, and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Xinyi Xu
- Hunan Fisheries Science Institute, Changsha, 410153, China
| | - Ailong Zhang
- College of Marine Life Sciences, and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Shuaiqi Yang
- College of Marine Life Sciences, and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China.
| | - Hongyan Li
- College of Marine Life Sciences, and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, 266003, China.
| |
Collapse
|
7
|
Ding W, Xiao Q, Yue Y, Chen S, She X, Pan B, Zhou L, Yin Y, Li Y, Wang S, Xu M. Deciphering alternative splicing events and their therapeutic implications in colorectal Cancer. Cell Signal 2024; 118:111134. [PMID: 38484942 DOI: 10.1016/j.cellsig.2024.111134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 02/28/2024] [Accepted: 03/06/2024] [Indexed: 03/17/2024]
Abstract
Colorectal cancer (CRC) is one of the most common malignant tumors with complex molecular regulatory mechanisms. Alternative splicing (AS), a fundamental regulatory process of gene expression, plays an important role in the occurrence and development of CRC. This study analyzed AS Percent Spliced In (PSI) values from 49 pairs of CRC and normal samples in the TCGA SpliceSeq database. Using Lasso and SVM, AS features that can differentiate colorectal cancer from normal were screened. Univariate COX regression analysis identified prognosis-related AS events. A risk model was constructed and validated using machine learning, Kaplan-Meier analysis, and Decision Curve Analysis. The regulatory effect of protein arginine methyltransferase 5 (PRMT5) on poly(RC) binding protein 1 (PCBP1) was verified by immunoprecipitation experiments, and the effect of PCBP1 on the AS of Obscurin (OBSCN) was verified by PCR. Five AS events, including HNF4A.59461.AP and HNF4A.59462.AP, were identified, which can distinguish CRC from normal tissue. A machine learning model using 21 key AS events accurately predicted CRC prognosis. High-risk patients had significantly shorter survival times. PRMT5 was found to regulate PCBP1 function and then influence OBSCN AS, which may drive CRC progression. The study concluded that some AS events is significantly different in CRC and normal tissues, and some of these AS events are related to the prognosis of CRC. In addition, PRMT family-driven arginine modifications play an important role in CRC-specific AS events.
Collapse
Affiliation(s)
- Wenbo Ding
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China; School of Basic Medicine and Clinical Pharmacy, Nanjing First Hospital, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Qianni Xiao
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China; School of Basic Medicine and Clinical Pharmacy, Nanjing First Hospital, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Yanzhe Yue
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China; School of Basic Medicine and Clinical Pharmacy, Nanjing First Hospital, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Shuyu Chen
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China; School of Basic Medicine and Clinical Pharmacy, Nanjing First Hospital, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Xiangjian She
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China; School of Basic Medicine and Clinical Pharmacy, Nanjing First Hospital, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Bei Pan
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Linpeng Zhou
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China; School of Basic Medicine and Clinical Pharmacy, Nanjing First Hospital, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Yujuan Yin
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Youyue Li
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Shukui Wang
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China; School of Basic Medicine and Clinical Pharmacy, Nanjing First Hospital, China Pharmaceutical University, Nanjing, Jiangsu, China.; Jiangsu Collaborative Innovation Center on Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu, China..
| | - Mu Xu
- Department of Laboratory Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China..
| |
Collapse
|
8
|
Sun S, Zhao B, Li J, Zhang X, Yao S, Bao Z, Cai J, Yang J, Chen Y, Wu X. Regulation of Hair Follicle Growth and Development by Different Alternative Spliceosomes of FGF5 in Rabbits. Genes (Basel) 2024; 15:409. [PMID: 38674344 PMCID: PMC11049220 DOI: 10.3390/genes15040409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 03/23/2024] [Accepted: 03/24/2024] [Indexed: 04/28/2024] Open
Abstract
This study investigated the regulatory effect of alternative spliceosomes of the fibroblast growth factor 5 (FGF5) gene on hair follicle (HF) growth and development in rabbits. The FGF5 alternative spliceosomes (called FGF5-X1, FGF5-X2, FGF5-X3) were cloned. The overexpression vector and siRNA of spliceosomes were transfected into dermal papilla cells (DPCs) to analyze the regulatory effect on DPCs. The results revealed that FGF5-X2 and FGF5-X3 overexpression significantly decreased LEF1 mRNA expression (p < 0.01). FGF5-X1 overexpression significantly reduced CCND1 expression (p < 0.01). FGF5-X1 and FGF5-X2 possibly downregulated the expression level of FGF2 mRNA (p < 0.05), and FGF5-X3 significantly downregulated the expression level of FGF2 mRNA (p < 0.01). The FGF5 alternative spliceosomes significantly downregulated the BCL2 mRNA expression level in both cases (p < 0.01). FGF5-X1 and FGF5-X2 significantly increased TGFβ mRNA expression (p < 0.01). All three FGF5 alternative spliceosomes inhibited DPC proliferation. In conclusion, the expression profile of HF growth and development-related genes can be regulated by FGF5 alternative spliceosomes, inhibiting the proliferation of DPCs and has an influence on the regulation of HF growth in rabbits. This study provides insights to further investigate the mechanism of HF development in rabbits via FGF5 regulation.
Collapse
Affiliation(s)
- Shaoning Sun
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (S.S.); (B.Z.); (J.L.); (X.Z.); (S.Y.); (Z.B.); (J.C.); (J.Y.); (Y.C.)
| | - Bohao Zhao
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (S.S.); (B.Z.); (J.L.); (X.Z.); (S.Y.); (Z.B.); (J.C.); (J.Y.); (Y.C.)
| | - Jiali Li
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (S.S.); (B.Z.); (J.L.); (X.Z.); (S.Y.); (Z.B.); (J.C.); (J.Y.); (Y.C.)
| | - Xiyu Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (S.S.); (B.Z.); (J.L.); (X.Z.); (S.Y.); (Z.B.); (J.C.); (J.Y.); (Y.C.)
| | - Shuyu Yao
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (S.S.); (B.Z.); (J.L.); (X.Z.); (S.Y.); (Z.B.); (J.C.); (J.Y.); (Y.C.)
| | - Zhiyuan Bao
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (S.S.); (B.Z.); (J.L.); (X.Z.); (S.Y.); (Z.B.); (J.C.); (J.Y.); (Y.C.)
| | - Jiawei Cai
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (S.S.); (B.Z.); (J.L.); (X.Z.); (S.Y.); (Z.B.); (J.C.); (J.Y.); (Y.C.)
| | - Jie Yang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (S.S.); (B.Z.); (J.L.); (X.Z.); (S.Y.); (Z.B.); (J.C.); (J.Y.); (Y.C.)
| | - Yang Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (S.S.); (B.Z.); (J.L.); (X.Z.); (S.Y.); (Z.B.); (J.C.); (J.Y.); (Y.C.)
| | - Xinsheng Wu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (S.S.); (B.Z.); (J.L.); (X.Z.); (S.Y.); (Z.B.); (J.C.); (J.Y.); (Y.C.)
- Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
9
|
Mohan N, Dashwood RH, Rajendran P. A-Z of Epigenetic Readers: Targeting Alternative Splicing and Histone Modification Variants in Cancer. Cancers (Basel) 2024; 16:1104. [PMID: 38539439 PMCID: PMC10968829 DOI: 10.3390/cancers16061104] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/03/2024] [Accepted: 03/06/2024] [Indexed: 11/03/2024] Open
Abstract
Epigenetic 'reader' proteins, which have evolved to interact with specific chromatin modifications, play pivotal roles in gene regulation. There is growing interest in the alternative splicing mechanisms that affect the functionality of such epigenetic readers in cancer etiology. The current review considers how deregulation of epigenetic processes and alternative splicing events contribute to pathophysiology. An A-Z guide of epigenetic readers is provided, delineating the antagonistic 'yin-yang' roles of full-length versus spliced isoforms, where this is known from the literature. The examples discussed underscore the key contributions of epigenetic readers in transcriptional regulation, early development, and cancer. Clinical implications are considered, offering insights into precision oncology and targeted therapies focused on epigenetic readers that have undergone alternative splicing events during disease pathogenesis. This review underscores the fundamental importance of alternative splicing events in the context of epigenetic readers while emphasizing the critical need for improved understanding of functional diversity, regulatory mechanisms, and future therapeutic potential.
Collapse
Affiliation(s)
- Nivedhitha Mohan
- Center for Epigenetics & Disease Prevention, Texas A&M Health, Houston, TX 77030, USA
- Department of Translational Medical Sciences, Antibody & Biopharmaceuticals Core, Texas A&M School of Medicine, Houston, TX 77030, USA
| | - Roderick H. Dashwood
- Center for Epigenetics & Disease Prevention, Texas A&M Health, Houston, TX 77030, USA
- Department of Translational Medical Sciences, Antibody & Biopharmaceuticals Core, Texas A&M School of Medicine, Houston, TX 77030, USA
| | - Praveen Rajendran
- Center for Epigenetics & Disease Prevention, Texas A&M Health, Houston, TX 77030, USA
- Department of Translational Medical Sciences, Antibody & Biopharmaceuticals Core, Texas A&M School of Medicine, Houston, TX 77030, USA
| |
Collapse
|
10
|
Lynn N, Tuller T. Detecting and understanding meaningful cancerous mutations based on computational models of mRNA splicing. NPJ Syst Biol Appl 2024; 10:25. [PMID: 38453965 PMCID: PMC10920900 DOI: 10.1038/s41540-024-00351-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 02/22/2024] [Indexed: 03/09/2024] Open
Abstract
Cancer research has long relied on non-silent mutations. Yet, it has become overwhelmingly clear that silent mutations can affect gene expression and cancer cell fitness. One fundamental mechanism that apparently silent mutations can severely disrupt is alternative splicing. Here we introduce Oncosplice, a tool that scores mutations based on models of proteomes generated using aberrant splicing predictions. Oncosplice leverages a highly accurate neural network that predicts splice sites within arbitrary mRNA sequences, a greedy transcript constructor that considers alternate arrangements of splicing blueprints, and an algorithm that grades the functional divergence between proteins based on evolutionary conservation. By applying this tool to 12M somatic mutations we identify 8K deleterious variants that are significantly depleted within the healthy population; we demonstrate the tool's ability to identify clinically validated pathogenic variants with a positive predictive value of 94%; we show strong enrichment of predicted deleterious mutations across pan-cancer drivers. We also achieve improved patient survival estimation using a proposed set of novel cancer-involved genes. Ultimately, this pipeline enables accelerated insight-gathering of sequence-specific consequences for a class of understudied mutations and provides an efficient way of filtering through massive variant datasets - functionalities with immediate experimental and clinical applications.
Collapse
Affiliation(s)
- Nicolas Lynn
- Department of Biomedical Engineering, the Engineering Faculty, Tel Aviv University, Tel-Aviv, 69978, Israel
| | - Tamir Tuller
- Department of Biomedical Engineering, the Engineering Faculty, Tel Aviv University, Tel-Aviv, 69978, Israel.
| |
Collapse
|
11
|
Ding H, Shi H, Chen W, Liu Z, Yang Z, Li X, Qiu Z, Zhuo H. Identification of Key Prognostic Alternative Splicing Events of Costimulatory Molecule-Related Genes in Colon Cancer. Comb Chem High Throughput Screen 2024; 27:1900-1912. [PMID: 37957898 DOI: 10.2174/0113862073249972231026060301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 09/08/2023] [Accepted: 10/02/2023] [Indexed: 11/15/2023]
Abstract
OBJECTIVE This study aimed to explore the key alternative splicing events in costimulatory molecule-related genes in colon cancer and to determine their correlation with prognosis. METHODS Gene expression RNA-sequencing data, clinical data, and SpliceSeq data of colon cancer were obtained from The Cancer Genome Atlas. Differentially expressed alternative splicing events in genes were identified, Followed by correlation analysis of genes corresponding to differentially expressed alternative splicing events with costimulatory molecule-related genes. Survival analysis was conducted using differentially expressed alternative splicing events in these genes and a prognostic model was constructed. Functional enrichment, proteinprotein interaction network, and splicing factor analyses were performed. RESULTS In total, 6504 differentially expressed alternative splicing events in 3949 genes were identified between tumor and normal tissues. Correlation analysis revealed 3499 differentially expressed alternative splicing events in 2168 costimulatory molecule-related genes. Moreover, 328 differentially expressed alternative splicing events in 288 costimulatory molecule-related genes were associated with overall survival. The prognostic models constructed using these showed considerable power in predicting survival. The ubiquitin A-52 residue ribosomal protein fusion product 1 and ribosomal protein S9 were the hub nodes in the protein-protein interaction network. Furthermore, one splicing factor, splicing factor proline and glutamine-rich, was significantly associated with patient prognosis. Four splicing factor-alternative splicing pairs were obtained from four alternative splicing events in three genes: TBC1 domain family member 8 B, complement factor H, and mitochondrial fission 1. CONCLUSION The identified differentially expressed alternative splicing events of costimulatory molecule-related genes may be used to predict patient prognosis and immunotherapy responses in colon cancer.
