1
|
Sepehri S, De Win D, Heymans A, Van Goethem F, Rodrigues RM, Rogiers V, Vanhaecke T. Next generation risk assessment of hair dye HC yellow no. 13: Ensuring protection from liver steatogenic effects. Regul Toxicol Pharmacol 2025; 159:105794. [PMID: 40024558 DOI: 10.1016/j.yrtph.2025.105794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 02/17/2025] [Accepted: 02/27/2025] [Indexed: 03/04/2025]
Abstract
This study employs animal-free Next Generation Risk Assessment (NGRA) principles to evaluate the safety of repeated dermal exposure to 2.5% (w/w) HC Yellow No. 13 (HCY13) hair dye. As multiple in silico tools consistently flagged hepatotoxic potential, likely due to HCY13's trifluoromethyl group, which is known to interfere with hepatic lipid metabolism, liver steatosis was chosen as the primary mode of action for evaluation. AOP-guided in vitro tests were conducted, exposing human stem cell-derived hepatic cells to varying HCY13 concentrations over 72 h. The expression of 11 lipid metabolism-related marker genes (AHR, PPARA, LXRA, APOB, ACOX1, CPT1A, FASN, SCD1, DGAT2, CD36, and PPARG) and triglyceride accumulation, a phenotypic hallmark of steatosis, were measured. PROAST software was used to calculate in vitro Points of Departure (PoDNAM) for each biomarker. Using GastroPlus 9.9, physiologically-based pharmacokinetic (PBPK) models estimated internal liver concentrations (Cmax liver) of HCY13, ranging from 4 to 20 pM. All PoDNAM values significantly exceeded the predicted Cmax liver, indicating that HCY13 at 2.5% (w/w) is unlikely to induce liver steatosis under the assumed conditions. This research demonstrates the utility of NGRA, integrating AOP-based in vitro assays and computational models to protect human health and support regulatory decision-making without animal testing.
Collapse
Affiliation(s)
- Sara Sepehri
- Department of In Vitro Toxicology and Dermato-Cosmetology (IVTD), Vrije Universiteit Brussel, Brussels, Belgium.
| | - Dinja De Win
- Department of In Vitro Toxicology and Dermato-Cosmetology (IVTD), Vrije Universiteit Brussel, Brussels, Belgium.
| | - Anja Heymans
- Department of In Vitro Toxicology and Dermato-Cosmetology (IVTD), Vrije Universiteit Brussel, Brussels, Belgium.
| | - Freddy Van Goethem
- Department of In Vitro Toxicology and Dermato-Cosmetology (IVTD), Vrije Universiteit Brussel, Brussels, Belgium.
| | - Robim M Rodrigues
- Department of In Vitro Toxicology and Dermato-Cosmetology (IVTD), Vrije Universiteit Brussel, Brussels, Belgium.
| | - Vera Rogiers
- Department of In Vitro Toxicology and Dermato-Cosmetology (IVTD), Vrije Universiteit Brussel, Brussels, Belgium.
| | - Tamara Vanhaecke
- Department of In Vitro Toxicology and Dermato-Cosmetology (IVTD), Vrije Universiteit Brussel, Brussels, Belgium.
| |
Collapse
|
2
|
Ho KT, Chu FY, Lin YK, Chin HH, Yang SC, Yang CP, Chang YH. Interleukin-4 ameliorates macrophage lipid stress through promoting cholesterol efflux and lipid homeostasis. Cytokine 2025; 188:156869. [PMID: 39954486 DOI: 10.1016/j.cyto.2025.156869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 12/23/2024] [Accepted: 01/13/2025] [Indexed: 02/17/2025]
Abstract
Over-nutrition and lipid metabolic abnormalities are correlated with obesity and type 2 diabetes mellitus (T2DM). Individuals with long-term hyperglycemia and dyslipidemia are susceptible to life-threatening complications such as atherosclerosis. Excess amounts of modified low density lipoprotein (mLDL) attract circulating monocytes to resident at arterial wall and differentiate into pro-inflammatory M1 macrophages. M1 cells uptake mLDL through scavenger receptors-mediated endocytosis, leading to increased lipids influx, cholesterol accumulation and foam cell formation. Besides, macrophages are attracted and infiltrated into the hypertrophic adipose tissue to mediate microenvironmental lipid metabolism. Our previous studies demonstrate that anti-inflammatory interleukin-4 (IL-4) regulates lipid metabolism by inhibiting lipid accumulation and promoting lipolysis of mature adipocytes. The effects of IL-4-polarized M2 macrophages on 3T3-L1 adipogenesis and macrophage-adipocyte interaction were explored in the present study. Our results showed lipid deposits and lipid droplets (LDs)-anchored perilipin of adipocytes cultured in IL-4-polarized M2-conditioned medium (M2-CM) were decreased, while adipogenesis-driving transcription factors and critical lipid metabolic enzymes remained unaffected. It indicates that M2-secreted mediators down-regulate lipid deposits and LDs formation in late adipogenic phase rather than interfering early programming phase and lipid synthesis machinery. In addition, IL-4 reduced intracellular lipid loads by up-regulating cholesterol efflux ATP-binding cassette transporter A1 (ABCA1) and ABCG1 despite cholesterol influx CD36 was also elevated. Accordingly, IL-4 shows beneficial effects to prevent atherosclerosis via promoting catabolism of the internalized lipids and cholesterol efflux, thus efficiently reduces lipid overload and foam cell formation. These findings illustrate novel roles and protective function of IL-4 to reduce the risk of atherosclerosis incidence by efficiently promoting macrophage cholesterol efflux and lipid homeostasis.
Collapse
Affiliation(s)
- Kuo-Ting Ho
- Center for Precision Medicine, Yi-He Hospital, Quanzhou, Fujian Province, PR China; HI. Q Biomedical Laboratory, Takyun Industrial Park, Quanzhou, Fujian Province, PR China
| | - Fang-Yeh Chu
- Department of Clinical Pathology, Far Eastern Memorial Hospital, New Taipei City 220, Taiwan; Graduate School of Biotechnology and Bioengineering, Yuan Ze University, Taoyuan 320, Taiwan; Department of Medical Laboratory Science and Biotechnology, Yuanpei University 300, Taiwan; School of Medical Laboratory Science and Biotechnology, Taipei Medical University, Taipei 110, Taiwan
| | - Yi-Kai Lin
- Department of Biotechnology and Laboratory Science in Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Ho-Hsun Chin
- Department of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung 402, Taiwan; Laboratory Accreditation Department II, Taiwan Accreditation Foundation, Hsinchu, Taiwan
| | - Shun-Chun Yang
- Department of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung 402, Taiwan; Department of Clinical Pathology, Min-Sheng General Hospital, Taoyuan 320, Taiwan
| | - Ching-Ping Yang
- Department of Biotechnology and Laboratory Science in Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Yih-Hsin Chang
- Department of Biotechnology and Laboratory Science in Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan.
| |
Collapse
|
3
|
Wang H, Dong Y, Song Y, Colon M, Yapundich N, Ricketts S, Liu X, Farber G, Qian Y, Qian L, Liu J. Charting Postnatal Heart Development Using In Vivo Single-Cell Functional Genomics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.10.642473. [PMID: 40161658 PMCID: PMC11952397 DOI: 10.1101/2025.03.10.642473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
The transition at birth, marked by increased circulatory demands and rapid growth, necessitates extensive remodeling of the heart's structure, function, and metabolism. This transformation requires precise spatial and temporal coordination among diverse cardiac cell types; central to this process is cardiomyocyte maturation, yet the regulatory mechanisms driving these changes remain poorly understood. Here, we present a temporal and spatial atlas of postnatal hearts by integrating single-nucleus transcriptomics with image-based spatial transcriptomics, which uncovers the dynamic regulatory networks of cardiomyocyte maturation. To functionally interrogate candidate regulators in vivo , we developed Probe-based Indel-detectable Perturb-seq (PIP-seq), a high-throughput platform that uses probe-based chemistry to directly capture sgRNA expression, perturbation status, and transcriptomic profiles at single-nucleus resolution. Applying PIP-seq to postnatal cardiac development identified 21 novel regulators of cardiomyocyte maturation, highlighting critical nodal points in this process. Our study establishes a high-resolution framework for dissecting postnatal heart development, underscoring the integrative and highly ordered roles of microenvironment and intercellular communication in cardiomyocyte maturation. Importantly, PIP-seq enables systematic, high-throughput exploration of gene function and networks underlying complex biological processes in their native in vivo context.
Collapse
|
4
|
Zhu W, Ma J, Zhang T, Zhu M, Duan Y, Yang X, Chen Y. Reversed role of CD36 deficiency in high-fat diet or methionine/choline-deficient diet-induced hepatic steatosis and steatohepatitis. Front Pharmacol 2025; 16:1522177. [PMID: 40110132 PMCID: PMC11919839 DOI: 10.3389/fphar.2025.1522177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 02/17/2025] [Indexed: 03/22/2025] Open
Abstract
Introduction Cluster of differentiation 36 (CD36) is highly expressed in the liver of patients with metabolic dysfunction-associated fatty liver disease (MAFLD) or metabolic dysfunction-associated steatohepatitis (MASH). However, the precise role of CD36 in MAFLD/MASH is controversial. In the current study, we aimed to uncover the role of CD36 in the early stage of MAFLD/MASH induced by high-fat diet (HFD) and methionine/choline-deficient (MCD) diet. Methods CD36-/- mice and littermate control mice were fed a normal food diet (NCD); HFD or MCD diet for 6 weeks. Results We determined that CD36 deficiency attenuated HFD-induced hepatic steatosis while exacerbating MCD diet-induced steatohepatitis. Mechanistically, CD36 deficiency reduced HFD-induced expression of fatty acid synthase (FASN), sterol regulatory element binding protein 1c (SREBP1c), and acetyl-CoA carboxylase alpha (ACC1), thereby inhibiting de novo fatty acid synthesis. The expression of superoxide dismutase and genes involving fatty acid oxidation was inhibited by MCD diet. CD36 deficiency reduced expression of genes involving fatty acid oxidation, while MCD diet had no effect on these genes expression in CD36-/- mice. Meanwhile, MCD diet-reduced superoxide dismutase expression was further inhibited by CD36 deficiency. Thus, MCD-induced liver ROS and inflammation were further enhanced by CD36 deficiency. By liver lipidomic analysis, we found that the levels of triglyceride (TG), diacylglycerols (DG), acylcarnitine (AcCA), ceramide (Cer) and LPC were increased, while phosphatidylcholine/phosphatidylethanolamine (PC/PE) were decreased in MCD diet-treated CD36-/- mice compared with MCD diet-treated wild type mice. Indeed, the expression of serine palmitoyltransferase 2 (SPTLC2), the key rate-limiting enzyme of ceramide synthesis, was higher in CD36-/- mice. Discussion CD36 deficiency improves HFD-induced MAFLD by inhibiting fatty acid synthesis, while accelerating MCD diet-induced MASH via promoting Cer, LPC, TG and DG accumulation to accelerate liver inflammation. The complex role of CD36 in MAFLD/MASH needs more investigation to discover the precise and effective strategy when targeting CD36.
Collapse
Affiliation(s)
- Wenya Zhu
- Key Laboratory of Major Metabolic Diseases and Nutritional Regulation of Anhui Department of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Jialing Ma
- Department of Health Toxicology, Key Laboratory for Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tingting Zhang
- School of Pharmacy, East China Normal University, Shanghai, China
| | - Mengmeng Zhu
- Key Laboratory of Major Metabolic Diseases and Nutritional Regulation of Anhui Department of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Yajun Duan
- Division of Life Sciences and Medicine, Department of Cardiology, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui, China
| | - Xiaoxiao Yang
- Key Laboratory of Major Metabolic Diseases and Nutritional Regulation of Anhui Department of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Yuanli Chen
- Key Laboratory of Major Metabolic Diseases and Nutritional Regulation of Anhui Department of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| |
Collapse
|
5
|
Zhao JD, Fang ZH. Proteomic Analysis of the Effects of Shenzhu Tiaopi Granules on Model Rats with Type 2 Diabetes Mellitus. Diabetes Metab Syndr Obes 2025; 18:583-599. [PMID: 40026899 PMCID: PMC11871873 DOI: 10.2147/dmso.s493036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Accepted: 01/22/2025] [Indexed: 03/05/2025] Open
Abstract
Background Shenzhu Tiaopi granule (STG) has antidiabetic functions. Data-independent acquisition proteomic technology is an integral part of systems biology. Herein, proteomics was used to analyse the effects of STG on type 2 diabetes mellitus (T2DM) and the mechanism by which STG normalizes glucose metabolism. Methods Goto-Kakizaki (GK) T2DM model (Mod) rats, aged 15-16 weeks and with a fasting blood glucose (FBG) level of ≥11.1 mmol/L, were treated with metformin or STG for 12 weeks. Wistar rats aged 15-16 weeks were included in the control (Con) group. Body weight, FBG, total cholesterol (TC), total triglyceride (TG) levels and low-density lipoprotein (LDL-C) levels were measured, and pathological observation, Western blot analysis and data-independent acquisition proteomics of the liver were performed. Results Significant differences in FBG, TC, TG, LDL-C (p < 0.01) and pathological liver morphology were observed between the Mod group and Con group, whereas both metformin and STG normalized the glucose and lipid metabolism indicators (p < 0.05 or p < 0.01). In total, 5856 proteins were identified via proteomic analysis, 97 of which were significantly differentially expressed in the liver and affected fatty acid metabolism, unsaturated fatty acid biosynthesis, the peroxisome proliferator-activated receptor (PPAR) signalling pathway, pyruvate metabolism, and terpenoid backbone biosynthesis. Screening identified 10 target proteins, including perilipin-2 (Plin2), pyruvate dehydrogenase kinase 4, farnesyl diphosphate synthase (Fdps) and farnesyl-diphosphate farnesyltransferase 1. Among these proteins, the key proteins were Plin2 and Fdps, which were found to be associated with the PPAR signalling pathway and terpenoid backbone biosynthesis via relationship networks. Plin2 and Fdps are closely related to hyperglycaemia. STG can downregulate Plin2 and upregulate Fdps (p < 0.01). Conclusion STG ameliorated hyperglycaemia by significantly altering the expression of different proteins, especially Fdps and Plin2, in the livers of GK rats. These findings may reveal the potential of traditional Chinese medicine for treating T2DM.