Collapse
Affiliation(s)
- Hao Ding
- Department of General Surgery, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Huiwen Shi
- Department of General Surgery, No. 971 Hospital of PLA Navy, Shandong, China
| | - Weifeng Chen
- Department of Oncology, Huangdao District Hospital of Traditional Chinese Medicine, Shandong, China
| | - Zhisheng Liu
- Department of General Surgery, Affiliated Qingdao Hiser Hospital of Qingdao University (Qingdao Hospital of Traditional Chinese Medicine), Shandong, China
| | - Zhi Yang
- The IVD Medical Marketing Department, 3D Medicines Inc., Shadong, China
| | - Xiaochuan Li
- Department of General Surgery, Qingdao Municipal Hospital, Shandong, China
| | - Zhichao Qiu
- Department of Oncology, Shunde Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hongqing Zhuo
- Department of Gastrointestinal Surgery, Provincial Hospital Affiliated to Shandong First Medical University, Shadong, China
| |
Collapse
|
12
|
Lv Z, Gao W, Du Z, Zheng Y, Liu T, Hao C, Xue D. Alternative splicing of IRF3 plays an important role in the development of hepatocarcinoma. Epigenetics 2023; 18:2276371. [PMID: 37926963 PMCID: PMC10629432 DOI: 10.1080/15592294.2023.2276371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 10/18/2023] [Indexed: 11/07/2023] Open
Abstract
Alternative splicing is a process causing mRNA translation to produce different proteins, and it is crucial for the development of tumours. In this study, we constructed a prognostic model related to alternative splicing events in hepatocarcinoma using bioinformatics analysis, including the alternative splicing of CSAD, AFMID, ZDHHC16, and IRF3. The model is an independent prognostic factor and can accurately predict a patient's prognosis. IRF3 is a transcription factor related to the immune response. Its alternative splicing can affect the expression of various genes related to prognosis and plays an essential role in the tumour microenvironment. We also verified the expression of IRF3 exon skipping isoform in hepatocarcinoma at the mRNA level. In conclusion, we discovered that the alternative splicing of IRF3 is essential for the development of hepatocarcinoma. This study provides new insight into the development of treatments for hepatocarcinoma.
Collapse
Affiliation(s)
- Zhenyi Lv
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Wenqi Gao
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Zhiwei Du
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Yi Zheng
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Tianming Liu
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Chenjun Hao
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Dongbo Xue
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| |
Collapse
|
13
|
Temaj G, Chichiarelli S, Saha S, Telkoparan-Akillilar P, Nuhii N, Hadziselimovic R, Saso L. An intricate rewiring of cancer metabolism via alternative splicing. Biochem Pharmacol 2023; 217:115848. [PMID: 37813165 DOI: 10.1016/j.bcp.2023.115848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/05/2023] [Accepted: 10/05/2023] [Indexed: 10/11/2023]
Abstract
All human genes undergo alternative splicing leading to the diversity of the proteins. However, in some cases, abnormal regulation of alternative splicing can result in diseases that trigger defects in metabolism, reduced apoptosis, increased proliferation, and progression in almost all tumor types. Metabolic dysregulations and immune dysfunctions are crucial factors in cancer. In this respect, alternative splicing in tumors could be a potential target for therapeutic cancer strategies. Dysregulation of alternative splicing during mRNA maturation promotes carcinogenesis and drug resistance in many cancer types. Alternative splicing (changing the target mRNA 3'UTR binding site) can result in a protein with altered drug affinity, ultimately leading to drug resistance.. Here, we will highlight the function of various alternative splicing factors, how it regulates the reprogramming of cancer cell metabolism, and their contribution to tumor initiation and proliferation. Also, we will discuss emerging therapeutics for treating tumors via abnormal alternative splicing. Finally, we will discuss the challenges associated with these therapeutic strategies for clinical applications.
Collapse
Affiliation(s)
- Gazmend Temaj
- Faculty of Pharmacy, College UBT, 10000 Prishtina, Kosovo
| | - Silvia Chichiarelli
- Department of Biochemical Sciences "A. Rossi-Fanelli", Sapienza University of Rome, 00185 Rome, Italy.
| | - Sarmistha Saha
- Department of Biotechnology, GLA University, Mathura 00185, Uttar Pradesh, India
| | | | - Nexhibe Nuhii
- Department of Pharmacy, Faculty of Medical Sciences, State University of Tetovo, 1200 Tetovo, Macedonia
| | - Rifat Hadziselimovic
- Faculty of Science, University of Sarajevo, 71000 Sarajevo, Bosnia and Herzegovina
| | - Luciano Saso
- Department of Physiology and Pharmacology "Vittorio Erspamer", La Sapienza University, 00185 Rome, Italy.
| |
Collapse
|
14
|
Zheng Y, Zhong G, He C, Li M. Targeted splicing therapy: new strategies for colorectal cancer. Front Oncol 2023; 13:1222932. [PMID: 37664052 PMCID: PMC10470845 DOI: 10.3389/fonc.2023.1222932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 08/07/2023] [Indexed: 09/05/2023] Open
Abstract
RNA splicing is the process of forming mature mRNA, which is an essential phase necessary for gene expression and controls many aspects of cell proliferation, survival, and differentiation. Abnormal gene-splicing events are closely related to the development of tumors, and the generation of oncogenic isoform in splicing can promote tumor progression. As a main process of tumor-specific splicing variants, alternative splicing (AS) can promote tumor progression by increasing the production of oncogenic splicing isoforms and/or reducing the production of normal splicing isoforms. This is the focus of current research on the regulation of aberrant tumor splicing. So far, AS has been found to be associated with various aspects of tumor biology, including cell proliferation and invasion, resistance to apoptosis, and sensitivity to different chemotherapeutic drugs. This article will review the abnormal splicing events in colorectal cancer (CRC), especially the tumor-associated splicing variants arising from AS, aiming to offer an insight into CRC-targeted splicing therapy.
Collapse
Affiliation(s)
| | | | - Chengcheng He
- Department of Gastroenterology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | | |
Collapse
|
15
|
Sun Y, Bae YE, Zhu J, Zhang Z, Zhong H, Cheng C, Deng Y, Wu C, Wu L. A Splicing Transcriptome-Wide Association Study Identifies Candidate Altered Splicing for Prostate Cancer Risk. OMICS : A JOURNAL OF INTEGRATIVE BIOLOGY 2023; 27:372-380. [PMID: 37486714 DOI: 10.1089/omi.2023.0065] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
Prostate cancer (PCa) represents a huge public health burden among men. Many susceptibility genetic factors for PCa still remain unknown. In this study, we performed a large splicing transcriptome-wide association study (spTWAS) using three modeling strategies to develop alternative splicing genetic prediction models for identifying novel susceptibility loci and splicing introns for PCa risk by assessing 79,194 cases and 61,112 controls of European ancestry in the PRACTICAL, CRUK, CAPS, BPC3, and PEGASUS consortia. We identified 120 splicing introns of 97 genes showing an association with PCa risk at false discovery rate (FDR)-corrected threshold (FDR <0.05). Of them, 33 genes were enriched in PCa-related diseases and function categories. Fine-mapping analysis suggested that 21 splicing introns of 19 genes were likely causally associated with PCa risk. Thirty-five splicing introns of 34 novel genes were identified to be related to PCa susceptibility for the first time, and 11 of the genes were enriched in a cancer-related network. Our study identified novel loci and splicing introns associated with PCa risk, which can improve our understanding of the etiology of this common malignancy.
Collapse
Affiliation(s)
- Yanfa Sun
- College of Life Science, Longyan University, Longyan, P.R. China
- Cancer Epidemiology Division, Population Sciences in the Pacific Program, University of Hawaii Cancer Center, University of Hawaii at Manoa, Honolulu, Hawaii, USA
- Fujian Provincial Key Laboratory for the Prevention and Control of Animal Infectious Diseases and Biotechnology, Longyan, P.R. China
- Fujian Provincial Universities Key Laboratory of Preventive Veterinary Medicine and Biotechnology (Longyan University), Longyan, P.R. China
| | - Ye Eun Bae
- Department of Statistics, Florida State University, Tallahassee, Florida, USA
| | - Jingjing Zhu
- Cancer Epidemiology Division, Population Sciences in the Pacific Program, University of Hawaii Cancer Center, University of Hawaii at Manoa, Honolulu, Hawaii, USA
| | - Zichen Zhang
- Department of Statistics, Florida State University, Tallahassee, Florida, USA
| | - Hua Zhong
- Cancer Epidemiology Division, Population Sciences in the Pacific Program, University of Hawaii Cancer Center, University of Hawaii at Manoa, Honolulu, Hawaii, USA
| | - Chunmei Cheng
- College of Life Science, Longyan University, Longyan, P.R. China
| | - Youping Deng
- Department of Quantitative Health Sciences, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, Hawaii, USA
| | - Chong Wu
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Lang Wu
- Cancer Epidemiology Division, Population Sciences in the Pacific Program, University of Hawaii Cancer Center, University of Hawaii at Manoa, Honolulu, Hawaii, USA
| |
Collapse
|
16
|
Guo LT, Pyle AM. End-to-end RT-PCR of long RNA and highly structured RNA. Methods Enzymol 2023; 691:3-15. [PMID: 37914451 DOI: 10.1016/bs.mie.2023.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
RNA molecules play important roles in numerous normal cellular processes and disease states, from protein coding to gene regulation. RT-PCR, applying the power of polymerase chain reaction (PCR) to RNA by coupling reverse transcription with PCR, is one of the most important techniques to characterize RNA transcripts and monitor gene expression. The ability to analyze full-length RNA transcripts and detect their expression is critical to decipher their biological functions. However, due to the low processivity of retroviral reverse transcriptases (RTs), we can only monitor a small fraction of long RNA transcripts, especially those containing stable secondary and tertiary structures. The full-length sequences can only be deduced by computational analysis, which is often misleading. Group II intron-encoded RTs are a new type of RT enzymes. They have evolved specialized structural elements that unwind template structures and maintain close contact with the RNA template. Therefore, group II intron-encoded RTs are more processive than the retroviral RTs. The discovery, optimization and deployment of processive group II intron RTs provide us the opportunity to analyze RNA transcripts with single molecule resolution. MarathonRT, the most processive group II intron RT, has been extensively optimized for processive reverse transcription. In this chapter, we use MarathonRT to deliver a general protocol for long amplicon generation by RT-PCR, and also provide guidance for troubleshooting and further optimization.
Collapse
Affiliation(s)
- Li-Tao Guo
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, United States
| | - Anna Marie Pyle
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, United States; Department of Chemistry, Yale University, New Haven, CT, United States; Howard Hughes Medical Institute, Chevy Chase, MD, United States.
| |
Collapse
|
17
|
Song M, Pang L, Zhang M, Qu Y, Laster KV, Dong Z. Cdc2-like kinases: structure, biological function, and therapeutic targets for diseases. Signal Transduct Target Ther 2023; 8:148. [PMID: 37029108 PMCID: PMC10082069 DOI: 10.1038/s41392-023-01409-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 03/15/2023] [Accepted: 03/20/2023] [Indexed: 04/09/2023] Open
Abstract
The CLKs (Cdc2-like kinases) belong to the dual-specificity protein kinase family and play crucial roles in regulating transcript splicing via the phosphorylation of SR proteins (SRSF1-12), catalyzing spliceosome molecular machinery, and modulating the activities or expression of non-splicing proteins. The dysregulation of these processes is linked with various diseases, including neurodegenerative diseases, Duchenne muscular dystrophy, inflammatory diseases, viral replication, and cancer. Thus, CLKs have been considered as potential therapeutic targets, and significant efforts have been exerted to discover potent CLKs inhibitors. In particular, clinical trials aiming to assess the activities of the small molecules Lorecivivint on knee Osteoarthritis patients, and Cirtuvivint and Silmitasertib in different advanced tumors have been investigated for therapeutic usage. In this review, we comprehensively documented the structure and biological functions of CLKs in various human diseases and summarized the significance of related inhibitors in therapeutics. Our discussion highlights the most recent CLKs research, paving the way for the clinical treatment of various human diseases.
Collapse
Affiliation(s)
- Mengqiu Song
- Department of Pathophysiology, School of Basic Medical Sciences, College of Medicine, Zhengzhou University, Zhengzhou, Henan, 450001, China
- China-US (Henan) Hormel Cancer Institute, No.127, Dongming Road, Jinshui District, Zhengzhou, Henan, 450008, China
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou, Henan, China
| | - Luping Pang
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou, Henan, China
- Academy of Medical Sciences, College of Medicine, Zhengzhou University, Zhengzhou, Henan, 450001, China
- Research Center of Basic Medicine, Academy of Medical Sciences, College of Medicine, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Mengmeng Zhang
- Department of Pathophysiology, School of Basic Medical Sciences, College of Medicine, Zhengzhou University, Zhengzhou, Henan, 450001, China
- Academy of Medical Sciences, College of Medicine, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Yingzi Qu
- Department of Pathophysiology, School of Basic Medical Sciences, College of Medicine, Zhengzhou University, Zhengzhou, Henan, 450001, China
- Academy of Medical Sciences, College of Medicine, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Kyle Vaughn Laster
- China-US (Henan) Hormel Cancer Institute, No.127, Dongming Road, Jinshui District, Zhengzhou, Henan, 450008, China
| | - Zigang Dong
- Department of Pathophysiology, School of Basic Medical Sciences, College of Medicine, Zhengzhou University, Zhengzhou, Henan, 450001, China.
- China-US (Henan) Hormel Cancer Institute, No.127, Dongming Road, Jinshui District, Zhengzhou, Henan, 450008, China.
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou, Henan, China.
- Academy of Medical Sciences, College of Medicine, Zhengzhou University, Zhengzhou, Henan, 450001, China.
| |
Collapse
|
18
|
Jiang Y, Zhang C, Chen Y, Zhao S, He Y, He J. Prognostic risk assessment model for alternative splicing events and splicing factors in malignant pleural mesothelioma. Cancer Med 2023; 12:4895-4906. [PMID: 36031798 PMCID: PMC9972025 DOI: 10.1002/cam4.5174] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 08/09/2022] [Accepted: 08/12/2022] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Malignant pleural mesothelioma (MPM) is a rare and highly malignant thoracic tumor. Although alternative splicing (AS) is associated with tumor prognosis, the prognostic significance of AS in MPM is unknown. METHODS Transcriptomic data, clinical information, and splicing percentage values for MPM were obtained from The Cancer Genome Atlas (TCGA) and TCGA SpliceSeq databases. Least absolute shrinkage and selection operator (LASSO) regression and multivariate Cox analyses were performed to establish a model affecting the prognosis of MPM. Survival and ROC analyses were used to test the effects of the prognostic model. LASSO/multivariate Cox analysis was used to construct the MPM prognostic splicing factor (SF) model. The SF-AS interaction network was analyzed using Spearman correlation and visualized using Cytoscape. The association between the MPM prognostic SF model and drug sensitivity to chemotherapeutic agents such as cisplatin was analyzed using pRRophetic.R. RESULTS The LASSO/multivariate Cox analysis identified 41 AS events and 2 SFs that were mostly associated with survival. Nine prognostic prediction models (i.e., seven types of AS model, total AS model, and SF model) were developed. An MPM prognostic SF-AS regulatory network was subsequently constructed with decreased drug sensitivity in the SF model high-risk group (p = 0.025). CONCLUSION This study provides the first comprehensive analysis of the prognostic value of AS events and SFs in MPM. The SF-AS regulatory network established in this study and our drug sensitivity analysis using the SF model may provide novel targets for pharmacological studies of MPM.
Collapse
Affiliation(s)
- Yue Jiang
- Department of Clinical Medicine, Southwest Medical University, Luzhou, China
| | - Chengda Zhang
- Department of Gastroenterology, The Third Hospital of Mian Yang (Sichuan Mental Health Center), Mianyang, China
| | - Yang Chen
- Department of Clinical Medicine, Southwest Medical University, Luzhou, China
| | - Shiyu Zhao
- Department of Clinical Medicine, Southwest Medical University, Luzhou, China
| | - Yipeng He
- Department of Clinical Medicine, Southwest Medical University, Luzhou, China
| | - Jun He
- Department of Oncology, The Third Hospital of Mian Yang (Sichuan Mental Health Center), Mianyang, China
| |
Collapse
|
19
|
Alternatively Spliced Isoforms of MUC4 and ADAM12 as Biomarkers for Colorectal Cancer Metastasis. J Pers Med 2023; 13:jpm13010135. [PMID: 36675796 PMCID: PMC9861497 DOI: 10.3390/jpm13010135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/21/2022] [Accepted: 12/26/2022] [Indexed: 01/13/2023] Open
Abstract
There is a pertinent need to develop prognostic biomarkers for practicing predictive, preventive and personalized medicine (PPPM) in colorectal cancer metastasis. The analysis of isoform expression data governed by alternative splicing provides a high-resolution picture of mRNAs in a defined condition. This information would not be available by studying gene expression changes alone. Hence, we utilized our prior data from an exon microarray and found ADAM12 and MUC4 to be strong biomarker candidates based on their alternative splicing scores and pattern. In this study, we characterized their isoform expression in a cell line model of metastatic colorectal cancer (SW480 & SW620). These two genes were found to be good prognostic indicators in two cohorts from The Cancer Genome Atlas database. We studied their exon structure using sequence information in the NCBI and ENSEMBL genome databases to amplify and validate six isoforms each for the ADAM12 and MUC4 genes. The differential expression of these isoforms was observed between normal, primary and metastatic colorectal cancer cell lines. RNA-Seq analysis further proved the differential expression of the gene isoforms. The isoforms of MUC4 and ADAM12 were found to change expression levels in response to 5-Fluorouracil (5-FU) treatment in a dose-, time- and cell line-dependent manner. Furthermore, we successfully detected the protein isoforms of ADAM12 and MUC4 in cell lysates, reflecting the differential expression at the protein level. The change in the mRNA and protein expression of MUC4 and ADAM12 in primary and metastatic cells and in response to 5-FU qualifies them to be studied as potential biomarkers. This comprehensive study underscores the importance of studying alternatively spliced isoforms and their potential use as prognostic and/or predictive biomarkers in the PPPM approach towards cancer.
Collapse
|
20
|
Trifonova EA, Gavrilenko MM, Babovskaya AA, Zarubin AA, Svarovskaya MG, Izhoykina EV, Stepanov IA, Serebrova VN, Kutsenko IG, Stepanov VA. Alternative Splicing Landscape of Placental Decidual Cells during Physiological Pregnancy. RUSS J GENET+ 2022. [DOI: 10.1134/s1022795422100106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
21
|
Yu S, Zhang J, Ding Y, Kang X, Pu X. Genome-wide identification of alternative splicing associated with histone deacetylase inhibitor in cutaneous T-cell lymphomas. Front Genet 2022; 13:937623. [PMID: 36147491 PMCID: PMC9485882 DOI: 10.3389/fgene.2022.937623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 08/19/2022] [Indexed: 11/18/2022] Open
Abstract
Cutaneous T-cell lymphomas (CTCLs) are a kind of non-Hodgkin lymphoma that originates from skin, which is difficult to treat with traditional drugs. Human histone deacetylase inhibitors (HDACi) targeted therapy has become a promising treatment strategy in recent years, but some patients can develop resistance to the drug, leading to treatment failure. There are no public reports on whether alternative splicing (AS) and RNA binding proteins (RBP) affect the efficacy of targeted therapy. Using data from the Gene Expression Omnibus (GEO) database, we established a co-change network of AS events and RBP in CTCLs for the first time, and analyzed the potential regulatory effects of RBP on HDACi-related AS events. The dataset GSE132053, which contained the RNA sequence data for 17 HDACi samples, was downloaded and clean reads were aligned to the human GRCh38 genome by hierarchical indexing for spliced alignment of the transcripts, allowing four mismatches. Gene expression levels were evaluated using exons per million fragments mapped for each gene. Student’s t-tests were performed to evaluate the significance of changes in ratios for AS events, and regulated alternative splicing events (RASEs) were defined as events with p values less than 0.05. To sort the differentially expressed genes functional categories, Gene Ontology terms and Kyoto Encyclopedia of Genes and Genomes pathways were identified using the KOBAS 2.0 server. The regulatory mechanisms of the RASEs and RBPs were evaluated using Pearson’s correlation coefficient. Seven indirect events of HDACi resistance or sensitivity were identified: NIR_5151_RP11-977G19.10, NIR_4557_IRAG2, NIR_11870_SUMO1, NIR_5347_ING4, NIR_17935_DNAJC2, NIR_17974_CBLL1, and NIR_422_SLC50A1. The potential regulatory relationships between RBPs and HDACi-sensitive RASEs were also analyzed. LEPR and HNRNPAO significantly affected NIR_11870_SUMO1, suggesting a potential regulatory relationship. Additionally, CNN1 may regulate NIR_5347_ING4, CNOT3 may regulate NIR_17935_DNAJC2, and DQX1 and LENG9 may regulate NIR_422_SLC5A1. Overall, our findings establish a theoretical foundation for the precise targeted treatment of CTCLs with HDACi.
Collapse
Affiliation(s)
- Shirong Yu
- Xinjiang Medical University, Urumqi, China
| | | | - Yuan Ding
- Department of Dermatology, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
- Xinjiang Clinical Research Center for Dermatologic Diseases, Urumqi, China
- Xinjiang Key Laboratory of Dermatology Research, Urumqi, China
| | - Xiaojing Kang
- Department of Dermatology, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
- Xinjiang Clinical Research Center for Dermatologic Diseases, Urumqi, China
- Xinjiang Key Laboratory of Dermatology Research, Urumqi, China
| | - Xiongming Pu
- Department of Dermatology, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
- Xinjiang Clinical Research Center for Dermatologic Diseases, Urumqi, China
- Xinjiang Key Laboratory of Dermatology Research, Urumqi, China
- *Correspondence: Xiongming Pu,
| |
Collapse
|
22
|
Kamalabadi-Farahani M, Atashi A, Jabbarpour Z, Aghayan SS. Expression of osteopontin-5 splice variant in the mouse primary and metastatic breast cancer cells. BMC Res Notes 2022; 15:286. [PMID: 36064446 PMCID: PMC9446537 DOI: 10.1186/s13104-022-06179-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 08/25/2022] [Indexed: 11/25/2022] Open
Abstract
OBJECTIVE Osteopontin (OPN) is a well-known glycoprotein involved in numerous pathobiological processes, including cancer. Despite having five splice variants for osteopontin in mice, the main focus of most studies has been on total OPN (tOPN). There are some studies on other splice variants, but the expression of osteopontin-5 (OPN5) has not been addressed in mouse cancer cells. Therefore, this study sought to evaluate OPN5 expression in mouse breast cancer cells. RESULTS The expression of OPN5 in primary and metastatic breast cancer cells of mice was confirmed in our study. These findings provided important insights regarding the OPN alternative splicing in mice for the first time. It is concluded that, like other OPN-SVs, OPN5 probably plays an essential role in tumor progression, which requires further investigation in different tumor models.
Collapse
Affiliation(s)
| | - Amir Atashi
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Zahra Jabbarpour
- Gene Therapy Research Center, Digestive Disease Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Sajjad Aghayan
- Gene Therapy Research Center, Digestive Disease Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
23
|
Muehlbauer LK, Wei T, Shishkova E, Coon JJ, Lambert PF. IQGAP1 and RNA Splicing in the Context of Head and Neck via Phosphoproteomics. J Proteome Res 2022; 21:2211-2223. [PMID: 35980772 PMCID: PMC9833422 DOI: 10.1021/acs.jproteome.2c00309] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
IQGAP1 (IQ motif-containing GTPase-activating protein 1) scaffolds several signaling pathways in mammalian cells that are implicated in carcinogenesis, including the RAS and PI3K pathways that involve multiple protein kinases. IQGAP1 has been shown to promote head and neck squamous cell carcinoma (HNSCC); however, the underlying mechanism(s) remains unclear. Here, we report a mass spectrometry-based analysis identifying differences in phosphorylation of cellular proteins in vivo and in vitro in the presence or absence of IQGAP1. By comparing the esophageal phosphoproteome profiles between Iqgap1+/+ and Iqgap1-/- mice, we identified RNA splicing as one of the most altered cellular processes. Serine/arginine-rich splicing factor 6 (SRSF6) was the protein with the most downregulated levels of phosphorylation in Iqgap1-/- tissue. We confirmed that the absence of IQGAP1 reduced SRSF6 phosphorylation both in vivo and in vitro. We then expanded our analysis to human normal oral keratinocytes. Again, we found factors involved in RNA splicing to be highly altered in the phosphoproteome profile upon genetic disruption of IQGAP1. Both the Clinical Proteomic Tumor Analysis Consortium (CPTAC) and the Cancer Genome Atlas (TCGA) data sets indicate that phosphorylation of splicing-related proteins is important in HNSCC prognosis. The Biological General Repository for Interaction Datasets (BioGRID) repository also suggested multiple interactions between IQGAP1 and splicing-related proteins. Based on these collective observations, we propose that IQGAP1 regulates the phosphorylation of splicing proteins, which potentially affects their splicing activities and, therefore, contributes to HNSCC. Raw data are available from the MassIVE database with identifier MSV000087770.
Collapse
Affiliation(s)
- Laura K. Muehlbauer
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Tao Wei
- McArdle Laboratory for Cancer Research, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Evgenia Shishkova
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
- National Center for Quantitative Biology of Complex Systems, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Joshua J. Coon
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
- National Center for Quantitative Biology of Complex Systems, University of Wisconsin-Madison, Madison, WI 53706, USA
- Morgridge Institute for Research, Madison, WI 53706, USA
| | - Paul F. Lambert
- McArdle Laboratory for Cancer Research, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53705, USA
| |
Collapse
|
24
|
Pan YJ, Liu BW, Pei DS. The Role of Alternative Splicing in Cancer: Regulatory Mechanism, Therapeutic Strategy, and Bioinformatics Application. DNA Cell Biol 2022; 41:790-809. [PMID: 35947859 DOI: 10.1089/dna.2022.0322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
[Formula: see text] Alternative splicing (AS) can generate distinct transcripts and subsequent isoforms that play differential functions from the same pre-mRNA. Recently, increasing numbers of studies have emerged, unmasking the association between AS and cancer. In this review, we arranged AS events that are closely related to cancer progression and presented promising treatments based on AS for cancer therapy. Obtaining proliferative capacity, acquiring invasive properties, gaining angiogenic features, shifting metabolic ability, and getting immune escape inclination are all splicing events involved in biological processes. Spliceosome-targeted and antisense oligonucleotide technologies are two novel strategies that are hopeful in tumor therapy. In addition, bioinformatics applications based on AS were summarized for better prediction and elucidation of regulatory routines mingled in. Together, we aimed to provide a better understanding of complicated AS events associated with cancer biology and reveal AS a promising target of cancer treatment in the future.