Collapse
Affiliation(s)
- Jin-Dong Zhao
- Department of Endocrinology Two, the First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui Province, 230031, People’s Republic of China
- Center for Xin’an Medicine and Modernization of Traditional Chinese Medicine of IHM, the First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui Province, 230012, People’s Republic of China
- Diabetes Institute, Anhui Academy Chinese Medicine, Hefei, 230012, People’s Republic of China
| | - Zhao-Hui Fang
- Department of Endocrinology Two, the First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui Province, 230031, People’s Republic of China
- Center for Xin’an Medicine and Modernization of Traditional Chinese Medicine of IHM, the First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui Province, 230012, People’s Republic of China
- Diabetes Institute, Anhui Academy Chinese Medicine, Hefei, 230012, People’s Republic of China
| |
Collapse
|
6
|
Khalifa O, Ayoub S, Arredouani A. Exploring the Putative Involvement of MALAT1 in Mediating the Beneficial Effect of Exendin-4 on Oleic Acid-Induced Lipid Accumulation in HepG2 Cells. Biomedicines 2025; 13:370. [PMID: 40002783 PMCID: PMC11853215 DOI: 10.3390/biomedicines13020370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 01/27/2025] [Accepted: 02/01/2025] [Indexed: 02/27/2025] Open
Abstract
Background/Objectives: The reduction of oleic acid (OA)-induced steatosis in HepG2 cells observed upon treatment with the glucagon-like peptide-1 receptor agonist (GLP-1RA) Exendin-4 (Ex-4) is associated with the modulation of the expression of several microRNAs, long non-coding RNAs (lncRNAs), and mRNAs. Notably, MALAT1, an lncRNA, shows significant downregulation in the presence of Ex-4 as compared to OA alone. In this study, we aimed to explore the role of MALAT1 in the positive impact of Ex-4 on OA-induced lipid accumulation in HepG2 cells. Methods: Steatosis in HepG2 cells was induced by treating them with 400 µM OA. The effect of Ex-4 on steatosis was examined by treating the steatotic cells with 200 nM of EX-4 for 3 h. MALAT1 was silenced with siRNA, while gene expression was quantified using qRT-PCR. Results: In the presence of Ex-4, the silencing of MALAT1 did not exert any discernible influence on de novo lipogenesis genes such as PPARγ and SREBP1. However, MALAT1 silencing significantly affected, to varying degrees, the expression levels of several lipid metabolism genes such as FAS, ACADL, CPT1A, and MTTP. Conclusions: Further investigations are warranted to fully decipher the role of the Ex-4-MALAT1 in the positive impact of GLP-1RAs on steatosis.
Collapse
Affiliation(s)
- Olfa Khalifa
- Diabetes Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation Doha, Doha P.O. Box 34110, Qatar;
| | - Sama Ayoub
- Weill Cornell Medicine Qatar, Qatar Foundation, Doha P.O. Box 24144, Qatar;
| | - Abdelilah Arredouani
- Diabetes Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation Doha, Doha P.O. Box 34110, Qatar;
- College of Health and Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, Doha P.O. Box 34110, Qatar
| |
Collapse
|
7
|
Yang X, Wang J, Jia X, Yang Y, Fang Y, Ying X, Li H, Zhang M, Wei J, Pan Y. Microglial polarization in Alzheimer's disease: Mechanisms, implications, and therapeutic opportunities. J Alzheimers Dis 2025:13872877241313223. [PMID: 39894910 DOI: 10.1177/13872877241313223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by the accumulation of amyloid-β plaques, neurofibrillary tangles, and chronic neuroinflammation. Microglial cells, the resident immune cells in the central nervous system, play a crucial role in the pathogenesis of AD. Microglia can undergo polarization, shifting between pro-inflammatory (M1) and anti-inflammatory (M2) phenotypes in response to different stimuli. Dysregulation of microglial polarization towards the pro-inflammatory phenotype leads to the release of inflammatory cytokines, oxidative stress, and synaptic dysfunction. These processes contribute to neuronal damage and cognitive decline in AD. However, several challenges remain in this field. The complex molecular mechanisms governing microglial polarization in AD need to be further elucidated. In this review, we discuss the mechanisms underlying microglial polarization in AD and its implications in disease progression.
Collapse
Affiliation(s)
- Xinmao Yang
- Department of Basic Medicine, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Jie Wang
- Department of Basic Medicine, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Xiaotao Jia
- Department of Neurology, The Affifiliated Xi'an Central Hospital of Xi'an Jiaotong University College of Medicine, Xi'an, Shaanxi, PR China
| | - Yaqian Yang
- Department of Basic Medicine, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Yan Fang
- Department of Basic Medicine, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Xiaoping Ying
- Department of Basic Medicine, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Hong Li
- Department of Basic Medicine, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Meiqian Zhang
- Department of Basic Medicine, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Jing Wei
- Department of Basic Medicine, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Yanfang Pan
- Department of Basic Medicine, Shaanxi University of Chinese Medicine, Xianyang, China
| |
Collapse
|
8
|
Mustafa NH, Siti HN, Kamisah Y. Role of Quercetin in Diabetic Cardiomyopathy. PLANTS (BASEL, SWITZERLAND) 2024; 14:25. [PMID: 39795285 PMCID: PMC11722747 DOI: 10.3390/plants14010025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 12/19/2024] [Accepted: 12/23/2024] [Indexed: 01/13/2025]
Abstract
Diabetic cardiomyopathy is a significant and severe complication of diabetes that affects a large portion of the global population, with its prevalence continuing to rise. Secondary metabolites, including quercetin, have shown promising effects in mitigating the progression of diabetic cardiomyopathy by targeting multiple pathological mechanisms, including impaired insulin signaling, glucotoxicity, lipotoxicity, oxidative stress, inflammation, fibrosis, apoptosis, autophagy, mitochondrial dysfunction, cardiac stiffness, and disrupted calcium handling. Addressing these mechanisms is crucial to prevent left ventricular diastolic and systolic dysfunction in advanced stages of diabetic heart disease. Scientific evidence has highlighted the cardioprotective properties of quercetin at both the myocardial and cellular/molecular levels in diabetic models. Therefore, this review aims to present a comprehensive overview of the proposed mechanisms underlying quercetin's beneficial effects, providing valuable insights that could inform future drug discovery efforts specific to diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Nor Hidayah Mustafa
- Centre for Drug and Herbal Development, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia;
| | - Hawa Nordin Siti
- Department of Basic Medical Sciences, Faculty of Medicine, Universiti Sultan Zainal Abidin, Kuala Terengganu 20400, Malaysia;
| | - Yusof Kamisah
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
- Cardiovascular and Pulmonary Research Group, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia
| |
Collapse
|
9
|
Wang S, Yin J, Liu Z, Liu X, Tian G, Xin X, Qin Y, Feng X. Metabolic disorders, inter-organ crosstalk, and inflammation in the progression of metabolic dysfunction-associated steatotic liver disease. Life Sci 2024; 359:123211. [PMID: 39491769 DOI: 10.1016/j.lfs.2024.123211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/20/2024] [Accepted: 10/30/2024] [Indexed: 11/05/2024]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) represents a global health concern, affecting over 30 % of adults. It is a principal driver in the development of cirrhosis and hepatocellular carcinoma. The complex pathogenesis of MASLD involves an excessive accumulation of lipids, subsequently disrupting lipid metabolism and prompting inflammation within the liver. This review synthesizes the recent research progress in understanding the mechanisms contributing to MASLD progression, with particular emphasis on metabolic disorders and interorgan crosstalk. We highlight the molecular mechanisms linked to these factors and explore their potential as novel targets for pharmacological intervention. The insights gleaned from this article have important implications for both the prevention and therapeutic management of MASLD.
Collapse
Affiliation(s)
- Shendong Wang
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, China; School of Clinical and Basic Medical Sciences, Shandong First Medical University& Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Junhao Yin
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, China; School of Clinical and Basic Medical Sciences, Shandong First Medical University& Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Zhaojun Liu
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, China; School of Clinical and Basic Medical Sciences, Shandong First Medical University& Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Xin Liu
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, China; School of Clinical and Basic Medical Sciences, Shandong First Medical University& Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Ge Tian
- School of Life Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong 271000, China
| | - Xijian Xin
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, China; School of Clinical and Basic Medical Sciences, Shandong First Medical University& Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Yiming Qin
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, China; School of Clinical and Basic Medical Sciences, Shandong First Medical University& Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Xiujing Feng
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, China; Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China; School of Clinical and Basic Medical Sciences, Shandong First Medical University& Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China.
| |
Collapse
|
10
|
Posta E, Fekete I, Varkonyi I, Zold E, Barta Z. The Versatile Role of Peroxisome Proliferator-Activated Receptors in Immune-Mediated Intestinal Diseases. Cells 2024; 13:1688. [PMID: 39451206 PMCID: PMC11505700 DOI: 10.3390/cells13201688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/09/2024] [Accepted: 10/10/2024] [Indexed: 10/26/2024] Open
Abstract
Peroxisome proliferator-activated receptors (PPARs) are nuclear receptors that sense lipophilic molecules and act as transcription factors to regulate target genes. PPARs have been implicated in the regulation of innate immunity, glucose and lipid metabolism, cell proliferation, wound healing, and fibrotic processes. Some synthetic PPAR ligands are promising molecules for the treatment of inflammatory and fibrotic processes in immune-mediated intestinal diseases. Some of these are currently undergoing or have previously undergone clinical trials. Dietary PPAR ligands and changes in microbiota composition could modulate PPARs' activation to reduce inflammatory responses in these immune-mediated diseases, based on animal models and clinical trials. This narrative review aims to summarize the role of PPARs in immune-mediated bowel diseases and their potential therapeutic use.
Collapse
Affiliation(s)
- Edit Posta
- GI Unit, Department of Infectology, Faculty of Medicine, University of Debrecen, Bartok Bela Street 2-26, 4031 Debrecen, Hungary; (I.V.); (Z.B.)
| | - Istvan Fekete
- Institute of Food Technology, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Böszörményi út 138, 4032 Debrecen, Hungary;
| | - Istvan Varkonyi
- GI Unit, Department of Infectology, Faculty of Medicine, University of Debrecen, Bartok Bela Street 2-26, 4031 Debrecen, Hungary; (I.V.); (Z.B.)
| | - Eva Zold
- Department of Clinical Immunology, Institute of Internal Medicine, Faculty of Medicine, University of Debrecen, Móricz Zsigmond str. 22, 4032 Debrecen, Hungary;
| | - Zsolt Barta
- GI Unit, Department of Infectology, Faculty of Medicine, University of Debrecen, Bartok Bela Street 2-26, 4031 Debrecen, Hungary; (I.V.); (Z.B.)
| |
Collapse
|
11
|
Kashobwe L, Sadrabadi F, Braeuning A, Leonards PEG, Buhrke T, Hamers T. In vitro screening of understudied PFAS with a focus on lipid metabolism disruption. Arch Toxicol 2024; 98:3381-3395. [PMID: 38953992 PMCID: PMC11402862 DOI: 10.1007/s00204-024-03814-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 06/26/2024] [Indexed: 07/04/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are man-made chemicals used in many industrial applications. Exposure to PFAS is associated with several health risks, including a decrease in infant birth weight, hepatoxicity, disruption of lipid metabolism, and decreased immune response. We used the in vitro cell models to screen six less studied PFAS [perfluorooctane sulfonamide (PFOSA), perfluoropentanoic acid (PFPeA), perfluoropropionic acid (PFPrA), 6:2 fluorotelomer alcohol (6:2 FTOH), 6:2 fluorotelomer sulfonic acid (6:2 FTSA), and 8:2 fluorotelomer sulfonic acid (8:2 FTSA)] for their capacity to activate nuclear receptors and to cause differential expression of genes involved in lipid metabolism. Cytotoxicity assays were run in parallel to exclude that observed differential gene expression was due to cytotoxicity. Based on the cytotoxicity assays and gene expression studies, PFOSA was shown to be more potent than other tested PFAS. PFOSA decreased the gene expression of crucial genes involved in bile acid synthesis and detoxification, cholesterol synthesis, bile acid and cholesterol transport, and lipid metabolism regulation. Except for 6:2 FTOH and 8:2 FTSA, all tested PFAS downregulated PPARA gene expression. The reporter gene assay also showed that 8:2 FTSA transactivated the farnesoid X receptor (FXR). Based on this study, PFOSA, 6:2 FTSA, and 8:2 FTSA were prioritized for further studies to confirm and understand their possible effects on hepatic lipid metabolism.
Collapse
Affiliation(s)
- Lackson Kashobwe
- Vrije Universiteit Amsterdam, Amsterdam Institute for Life and Environment (A-LIFE), De Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands.
| | - Faezeh Sadrabadi
- Department of Food Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Albert Braeuning
- Department of Food Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Pim E G Leonards
- Vrije Universiteit Amsterdam, Amsterdam Institute for Life and Environment (A-LIFE), De Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands
| | - Thorsten Buhrke
- Department of Food Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Timo Hamers
- Vrije Universiteit Amsterdam, Amsterdam Institute for Life and Environment (A-LIFE), De Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands
| |
Collapse
|
12
|
Cai X, Zhang Q, Wang J, Miao Y, Sun Y, Xia Z, Zhang L, Yu Q, Jiang Z. Novel Dual PPAR δ/γ Partial Agonist Induces Hepatic Lipid Accumulation through Direct Binding and Inhibition of AKT1 Phosphorylation, Mediating CD36 Upregulation. Chem Res Toxicol 2024; 37:1574-1587. [PMID: 39235066 DOI: 10.1021/acs.chemrestox.4c00268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
ZLY06 is a dual agonist of peroxisome proliferator-activated receptor (PPAR) δ/γ, showing potential therapeutic effects on metabolic syndrome. However, our research has revealed that ZLY06 exhibits hepatotoxicity in normal C57BL/6J mice, though the precise mechanism remains unclear. This study aims to investigate the manifestations and mechanisms of ZLY06-induced hepatotoxicity. We administered ZLY06 via oral gavage to C57BL/6J mice (once daily for six weeks) and monitored various indicators to preliminarily explore its hepatotoxicity. Additionally, we further investigate the specific mechanisms of ZLY06-induced hepatotoxicity using PPAR inhibitors (GW9662 and GSK0660) and the Protein kinase B (AKT) activator (SC79). Results showed that ZLY06 led to increased serum ALP, ALT and AST, as well as elevated liver index and hepatic lipid levels. There was upregulation in the gene and protein expression of lipid metabolism-related molecules Acc, Scd1, Cd36, Fabp1 and Fabp2 in hepatocytes, with Cd36 showing the most significant change. Furthermore, cotreatment with SC79 significantly reduced ZLY06-induced hepatotoxicity in AML12 cells, evidenced by decreased intracellular TG levels and downregulation of CD36 expression. Specific knockdown of CD36 also mitigated ZLY06-induced hepatotoxicity. The study found that ZLY06 may bind to AKT1, inhibiting its phosphorylation activation, with the downregulation of p-AKT1 preceding the upregulation of CD36. In summary, ZLY06 mediates the upregulation of CD36 by potentially binding to and inhibiting the phosphorylation of AKT1, leading to hepatic lipid metabolism disorder and inducing liver toxicity.
Collapse
Affiliation(s)
- Xiaotong Cai
- New Drug Screening and Pharmacodynamics Evaluation Center, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Qin Zhang
- New Drug Screening and Pharmacodynamics Evaluation Center, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Jiwei Wang
- New Drug Screening and Pharmacodynamics Evaluation Center, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Yingying Miao
- New Drug Screening and Pharmacodynamics Evaluation Center, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Yuqing Sun
- New Drug Screening and Pharmacodynamics Evaluation Center, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Ziyin Xia
- New Drug Screening and Pharmacodynamics Evaluation Center, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Luyong Zhang
- New Drug Screening and Pharmacodynamics Evaluation Center, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
- Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Qinwei Yu
- New Drug Screening and Pharmacodynamics Evaluation Center, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Zhenzhou Jiang
- New Drug Screening and Pharmacodynamics Evaluation Center, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
- Jiangsu Center for Pharmacodynamics Research and Evaluation, Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
13
|
Qiu Y, Wu L, Zhou W, Wang F, Li N, Wang H, He R, Tian Y, Liu Z. Day and Night Reversed Feeding Aggravates High-Fat Diet-Induced Abnormalities in Intestinal Flora and Lipid Metabolism in Adipose Tissue of Mice. J Nutr 2024; 154:2772-2783. [PMID: 38880175 DOI: 10.1016/j.tjnut.2024.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 06/06/2024] [Accepted: 06/12/2024] [Indexed: 06/18/2024] Open
Abstract
BACKGROUND The incongruity between dietary patterns and the circadian clock poses an elevated risk for metabolic health issues, particularly obesity and associated metabolic disorders. The intestinal microflora engages in regulating various physiological functions of the host through its metabolites. OBJECTIVES This study aimed to investigate the impact of reversed feeding schedules during the day and night on intestinal flora and lipid metabolism in high-fat diet-induced obese mice. METHODS Mice aged 8-10 wk were subjected to either daytime or nighttime feeding and were administered a control or high-fat diet for 18 wk. At the end of the experiment, various assessments were conducted, including analysis of serum biochemic indices, histologic examination, evaluation of gene and protein expression in adipose tissue, and scrutiny of changes in intestinal microbial composition. RESULTS The results showed that day-night reversed feeding caused an increase in fasting blood glucose and exacerbated the high-fat diet-induced weight gain and lipid abnormalities. The mRNA expression levels of Leptin and Dgat1 were increased by day-night reversed feeding, which also reduced the expression level of adiponectin under the high-fat diet. Additionally, there was a significant increase in the protein concentrations of PPARγ, SREBP1c, and CD36. Inverted feeding schedules led to a reduction in intestinal microbial diversity, an increase in the abundance of inflammation-related bacteria, such as Coriobacteriaceae_UCG-002, and a suppression of beneficial bacteria, including Akkermansia, Candidatus_Saccharimonas, Anaeroplasma, Bifidobacterium, Carnobacterium, and Odoribacter. Acinetobacter exhibited a significant negative correlation with Leptin and Fasn, suggesting potential involvement in the regulation of lipid metabolism. CONCLUSIONS The results elucidated the abnormalities of lipid metabolism and intestinal flora caused by day-night reversed feeding, which exacerbates the adverse effects of a high-fat diet on lipid metabolism and intestinal microflora. This reversal in feeding patterns may disrupt both intestinal and lipid metabolism homeostasis by altering the composition and abundance of intestinal microflora in mice.
Collapse
Affiliation(s)
- Yi Qiu
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, China
| | - Libang Wu
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, China
| | - Wenting Zhou
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, China
| | - Fangyi Wang
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, China
| | - Na Li
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, China
| | - Hualin Wang
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, China
| | - Ruyi He
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, China
| | - Yu Tian
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, China.
| | - Zhiguo Liu
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, China.
| |
Collapse
|
14
|
Habib S. Team players in the pathogenesis of metabolic dysfunctions-associated steatotic liver disease: The basis of development of pharmacotherapy. World J Gastrointest Pathophysiol 2024; 15:93606. [PMID: 39220834 PMCID: PMC11362842 DOI: 10.4291/wjgp.v15.i4.93606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/14/2024] [Accepted: 07/23/2024] [Indexed: 08/22/2024] Open
Abstract
Nutrient metabolism is regulated by several factors. Social determinants of health with or without genetics are the primary regulator of metabolism, and an unhealthy lifestyle affects all modulators and mediators, leading to the adaptation and finally to the exhaustion of cellular functions. Hepatic steatosis is defined by presence of fat in more than 5% of hepatocytes. In hepatocytes, fat is stored as triglycerides in lipid droplet. Hepatic steatosis results from a combination of multiple intracellular processes. In a healthy individual nutrient metabolism is regulated at several steps. It ranges from the selection of nutrients in a grocery store to the last step of consumption of ATP as an energy or as a building block of a cell as structural component. Several hormones, peptides, and genes have been described that participate in nutrient metabolism. Several enzymes participate in each nutrient metabolism as described above from ingestion to generation of ATP. As of now several publications have revealed very intricate regulation of nutrient metabolism, where most of the regulatory factors are tied to each other bidirectionally, making it difficult to comprehend chronological sequence of events. Insulin hormone is the primary regulator of all nutrients' metabolism both in prandial and fasting states. Insulin exerts its effects directly and indirectly on enzymes involved in the three main cellular function processes; metabolic, inflammation and repair, and cell growth and regeneration. Final regulators that control the enzymatic functions through stimulation or suppression of a cell are nuclear receptors in especially farnesoid X receptor and peroxisome proliferator-activated receptor/RXR ligands, adiponectin, leptin, and adiponutrin. Insulin hormone has direct effect on these final modulators. Whereas blood glucose level, serum lipids, incretin hormones, bile acids in conjunction with microbiota are intermediary modulators which are controlled by lifestyle. The purpose of this review is to overview the key players in the pathogenesis of metabolic dysfunction-associated steatotic liver disease (MASLD) that help us understand the disease natural course, risk stratification, role of lifestyle and pharmacotherapy in each individual patient with MASLD to achieve personalized care and target the practice of precision medicine. PubMed and Google Scholar databases were used to identify publication related to metabolism of carbohydrate and fat in states of health and disease states; MASLD, cardiovascular disease and cancer. More than 1000 publications including original research and review papers were reviewed.
Collapse
Affiliation(s)
- Shahid Habib
- Department of Hepatology, Liver Institute PLLC, Tucson, AZ 85712, United States
| |
Collapse
|
15
|
Guo X, Qin Y, Feng Z, Li H, Yang J, Su K, Mao R, Li J. Investigating the anti-inflammatory effects of icariin: A combined meta-analysis and machine learning study. Heliyon 2024; 10:e35307. [PMID: 39170422 PMCID: PMC11336647 DOI: 10.1016/j.heliyon.2024.e35307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 07/24/2024] [Accepted: 07/25/2024] [Indexed: 08/23/2024] Open
Abstract
Objective The objectives of this study were to define the superiority of icariin and its derivatives' anti-inflammatory activities and to create a reference framework for evaluating preclinical evidence. This method combines machine learning and meta-analysis to identify underlying biological pathways. Methods Data came from PubMed, Embase, Web of Science, and the Cochrane Library. SYRCLE was used to evaluate the risk of bias in a subset of research. Meta-analysis and detailed subgroup analyses, categorized by species, genders, disease type, dosage, and treatment duration, were performed using R and STATA 15.0 software to derive nuanced insights. Employing R software (version 4.2.3) and the tidymodels package, the analysis focused on constructing a model and selecting features, with TNF-α as the dependent variable. This approach aims to identify significant predictors of drug efficacy. An in-depth literature facilitated the synthesis of anti-inflammatory mechanisms attributed to icariin and its constituent compounds. Results Following a meticulous search and selection process, 19 studies, involving 370 and 260 animals were included in the meta-analysis and machine-learning assessment, respectively. The findings revealed that icariin and its derivatives markedly reduced inflammation markers, including TNF-α and IL-1β. Additionally, machine-learning outcomes, with TNF-α as the target variable, indicated enhanced anti-inflammatory effects of icariin across respiratory, urological, neurological, and digestive disease types. These effects were more pronounced at doses exceeding 27.52 mg/kg/day and treatment durations beyond 31.22 days. Conclusion Strong anti-inflammatory effects are exhibited by icariiin and its derivatives, which are especially beneficial in the management of digestive, neurological, pulmonary, and urinary conditions. Effective for periods longer than 31.22 days and at dosages more than 27.52 mg/kg/day. Subsequent research will involve more targeted animal experiments and safety assessments to obtain more comprehensive preclinical evidence.