Collapse
Affiliation(s)
- Yao-Jie Pan
- Department of Pathology, Laboratory of Clinical and Experimental Pathology, Xuzhou Medical University, Xuzhou, China
| | - Bo-Wen Liu
- Department of General Surgery, Xuzhou Medical University, Xuzhou, China
| | - Dong-Sheng Pei
- Department of Pathology, Laboratory of Clinical and Experimental Pathology, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
25
|
Peng L, Liu Y, Chen J, Cheng M, Wu Y, Chen M, Zhong Y, Shen D, Chen L, Ye X. APEX1 regulates alternative splicing of key tumorigenesis genes in non-small-cell lung cancer. BMC Med Genomics 2022; 15:147. [PMID: 35780128 PMCID: PMC9250739 DOI: 10.1186/s12920-022-01290-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 06/06/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Aberrant alternative splicing (AS) contributes to tumor progression. Previous studies have shown that apurinic-apyrimidinic endonuclease-1 (APEX1) is involved in tumor progression. It is unknown whether APEX1 functions in tumor progression by regulation of AS. It is also unknown whether APEX1 can regulate non-small-cell lung cancer (NSCLC) proliferation and apoptosis. We analyzed APEX1 expression levels in 517 lung NSCLC samples from the TCGA (Cancer Genome Atlas) database. The impact of APEX1 over expression on A549 cell proliferation and apoptosis was detected by the methyl thiazolyl tetrazolium assay and by flow cytometry. The transcriptome of A549 cells with and without APEX1 over expression was determined by Illumina sequencing, followed by analysis of AS. RT-qPCR validated expression of APEX1-related genes in A549 cells. We have successfully applied RNA-seq technology to demonstrate APEX1 regulation of AS. RESULTS APEX1 expression was shown to be upregulated in NSCLC samples and to reduce cell proliferation and induce apoptosis of A549 cells. In addition, APEX1 regulated AS of key tumorigenesis genes involved in cancer proliferation and apoptosis within MAPK and Wnt signaling pathways. Each of these pathways are involved in lung cancer progression. Furthermore, validated AS events regulated by APEX1 were in key tumorigenesis genes; AXIN1 (axis inhibition protein 1), GCNT2 (N-acetyl glucosaminyl transferase 2), and SMAD3 (SMAD Family Member 3). These genes encode signaling pathway transcription regulatory factors. CONCLUSIONS We found that increased expression of APEX1 was an independent prognostic factor related to NSCLC progression. Therefore, APEX1 regulation of AS may serve as a molecular marker or therapeutic target for NSCLC treatment.
Collapse
Affiliation(s)
- Li Peng
- Department of Internal Medicine and Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan University, No. 169 Dong Hu Road, Wuhan, 430071, Hubei, China.,Department of Cardiology, Zhongnan Hosipital of Wuhan University, Wuhan University, Wuhan, 430071, Hubei, China
| | - Yuwei Liu
- Department of Internal Medicine and Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan University, No. 169 Dong Hu Road, Wuhan, 430071, Hubei, China
| | - Jing Chen
- Department of Internal Medicine and Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan University, No. 169 Dong Hu Road, Wuhan, 430071, Hubei, China
| | - Mengxin Cheng
- Department of Internal Medicine and Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan University, No. 169 Dong Hu Road, Wuhan, 430071, Hubei, China
| | - Ying Wu
- Department of Internal Medicine and Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan University, No. 169 Dong Hu Road, Wuhan, 430071, Hubei, China
| | - Min Chen
- Department of Internal Medicine and Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan University, No. 169 Dong Hu Road, Wuhan, 430071, Hubei, China
| | - Ya Zhong
- Department of Internal Medicine and Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan University, No. 169 Dong Hu Road, Wuhan, 430071, Hubei, China
| | - Dan Shen
- Department of Internal Medicine and Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan University, No. 169 Dong Hu Road, Wuhan, 430071, Hubei, China
| | - Ling Chen
- Department of Internal Medicine and Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan University, No. 169 Dong Hu Road, Wuhan, 430071, Hubei, China.
| | - Xujun Ye
- Department of Internal Medicine and Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan University, No. 169 Dong Hu Road, Wuhan, 430071, Hubei, China.
| |
Collapse
|
26
|
Zhi X, Pu L, Wu B, Cui Y, Yu C, Dong Y, Li D, Cai C. Identification of two aberrant transcripts by RNA sequencing for a novel variant c.3354 + 5 G > A of MED12 in a Chinese girl with non-syndromic intellectual disability. Clin Chim Acta 2022; 532:137-144. [PMID: 35690084 DOI: 10.1016/j.cca.2022.05.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/27/2022] [Accepted: 05/27/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND Missense variants in MED12 are associated with MED12-related disorders. We aimed to clarify the molecular level changes and underlying pathogenic mechanism of a female patient in our study. METHODS We reported a Chinese girl with clinical characteristics similar to MED12-related disorders. Trio whole exome sequencing (WES) was performed to identify related pathogenic variant(s) and RNA sequencing (RNA-seq) was subsequently applied to evaluate the effect of identified variant(s) on mRNA splicing. Moreover, X-chromosome inactivation (XCI) assay based on AR and RP2 was performed to reveal the XCI pattern of the female patient. RESULTS The proband manifested mainly as mental retardation and language impairment. Trio WES revealed a novel heterozygous variant c.3354 + 5 G > A in intron 23 of MED12. RNA-seq identified two aberrant transcripts. XCI assay on AR revealed a homozygous result, while XCI based on RP2 showed random pattern in peripheral blood. CONCLUSION In conclusion, we identified a novel variant c.3354 + 5 G > A by WES combined with RNA-seq, which extends the spectrum of MED12 variants and provide a basis for further genetic counseling. According to the result of two aberrant transcripts by RNA-seq, we speculate that our patient's milder clinical feature may be the consequence of multiple different transcripts.
Collapse
Affiliation(s)
- Xiufang Zhi
- Graduate College of Tianjin Medical University, No. 22 Qixiangtai Road, Heping District, Tianjin 300070, China; Tianjin Children's Hospital (Children's Hospital of Tianjin University), No. 238 Longyan Road, Beichen District, Tianjin 300134, China
| | - Linjie Pu
- Graduate College of Tianjin Medical University, No. 22 Qixiangtai Road, Heping District, Tianjin 300070, China; Tianjin Children's Hospital (Children's Hospital of Tianjin University), No. 238 Longyan Road, Beichen District, Tianjin 300134, China
| | - Bo Wu
- Tianjin Children's Hospital (Children's Hospital of Tianjin University), No. 238 Longyan Road, Beichen District, Tianjin 300134, China; Department of Neurology, Tianjin Children's Hospital, No. 238 Longyan Road, eichen District, Tianjin 300134, China
| | - Yaqiong Cui
- Tianjin Children's Hospital (Children's Hospital of Tianjin University), No. 238 Longyan Road, Beichen District, Tianjin 300134, China; Tianjin Pediatric Research Institute, No. 238 Longyan Road, Beichen District, Tianjin 300134, China; Tianjin Key Laboratory of Birth Defects for Prevention and Treatment, No. 238 Longyan Road, Beichen District, Tianjin 300134, China
| | - Changshun Yu
- Tianjin Kingmed Center for Clinical Laboratory Co. Ltd, Haitai Huake 5th Rd, Huayuan Industrial Park, High Tech Zone, Xiqing District, Tianjin 300392, China
| | - Yan Dong
- Graduate College of Tianjin Medical University, No. 22 Qixiangtai Road, Heping District, Tianjin 300070, China; Tianjin Children's Hospital (Children's Hospital of Tianjin University), No. 238 Longyan Road, Beichen District, Tianjin 300134, China
| | - Dong Li
- Tianjin Children's Hospital (Children's Hospital of Tianjin University), No. 238 Longyan Road, Beichen District, Tianjin 300134, China; Department of Neurology, Tianjin Children's Hospital, No. 238 Longyan Road, eichen District, Tianjin 300134, China.
| | - Chunquan Cai
- Tianjin Children's Hospital (Children's Hospital of Tianjin University), No. 238 Longyan Road, Beichen District, Tianjin 300134, China; Tianjin Pediatric Research Institute, No. 238 Longyan Road, Beichen District, Tianjin 300134, China; Tianjin Key Laboratory of Birth Defects for Prevention and Treatment, No. 238 Longyan Road, Beichen District, Tianjin 300134, China.
| |
Collapse
|
27
|
Liu Y, Xu L, Hao C, Wu J, Jia X, Ding X, Lin C, Zhu H, Zhang Y. Identification and Validation of Novel Immune-Related Alternative Splicing Signatures as a Prognostic Model for Colon Cancer. Front Oncol 2022; 12:866289. [PMID: 35692800 PMCID: PMC9178000 DOI: 10.3389/fonc.2022.866289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 04/25/2022] [Indexed: 12/24/2022] Open
Abstract
BackgroundIndividual immune-related alternative splicing (AS) events have been found to be significant in immune regulation and cancer prognosis. However, a comprehensive analysis of AS events in cancer cells based on immune-related genes (IRGs) has not been performed, and its clinical value is unknown.MethodsColon cancer cases with AS data were obtained from TCGA, and then, we identified overall survival-related AS events (OS-ASEs) based on IRGs by univariate analyses. Using Lasso regression, multivariate Cox regression, Kaplan–Meier analysis and nomograms, we constructed an AS risk model based on the calculated risk score. Furthermore, associations of the risk score with clinical and immune features were confirmed through the Wilcoxon rank sum test, association analysis, etc. Finally, by qRT–PCR, cell coculture and CCK-8 analyses, we validated the significance of OS-ASEs in colon cancer cell lines and clinical samples.ResultsA total of 3,119 immune-related AS events and 183 OS-ASEs were identified, and 9 OS-ASEs were ultimately used to construct a comprehensive risk model for colon cancer patients. Low-risk patients had better OS and DFS rates than high risk patients. Furthermore, a high risk score corresponded to high numbers of multiple tumour-infiltrating immune cells and high expression of HLA-D region genes and immune checkpoint genes. Notably, we identified for the first time that anti-PD-L1 or anti-CTLA-4 antibodies may decrease the OS of specific colon cancer patients in the low-risk group. Additionally, the in vitro experiment validated that CD46-9652-ES and PSMC5-43011-ES are positively correlated with the infiltration of immune cells and promote the growth of colon cancer cells. CD46-9652-ES can contribute to T cell-mediated tumour cell killing. PSMC5-43011-ES was observed to induce M2 polarization of macrophages.ConclusionsThis study identified and validated immune-related prognostic AS signatures that can be used as a novel AS prognostic model and provide a novel understanding of the relationship between the immune microenvironment and clinical outcomes.
Collapse
Affiliation(s)
- Yunze Liu
- Department of Traditional Chinese Medicine, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Lei Xu
- Department of General Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Institute of Digestive Diseases, Xuzhou Medical University, Xuzhou, China
| | - Chuanchuan Hao
- Department of Traditional Chinese Medicine, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Jin Wu
- Department of General Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Xianhong Jia
- Department of Traditional Chinese Medicine, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Xia Ding
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Changwei Lin
- Department of Gastrointestinal Surgery, The Third Xiang Ya Hospital of Central South University, Changsha, China
| | - Hongmei Zhu
- Department of Traditional Chinese Medicine, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- *Correspondence: Yi Zhang, ; Hongmei Zhu,
| | - Yi Zhang
- Department of General Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Institute of Digestive Diseases, Xuzhou Medical University, Xuzhou, China
- *Correspondence: Yi Zhang, ; Hongmei Zhu,
| |
Collapse
|
28
|
Wang Z, Wu Q, Liu Y, Li Q, Li J. Identification of prognostic alternative splicing signature in gastric cancer. Arch Public Health 2022; 80:145. [PMID: 35614517 PMCID: PMC9131537 DOI: 10.1186/s13690-022-00894-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 05/02/2022] [Indexed: 11/20/2022] Open
Abstract
Background Aberrant alternative splicing (AS) events could be viewed as prognostic indicators in a large number of malignancies. This study aims to identify prognostic AS events, illuminate the function of the splicing variants biomarkers and provide reliable evidence for formulating public health strategies for gastric cancer (GC) surveillance. Methods RNA-Seq data, clinical information and percent spliced in (PSI) values were available in The cancer genome atlas (TCGA) and TCGA SpliceSeq data portal. A three-step regression method was conducted to identify prognostic AS events and construct multi-AS-based signatures. The associations between prognostic AS events and splicing factors were also investigated. Results We identified a total of 1,318 survival-related AS events in GC, parent genes of which were implicated in numerous oncogenic pathways. The final prognostic signatures stratified by seven types of AS events or not stratified performed well in risk prediction for GC patients. Moreover, five signatures based on AA, AD, AT, ES and RI events function as independent prognostic indicators after multivariate adjustment of other clinical variables. Splicing network also showed marked correlation between the expression of splicing factors and PSI value of AS events in GC patients. Conclusion Our findings provide a landscape of AS events and regulatory network in GC, indicating that AS events might serve as prognostic biomarkers and therapeutic targets for GC. Supplementary Information The online version contains supplementary material available at 10.1186/s13690-022-00894-3.