Collapse
Affiliation(s)
- Xiaochuan Guo
- Department of Respiratory Diseases, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou 450000, Henan Province, China
- The First Clinical Medical College, Henan University of Chinese Medicine, Zhengzhou 450046, Henan Province, China
- Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases By Henan and Education Ministry of PR China, Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou 450046, Henan province, China
| | - Yanqin Qin
- Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases By Henan and Education Ministry of PR China, Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou 450046, Henan province, China
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, Henan Province, China
| | - Zhenzhen Feng
- Department of Respiratory Diseases, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou 450000, Henan Province, China
- Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases By Henan and Education Ministry of PR China, Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou 450046, Henan province, China
| | - Haibo Li
- Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases By Henan and Education Ministry of PR China, Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou 450046, Henan province, China
| | - Jingfan Yang
- Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases By Henan and Education Ministry of PR China, Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou 450046, Henan province, China
| | - Kailin Su
- Department of Respiratory Diseases, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou 450000, Henan Province, China
- The First Clinical Medical College, Henan University of Chinese Medicine, Zhengzhou 450046, Henan Province, China
- Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases By Henan and Education Ministry of PR China, Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou 450046, Henan province, China
| | - Ruixiao Mao
- Department of Respiratory Diseases, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou 450000, Henan Province, China
- The First Clinical Medical College, Henan University of Chinese Medicine, Zhengzhou 450046, Henan Province, China
- Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases By Henan and Education Ministry of PR China, Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou 450046, Henan province, China
| | - Jiansheng Li
- Department of Respiratory Diseases, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou 450000, Henan Province, China
- Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases By Henan and Education Ministry of PR China, Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou 450046, Henan province, China
| |
Collapse
|
16
|
Sun L, Ma K, Zhang S, Gu J, Wang H, Tan L. SENP2 promotes ESCC proliferation through SETDB1 deSUMOylation and enhanced fatty acid metabolism. Heliyon 2024; 10:e34010. [PMID: 39071660 PMCID: PMC11277386 DOI: 10.1016/j.heliyon.2024.e34010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/30/2024] [Accepted: 07/02/2024] [Indexed: 07/30/2024] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) has a poor prognosis, and its metabolic reprogramming mechanism remains unclear. Small ubiquitin-like modifier(SUMO) -specific protease(SENP2) is highly related to fatty acids metabolism in some normal tissue. Thus, this study investigates the correlation between SENP2 and ESCC, and the possible mechanism. SENP2 expression was up-regulated in ESCC tissues compared to normal tissues, with high levels associated with poor overall survival rates. Knockdown of SENP2 inhibited ESCC proliferation, fatty acid uptake, and oxidation in vitro. RNA-seq indicated that SENP2 upregulated PPARγ, CPT1A, ACSL1, and CD36, through the deSUMOylation of SETDB1. SENP2 promotes ESCC proliferation and enhances fatty acid uptake and oxidation. High expression of SENP2 may be a poor prognostic biomarker for ESCC patients.
Collapse
Affiliation(s)
- Linyi Sun
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Ke Ma
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Shaoyuan Zhang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Jianmin Gu
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Hao Wang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Lijie Tan
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| |
Collapse
|
17
|
dos Santos PMF, Díaz Acosta CC, Rosa TLSA, Ishiba MH, Dias AA, Pereira AMR, Gutierres LD, Pereira MP, da Silva Rocha M, Rosa PS, Bertoluci DFF, Meyer-Fernandes JR, da Mota Ramalho Costa F, Marques MAM, Belisle JT, Pinheiro RO, Rodrigues LS, Pessolani MCV, Berrêdo-Pinho M. Adenosine A 2A receptor as a potential regulator of Mycobacterium leprae survival mechanisms: new insights into leprosy neural damage. Front Pharmacol 2024; 15:1399363. [PMID: 39005937 PMCID: PMC11239521 DOI: 10.3389/fphar.2024.1399363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 05/15/2024] [Indexed: 07/16/2024] Open
Abstract
Background Leprosy is a chronic infectious disease caused by Mycobacterium leprae, which can lead to a disabling neurodegenerative condition. M. leprae preferentially infects skin macrophages and Schwann cells-glial cells of the peripheral nervous system. The infection modifies the host cell lipid metabolism, subverting it in favor of the formation of cholesterol-rich lipid droplets (LD) that are essential for bacterial survival. Although researchers have made progress in understanding leprosy pathogenesis, many aspects of the molecular and cellular mechanisms of host-pathogen interaction still require clarification. The purinergic system utilizes extracellular ATP and adenosine as critical signaling molecules and plays several roles in pathophysiological processes. Furthermore, nucleoside surface receptors such as the adenosine receptor A2AR involved in neuroimmune response, lipid metabolism, and neuron-glia interaction are targets for the treatment of different diseases. Despite the importance of this system, nothing has been described about its role in leprosy, particularly adenosinergic signaling (AdoS) during M. leprae-Schwann cell interaction. Methods M. leprae was purified from the hind footpad of athymic nu/nu mice. ST88-14 human cells were infected with M. leprae in the presence or absence of specific agonists or antagonists of AdoS. Enzymatic activity assays, fluorescence microscopy, Western blotting, and RT-qPCR analysis were performed. M. leprae viability was investigated by RT-qPCR, and cytokines were evaluated by enzyme-linked immunosorbent assay. Results We demonstrated that M. leprae-infected Schwann cells upregulated CD73 and ADA and downregulated A2AR expression and the phosphorylation of the transcription factor CREB (p-CREB). On the other hand, activation of A2AR with its selective agonist, CGS21680, resulted in: 1) reduced lipid droplets accumulation and pro-lipogenic gene expression; 2) reduced production of IL-6 and IL-8; 3) reduced intracellular M. leprae viability; 4) increased levels of p-CREB. Conclusion These findings suggest the involvement of the AdoS in leprosy neuropathogenesis and support the idea that M. leprae, by downmodulating the expression and activity of A2AR in Schwann cells, decreases A2AR downstream signaling, contributing to the maintenance of LD accumulation and intracellular viability of the bacillus.
Collapse
Affiliation(s)
| | - Chyntia Carolina Díaz Acosta
- Laboratório de Microbiologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones en Ciencias de la Salud, Universidad Nacional de Asunción, San Lorenzo, Paraguay
| | | | - Michelle Harumi Ishiba
- Laboratório de Microbiologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - André Alves Dias
- Laboratório de Microbiologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | | | - Luísa Domingos Gutierres
- Laboratório de Microbiologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Melissa Pontes Pereira
- Laboratório de Microbiologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Matheus da Silva Rocha
- Laboratório de Microbiologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | | | - Daniele F. F. Bertoluci
- Divisão de Pesquisa e Ensino, Instituto Lauro de Souza Lima, São Paulo, Brazil
- Departamento de Doenças Tropicais, Faculdade de Medicina de Botucatu, Universidade Estadual Paulista, Botucatu, Brazil
| | - José Roberto Meyer-Fernandes
- Laboratório de Bioquímica Celular, Instituto de Bioquímica Médica Leopoldo de Meis, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Maria Angela M. Marques
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, United States
| | - John T. Belisle
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Roberta Olmo Pinheiro
- Laboratório de Hanseníase, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Luciana Silva Rodrigues
- Laboratório de Imunopatologia, Faculdade de Ciências Médicas, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Marcia Berrêdo-Pinho
- Laboratório de Microbiologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| |
Collapse
|
18
|
Chen Y, Liu Q, Wang Y, Jiang M, Zhang J, Liu Y, Lu X, Tang H, Liu X. Triphenyl phosphate interferes with the synthesis of steroid hormones through the PPARγ/CD36 pathway in human trophoblast JEG-3 cells. ENVIRONMENTAL TOXICOLOGY 2024; 39:3400-3409. [PMID: 38450882 DOI: 10.1002/tox.24186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 11/02/2023] [Accepted: 02/18/2024] [Indexed: 03/08/2024]
Abstract
Triphenyl phosphate (TPhP), a chemical commonly found in human placenta and breast milk, has been shown to disturb the endocrine system. Our previous study confirmed that TPhP could accumulate in the placenta and interference with placental lipid metabolism and steroid hormone synthesis, as well as induce endoplasmic reticulum (ER) stress through PPARγ in human placental trophoblast JEG-3 cells. However, the molecular mechanism underlying this disruption remains unknown. Our study aimed to identify the role of the PPARγ/CD36 pathway in TPhP-induced steroid hormone disruption. We found that TPhP increased lipid accumulation, total cholesterol, low- and high-density protein cholesterol, progesterone, estradiol, glucocorticoid, and aldosterone levels, and genes related to steroid hormones synthesis, including 3βHSD1, 17βHSD1, CYP11A, CYP19, and CYP21. These effects were largely blocked by co-exposure with either a PPARγ antagonist GW9662 or knockdown of CD36 using siRNA (siCD36). Furthermore, an ER stress inhibitor 4-PBA attenuated the effect of TPhP on progesterone and glucocorticoid levels, and siCD36 reduced ER stress-related protein levels induced by TPhP, including BiP, PERK, and CHOP. These findings suggest that ER stress may also play a role in the disruption of steroid hormone synthesis by TPhP. As our study has shed light on the PPARγ/CD36 pathway's involvement in the disturbance of steroid hormone biosynthesis by TPhP in the JEG-3 cells, further investigations of the potential impacts on the placental function and following birth outcome are warranted.
Collapse
Affiliation(s)
- Yuting Chen
- Dongguan Key Laboratory of Environmental Medicine, The First Dongguan Affiliated Hospital, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Qian Liu
- Dongguan Key Laboratory of Environmental Medicine, The First Dongguan Affiliated Hospital, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Yao Wang
- Dazhou Center Hospital, Dazhou, China
| | - Mengzhu Jiang
- Dongguan Key Laboratory of Environmental Medicine, The First Dongguan Affiliated Hospital, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Jing Zhang
- Dongguan Key Laboratory of Environmental Medicine, The First Dongguan Affiliated Hospital, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Yuguo Liu
- Dongguan Key Laboratory of Environmental Medicine, The First Dongguan Affiliated Hospital, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Xiaoxun Lu
- Dongguan Key Laboratory of Environmental Medicine, The First Dongguan Affiliated Hospital, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Huanwen Tang
- Dongguan Key Laboratory of Environmental Medicine, The First Dongguan Affiliated Hospital, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Xiaoshan Liu
- Dongguan Key Laboratory of Environmental Medicine, The First Dongguan Affiliated Hospital, School of Public Health, Guangdong Medical University, Dongguan, China
| |
Collapse
|
19
|
Liu BH, Xu CZ, Liu Y, Lu ZL, Fu TL, Li GR, Deng Y, Luo GQ, Ding S, Li N, Geng Q. Mitochondrial quality control in human health and disease. Mil Med Res 2024; 11:32. [PMID: 38812059 PMCID: PMC11134732 DOI: 10.1186/s40779-024-00536-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 05/07/2024] [Indexed: 05/31/2024] Open
Abstract
Mitochondria, the most crucial energy-generating organelles in eukaryotic cells, play a pivotal role in regulating energy metabolism. However, their significance extends beyond this, as they are also indispensable in vital life processes such as cell proliferation, differentiation, immune responses, and redox balance. In response to various physiological signals or external stimuli, a sophisticated mitochondrial quality control (MQC) mechanism has evolved, encompassing key processes like mitochondrial biogenesis, mitochondrial dynamics, and mitophagy, which have garnered increasing attention from researchers to unveil their specific molecular mechanisms. In this review, we present a comprehensive summary of the primary mechanisms and functions of key regulators involved in major components of MQC. Furthermore, the critical physiological functions regulated by MQC and its diverse roles in the progression of various systemic diseases have been described in detail. We also discuss agonists or antagonists targeting MQC, aiming to explore potential therapeutic and research prospects by enhancing MQC to stabilize mitochondrial function.
Collapse
Affiliation(s)
- Bo-Hao Liu
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Department of Thoracic Surgery, First Hospital of Jilin University, Changchun, 130021, China
| | - Chen-Zhen Xu
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yi Liu
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Zi-Long Lu
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Ting-Lv Fu
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Guo-Rui Li
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yu Deng
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Guo-Qing Luo
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Song Ding
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Ning Li
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| | - Qing Geng
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| |
Collapse
|
20
|
Lei J, Wu L, Zhang N, Liu X, Zhang J, Kuang L, Chen J, Chen Y, Li D, Li Y. Carcinoembryonic antigen potentiates non-small cell lung cancer progression via PKA-PGC-1ɑ axis. MOLECULAR BIOMEDICINE 2024; 5:19. [PMID: 38782774 PMCID: PMC11116303 DOI: 10.1186/s43556-024-00181-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 04/08/2024] [Indexed: 05/25/2024] Open
Abstract
Carcinoembryonic antigen (CEA) is a tumor-associated antigen primarily produced by tumor cells. It has been implicated in various biological processes such as cell adhesion, proliferation, differentiation, and metastasis. Despite this, the precise molecular mechanisms through which CEA enhances tumor cell proliferation remain largely unclear. Our study demonstrates that CEA enhances the proliferation and migration of non-small cell lung cancer (NSCLC) while also inhibiting cisplatin-induced apoptosis in NSCLC cells. Treatment with CEA led to an increase in mitochondrial numbers and accumulation of lipid droplets in A549 and H1299 cells. Additionally, our findings indicate that CEA plays a role in regulating the fatty acid metabolism of NSCLC cells. Inhibiting fatty acid metabolism significantly reduced the CEA-mediated proliferation and migration of NSCLC cells. CEA influences fatty acid metabolism and the proliferation of NSCLC cells by activating the PGC-1α signaling pathway. This regulatory mechanism involves CEA increasing intracellular cAMP levels, which in turn activates PKA and upregulates PGC-1α. In NSCLC, inhibiting the PKA-PGC-1α signaling pathway reduces both fatty acid metabolism and the proliferation and migration induced by CEA, both in vitro and in vivo. These results suggest that CEA contributes to the promotion of proliferation and migration by modulating fatty acid metabolism. Targeting CEA or the PKA-PGC-1ɑ signaling pathway may offer a promising therapeutic approach for treating NSCLC.