Collapse
Affiliation(s)
- Zhiwu Wang
- Department of Chemoradiotherapy, Tangshan People`S Hospital, Tangshan, China
| | - Qiong Wu
- Department of Chemoradiotherapy, Tangshan People`S Hospital, Tangshan, China
| | - Yankun Liu
- The Cancer Institute, Tangshan People's Hospital, Tangshan, 063001, China
| | - Qingke Li
- The Cancer Institute, Tangshan People's Hospital, Tangshan, 063001, China
| | - Jingwu Li
- The Cancer Institute, Tangshan People's Hospital, Tangshan, 063001, China.
| |
Collapse
|
29
|
Bryzgalov LO, Korbolina EE, Damarov IS, Merkulova TI. The functional insight into the genetics of cardiovascular disease: results from the post-GWAS study. Vavilovskii Zhurnal Genet Selektsii 2022; 26:65-73. [PMID: 35342858 PMCID: PMC8892170 DOI: 10.18699/vjgb-22-10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 11/22/2021] [Accepted: 11/23/2021] [Indexed: 11/19/2022] Open
Abstract
Cardiovascular diseases (CVDs), the leading cause of death worldwide, generally refer to a range of pathological conditions with the involvement of the heart and the blood vessels. A sizable fraction of the susceptibility loci is known, but the underlying mechanisms have been established only for a small proportion. Therefore, there is an increasing need to explore the functional relevance of trait-associated variants and, moreover, to search for novel risk genetic variation. We have reported the bioinformatic approach allowing effective identification of functional non-coding variants by integrated analysis of genome-wide data. Here, the analysis of 1361 previously identified regulatory SNPs (rSNPs) was performed to provide new insights into cardiovascular risk. We found 773,471 coding co-segregating markers for input rSNPs using the 1000 Genomes Project. The intersection of GWAS-derived SNPs with a relevance to cardiovascular traits with these markers was analyzed within a window of 10 Kbp. The effects on the transcription factor (TF) binding sites were explored by DeFine models. Functional pathway enrichment and protein– protein interaction (PPI) network analyses were performed on the targets and the extended genes by STRING and DAVID. Eighteen rSNPs were functionally linked to cardiovascular risk. A significant impact on binding sites of thirteen TFs including those involved in blood cells formation, hematopoiesis, macrophage function, inflammation, and vasoconstriction was found in K562 cells. 21 rSNP gene targets and 5 partners predicted by PPI were enriched for spliceosome and endocytosis KEGG pathways, endosome sorting complex and mRNA splicing REACTOME pathways. Related Gene Ontology terms included mRNA splicing and processing, endosome transport and protein catabolic processes. Together, the findings provide further insight into the biological basis of CVDs and highlight the importance of the precise regulation of splicing and alternative splicing.
Collapse
Affiliation(s)
- L. O. Bryzgalov
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences
| | - E. E. Korbolina
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences
| | - I. S. Damarov
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences
| | - T. I. Merkulova
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences; Novosibirsk State University
| |
Collapse
|
30
|
Liu Q, Fang L, Wu C. Alternative Splicing and Isoforms: From Mechanisms to Diseases. Genes (Basel) 2022; 13:genes13030401. [PMID: 35327956 PMCID: PMC8951537 DOI: 10.3390/genes13030401] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 02/21/2022] [Accepted: 02/22/2022] [Indexed: 11/16/2022] Open
Abstract
Alternative splicing of pre-mRNA is a key mechanism for increasing the complexity of proteins in humans, causing a diversity of expression of transcriptomes and proteomes in a tissue-specific manner. Alternative splicing is regulated by a variety of splicing factors. However, the changes and errors of splicing regulation caused by splicing factors are strongly related to many diseases, something which represents one of this study’s main interests. Further understanding of alternative splicing regulation mediated by cellular factors is also a prospective choice to develop specific drugs for targeting the dynamic RNA splicing process. In this review, we firstly concluded the basic principle of alternative splicing. Afterwards, we showed how splicing isoforms affect physiological activities through specific disease examples. Finally, the available treatment methods relative to adjusting splicing activities have been summarized.
Collapse
|
31
|
Alternative Splicing, Epigenetic Modifications and Cancer: A Dangerous Triangle, or a Hopeful One? Cancers (Basel) 2022; 14:cancers14030560. [PMID: 35158828 PMCID: PMC8833605 DOI: 10.3390/cancers14030560] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 01/15/2022] [Accepted: 01/18/2022] [Indexed: 12/15/2022] Open
Abstract
Simple Summary Epigenetics studies the alteration of gene expression without changing DNA sequence and very often, epigenetic dysregulation causes cancer. Alternative splicing is a mechanism that results in the production of several mRNA isoforms from a single gene and aberrant splicing is also a frequent cause of cancer. The present review is built on the interrelations of epigenetics and alternative splicing. In an intuitive way, we say that epigenetic modifications and alternative splicing are at two vertices of a triangle, the third vertex being occupied by cancer. Interconnection between alternative splicing and epigenetic modifications occurs backward and forward and the mechanisms involved are widely reviewed. These connections also provide novel diagnostic or prognostic tools, which are listed. Finally, as epigenetic alterations are reversible and aberrant alternative splicing may be corrected, the therapeutic possibilities to break the triangle are discussed. Abstract The alteration of epigenetic modifications often causes cancer onset and development. In a similar way, aberrant alternative splicing may result in oncogenic products. These issues have often been individually reviewed, but there is a growing body of evidence for the interconnection of both causes of cancer. Actually, aberrant splicing may result from abnormal epigenetic signalization and epigenetic factors may be altered by alternative splicing. In this way, the interrelation between epigenetic marks and alternative splicing form the base of a triangle, while cancer may be placed at the vertex. The present review centers on the interconnections at the triangle base, i.e., between alternative splicing and epigenetic modifications, which may result in neoplastic transformations. The effects of different epigenetic factors, including DNA and histone modifications, the binding of non-coding RNAs and the alterations of chromatin organization on alternative splicing resulting in cancer are first considered. Other less-frequently considered questions, such as the epigenetic regulation of the splicing machinery, the aberrant splicing of epigenetic writers, readers and erasers, etc., are next reviewed in their connection with cancer. The knowledge of the above-mentioned relationships has allowed increasing the collection of biomarkers potentially useful as cancer diagnostic and/or prognostic tools. Finally, taking into account on one hand that epigenetic changes are reversible, and some epigenetic drugs already exist and, on the other hand, that drugs intended for reversing aberrations in alternative splicing, therapeutic possibilities for breaking the mentioned cancer-related triangle are discussed.
Collapse
|
32
|
Yue C, Zhao T, Zhang S, Liu Y, Zheng G, Zhang Y. Comprehensive characterization of 11 prognostic alternative splicing events in ovarian cancer interacted with the immune microenvironment. Sci Rep 2022; 12:980. [PMID: 35046435 PMCID: PMC8770494 DOI: 10.1038/s41598-021-03836-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 12/07/2021] [Indexed: 12/27/2022] Open
Abstract
Alternative splicing (AS) events play a crucial role in the tumorigenesis and progression of cancer. Transcriptome data and Percent Spliced In (PSI) values of ovarian cancer patients were downloaded from TCGA database and TCGA SpliceSeq. Totally we identified 1472 AS events that were associated with survival of ovarian serous cystadenocarcinoma (OC) and exon skipping (ES) was the most important type. Univariate and multivariate Cox regression analysis were performed to identify survival-associated AS events and developed the prognostic model based on 11-AS events. The immune cells and different response to cytotoxic T lymphocyte associated antigen 4 (CTLA-4) and programmed cell death protein 1 (PD-1) blockers in low-risk and high-risk group of OC patients were analyzed. Ten kinds of immune cells were found up-regulated in low-risk group. Activated B cell, natural killer T cell, natural killer cell and regulatory T cell were associated with survival of OC. The patients in low-risk group had good response to CTLA-4 and PD-1 blockers treatment. Moreover, a regulatory network was established according to the correlation between AS events and splicing factors (SFs). The present study provided valuable insights into the underlying mechanisms of OC. AS events that were correlated with the immune system might be potential therapeutic targets.
Collapse
Affiliation(s)
- Congbo Yue
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, Shandong Province, 250012, People's Republic of China
| | - Tianyi Zhao
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, Shandong Province, 250012, People's Republic of China
| | - Shoucai Zhang
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, Shandong Province, 250012, People's Republic of China
| | - Yingjie Liu
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, Shandong Province, 250012, People's Republic of China
| | - Guixi Zheng
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, Shandong Province, 250012, People's Republic of China.
| | - Yi Zhang
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, Shandong Province, 250012, People's Republic of China.
| |
Collapse
|
33
|
Machour FE, Abu-Zhayia ER, Awwad SW, Bidany-Mizrahi T, Meinke S, Bishara LA, Heyd F, Aqeilan RI, Ayoub N. RBM6 splicing factor promotes homologous recombination repair of double-strand breaks and modulates sensitivity to chemotherapeutic drugs. Nucleic Acids Res 2021; 49:11708-11727. [PMID: 34718714 PMCID: PMC8599755 DOI: 10.1093/nar/gkab976] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 09/26/2021] [Accepted: 10/07/2021] [Indexed: 12/13/2022] Open
Abstract
RNA-binding proteins regulate mRNA processing and translation and are often aberrantly expressed in cancer. The RNA-binding motif protein 6, RBM6, is a known alternative splicing factor that harbors tumor suppressor activity and is frequently mutated in human cancer. Here, we identify RBM6 as a novel regulator of homologous recombination (HR) repair of DNA double-strand breaks (DSBs). Mechanistically, we show that RBM6 regulates alternative splicing-coupled nonstop-decay of a positive HR regulator, Fe65/APBB1. RBM6 knockdown leads to a severe reduction in Fe65 protein levels and consequently impairs HR of DSBs. Accordingly, RBM6-deficient cancer cells are vulnerable to ATM and PARP inhibition and show remarkable sensitivity to cisplatin. Concordantly, cisplatin administration inhibits the growth of breast tumor devoid of RBM6 in mouse xenograft model. Furthermore, we observe that RBM6 protein is significantly lost in metastatic breast tumors compared with primary tumors, thus suggesting RBM6 as a potential therapeutic target of advanced breast cancer. Collectively, our results elucidate the link between the multifaceted roles of RBM6 in regulating alternative splicing and HR of DSBs that may contribute to tumorigenesis, and pave the way for new avenues of therapy for RBM6-deficient tumors.
Collapse
Affiliation(s)
- Feras E Machour
- Department of Biology, Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Enas R Abu-Zhayia
- Department of Biology, Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Samah W Awwad
- Department of Biology, Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Tirza Bidany-Mizrahi
- The Concern Foundation Laboratories, The Lautenberg Center for Immunology and Cancer Research, Department of Immunology and Cancer Research-IMRIC, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Stefan Meinke
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Laboratory of RNA Biochemistry, Takustrasse 6, 14195 Berlin, Germany
| | - Laila A Bishara
- Department of Biology, Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Florian Heyd
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Laboratory of RNA Biochemistry, Takustrasse 6, 14195 Berlin, Germany
| | - Rami I Aqeilan
- The Concern Foundation Laboratories, The Lautenberg Center for Immunology and Cancer Research, Department of Immunology and Cancer Research-IMRIC, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Nabieh Ayoub
- Department of Biology, Technion - Israel Institute of Technology, Haifa 3200003, Israel
| |
Collapse
|
34
|
Ebrahimie E, Rahimirad S, Tahsili M, Mohammadi-Dehcheshmeh M. Alternative RNA splicing in stem cells and cancer stem cells: Importance of transcript-based expression analysis. World J Stem Cells 2021; 13:1394-1416. [PMID: 34786151 PMCID: PMC8567453 DOI: 10.4252/wjsc.v13.i10.1394] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 06/21/2021] [Accepted: 09/14/2021] [Indexed: 02/06/2023] Open
Abstract
Alternative ribonucleic acid (RNA) splicing can lead to the assembly of different protein isoforms with distinctive functions. The outcome of alternative splicing (AS) can result in a complete loss of function or the acquisition of new functions. There is a gap in knowledge of abnormal RNA splice variants promoting cancer stem cells (CSCs), and their prospective contribution in cancer progression. AS directly regulates the self-renewal features of stem cells (SCs) and stem-like cancer cells. Notably, octamer-binding transcription factor 4A spliced variant of octamer-binding transcription factor 4 contributes to maintaining stemness properties in both SCs and CSCs. The epithelial to mesenchymal transition pathway regulates the AS events in CSCs to maintain stemness. The alternative spliced variants of CSCs markers, including cluster of differentiation 44, aldehyde dehydrogenase, and doublecortin-like kinase, α6β1 integrin, have pivotal roles in increasing self-renewal properties and maintaining the pluripotency of CSCs. Various splicing analysis tools are considered in this study. LeafCutter software can be considered as the best tool for differential splicing analysis and identification of the type of splicing events. Additionally, LeafCutter can be used for efficient mapping splicing quantitative trait loci. Altogether, the accumulating evidence re-enforces the fact that gene and protein expression need to be investigated in parallel with alternative splice variants.