Collapse
Affiliation(s)
- Juan Lei
- Department of Medical Oncology, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Lei Wu
- Department of Medical Oncology, Chongqing University Cancer Hospital, Chongqing, 400030, China
- School of Medicine, Chongqing University, Chongqing, 400030, China
| | - Nan Zhang
- School of Medicine, Chongqing University, Chongqing, 400030, China
| | - Xudong Liu
- School of Medicine, Chongqing University, Chongqing, 400030, China
| | - Jiangang Zhang
- Department of Medical Oncology, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Liwen Kuang
- School of Medicine, Chongqing University, Chongqing, 400030, China
| | - Jiongming Chen
- School of Medicine, Chongqing University, Chongqing, 400030, China
| | - Yijiao Chen
- School of Medicine, Chongqing University, Chongqing, 400030, China
| | - Dairong Li
- Department of Medical Oncology, Chongqing University Cancer Hospital, Chongqing, 400030, China.
| | - Yongsheng Li
- Department of Medical Oncology, Chongqing University Cancer Hospital, Chongqing, 400030, China.
- School of Medicine, Chongqing University, Chongqing, 400030, China.
| |
Collapse
|
21
|
Zhang N, Huang D, Li X, Yan J, Yan Q, Ge W, Zhou J. Identification and validation of oxidative stress-related genes in sepsis-induced myopathy. Medicine (Baltimore) 2024; 103:e37933. [PMID: 38701300 PMCID: PMC11062695 DOI: 10.1097/md.0000000000037933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 03/28/2024] [Indexed: 05/05/2024] Open
Abstract
BACKGROUND Sepsis-induced myopathy (SIM) a complication of sepsis that results in prolonged mechanical ventilation, long-term functional disability, and increased patient mortality. This study was performed to identify potential key oxidative stress-related genes (OS-genes) as biomarkers for the diagnosis of SIM using bioinformatics. METHODS The GSE13205 was obtained from the Gene Expression Omnibus (GEO) database, including 13 SIM samples and 8 healthy samples, and the differentially expressed genes (DEGs) were identified by limma package in R language. Simultaneously, we searched for the genes related to oxidative stress in the Gene Ontology (GO) database. The intersection of the genes selected from the GO database and the genes from the GSE13205 was considered as OS-genes of SIM, where the differential genes were regarded as OS-DEGs. OS-DEGs were analyzed using GO enrichment, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, and protein-protein interaction (PPI) networks. Hub genes in OS-DEGs were selected based on degree, and diagnostic genes were further screened by gene expression and receiver operating characteristic (ROC) curve. Finally, a miRNA-gene network of diagnostic genes was constructed. RESULTS A total of 1089 DEGs were screened from the GSE13205, and 453 OS-genes were identified from the GO database. The overlapping DEGs and OS-genes constituted 25 OS-DEGs, including 15 significantly upregulated and 10 significantly downregulated genes. The top 10 hub genes, including CD36, GPX3, NQO1, GSR, TP53, IDH1, BCL2, HMOX1, JAK2, and FOXO1, were screened. Furthermore, 5 diagnostic genes were identified: CD36, GPX3, NQO1, GSR, and TP53. The ROC analysis showed that the respective area under the curves (AUCs) of CD36, GPX3, NQO1, GSR, and TP53 were 0.990, 0.981, 0.971, 0.971, and 0.971, which meant these genes had very high diagnostic values of SIM. Finally, based on these 5 diagnostic genes, we found that miR-124-3p and miR-16-5p may be potential targets for the treatment of SIM. CONCLUSIONS The results of this study suggest that OS-genes might play an important role in SIM. CD36, GPX3, NQO1, GSR, and TP53 have potential as specific biomarkers for the diagnosis of SIM.
Collapse
Affiliation(s)
- Ning Zhang
- Intensive Care Unit, the Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, China
| | - Dan Huang
- Department of Ophthalmology, the First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Xiang Li
- Intensive Care Unit, the Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, China
| | - JinXia Yan
- Intensive Care Unit, the Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, China
| | - Qi Yan
- Department of Ophthalmology, the First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - WeiXing Ge
- Intensive Care Unit, the Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, China
| | - Jun Zhou
- Intensive Care Unit, the Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
22
|
Wang H, Tian Q, Zhang R, Du Q, Hu J, Gao T, Gao S, Fan K, Cheng X, Yan S, Zheng G, Dong H. Nobiletin alleviates atherosclerosis by inhibiting lipid uptake via the PPARG/CD36 pathway. Lipids Health Dis 2024; 23:76. [PMID: 38468335 PMCID: PMC10926578 DOI: 10.1186/s12944-024-02049-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 02/18/2024] [Indexed: 03/13/2024] Open
Abstract
BACKGROUND Atherosclerosis (AS) is a persistent inflammatory condition triggered and exacerbated by several factors including lipid accumulation, endothelial dysfunction and macrophages infiltration. Nobiletin (NOB) has been reported to alleviate atherosclerosis; however, the underlying mechanism remains incompletely understood. METHODS This study involved comprehensive bioinformatic analysis, including multidatabase target prediction; GO and KEGG enrichment analyses for function and pathway exploration; DeepSite and AutoDock for drug binding site prediction; and CIBERSORT for immune cell involvement. In addition, target intervention was verified via cell scratch assays, oil red O staining, ELISA, flow cytometry, qRT‒PCR and Western blotting. In addition, by establishing a mouse model of AS, it was demonstrated that NOB attenuated lipid accumulation and the extent of atherosclerotic lesions. RESULTS (1) Altogether, 141 potentially targetable genes were identified through which NOB could intervene in atherosclerosis. (2) Lipid and atherosclerosis, fluid shear stress and atherosclerosis may be the dominant pathways and potential mechanisms. (3) ALB, AKT1, CASP3 and 7 other genes were identified as the top 10 target genes. (4) Six genes, including PPARG, MMP9, SRC and 3 other genes, were related to the M0 fraction. (5) CD36 and PPARG were upregulated in atherosclerosis samples compared to the normal control. (6) By inhibiting lipid uptake in RAW264.7 cells, NOB prevents the formation of foam cell. (7) In RAW264.7 cells, the inhibitory effect of oxidized low-density lipoprotein on foam cells formation and lipid accumulation was closely associated with the PPARG signaling pathway. (8) In vivo validation showed that NOB significantly attenuated intra-arterial lipid accumulation and macrophage infiltration and reduced CD36 expression. CONCLUSIONS Nobiletin alleviates atherosclerosis by inhibiting lipid uptake via the PPARG/CD36 pathway.
Collapse
Affiliation(s)
- Heng Wang
- Department of Vascular Surgery, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Qinqin Tian
- Department of Vascular Surgery, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Ruijing Zhang
- Department of Nephrology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Qiujing Du
- Jiangyin People's Hospital, Wuxi, Jiangsu, China
- Shanxi Bethune Hospital, Third Hospital of Shanxi Medical University, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, Shanxi, China
| | - Jie Hu
- Department of Vascular Surgery, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Tingting Gao
- Department of Vascular Surgery, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Siqi Gao
- Department of Vascular Surgery, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Keyi Fan
- Department of Vascular Surgery, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xing Cheng
- Department of Vascular Surgery, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Sheng Yan
- Department of Vascular Surgery, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Guoping Zheng
- Department of Vascular Surgery, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China.
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW, Australia.
| | - Honglin Dong
- Department of Vascular Surgery, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China.
| |
Collapse
|
23
|
Zhang X, King C, Dowell A, Moss P, Harper L, Chanouzas D, Ruan XZ, Salama AD. CD36 regulates macrophage and endothelial cell activation and multinucleate giant cell formation in anti neutrophil cytoplasm antibody vasculitis. Clin Immunol 2024; 260:109914. [PMID: 38286173 DOI: 10.1016/j.clim.2024.109914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 01/17/2024] [Accepted: 01/19/2024] [Indexed: 01/31/2024]
Abstract
OBJECTIVE To investigate CD36 in ANCA-associated vasculitis (AAV), a condition characterized by monocyte/macrophage activation and vascular damage. METHODS CD36 expression was assessed in AAV patients and healthy controls (HC). The impact of palmitic acid (PA) stimulation on multinucleate giant cell (MNGC) formation, macrophage, and endothelial cell activation, with or without CD36 knockdown, was examined. RESULTS CD36 was overexpressed on AAV patients' monocytes compared to HC, regardless of disease activity. AAV patients exhibited elevated soluble CD36 levels in serum and plasma and PR3-ANCA patients' monocytes demonstrated increased MNGC formation following PA stimulation compared to HC. PA stimulation of macrophages or endothelial cells resulted in heightened CD36 expression, cell activation, increased macrophage migration inhibitory factor (MIF) production, and c-Myc expression, with attenuation upon CD36 knockdown. CONCLUSION CD36 participates in macrophage and endothelial cell activation and MNGC formation, features of AAV pathogenesis. AAV treatment may involve targeting CD36 or MIF.
Collapse
Affiliation(s)
- Xiang Zhang
- UCL Centre for Kidney and Bladder Health, Royal Free Hospital, London, UK
| | - Catherine King
- Institute of Immunology and Immunotherapy, College of Medical & Dental Sciences University of Birmingham, Birmingham, UK
| | - Alexander Dowell
- Institute of Immunology and Immunotherapy, College of Medical & Dental Sciences University of Birmingham, Birmingham, UK
| | - Paul Moss
- Institute of Immunology and Immunotherapy, College of Medical & Dental Sciences University of Birmingham, Birmingham, UK
| | - Lorraine Harper
- Institute of Immunology and Immunotherapy, College of Medical & Dental Sciences University of Birmingham, Birmingham, UK
| | - Dimitrios Chanouzas
- Institute of Immunology and Immunotherapy, College of Medical & Dental Sciences University of Birmingham, Birmingham, UK
| | - Xiong-Zhong Ruan
- UCL Centre for Kidney and Bladder Health, Royal Free Hospital, London, UK
| | - Alan David Salama
- UCL Centre for Kidney and Bladder Health, Royal Free Hospital, London, UK.
| |
Collapse
|
24
|
Shi Q, Zeng Y, Xue C, Chu Q, Yuan X, Li L. Development of a promising PPAR signaling pathway-related prognostic prediction model for hepatocellular carcinoma. Sci Rep 2024; 14:4926. [PMID: 38418897 PMCID: PMC10902383 DOI: 10.1038/s41598-024-55086-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 02/20/2024] [Indexed: 03/02/2024] Open
Abstract
The peroxisome proliferator-activated receptor (PPAR) signaling pathway plays a crucial role in systemic cell metabolism, energy homeostasis and immune response inhibition. However, its significance in hepatocellular carcinoma (HCC) has not been well documented. In our study, based on the RNA sequencing data of HCC, consensus clustering analyses were performed to identify PPAR signaling pathway-related molecular subtypes, each of which displaying varying survival probabilities and immune infiltration status. Following, a prognostic prediction model of HCC was developed by using the random survival forest method and Cox regression analysis. Significant difference in survival outcome, immune landscape, drug sensitivity and pathological features were observed between patients with different prognosis. Additionally, decision tree and nomogram models were adopted to optimize the prognostic prediction model. Furthermore, the robustness of the model was verified through single-cell RNA-sequencing data. Collectively, this study systematically elucidated that the PPAR signaling pathway-related prognostic model has good predictive efficacy for patients with HCC. These findings provide valuable insights for further research on personalized treatment approaches for HCC.
Collapse
Affiliation(s)
- Qingmiao Shi
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou City, 310003, China
| | - Yifan Zeng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou City, 310003, China
| | - Chen Xue
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou City, 310003, China
| | - Qingfei Chu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou City, 310003, China
| | - Xin Yuan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou City, 310003, China
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou City, 310003, China.
| |
Collapse
|
25
|
Peckert-Maier K, Wild AB, Sprißler L, Fuchs M, Beck P, Auger JP, Sinner P, Strack A, Mühl-Zürbes P, Ramadan N, Kunz M, Krönke G, Stich L, Steinkasserer A, Royzman D. Soluble CD83 modulates human-monocyte-derived macrophages toward alternative phenotype, function, and metabolism. Front Immunol 2023; 14:1293828. [PMID: 38162675 PMCID: PMC10755915 DOI: 10.3389/fimmu.2023.1293828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 11/24/2023] [Indexed: 01/03/2024] Open
Abstract
Alterations in macrophage (Mφ) polarization, function, and metabolic signature can foster development of chronic diseases, such as autoimmunity or fibrotic tissue remodeling. Thus, identification of novel therapeutic agents that modulate human Mφ biology is crucial for treatment of such conditions. Herein, we demonstrate that the soluble CD83 (sCD83) protein induces pro-resolving features in human monocyte-derived Mφ biology. We show that sCD83 strikingly increases the expression of inhibitory molecules including ILT-2 (immunoglobulin-like transcript 2), ILT-4, ILT-5, and CD163, whereas activation markers, such as MHC-II and MSR-1, were significantly downregulated. This goes along with a decreased capacity to stimulate alloreactive T cells in mixed lymphocyte reaction (MLR) assays. Bulk RNA sequencing and pathway analyses revealed that sCD83 downregulates pathways associated with pro-inflammatory, classically activated Mφ (CAM) differentiation including HIF-1A, IL-6, and cytokine storm, whereas pathways related to alternative Mφ activation and liver X receptor were significantly induced. By using the LXR pathway antagonist GSK2033, we show that transcription of specific genes (e.g., PPARG, ABCA1, ABCG1, CD36) induced by sCD83 is dependent on LXR activation. In summary, we herein reveal for the first time mechanistic insights into the modulation of human Mφ biology by sCD83, which is a further crucial preclinical study for the establishment of sCD83 as a new therapeutical agent to treat inflammatory conditions.