Collapse
Affiliation(s)
- Esmaeil Ebrahimie
- School of Animal and Veterinary Sciences, The University of Adelaide, Adelaide 5005, South Australia, Australia
- La Trobe Genomics Research Platform, School of Life Sciences, College of Science, Health and Engineering, La Trobe University, Melbourne 3086, Australia
- School of Biosciences, The University of Melbourne, Melbourne 3010, Australia,
| | - Samira Rahimirad
- Department of Medical Genetics, National Institute of Genetic Engineering and Biotechnology, Tehran 1497716316, Iran
- Division of Urology, Department of Surgery, McGill University and the Research Institute of the McGill University Health Centre, Montreal H4A 3J1, Quebec, Canada
| | | | | |
Collapse
|
35
|
Zhang H, Han B, Han X, Zhu Y, Liu H, Wang Z, Cui Y, Tian R, Gao Z, Tian R, Ren S, Zuo X, Tian J, Zhang F, Niu R. Comprehensive Analysis of Splicing Factor and Alternative Splicing Event to Construct Subtype-Specific Prognosis-Predicting Models for Breast Cancer. Front Genet 2021; 12:736423. [PMID: 34630526 PMCID: PMC8497829 DOI: 10.3389/fgene.2021.736423] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 09/08/2021] [Indexed: 11/27/2022] Open
Abstract
Recent evidence suggests that splicing factors (SFs) and alternative splicing (AS) play important roles in cancer progression. We constructed four SF-risk-models using 12 survival-related SFs. In Luminal-A, Luminal-B, Her-2, and Basal-Like BRCA, SF-risk-models for three genes (PAXBP1, NKAP, and NCBP2), four genes (RBM15B, PNN, ACIN1, and SRSF8), three genes (LSM3, SNRNP200, and SNU13), and three genes (SRPK3, PUF60, and PNN) were constructed. These models have a promising prognosis-predicting power. The co-expression and protein-protein interaction analysis suggest that the 12 SFs are highly functional-connected. Pathway analysis and gene set enrichment analysis suggests that the functional role of the selected 12 SFs is highly context-dependent among different BRCA subtypes. We further constructed four AS-risk-models with good prognosis predicting ability in four BRCA subtypes by integrating the four SF-risk-models and 21 survival-related AS-events. This study proposed that SFs and ASs were potential multidimensional biomarkers for the diagnosis, prognosis, and treatment of BRCA.
Collapse
Affiliation(s)
- He Zhang
- Public Laboratory, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, Tianjin, China
| | - Baoai Han
- Public Laboratory, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, Tianjin, China
| | - Xingxing Han
- Public Laboratory, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, Tianjin, China
| | - Yuying Zhu
- Public Laboratory, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, Tianjin, China
| | - Hui Liu
- Public Laboratory, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, Tianjin, China
| | - Zhiyong Wang
- Public Laboratory, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, Tianjin, China
| | - Yanfen Cui
- Public Laboratory, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, Tianjin, China
| | - Ran Tian
- Public Laboratory, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, Tianjin, China
| | - Zicong Gao
- Public Laboratory, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, Tianjin, China
| | - Ruinan Tian
- Public Laboratory, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, Tianjin, China
| | - Sixin Ren
- Public Laboratory, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, Tianjin, China
| | - Xiaoyan Zuo
- Public Laboratory, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, Tianjin, China
| | - Jianfei Tian
- Public Laboratory, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, Tianjin, China
| | - Fei Zhang
- Public Laboratory, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, Tianjin, China
| | - Ruifang Niu
- Public Laboratory, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, Tianjin, China
| |
Collapse
|
36
|
Luo Y, Li Y, Ge P, Zhang K, Liu H, Jiang N. QKI-Regulated Alternative Splicing Events in Cervical Cancer: Pivotal Mechanism and Potential Therapeutic Strategy. DNA Cell Biol 2021; 40:1261-1277. [PMID: 34551268 DOI: 10.1089/dna.2021.0069] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
QKI is a vital regulator in RNA splicing and maturation, but its role in cervical cancer (CC) is little known. In this study, we found that QKI is decreased in human CC, and overexpression of QKI inhibits HeLa cell proliferation and promotes the apoptosis of cancer cells. We identified hundreds of endogenous QKI-regulated alternative splicing events (ASEs) and differentially expressed genes (DEGs) in QKI-overexpressed HeLa cells by RNA-seq and selectively validated their expression by quantitative reverse-transcription polymerase chain reaction. The gene ontology and Kyoto encyclopedia of genes and genomes (KEGG) enrichment analysis showed that QKI-regulated ASEs and DEGs were closely related to cancer, apoptosis, and transcriptional regulatory functions. In short, QKI may affect the occurrence and development of CC by regulating gene expression through AS.
Collapse
Affiliation(s)
- Yalan Luo
- Laboratory of Integrative Medicine, The First Affiliated Hospital, Dalian Medical University, Dalian, China.,Department of General Surgery, The First Affiliated Hospital, Dalian Medical University, Dalian, China.,Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Yuyuan Li
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, China
| | - Peng Ge
- Laboratory of Integrative Medicine, The First Affiliated Hospital, Dalian Medical University, Dalian, China.,Department of General Surgery, The First Affiliated Hospital, Dalian Medical University, Dalian, China.,Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Kaina Zhang
- Department of Gynecology and Obstetrics, Central Hospital of Zhuanghe City, Zhuanghe, China
| | - Huanhuan Liu
- Laboratory of Integrative Medicine, The First Affiliated Hospital, Dalian Medical University, Dalian, China.,Department of General Surgery, The First Affiliated Hospital, Dalian Medical University, Dalian, China.,Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Nan Jiang
- Department of Gynecology and Obstetrics, The First Affiliated Hospital, Dalian Medical University, Dalian, China
| |
Collapse
|
37
|
Wang S, Xu G, Chao F, Zhang C, Han D, Chen G. HNRNPC Promotes Proliferation, Metastasis and Predicts Prognosis in Prostate Cancer. Cancer Manag Res 2021; 13:7263-7276. [PMID: 34584453 PMCID: PMC8464311 DOI: 10.2147/cmar.s330713] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 09/13/2021] [Indexed: 12/22/2022] Open
Abstract
INTRODUCTION The incidence of prostate cancer remains high worldwide, while exploring new therapeutic targets for prostate cancer is essential. Heterogeneous nuclear ribonucleoproteins have been proved to regulate tumorigeneses in various cancers. This study aimed to explore the role of HNRNPC in prostate cancer progression. METHODS HNRNPC expression and its correlation with clinical features and immune infiltration were analyzed by bioinformatics analysis. The effects of HNRNPC on prostate cell proliferation, migration, and invasion were accessed by EdU, colony formation, transwell, and wound-healing assays. RESULTS The expression level of HNRNPC was significantly increased in prostate cancer tissues and was correlated with the T stage, N stage, Gleason score, PSA level, residual tumors, overall survival, disease-specific survival, and progression-free interval of prostate cancer patients. Silencing HNRNPC inhibited the proliferation and metastasis of prostate cancer cells. The expression of HNRNPC was negatively correlated with the infiltration level of most immune cells in prostate cancer. Mechanistically, HNRNPC may function through regulating gene expression at the posttranscriptional level. CONCLUSION HNRNPC could be a potential marker for the treatment and prognosis prediction of prostate cancer.
Collapse
Affiliation(s)
- Shiyu Wang
- Department of Urology, Jinshan Hospital, Fudan University, Shanghai, 201508, People’s Republic of China
- Department of Surgery, Shanghai Medical College, Fudan University, Shanghai, 200032, People’s Republic of China
| | - Guoxiong Xu
- Research Center for Clinical Medicine, Jinshan Hospital, Fudan University, Shanghai, 201508, People’s Republic of China
| | - Fan Chao
- Department of Urology, Jinshan Hospital, Fudan University, Shanghai, 201508, People’s Republic of China
- Department of Surgery, Shanghai Medical College, Fudan University, Shanghai, 200032, People’s Republic of China
| | - Cong Zhang
- Department of Urology, Jinshan Hospital, Fudan University, Shanghai, 201508, People’s Republic of China
- Department of Surgery, Shanghai Medical College, Fudan University, Shanghai, 200032, People’s Republic of China
| | - Dunsheng Han
- Department of Urology, Jinshan Hospital, Fudan University, Shanghai, 201508, People’s Republic of China
- Department of Surgery, Shanghai Medical College, Fudan University, Shanghai, 200032, People’s Republic of China
| | - Gang Chen
- Department of Urology, Jinshan Hospital, Fudan University, Shanghai, 201508, People’s Republic of China
- Department of Surgery, Shanghai Medical College, Fudan University, Shanghai, 200032, People’s Republic of China
| |
Collapse
|
38
|
Cheng R, Xiao L, Zhou W, Jin X, Xu Z, Xu C, Wang P, Luo M, Wang M, Ma K, Cao H, Huang Y, Lin X, Pang F, Li Y, Jiang Q. A pan-cancer analysis of alternative splicing of splicing factors in 6904 patients. Oncogene 2021; 40:5441-5450. [PMID: 34285345 DOI: 10.1038/s41388-021-01947-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 07/01/2021] [Accepted: 07/08/2021] [Indexed: 02/07/2023]
Abstract
Great progress has been made in the investigation on mutation and expression of splicing factor. However, little is known on the role of alternative splicing of splicing factors across cancers. Here, we reported a pan-cancer analysis of alternative splicing of splicing factors spanning 6904 patients across 16 cancer types, and identified 167 splicing factors with implications regulating cancer-specific splicing patterns through alternative splicing. Furthermore, we found that abnormal splicing events of splicing factors could serve as potential common regulators for alternative splicing in different cancers. In addition, we developed a splicing-derived neoepitopes database (ASPNs), which provided the corresponding putative alternative splicing-derived neoepitopes of 16 cancer types. Our results suggested that alternative splicing of splicing factors involved in the pre-RNA splicing process was common across cancer types and may represent an underestimated hallmark of tumorigenesis.
Collapse
Affiliation(s)
- Rui Cheng
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Lixing Xiao
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Wenyang Zhou
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Xiyun Jin
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Zhaochun Xu
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Chang Xu
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Pingping Wang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Meng Luo
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Mengyun Wang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Kexin Ma
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Huimin Cao
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Yan Huang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Xiaoyu Lin
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Fenglan Pang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Yiqun Li
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Qinghua Jiang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China.
- Key Laboratory of Biological Big Data (Harbin Institute of Technology), Ministry of Education, Harbin, China.
| |
Collapse
|
39
|
Lai J, Yang H, Xu T. Systemic characterization of alternative splicing related to prognosis and immune infiltration in malignant mesothelioma. BMC Cancer 2021; 21:848. [PMID: 34294080 PMCID: PMC8299698 DOI: 10.1186/s12885-021-08548-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 07/07/2021] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Malignant mesothelioma (MM) is a relatively rare and highly lethal tumor with few treatment options. Thus, it is important to identify prognostic markers that can help clinicians diagnose mesothelioma earlier and assess disease activity more accurately. Alternative splicing (AS) events have been recognized as critical signatures for tumor diagnosis and treatment in multiple cancers, including MM. METHODS We systematically examined the AS events and clinical information of 83 MM samples from TCGA database. Univariate Cox regression analysis was used to identify AS events associated with overall survival. LASSO analyses followed by multivariate Cox regression analyses were conducted to construct the prognostic signatures and assess the accuracy of these prognostic signatures by receiver operating characteristic (ROC) curve and Kaplan-Meier survival analyses. The ImmuCellAI and ssGSEA algorithms were used to assess the degrees of immune cell infiltration in MM samples. The survival-related splicing regulatory network was established based on the correlation between survival-related AS events and splicing factors (SFs). RESULTS A total of 3976 AS events associated with overall survival were identified by univariate Cox regression analysis, and ES events accounted for the greatest proportion. We constructed prognostic signatures based on survival-related AS events. The prognostic signatures proved to be an efficient predictor with an area under the curve (AUC) greater than 0.9. Additionally, the risk score based on 6 key AS events proved to be an independent prognostic factor, and a nomogram composed of 6 key AS events was established. We found that the risk score was significantly decreased in patients with the epithelioid subtype. In addition, unsupervised clustering clearly showed that the risk score was associated with immune cell infiltration. The abundances of cytotoxic T (Tc) cells, natural killer (NK) cells and T-helper 17 (Th17) cells were higher in the high-risk group, whereas the abundances of induced regulatory T (iTreg) cells were lower in the high-risk group. Finally, we identified 3 SFs (HSPB1, INTS1 and LUC7L2) that were significantly associated with MM patient survival and then constructed a regulatory network between the 3 SFs and survival-related AS to reveal potential regulatory mechanisms in MM. CONCLUSION Our study provided a prognostic signature based on 6 key events, representing a better effective tumor-specific diagnostic and prognostic marker than the TNM staging system. AS events that are correlated with the immune system may be potential therapeutic targets for MM.