Collapse
Affiliation(s)
- Katrin Peckert-Maier
- Department of Immune Modulation, Universitätsklinikum Erlangen, Friedrich– Alexander Universität Erlangen–Nürnberg, Erlangen, Germany
| | - Andreas B. Wild
- Department of Immune Modulation, Universitätsklinikum Erlangen, Friedrich– Alexander Universität Erlangen–Nürnberg, Erlangen, Germany
| | - Laura Sprißler
- Department of Immune Modulation, Universitätsklinikum Erlangen, Friedrich– Alexander Universität Erlangen–Nürnberg, Erlangen, Germany
| | - Maximilian Fuchs
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Hannover, Germany
| | - Philipp Beck
- Department of Immune Modulation, Universitätsklinikum Erlangen, Friedrich– Alexander Universität Erlangen–Nürnberg, Erlangen, Germany
| | - Jean-Philippe Auger
- Department of Internal Medicine 3 – Rheumatology and Immunology, Friedrich-Alexander University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Pia Sinner
- Department of Immune Modulation, Universitätsklinikum Erlangen, Friedrich– Alexander Universität Erlangen–Nürnberg, Erlangen, Germany
| | - Astrid Strack
- Department of Immune Modulation, Universitätsklinikum Erlangen, Friedrich– Alexander Universität Erlangen–Nürnberg, Erlangen, Germany
| | - Petra Mühl-Zürbes
- Department of Immune Modulation, Universitätsklinikum Erlangen, Friedrich– Alexander Universität Erlangen–Nürnberg, Erlangen, Germany
| | - Ntilek Ramadan
- Department of Immune Modulation, Universitätsklinikum Erlangen, Friedrich– Alexander Universität Erlangen–Nürnberg, Erlangen, Germany
| | - Meik Kunz
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Hannover, Germany
- Chair of Medical Informatics, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Bavaria, Germany
| | - Gerhard Krönke
- Department of Internal Medicine 3 – Rheumatology and Immunology, Friedrich-Alexander University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Lena Stich
- Department of Immune Modulation, Universitätsklinikum Erlangen, Friedrich– Alexander Universität Erlangen–Nürnberg, Erlangen, Germany
| | - Alexander Steinkasserer
- Department of Immune Modulation, Universitätsklinikum Erlangen, Friedrich– Alexander Universität Erlangen–Nürnberg, Erlangen, Germany
| | - Dmytro Royzman
- Department of Immune Modulation, Universitätsklinikum Erlangen, Friedrich– Alexander Universität Erlangen–Nürnberg, Erlangen, Germany
| |
Collapse
|
26
|
Ren X, Guo Q, Jiang H, Han X, He X, Liu H, Xiu Z, Dong Y. Combinational application of the natural products 1-deoxynojirimycin and morin ameliorates insulin resistance and lipid accumulation in prediabetic mice. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 121:155106. [PMID: 37797432 DOI: 10.1016/j.phymed.2023.155106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 09/12/2023] [Accepted: 09/18/2023] [Indexed: 10/07/2023]
Abstract
BACKGROUND Prediabetes, a stage characterized by chronic inflammation, obesity and insulin resistance. Morin and 1-deoxynojirimycin (DNJ) are natural flavonoids and alkaloids extracted from Morus nigra L., exhibiting anti-hyperglycemic efficacy. However, the benefits of DNJ are shadowed by the adverse events, and the mechanism of morin in anti-diabetes remains under investigation. PURPOSE In this study, the combinational efficacy and mechanisms of DNJ and morin in ameliorating insulin resistance and pre-diabetes were investigated. METHODS The mice model with prediabetes and Alpha mouse liver-12 (AML-12) cell model with insulin resistance were established. The anti-prediabetic efficacy of the drug combination was determined via analyzing the blood glucose, lipid profiles and inflammatory factors. The application of network pharmacology provided guidance for the research mechanism. RESULTS In our study, the intervention of morin ameliorated the insulin resistance via activating the Peroxisome proliferator-activated receptor γ (PPARγ). However, PPARγ activation leaded to the lipid accumulation in prediabetic mice. The combination of 5 mg/kg dose of DNJ and 25 mg/kg morin effectively hindered the progression of T2DM by 87.56%, which was achieved via inhibition of Suppressors of cytokine signaling 3 (SOCS3) and promotion of PPARγ as well as SOCS2 expression. Furthermore, this treatment exhibited notable capabilities in combating dyslipidemia and adipogenesis, achieved by suppressing the Cluster of differentiation 36/ Sterol-regulatory element binding proteins-1/ Fatty acid synthetase (CD36/Serbp1/Fas) signaling. CONCLUSION This research confirmed that the drug combination of DNJ and morin in ameliorating insulin resistance and lipid accumulation, and revealed the potential mechanisms. In summary, the combination of DNJ and morin is an underlying alternative pharmaceutical composition in T2DM prevention.
Collapse
Affiliation(s)
- Xinxiu Ren
- School of Bioengineering, Dalian University of Technology, Dalian, Liaoning, 116024, China
| | - Qinfeng Guo
- School of Bioengineering, Dalian University of Technology, Dalian, Liaoning, 116024, China
| | - Hui Jiang
- School of Bioengineering, Dalian University of Technology, Dalian, Liaoning, 116024, China
| | - Xiao Han
- School of Bioengineering, Dalian University of Technology, Dalian, Liaoning, 116024, China
| | - Xiaoshi He
- School of Bioengineering, Dalian University of Technology, Dalian, Liaoning, 116024, China
| | - Haodong Liu
- School of Bioengineering, Dalian University of Technology, Dalian, Liaoning, 116024, China
| | - Zhilong Xiu
- School of Bioengineering, Dalian University of Technology, Dalian, Liaoning, 116024, China
| | - Yuesheng Dong
- School of Bioengineering, Dalian University of Technology, Dalian, Liaoning, 116024, China.
| |
Collapse
|
27
|
Zou X, Hu M, Huang X, Zhou L, Li M, Chen J, Ma L, Gao X, Luo Y, Cai X, Li Y, Zhou X, Li N, Shi Y, Han X, Ji L. Rare Variant in Metallothionein 1E Increases the Risk of Type 2 Diabetes in a Chinese Population. Diabetes Care 2023; 46:2249-2257. [PMID: 37878528 DOI: 10.2337/dc22-2031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 09/18/2023] [Indexed: 10/27/2023]
Abstract
OBJECTIVE To uncover novel targets for the treatment of type 2 diabetes (T2D) by investigating rare variants with large effects in monogenic forms of the disease. RESEARCH DESIGN AND METHODS We performed whole-exome sequencing in a family with diabetes. We validated the identified gene using Sanger sequencing in additional families and diabetes- and community-based cohorts. Wild-type and variant gene transgenic mouse models were used to study the gene function. RESULTS Our analysis revealed a rare variant of the metallothionein 1E (MT1E) gene, p.C36Y, in a three-generation family with diabetes. This risk allele was associated with T2D or prediabetes in a community-based cohort. MT1E p.C36 carriers had higher HbA1c levels and greater BMI than those carrying the wild-type allele. Mice with forced expression of MT1E p.C36Y demonstrated increased weight gain, elevated postchallenge serum glucose and liver enzyme levels, and hepatic steatosis, similar to the phenotypes observed in human carriers of MT1E p.C36Y. In contrast, mice with forced expression of MT1E p.C36C displayed reduced weight and lower serum glucose and serum triglyceride levels. Forced expression of wild-type and variant MT1E demonstrated differential expression of genes related to lipid metabolism. CONCLUSIONS Our results suggest that MT1E could be a promising target for drug development, because forced expression of MT1E p.C36C stabilized glucose metabolism and reduced body weight, whereas MT1E p.C36Y expression had the opposite effect. These findings highlight the importance of considering the impact of rare variants in the development of new T2D treatments.
Collapse
Affiliation(s)
- Xiantong Zou
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center, Beijing, China
| | - Mengdie Hu
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center, Beijing, China
| | - Xiuting Huang
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center, Beijing, China
| | - Lingli Zhou
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center, Beijing, China
| | - Meng Li
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center, Beijing, China
| | - Jing Chen
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center, Beijing, China
| | - Liping Ma
- Central Laboratory, Peking University People's Hospital, Beijing, China
| | - Xueying Gao
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center, Beijing, China
| | - Yingying Luo
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center, Beijing, China
| | - Xiaoling Cai
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center, Beijing, China
| | - Yufeng Li
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center, Beijing, China
- Department of Endocrinology, Beijing Friendship Hospital Pinggu Campus, Capital Medical University, Beijing, China
| | - Xianghai Zhou
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center, Beijing, China
| | - Na Li
- Central Laboratory, Peking University People's Hospital, Beijing, China
| | - Yuanping Shi
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center, Beijing, China
| | - Xueyao Han
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center, Beijing, China
| | - Linong Ji
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center, Beijing, China
| |
Collapse
|
28
|
Prado LG, Camara NOS, Barbosa AS. Cell lipid biology in infections: an overview. Front Cell Infect Microbiol 2023; 13:1148383. [PMID: 37868347 PMCID: PMC10587689 DOI: 10.3389/fcimb.2023.1148383] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 09/22/2023] [Indexed: 10/24/2023] Open
Abstract
Lipids are a big family of molecules with a vast number of functions in the cell membranes, within the cytoplasm, and extracellularly. Lipid droplets (LDs) are the most common storage organelles and are present in almost every tissue type in the body. They also have structural functions serving as building blocks of cellular membranes and may be precursors of other molecules such as hormones, and lipoproteins, and as messengers in signal transduction. Fatty acids (FAs), such as sterol esters and triacylglycerols, are stored in LDs and are used in β-oxidation as fuel for tricarboxylic acid cycle (TCA) and adenosine triphosphate (ATP) generation. FA uptake and entrance in the cytoplasm are mediated by membrane receptors. After a cytoplasmic round of α- and β-oxidation, FAs are guided into the mitochondrial matrix by the L-carnitine shuttle system, where they are fully metabolized, and enter the TCA cycle. Pathogen infections may lead to impaired lipid metabolism, usage of membrane phospholipids, and LD accumulation in the cytoplasm of infected cells. Otherwise, bacterial pathogens may use lipid metabolism as a carbon source, thus altering the reactions and leading to cellular and organelles malfunctioning. This review aims to describe cellular lipid metabolism and alterations that occur upon infections.
Collapse
Affiliation(s)
- Luan Gavião Prado
- Laboratório de Bacteriologia, Instituto Butantan, São Paulo, Brazil
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Niels Olsen Saraiva Camara
- Laboratório de Imunobiologia de Transplantes, Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
- Disciplina de Nefrologia, Departamento de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | | |
Collapse
|
29
|
Zou TF, Liu ZG, Cao PC, Zheng SH, Guo WT, Wang TX, Chen YL, Duan YJ, Li QS, Liao CZ, Xie ZL, Han JH, Yang XX. Fisetin treatment alleviates kidney injury in mice with diabetes-exacerbated atherosclerosis through inhibiting CD36/fibrosis pathway. Acta Pharmacol Sin 2023; 44:2065-2074. [PMID: 37225845 PMCID: PMC10545759 DOI: 10.1038/s41401-023-01106-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 05/07/2023] [Indexed: 05/26/2023]
Abstract
Diabetes-related vascular complications include diabetic cardiovascular diseases (CVD), diabetic nephropathy (DN) and diabetic retinopathy, etc. DN can promote the process of end-stage renal disease. On the other hand, atherosclerosis accelerates kidney damage. It is really an urge to explore the mechanisms of diabetes-exacerbated atherosclerosis as well as new agents for treatment of diabetes-exacerbated atherosclerosis and the complications. In this study we investigated the therapeutic effects of fisetin, a natural flavonoid from fruits and vegetables, on kidney injury caused by streptozotocin (STZ)-induced diabetic atherosclerosis in low density lipoprotein receptor deficient (LDLR-/-) mice. Diabetes was induced in LDLR-/- mice by injecting STZ, and the mice were fed high-fat diet (HFD) containing fisetin for 12 weeks. We found that fisetin treatment effectively attenuated diabetes-exacerbated atherosclerosis. Furthermore, we showed that fisetin treatment significantly ameliorated atherosclerosis-enhanced diabetic kidney injury, evidenced by regulating uric acid, urea and creatinine levels in urine and serum, and ameliorating morphological damages and fibrosis in the kidney. In addition, we found that the improvement of glomerular function by fisetin was mediated by reducing the production of reactive oxygen species (ROS), advanced glycosylation end products (AGEs) and inflammatory cytokines. Furthermore, fisetin treatment reduced accumulation of extracellular matrix (ECM) in the kidney by inhibiting the expression of vascular endothelial growth factor A (VEGFA), fibronectin and collagens, while enhancing matrix metalloproteinases 2 (MMP2) and MMP9, which was mainly mediated by inactivating transforming growth factor β (TGFβ)/SMAD family member 2/3 (Smad2/3) pathways. In both in vivo and in vitro experiments, we demonstrated that the therapeutic effects of fisetin on kidney fibrosis resulted from inhibiting CD36 expression. In conclusion, our results suggest that fisetin is a promising natural agent for the treatment of renal injury caused by diabetes and atherosclerosis. We reveal that fisetin is an inhibitor of CD36 for reducing the progression of kidney fibrosis, and fisetin-regulated CD36 may be a therapeutic target for the treatment of renal fibrosis.