Collapse
Affiliation(s)
- Jinzhi Lai
- Department of Oncology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, Fujian, China
| | - Hainan Yang
- Department of Ultrasound, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| | - Tianwen Xu
- Department of Oncology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, Fujian, China.
| |
Collapse
|
40
|
Identification of prognostic alternative splicing events in sarcoma. Sci Rep 2021; 11:14949. [PMID: 34294833 PMCID: PMC8298452 DOI: 10.1038/s41598-021-94485-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 07/06/2021] [Indexed: 11/20/2022] Open
Abstract
Sarcoma is a rare malignancy with unfavorable prognoses. Accumulating evidence indicates that aberrant alternative splicing (AS) events are generally involved in cancer pathogenesis. The aim of this study was to identify the prognostic value of AS-related survival genes as potential biomarkers, and highlight the functional roles of AS events in sarcoma. RNA-sequencing and AS-event datasets were downloaded from The Cancer Genome Atlas (TCGA) sarcoma cohort and TCGA SpliceSeq, respectively. Survival-related AS events were further assessed using a univariate analysis. A multivariate Cox regression analysis was also performed to establish a survival-gene signature to predict patient survival, and the area-under-the-curve method was used to evaluate prognostic reliability. KOBAS 3.0 and Cytoscape were used to functionally annotate AS-related genes and to assess their network interactions. We detected 9674 AS events in 40,184 genes from 236 sarcoma samples, and the 15 most significant genes were then used to construct a survival regression model. We further validated the involvement of ten potential survival-related genes (TUBB3, TRIM69, ZNFX1, VAV1, KCNN2, VGLL3, AK7, ARMC4, LRRC1, and CRIP1) in the occurrence and development of sarcoma. Multivariate survival model analyses were also performed, and validated that a model using these ten genes provided good classifications for predicting patient outcomes. The present study has increased our understanding of AS events in sarcoma, and the gene-based model using AS-related events may serve as a potential predictor to determine the survival of sarcoma patients.
Collapse
|
41
|
Identification of survival-related alternative splicing signatures in acute myeloid leukemia. Biosci Rep 2021; 41:229155. [PMID: 34212178 PMCID: PMC8292762 DOI: 10.1042/bsr20204037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 06/11/2021] [Accepted: 06/30/2021] [Indexed: 01/25/2023] Open
Abstract
Aberrant RNA alternative splicing (AS) variants play critical roles in tumorigenesis and prognosis in human cancers. Here, we conducted a comprehensive profiling of aberrant AS events in acute myeloid leukemia (AML). RNA AS profile, including seven AS types, and the percent spliced in (PSI) value for each patient were generated by SpliceSeq using RNA-seq data from TCGA. Univariate followed by multivariate Cox regression analysis were used to identify survival-related AS events and develop the AS signatures. A nomogram was developed, and its predictive efficacy was assessed. About 27,892 AS events and 3,178 events were associated with overall survival (OS) after strict filtering. Parent genes of survival-associated AS events were mainly enriched in leukemia-associated processes including chromatin modification, autophagy, and T-cell receptor signaling pathway. The 10 AS signature based on seven types of AS events showed better efficacy in predicting OS of patients than those built on a single AS event type. The area under curve (AUC) value of the 10 AS signature for 3-year OS was 0.91. Gene set enrichment analysis (GSEA) confirmed that these survival-related AS events contribute to AML progression. Moreover, the nomogram showed good predictive performance for patient's prognosis. Finally, the correlation network of AS variants with splicing factor genes found potential important regulatory genes in AML. The present study presented a systematic analysis of survival-related AS events and developed AS signatures for predicting the patient’s survival. Further studies are needed to validate the signatures in independent AML cohorts and might provide a promising perspective for developing therapeutic targets.
Collapse
|
42
|
Minor Intron Splicing from Basic Science to Disease. Int J Mol Sci 2021; 22:ijms22116062. [PMID: 34199764 PMCID: PMC8199999 DOI: 10.3390/ijms22116062] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 05/17/2021] [Accepted: 05/18/2021] [Indexed: 01/14/2023] Open
Abstract
Pre-mRNA splicing is an essential step in gene expression and is catalyzed by two machineries in eukaryotes: the major (U2 type) and minor (U12 type) spliceosomes. While the majority of introns in humans are U2 type, less than 0.4% are U12 type, also known as minor introns (mi-INTs), and require a specialized spliceosome composed of U11, U12, U4atac, U5, and U6atac snRNPs. The high evolutionary conservation and apparent splicing inefficiency of U12 introns have set them apart from their major counterparts and led to speculations on the purpose for their existence. However, recent studies challenged the simple concept of mi-INTs splicing inefficiency due to low abundance of their spliceosome and confirmed their regulatory role in alternative splicing, significantly impacting the expression of their host genes. Additionally, a growing list of minor spliceosome-associated diseases with tissue-specific pathologies affirmed the importance of minor splicing as a key regulatory pathway, which when deregulated could lead to tissue-specific pathologies due to specific alterations in the expression of some minor-intron-containing genes. Consequently, uncovering how mi-INTs splicing is regulated in a tissue-specific manner would allow for better understanding of disease pathogenesis and pave the way for novel therapies, which we highlight in this review.
Collapse
|
43
|
Alternative splicing acts as an independent prognosticator in ovarian carcinoma. Sci Rep 2021; 11:10413. [PMID: 34001978 PMCID: PMC8129203 DOI: 10.1038/s41598-021-89778-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 04/29/2021] [Indexed: 02/04/2023] Open
Abstract
Alternative splicing (AS) events associated with oncogenic processes present anomalous perturbations in many cancers, including ovarian carcinoma. There are no reliable features to predict survival outcomes for ovarian cancer patients. In this study, comprehensive profiling of AS events was conducted by integrating AS data and clinical information of ovarian serous cystadenocarcinoma (OV). Survival-related AS events were identified by Univariate Cox regression analysis. Then, least absolute shrinkage and selection operator (LASSO) and multivariate Cox regression analysis were used to construct the prognostic signatures within each AS type. Furthermore, we established a splicing-related network to reveal the potential regulatory mechanisms between splicing factors and candidate AS events. A total of 730 AS events were identified as survival-associated splicing events, and the final prognostic signature based on all seven types of AS events could serve as an independent prognostic indicator and had powerful efficiency in distinguishing patient outcomes. In addition, survival-related AS events might be involved in tumor-related pathways including base excision repair and pyrimidine metabolism pathways, and some splicing factors might be correlated with prognosis-related AS events, including SPEN, SF3B5, RNPC3, LUC7L3, SRSF11 and PRPF38B. Our study constructs an independent prognostic signature for predicting ovarian cancer patients’ survival outcome and contributes to elucidating the underlying mechanism of AS in tumor development.
Collapse
|
44
|
Shi JY, Bi YY, Yu BF, Wang QF, Teng D, Wu DN. Alternative Splicing Events in Tumor Immune Infiltration in Colorectal Cancer. Front Oncol 2021; 11:583547. [PMID: 33996533 PMCID: PMC8117221 DOI: 10.3389/fonc.2021.583547] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 03/31/2021] [Indexed: 01/05/2023] Open
Abstract
Despite extensive research, the exact mechanisms involved in colorectal cancer (CRC) etiology and pathogenesis remain unclear. This study aimed to examine the correlation between tumor-associated alternative splicing (AS) events and tumor immune infiltration (TII) in CRC. We analyzed transcriptome profiling and clinical CRC data from The Cancer Genome Atlas (TCGA) database and lists of AS-related and immune-related signatures from the SpliceSeq and Innate databases, respectively to develop and validate a risk model of differential AS events and subsequently a TII risk model. We then conducted a two-factor survival analysis to study the association between TII and AS risk and evaluated the associations between immune signatures and six types of immune cells based on the TIMER database. Subsequently, we studied the distribution of six types of TII cells in high- and low-risk groups for seven AS events and in total. We obtained the profiles of AS events/genes for 484 patients, which included 473 CRC tumor samples and 41 corresponding normal samples, and detected 22581 AS events in 8122 genes. Exon Skip (ES) (8446) and Mutually Exclusive Exons (ME) (74) exhibited the most and fewest AS events, respectively. We then classified the 433 patients with CRC into low-risk (n = 217) and high-risk (n = 216) groups based on the median risk score in different AS events. Compared with patients with low-risk scores (mortality = 11.8%), patients with high-risk scores were associated with poor overall survival (mortality = 27.6%). The risk score, cancer stage, and pathological stage (T, M, and N) were closely correlated with prognosis in patients with CRC (P < 0.001). We identified 6479 differentially expressed genes from the transcriptome profiles of CRC and intersected 468 differential immune-related signatures. High-AS-risk and high-TII-risk predicted a poor prognosis in CRC. Different AS types were associated with different TII risk characteristics. Alternate Acceptor site (AA) and Alternate Promoter (AP) events directly affected the concentration of CD4T cells, and the level of CD8T cells was closely correlated with Alternate Terminator (AT) and Exon Skip (ES) events. Thus, the concentration of CD4T and CD8T cells in the CRC immune microenvironment was not specifically modulated by AS. However, B cell, dendritic cell, macrophage, and neutrophilic cell levels were strongly correlated with AS events. These results indicate adverse associations between AS event risk levels and immune cell infiltration density. Taken together, our findings show a clear association between tumor-associated alternative splicing and immune cell infiltration events and patient outcome and could form a basis for the identification of novel markers and therapeutic targets for CRC and other cancers in the future.
Collapse
Affiliation(s)
- Jian-Yu Shi
- Department of Proctology, Ping Yi People's Hospital, Linyi, China
| | - Yan-Yan Bi
- Department of Proctology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Ji Nan, China
| | - Bian-Fang Yu
- Department of Proctology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Ji Nan, China
| | - Qing-Feng Wang
- Department of Basic Pharmacology, College of Integration of Traditional and Western Medicine, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Dan Teng
- Artificial Intelligence and Big Data College, HE University, Shenyang, China
| | - Dong-Ning Wu
- Clinical Evaluation Center, Chinese Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
45
|
Zhang D, Zhang W, Sun R, Huang Z. Novel insights into clear cell renal cell carcinoma prognosis by comprehensive characterization of aberrant alternative splicing signature: a study based on large-scale sequencing data. Bioengineered 2021; 12:1091-1110. [PMID: 33783315 PMCID: PMC8806224 DOI: 10.1080/21655979.2021.1906096] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) is the most common type with poor prognosis in kidney tumor. Growing evidence has indicated that aberrant alternative splicing (AS) events are efficacious signatures for tumor prognosis prediction and therapeutic targets. However, the detailed roles of AS events in ccRCC are largely unknown. In our study, level 3 RNA-seq data was acquired from The Cancer Genome Atlas dataset and corresponding AS profiles were detected with the assistance of SpliceSeq software. A total of 2100 aberrant survival-associated AS events were identified via differential expression and univariate cox regression analysis. The final prognostic panel formed by 17 specific events was developed by stepwise least absolute shrinkage and selection operator (LASSO) penalty, with the area under curve (AUC) values of receiver operator characteristic (ROC) curves keeping above 0.7 spanning 1 year to 5 years. And the results from functional enrichment analyses are unanimous that autophagy could be a potential mechanism of splicing regulation in ccRCC. Furthermore, splicing regulatory network was constructed via Spearman correlation between splicing factors and AS events. Finally, unsupervised clustering analysis revealed three clusters with distinct survival patterns, and associated with specific clinicopathological phenotypes. In overall, we developed a robust and individualized predictive model based on large-scale sequencing data. The identified AS events and splicing network may be valuable in deciphering the crucial posttranscriptional mechanisms on tumorigenesis of ccRCC.
Collapse
Affiliation(s)
- Dong Zhang
- Department of Breast Surgery, Qilu Hospital, Shandong University, Jinan, China.,Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Wenjie Zhang
- Cheeloo College of Medicine, Shandong University, Jinan, China.,Department of General Surgery, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
| | - Rui Sun
- Cheeloo College of Medicine, Shandong University, Jinan, China.,Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Jinan, China
| | - Zhongxian Huang
- Department of Urology, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
46
|
Liu J, Lv D, Wang X, Wang R, Li X. Systematic Profiling of Alternative Splicing Events in Ovarian Cancer. Front Oncol 2021; 11:622805. [PMID: 33763357 PMCID: PMC7982604 DOI: 10.3389/fonc.2021.622805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 02/15/2021] [Indexed: 12/02/2022] Open
Abstract
Alternative splicing (AS) is significantly related to the development of tumor and the clinical outcome of patients. In this study, our aim was to systematically analyze the survival-related AS signal in ovarian serous cystadenocarcinoma (OV) and estimate its prognostic validity in 48,049 AS events out of 21,854 genes. We studied 1,429 AS events out of 1,125 genes, which were significantly related to the overall survival (OS) in patients with OV. We established alternative splicing features on the basis of seven AS events and constructed a new comprehensive prognostic model. Kaplan-Meier curve analysis showed that seven AS characteristics and comprehensive prognostic models could strongly stratify patients with ovarian cancer and make them distinctive prognosis. ROC analysis from 0.781 to 0.888 showed that these models were highly efficient in distinguishing patient survival. We also verified the prognostic characteristics of these models in a testing cohort. In addition, uni-variate and multivariate Cox analysis showed that these models were superior independent risk factors for OS in patients with OV. Interestingly, AS events and splicing factor (SFs) networks revealed an important link between these prognostic alternative splicing genes and splicing factors. We also found that the comprehensive prognosis model signature had higher prediction ability than the mRNA signature. In summary, our study provided a possible prognostic prediction model for patients with OV and revealed the splicing network between AS and SFs, which could be used as a potential predictor and therapeutic target for patients with OV.