Collapse
Affiliation(s)
- Ting-Feng Zou
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230601, China
| | - Zhi-Gang Liu
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230601, China
| | - Pei-Chang Cao
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230601, China
| | - Shi-Hong Zheng
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230601, China
| | - Wen-Tong Guo
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230601, China
| | - Tian-Xiang Wang
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230601, China
| | - Yuan-Li Chen
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230601, China
| | - Ya-Jun Duan
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230601, China
| | - Qing-Shan Li
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230601, China
| | - Chen-Zhong Liao
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230601, China
| | - Zhou-Ling Xie
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230601, China
| | - Ji-Hong Han
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230601, China
- College of Life Sciences, Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of Ministry of Education, Nankai University, Tianjin, 300071, China
| | - Xiao-Xiao Yang
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230601, China.
| |
Collapse
|
30
|
Shan W, Ding J, Xu J, Du Q, Chen C, Liao Q, Yang X, Lou J, Jin Z, Chen M, Xie R. Estrogen regulates duodenal glucose absorption by affecting estrogen receptor-α on glucose transporters. Mol Cell Endocrinol 2023:112028. [PMID: 37769868 DOI: 10.1016/j.mce.2023.112028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 07/20/2023] [Accepted: 07/21/2023] [Indexed: 10/03/2023]
Abstract
The mechanisms of estrogen in glucose metabolism are well established; however, its role in glucose absorption remains unclear. In this study, we investigated the effects of estrogen on glucose absorption in humans, mice, and SCBN intestinal epithelial cells. We first observed a correlation between estrogen and blood glucose in young women and found that glucose tolerance was significantly less in the premenstrual phase than in the preovulatory phase. Similarly, with decreased serum estradiol levels in ovariectomized mice, estrogen receptors alpha (ERα) and beta (ERβ) in the duodenum were reduced, and weight and abdominal fat increased significantly. The expression of sodium/glucose cotransporter 1 (SGLT1) and glucose transporter 2 (GLUT2) and glucose absorption in the duodenum decreased significantly. Estrogen significantly upregulated SGLT1 and GLUT2 expression in SCBN cells. Silencing of ERα, but not ERβ, reversed this trend, suggesting that ERα may be key to estrogen-regulating glucose transporters. A mechanistic study revealed that downstream, estrogen regulates the protein kinase C (PKC) pathway. Overall, our findings indicate that estrogen promotes glucose absorption, and estrogen and ERα deficiency can inhibit SGLT1 and GLUT2 expression through the PKC signaling pathway, thereby reducing glucose absorption.
Collapse
Affiliation(s)
- Weixi Shan
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, 563003, China; Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine, Zunyi, Guizhou, 563003, China
| | - Jianhong Ding
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, 563003, China; Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine, Zunyi, Guizhou, 563003, China
| | - Jingyu Xu
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, 563003, China; Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine, Zunyi, Guizhou, 563003, China
| | - Qian Du
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, 563003, China; Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine, Zunyi, Guizhou, 563003, China
| | - Changmei Chen
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, 563003, China; Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine, Zunyi, Guizhou, 563003, China
| | - Qiushi Liao
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, 563003, China; Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine, Zunyi, Guizhou, 563003, China
| | - Xiaoxu Yang
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, 563003, China; Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine, Zunyi, Guizhou, 563003, China
| | - Jun Lou
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, 563003, China; Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine, Zunyi, Guizhou, 563003, China
| | - Zhe Jin
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, 563003, China; Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine, Zunyi, Guizhou, 563003, China
| | - Mingkai Chen
- Department of Gastroenterology, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Road, Wuhan, 430060, Hubei, China.
| | - Rui Xie
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, 563003, China; Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine, Zunyi, Guizhou, 563003, China.
| |
Collapse
|
31
|
Jose-Abrego A, Roman S, Laguna-Meraz S, Panduro A. Host and HBV Interactions and Their Potential Impact on Clinical Outcomes. Pathogens 2023; 12:1146. [PMID: 37764954 PMCID: PMC10535809 DOI: 10.3390/pathogens12091146] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 08/27/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
Hepatitis B virus (HBV) is a challenge for global health services, affecting millions and leading thousands to end-stage liver disease each year. This comprehensive review explores the interactions between HBV and the host, examining their impact on clinical outcomes. HBV infection encompasses a spectrum of severity, ranging from acute hepatitis B to chronic hepatitis B, which can potentially progress to cirrhosis and hepatocellular carcinoma (HCC). Occult hepatitis B infection (OBI), characterized by low HBV DNA levels in hepatitis B surface antigen-negative individuals, can reactivate and cause acute hepatitis B. HBV genotyping has revealed unique geographical patterns and relationships with clinical outcomes. Moreover, single nucleotide polymorphisms (SNPs) within the human host genome have been linked to several clinical outcomes, including cirrhosis, HCC, OBI, hepatitis B reactivation, and spontaneous clearance. The immune response plays a key role in controlling HBV infection by eliminating infected cells and neutralizing HBV in the bloodstream. Furthermore, HBV can modulate host metabolic pathways involved in glucose and lipid metabolism and bile acid absorption, influencing disease progression. HBV clinical outcomes correlate with three levels of viral adaptation. In conclusion, the clinical outcomes of HBV infection could result from complex immune and metabolic interactions between the host and HBV. These outcomes can vary among populations and are influenced by HBV genotypes, host genetics, environmental factors, and lifestyle. Understanding the degrees of HBV adaptation is essential for developing region-specific control and prevention measures.
Collapse
Affiliation(s)
- Alexis Jose-Abrego
- Department of Genomic Medicine in Hepatology, Civil Hospital of Guadalajara, “Fray Antonio Alcalde”, Guadalajara 44280, Mexico; (A.J.-A.); (S.R.); (S.L.-M.)
- Health Sciences Center, University of Guadalajara, Guadalajara 44340, Mexico
| | - Sonia Roman
- Department of Genomic Medicine in Hepatology, Civil Hospital of Guadalajara, “Fray Antonio Alcalde”, Guadalajara 44280, Mexico; (A.J.-A.); (S.R.); (S.L.-M.)
- Health Sciences Center, University of Guadalajara, Guadalajara 44340, Mexico
| | - Saul Laguna-Meraz
- Department of Genomic Medicine in Hepatology, Civil Hospital of Guadalajara, “Fray Antonio Alcalde”, Guadalajara 44280, Mexico; (A.J.-A.); (S.R.); (S.L.-M.)
- Health Sciences Center, University of Guadalajara, Guadalajara 44340, Mexico
| | - Arturo Panduro
- Department of Genomic Medicine in Hepatology, Civil Hospital of Guadalajara, “Fray Antonio Alcalde”, Guadalajara 44280, Mexico; (A.J.-A.); (S.R.); (S.L.-M.)
- Health Sciences Center, University of Guadalajara, Guadalajara 44340, Mexico
| |
Collapse
|
32
|
Choi WJ, Haratipour Z, Blind RD. Full-length nuclear receptor allosteric regulation. J Lipid Res 2023; 64:100406. [PMID: 37356665 PMCID: PMC10388211 DOI: 10.1016/j.jlr.2023.100406] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 06/14/2023] [Accepted: 06/15/2023] [Indexed: 06/27/2023] Open
Abstract
Nuclear receptors are a superfamily of transcription factors regulated by a wide range of lipids that include phospholipids, fatty acids, heme-based metabolites, and cholesterol-based steroids. Encoded as classic two-domain modular transcription factors, nuclear receptors possess a DNA-binding domain (DBD) and a lipid ligand-binding domain (LBD) containing a transcriptional activation function. Decades of structural studies on the isolated LBDs of nuclear receptors established that lipid-ligand binding allosterically regulates the conformation of the LBD, regulating transcriptional coregulator recruitment and thus nuclear receptor function. These structural studies have aided the development of several FDA-approved drugs, highlighting the importance of understanding the structure-function relationships between lipids and nuclear receptors. However, there are few published descriptions of full-length nuclear receptor structure and even fewer descriptions of how lipids might allosterically regulate full-length structure. Here, we examine multidomain interactions based on the published full-length nuclear receptor structures, evaluating the potential of interdomain interfaces within these nuclear receptors to act as inducible sites of allosteric regulation by lipids.
Collapse
Affiliation(s)
- Woong Jae Choi
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Zeinab Haratipour
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt University Center for Structural Biology, Nashville, TN, USA; Program in Precision Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Raymond D Blind
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt University Center for Structural Biology, Nashville, TN, USA; Program in Precision Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA; Diabetes Research and Training Center, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
33
|
Liu S, Shen YY, Yin LY, Liu J, Zu X. Lipid Metabolic Regulatory Crosstalk Between Cancer Cells and Tumor-Associated Macrophages. DNA Cell Biol 2023; 42:445-455. [PMID: 37535386 DOI: 10.1089/dna.2023.0071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2023] Open
Abstract
In the tumor microenvironment, tumor-associated macrophages (TAMs) are one of the most abundant cell populations, playing key roles in tumorigenesis, chemoresistance, immune evasion, and metastasis. There is an important interaction between TAMs and cancer cells: on the one hand, tumors control the function of infiltrating macrophages, contributing to reprogramming of TAMs, and on the other hand, TAMs affect the growth of cancer cells. This review focuses on lipid metabolism changes in the complex relationship between cancer cells and TAMs. We discuss how lipid metabolism in cancer cells affects macrophage phenotypic and metabolic changes and, subsequently, how altered lipid metabolism of TAMs influences tumor progression. Identifying the metabolic changes that influence the complex interaction between tumor cells and TAMs is also an important step in exploring new therapeutic approaches that target metabolic reprogramming of immune cells to enhance their tumoricidal potential and bypass therapy resistance. Our work may provide new targets for antitumor therapies.
Collapse
Affiliation(s)
- Shu Liu
- Cancer Research Institute, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Ying Ying Shen
- Cancer Research Institute, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Li Yang Yin
- Cancer Research Institute, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Jianghua Liu
- Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Xuyu Zu
- Cancer Research Institute, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| |
Collapse
|
34
|
Teng Y, Xu L, Li W, Liu P, Tian L, Liu M. Targeting reactive oxygen species and fat acid oxidation for the modulation of tumor-associated macrophages: a narrative review. Front Immunol 2023; 14:1224443. [PMID: 37545527 PMCID: PMC10401428 DOI: 10.3389/fimmu.2023.1224443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 07/06/2023] [Indexed: 08/08/2023] Open
Abstract
Tumor-associated macrophages (TAMs) are significant immunocytes infiltrating the tumor microenvironment(TME). Recent research has shown that TAMs exhibit diversity in terms of their phenotype, function, time, and spatial distribution, which allows for further classification of TAM subtypes. The metabolic efficiency of fatty acid oxidation (FAO) varies among TAM subtypes. FAO is closely linked to the production of reactive oxygen species (ROS), which play a role in processes such as oxidative stress. Current evidence demonstrates that FAO and ROS can influence TAMs' recruitment, polarization, and phagocytosis ability either individually or in combination, thereby impacting tumor progression. But the specific mechanisms associated with these relationships still require further investigation. We will review the current status of research on the relationship between TAMs and tumor development from three aspects: ROS and TAMs, FAO and TAMs, and the interconnectedness of FAO, ROS, and TAMs.
Collapse
Affiliation(s)
| | | | | | | | - Linli Tian
- *Correspondence: Linli Tian, ; Ming Liu,
| | - Ming Liu
- *Correspondence: Linli Tian, ; Ming Liu,
| |
Collapse
|
35
|
Al-Rashed F, Haddad D, Al Madhoun A, Sindhu S, Jacob T, Kochumon S, Obeid LM, Al-Mulla F, Hannun YA, Ahmad R. ACSL1 is a key regulator of inflammatory and macrophage foaming induced by short-term palmitate exposure or acute high-fat feeding. iScience 2023; 26:107145. [PMID: 37416456 PMCID: PMC10320618 DOI: 10.1016/j.isci.2023.107145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 04/29/2023] [Accepted: 06/12/2023] [Indexed: 07/08/2023] Open
Abstract
Foamy and inflammatory macrophages play pathogenic roles in metabolic disorders. However, the mechanisms that promote foamy and inflammatory macrophage phenotypes under acute-high-fat feeding (AHFF) remain elusive. Herein, we investigated the role of acyl-CoA synthetase-1 (ACSL1) in favoring the foamy/inflammatory phenotype of monocytes/macrophages upon short-term exposure to palmitate or AHFF. Palmitate exposure induced a foamy/inflammatory phenotype in macrophages which was associated with increased ACSL1 expression. Inhibition/knockdown of ACSL1 in macrophages suppressed the foamy/inflammatory phenotype through the inhibition of the CD36-FABP4-p38-PPARδ signaling axis. ACSL1 inhibition/knockdown suppressed macrophage foaming/inflammation after palmitate stimulation by downregulating the FABP4 expression. Similar results were obtained using primary human monocytes. As expected, oral administration of ACSL1 inhibitor triacsin-C in mice before AHFF normalized the inflammatory/foamy phenotype of the circulatory monocytes by suppressing FABP4 expression. Our results reveal that targeting ACSL1 leads to the attenuation of the CD36-FABP4-p38-PPARδ signaling axis, providing a therapeutic strategy to prevent the AHFF-induced macrophage foaming and inflammation.