Collapse
Affiliation(s)
- Jia Liu
- Department of Gynecology, Liaoning Cancer Hospital & Institute, Cancer Hospital of China Medical University, Shenyang, China
| | - Dekang Lv
- Cancer Center, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Xiaobin Wang
- Department of Gynecology, Liaoning Cancer Hospital & Institute, Cancer Hospital of China Medical University, Shenyang, China
| | - Ruicong Wang
- Department of Gynecology and Obsterics, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xiaodong Li
- Cancer Center, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| |
Collapse
|
47
|
Lou S, Zhang J, Zhai Z, Yin X, Wang Y, Fang T, Xue Y. Development and validation of an individual alternative splicing prognostic signature in gastric cancer. Aging (Albany NY) 2021; 13:5824-5844. [PMID: 33612482 PMCID: PMC7950272 DOI: 10.18632/aging.202507] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 12/23/2020] [Indexed: 02/07/2023]
Abstract
Gastric cancer (GC) is a heterogeneous disease with different clinical manifestations and prognoses. Alternative splicing (AS) is a determinant of gene expression and contributes to protein diversity from a rather limited gene transcript in metazoans. AS events are associated with different aspects of cancer biology, including cell proliferation, apoptosis, invasion, etc. Here, we present a comprehensive analysis of the prognostic AS profile in GC. GC-specific AS (GCAS) events were analyzed, and overall survival-associated GCAS (OS-GCAS) events were verified among the genome-wide AS events identified in The Cancer Genome Atlas (TCGA) database. In total, 1,287 GCAS events of 837 genes and 173 OS-GCAS events of 130 genes were identified. The parental genes of OS-GCAS events were significantly enriched in the development of GC. Protein-protein interaction (PPI) and OS-GCAS-associated splicing factor (SF) interaction networks were constructed. Multivariate Cox regression analysis with least absolute shrinkage and selection operator (LASSO) penalty was performed to establish a prognostic risk formula, representing 23 OS-GCAS events. The low-risk group had better OS than the high-risk group and lower immune and stromal scores. Cox proportional hazard regression was applied to generate an AS-clinical integrated prognostic model with a considerable area under the curve (AUC) value in both the training and validation datasets. Our study provides a profile of OS-GCAS events and an AS-clinical nomogram to predict the prognosis of GC.
Collapse
Affiliation(s)
- Shenghan Lou
- Department of Gastroenterological Surgery, Harbin Medical University Cancer Hospital, Harbin 150081, Heilongjiang Province, China
| | - Jian Zhang
- Department of Thoracic Surgery, Harbin Medical University Cancer Hospital, Harbin 150081, Heilongjiang Province, China
| | - Zhao Zhai
- Department of Gastroenterological Surgery, Harbin Medical University Cancer Hospital, Harbin 150081, Heilongjiang Province, China
| | - Xin Yin
- Department of Gastroenterological Surgery, Harbin Medical University Cancer Hospital, Harbin 150081, Heilongjiang Province, China
| | - Yimin Wang
- Department of Gastroenterological Surgery, Harbin Medical University Cancer Hospital, Harbin 150081, Heilongjiang Province, China
| | - Tianyi Fang
- Department of Gastroenterological Surgery, Harbin Medical University Cancer Hospital, Harbin 150081, Heilongjiang Province, China
| | - Yingwei Xue
- Department of Gastroenterological Surgery, Harbin Medical University Cancer Hospital, Harbin 150081, Heilongjiang Province, China
| |
Collapse
|
48
|
Qiu J, Wang C, Hu H, Chen S, Ding X, Cai Y. Transcriptome analysis and prognostic model construction based on splicing profiling in glioblastoma. Oncol Lett 2021; 21:138. [PMID: 33552257 PMCID: PMC7798022 DOI: 10.3892/ol.2020.12399] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Accepted: 11/27/2020] [Indexed: 12/24/2022] Open
Abstract
Glioblastoma (GBM) is the most aggressive malignant brain tumour, with high morbidity and mortality rates. Currently, there is a lack of systematic and comprehensive analysis on the prognostic significance of alternative splicing (AS) profiling for GBM. The GBM data, including RNA-sequencing, corresponding clinical information and the expression levels of splicing factor genes, were downloaded from The Cancer Genome Atlas and the SpliceAid2 database. The prognostic models were assessed by the least absolute shrinkage and selection operator Cox regression analysis. The correlation network between survival-associated AS events and splicing factors was plotted. Prognostic models were built for every AS event type and performed well for risk stratification in patients with GBM. The final prognostic signature served as an independent prognostic factor [hazard ratio (HR), 4.61; 95% confidence interval (CI), 2.97-7.16; P=9.66×10-12] for several clinical parameters, including age, sex, isocitrate dehydrogenase mutation, O6-methylguanine-DNA methyltransferase promoter methylation and risk score. The HR for risk score with GBM was 1.0063 (95% CI, 1.0024-1.0103). The splicing regulatory network indicated that heat shock protein b-1, protein arginine N-methyltransferase 5, protein FAM50B and endoplasmic reticulum chaperone BiP genes were independent prognostic factors for GBM. The results of the present study support the ongoing effort in developing novel genomic models and providing potentially more effective treatment options for patients with GBM.
Collapse
Affiliation(s)
- Jiting Qiu
- Department of Neurosurgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 201803, P.R. China
| | - Chunhui Wang
- Department of Neurosurgery, Changzheng Hospital, Second Military Medical University, Shanghai 200003, P.R. China
| | - Hongkang Hu
- Department of Neurosurgery, Changzheng Hospital, Second Military Medical University, Shanghai 200003, P.R. China
| | - Sarah Chen
- University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27514, USA
| | - Xuehua Ding
- Department of Neurosurgery, Changzheng Hospital, Second Military Medical University, Shanghai 200003, P.R. China
| | - Yu Cai
- Department of Neurosurgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 201803, P.R. China
| |
Collapse
|
49
|
An interactive network of alternative splicing events with prognostic value in geriatric lung adenocarcinoma via the regulation of splicing factors. Biosci Rep 2020; 40:226556. [PMID: 33000861 PMCID: PMC7569206 DOI: 10.1042/bsr20202338] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 09/24/2020] [Accepted: 09/29/2020] [Indexed: 12/23/2022] Open
Abstract
Alternative splicing (AS), an essential process for the maturation of mRNAs, is involved in tumorigenesis and tumor progression, including angiogenesis, apoptosis, and metastasis. AS changes can be frequently observed in different tumors, especially in geriatric lung adenocarcinoma (GLAD). Previous studies have reported an association between AS events and tumorigenesis but have lacked a systematic analysis of its underlying mechanisms. In the present study, we obtained splicing event information from SpliceSeq and clinical information regarding GLAD from The Cancer Genome Atlas. Survival-associated AS events were selected to construct eight prognostic index (PI) models. We also constructed a correlation network between splicing factors (SFs) and survival-related AS events to identify a potential molecular mechanism involved in regulating AS-related events in GLAD. Our study findings confirm that AS has a strong prognostic value for GLAD and sheds light on the clinical significance of targeting SFs in the treatment of GLAD.
Collapse
|
50
|
Silva GR, Mattos DS, Bastos ACF, Viana BPPB, Brum MCM, Ferreira LB, Gimba ERP. Osteopontin-4 and Osteopontin-5 splice variants are expressed in several tumor cell lines. Mol Biol Rep 2020; 47:8339-8345. [PMID: 33006711 DOI: 10.1007/s11033-020-05867-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 09/25/2020] [Indexed: 02/07/2023]
Abstract
Among osteopontin splice variants (OPN-SV), the expression profile of osteopontin-4 (OPN4) and osteopontin-5 (OPN5) has not been addressed in distinct cancer types. We herein aimed to investigate their expression in several cancer cell lines, besides comparing it in relation to the three previously described OPN-SV: OPNa, OPNb and OPNc. Total RNA from cancer cell lines, including prostate (PC3 and DU145), ovarian (A2780), breast (MCF-7 and MDA-MB-231), colorectal (Caco-2, HT-29 and HCT-116), thyroid (TT, TPC1 and 8505c) and lung (A549 and NCI-H460) was extracted, followed by cDNA synthesis. OPN-SV transcript analysis by RT-PCR or RT-qPCR were performed using OPN-SV specific oligonucleotides and gapdh and actin transcripts were used as housekeeping controls. OPN4 and OPN5 transcripts displayed co-expression in most tested cell lines. OPN4 was found expressed in similar or higher levels in relation to OPN5. Moreover, in most tested cell lines, OPN4 is also expressed in similar levels to OPNa or OPNb. The expression of OPN5 is also generally variable in relation to the other OPN-SV, but expressed in similar or higher levels in relation to OPNc, depending on each tested cell line. OPN4 and OPN5 seem to be co-expressed in several tumor types and OPN4 is one of the most overexpressed OPN-SV in distinct tumor cell lines. Once both OPN4 and OPN5 are differentially expressed and also evidence tumor-specific expression patterns, we hypothesize that similarly to the other OPN-SV, they also possibly contribute to key aspects of tumor progression, what should be further functionally investigated in distinct tumor models.
Collapse
Affiliation(s)
- Gabriela Ribeiro Silva
- Programa de Oncobiologia Celular e Molecular, Instituto Nacional de Câncer, Rua André Cavalcanti, 37, 3° andar, Rio de Janeiro, CEP: 20 231 050, Brazil.,Programa de Pós-Graduação Em Ciências Biomédicas, Fisiologia E Farmacologia, Instituto Biomédico, Av. Prof. Hernani Melo, Niterói, 101, CEP24210-130, Brazil
| | - Daniella Santos Mattos
- Programa de Oncobiologia Celular e Molecular, Instituto Nacional de Câncer, Rua André Cavalcanti, 37, 3° andar, Rio de Janeiro, CEP: 20 231 050, Brazil.,Programa de Pós-Graduação Stricto Sensu em Oncologia, Instituto Nacional de Câncer, Rua André Cavalcanti, 37, 3° andar, Rio de Janeiro, CEP: 20 231 050, Brazil
| | - Ana Clara Fonseca Bastos
- Programa de Oncobiologia Celular e Molecular, Instituto Nacional de Câncer, Rua André Cavalcanti, 37, 3° andar, Rio de Janeiro, CEP: 20 231 050, Brazil.,Programa de Pós-Graduação Stricto Sensu em Oncologia, Instituto Nacional de Câncer, Rua André Cavalcanti, 37, 3° andar, Rio de Janeiro, CEP: 20 231 050, Brazil
| | - Bruna Prunes Pena Baroni Viana
- Programa de Oncobiologia Celular e Molecular, Instituto Nacional de Câncer, Rua André Cavalcanti, 37, 3° andar, Rio de Janeiro, CEP: 20 231 050, Brazil.,Programa de Pós-Graduação Stricto Sensu em Oncologia, Instituto Nacional de Câncer, Rua André Cavalcanti, 37, 3° andar, Rio de Janeiro, CEP: 20 231 050, Brazil
| | - Mariana Concentino Menezes Brum
- Programa de Oncobiologia Celular e Molecular, Instituto Nacional de Câncer, Rua André Cavalcanti, 37, 3° andar, Rio de Janeiro, CEP: 20 231 050, Brazil.,Programa de Pós-Graduação Stricto Sensu em Oncologia, Instituto Nacional de Câncer, Rua André Cavalcanti, 37, 3° andar, Rio de Janeiro, CEP: 20 231 050, Brazil
| | - Luciana Bueno Ferreira
- Programa de Oncobiologia Celular e Molecular, Instituto Nacional de Câncer, Rua André Cavalcanti, 37, 3° andar, Rio de Janeiro, CEP: 20 231 050, Brazil.,Programa de Pós-Graduação Stricto Sensu em Oncologia, Instituto Nacional de Câncer, Rua André Cavalcanti, 37, 3° andar, Rio de Janeiro, CEP: 20 231 050, Brazil
| | - Etel Rodrigues Pereira Gimba
- Programa de Oncobiologia Celular e Molecular, Instituto Nacional de Câncer, Rua André Cavalcanti, 37, 3° andar, Rio de Janeiro, CEP: 20 231 050, Brazil. .,Programa de Pós-Graduação Stricto Sensu em Oncologia, Instituto Nacional de Câncer, Rua André Cavalcanti, 37, 3° andar, Rio de Janeiro, CEP: 20 231 050, Brazil. .,Divisão de Pesquisa Clínica, Instituto Nacional de Câncer, Rua André Cavalcanti, 37, 3° andar, Rio de Janeiro, CEP: 20 231 050, Brazil. .,Departamento de Ciências da Natureza, Instituto de Humanidades E Saúde, Universidade Federal Fluminense, Rua Recife 1-7, Bairro Bela Vista, Rio das Ostras, RJ, CEP 28880-000, Brazil. .,Programa de Pós-Graduação Em Ciências Biomédicas, Fisiologia E Farmacologia, Instituto Biomédico, Av. Prof. Hernani Melo, Niterói, 101, CEP24210-130, Brazil.
| |
Collapse
|