Collapse
Affiliation(s)
- Fatema Al-Rashed
- Immunology & Microbiology Department, Dasman Diabetes Institute, Kuwait City, Dasman 15462, Kuwait
| | - Dania Haddad
- Genetics and Bioinformatics Department, Dasman Diabetes Institute, Kuwait City, Dasman 15462, Kuwait
| | - Ashraf Al Madhoun
- Genetics and Bioinformatics Department, Dasman Diabetes Institute, Kuwait City, Dasman 15462, Kuwait
- Animal and Imaging Core Facilities, Dasman Diabetes Institute, Kuwait City, Dasman 15462, Kuwait
| | - Sardar Sindhu
- Immunology & Microbiology Department, Dasman Diabetes Institute, Kuwait City, Dasman 15462, Kuwait
- Animal and Imaging Core Facilities, Dasman Diabetes Institute, Kuwait City, Dasman 15462, Kuwait
| | - Texy Jacob
- Immunology & Microbiology Department, Dasman Diabetes Institute, Kuwait City, Dasman 15462, Kuwait
| | - Shihab Kochumon
- Immunology & Microbiology Department, Dasman Diabetes Institute, Kuwait City, Dasman 15462, Kuwait
| | - Lina M. Obeid
- Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY 11794, USA
| | - Fahd Al-Mulla
- Genetics and Bioinformatics Department, Dasman Diabetes Institute, Kuwait City, Dasman 15462, Kuwait
| | - Yusuf A. Hannun
- Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY 11794, USA
| | - Rasheed Ahmad
- Immunology & Microbiology Department, Dasman Diabetes Institute, Kuwait City, Dasman 15462, Kuwait
| |
Collapse
|
36
|
Han YH, Kee JY. Extract of Isatidis Radix Inhibits Lipid Accumulation in In Vitro and In Vivo by Regulating Oxidative Stress. Antioxidants (Basel) 2023; 12:1426. [PMID: 37507964 PMCID: PMC10376543 DOI: 10.3390/antiox12071426] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 07/07/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Isatidis Radix (IR), the root of Isatis tinctoria L. belonging to Brassicaceae, has been traditionally used as a fever reducer. Although some pharmacological effects, such as anti-diabetes, anti-virus, and anti-inflammatory, have been reported, there is no study on the anti-obesity effect of IR. This study used 3T3-L1 cells, human mesenchymal adipose stem cells (hAMSCs), and a high-fat diet (HFD)-induced obese mouse model to confirm the anti-adipogenic effect of IR. Intracellular lipid accumulation in 3T3-L1 cells and hAMSCs was decreased by IR treatment.IR extract especially suppressed reactive oxygen species (ROS) production through a cluster of differentiation 36 (CD36)-AMP-activated protein kinase (AMPK) pathway. Consequently, the expressions of peroxisome proliferator-activated receptor gamma (PPARγ), CCAAT-enhancer-binding proteins alpha (C/EBPα), and fatty acid synthesis (FAS) were inhibited by IR extract. In addition, β-oxidation-related genes were also decreased by treatment of IR extract. IR inhibited weight gain through this cascade in the HFD-induced obese mouse model. IR significantly suppressed lipid accumulation in epididymal white adipose tissue (eWAT). Furthermore, the administration of IR extract decreased serum free fatty acid (FFA), total cholesterol (TC), and LDL cholesterol, suggesting that it could be a potential drug for obesity by inhibiting lipid accumulation.
Collapse
Affiliation(s)
- Yo-Han Han
- Department of Pharmacology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Ji-Ye Kee
- Department of Oriental Pharmacy, College of Pharmacy, Wonkwang-Oriental Medicines Research Institute, Wonkwang University, Iksan 54538, Republic of Korea
| |
Collapse
|
37
|
Meng Y, Pospiech M, Ali A, Chandwani R, Vergel M, Onyemaechi S, Yaghmour G, Lu R, Alachkar H. Deletion of CD36 exhibits limited impact on normal hematopoiesis and the leukemia microenvironment. Cell Mol Biol Lett 2023; 28:45. [PMID: 37226083 PMCID: PMC10210361 DOI: 10.1186/s11658-023-00455-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 04/24/2023] [Indexed: 05/26/2023] Open
Abstract
BACKGROUND CD36 has been identified as a potential therapeutic target both in leukemic cells and in the tumor immune microenvironment. In acute myeloid leukemia (AML), we found that APOC2 acts with CD36 to promote leukemia growth by activating the LYN-ERK signaling. CD36 also plays a role in lipid metabolism of cancer associated T-cells leading to impaired cytotoxic CD8+ T-cell and enhanced Treg cell function. To establish CD36 as a viable therapeutic target in AML, we investigated whether targeting CD36 has any detrimental impact on normal hematopoietic cells. METHODS Differential expression data of CD36 during human and mouse normal hematopoiesis were examined and compared. Cd36 knockout (Cd36-KO) mice were evaluated for blood analysis, hematopoietic stem cells and progenitors (HSPCs) function and phenotype analyses, and T cells in vitro expansion and phenotypes in comparison with wild type (WT) mice. In addition, MLL-PTD/FLT3-ITD leukemic cells were engrafted into Cd36-KO and WT mice, and leukemia burden was compared between groups. RESULTS RNA-Seq data showed that Cd36 expression was low in HSPCs and increased as cells matured. Phenotypic analysis revealed limited changes in blood count except for a slight yet significantly lower red blood cell count and hemoglobin and hematocrit levels in Cd36-KO mice compared with WT mice (P < 0.05). In vitro cell proliferation assays of splenocytes and HSPCs from Cd36-KO mice showed a similar pattern of expansion to that of cells from WT mice. Characterization of HSPCs showed similar percentages of the different progenitor cell populations between Cd36-KO with WT mice. However, Cd36-KO mice exhibited ~ 40% reduction of the number of colonies developed from HSPCs cells compared with WT mice (P < 0.001). Cd36-KO and WT mice presented comparably healthy BM transplant in non-competitive models and developed similar leukemia burden. CONCLUSIONS Although the loss of Cd36 affects the hematopoietic stem cell and erythropoiesis, limited detrimental overall impact was observed on normal Hematopoietic and leukemic microenvironments. Altogether, considering the limited impact on normal hematopoiesis, therapeutic approaches to target CD36 in cancer are unlikely to result in toxicity to normal blood cells.
Collapse
Affiliation(s)
- Yiting Meng
- Department of Clinical Pharmacy, School of Pharmacy, University of Southern California, Los Angeles, CA, 90089, USA
| | - Mateusz Pospiech
- Department of Clinical Pharmacy, School of Pharmacy, University of Southern California, Los Angeles, CA, 90089, USA
| | - Atham Ali
- Department of Clinical Pharmacy, School of Pharmacy, University of Southern California, Los Angeles, CA, 90089, USA
| | - Ritu Chandwani
- Department of Pharmacology and Pharmaceutical Science, School of Pharmacy, University of Southern California, Los Angeles, CA, 90089, USA
| | - Mary Vergel
- Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Sandra Onyemaechi
- Department of Pharmacology and Pharmaceutical Science, School of Pharmacy, University of Southern California, Los Angeles, CA, 90089, USA
| | - George Yaghmour
- Division of Hematology, Department of Medicine, University of Southern California Norris Comprehensive Cancer Center, Los Angeles, CA, 90033, USA
- USC Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, 90033, USA
| | - Rong Lu
- Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Houda Alachkar
- Department of Clinical Pharmacy, School of Pharmacy, University of Southern California, Los Angeles, CA, 90089, USA.
- USC Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, 90033, USA.
| |
Collapse
|
38
|
Miao M, Wang X, Liu T, Li YJ, Yu WQ, Yang TM, Guo SD. Targeting PPARs for therapy of atherosclerosis: A review. Int J Biol Macromol 2023:125008. [PMID: 37217063 DOI: 10.1016/j.ijbiomac.2023.125008] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 05/16/2023] [Accepted: 05/19/2023] [Indexed: 05/24/2023]
Abstract
Atherosclerosis, a chief pathogenic factor of cardiovascular disease, is associated with many factors including inflammation, dyslipidemia, and oxidative stress. Peroxisome proliferator-activated receptors (PPARs) are nuclear receptors and are widely expressed with tissue- and cell-specificity. They control multiple genes that are involved in lipid metabolism, inflammatory response, and redox homeostasis. Given the diverse biological functions of PPARs, they have been extensively studied since their discovery in 1990s. Although controversies exist, accumulating evidence have demonstrated that PPAR activation attenuates atherosclerosis. Recent advances are valuable for understanding the mechanisms of action of PPAR activation. This article reviews the recent findings, mainly from the year of 2018 to present, including endogenous molecules in regulation of PPARs, roles of PPARs in atherosclerosis by focusing on lipid metabolism, inflammation, and oxidative stress, and synthesized PPAR modulators. This article provides information valuable for researchers in the field of basic cardiovascular research, for pharmacologists that are interested in developing novel PPAR agonists and antagonists with lower side effects as well as for clinicians.
Collapse
Affiliation(s)
- Miao Miao
- Institute of Lipid Metabolism and Atherosclerosis, Innovative Drug Research Centre, School of Pharmacy, Weifang Medical University, Weifang 261053, China
| | - Xue Wang
- Institute of Lipid Metabolism and Atherosclerosis, Innovative Drug Research Centre, School of Pharmacy, Weifang Medical University, Weifang 261053, China
| | - Tian Liu
- Institute of Lipid Metabolism and Atherosclerosis, Innovative Drug Research Centre, School of Pharmacy, Weifang Medical University, Weifang 261053, China
| | - Yan-Jie Li
- Institute of Lipid Metabolism and Atherosclerosis, Innovative Drug Research Centre, School of Pharmacy, Weifang Medical University, Weifang 261053, China
| | - Wen-Qian Yu
- Institute of Lipid Metabolism and Atherosclerosis, Innovative Drug Research Centre, School of Pharmacy, Weifang Medical University, Weifang 261053, China
| | - Tong-Mei Yang
- Institute of Lipid Metabolism and Atherosclerosis, Innovative Drug Research Centre, School of Pharmacy, Weifang Medical University, Weifang 261053, China
| | - Shou-Dong Guo
- Institute of Lipid Metabolism and Atherosclerosis, Innovative Drug Research Centre, School of Pharmacy, Weifang Medical University, Weifang 261053, China.
| |
Collapse
|
39
|
Hirao H, Kageyama S, Nakamura K, Kadono K, Kojima H, Siyuan Y, Farmer DG, Kaldas FM, Dery KJ, Kupiec-Weglinski JW. Recipient TIM4 signaling regulates ischemia reperfusion-induced ER stress and metabolic responses in liver transplantation: from mouse-to-human. FRONTIERS IN TRANSPLANTATION 2023; 2:1176384. [PMID: 38993869 PMCID: PMC11235257 DOI: 10.3389/frtra.2023.1176384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/17/2023] [Indexed: 07/13/2024]
Abstract
T-cell immunoglobulin and mucin (Tim)4 is expressed on APCs, including macrophages, as one of the main amplifiers in the mechanism of liver ischemia-reperfusion injury (IRI) following orthotopic liver transplantation (OLT). Though donor Tim4 selectively expressed on Kupffer cells serves as a checkpoint regulator of innate immune-driven IRI cascades, its role on cells outside the OLT remains unclear. To dissect the role of donor vs. recipient-specific Tim4 signaling in IR-induced stress and hepatocellular function, we employed a murine OLT model utilizing Tim4-knockout (KO) mice as either donor or recipient (WT → WT, WT → Tim4-KO, Tim4-KO → WT). In the experimental arm, disruption of donor Tim4 attenuated IRI-OLT damage, while recipient Tim4-null mutation aggravated hepatic IRI concomitant with disturbed lipid metabolism, enhanced endoplasmic reticulum stress, and activated pro-apoptotic signaling in the grafts. In the in vitro study, murine hepatocytes co-cultured with Tim4-null adipose tissue showed enhanced C/EBP homologous protein (CHOP) expression pattern and susceptibility to hepatocellular death accompanied by activated caspase cascade in response to TNF-α stimulation. In the clinical arm, liver grafts from forty-one transplant patients with enhanced TIM4 expression showed higher body mass index, augmented hepatic endoplasmic reticulum stress, enhanced pro-apoptotic markers, upregulated innate/adaptive immune responses, exacerbated hepatocellular damage, and inferior graft survival. In conclusion, although TIM4 is considered a principal villain in peri-transplant early tissue injury, recipient TIM4 signaling may serve as a savior of IR-triggered metabolic stress in mouse and human OLT recipients.
Collapse
Affiliation(s)
- Hirofumi Hirao
- Dumont-UCLA Transplantation Center, Department of Surgery, Division of Liver and Pancreas Transplantation, University of California, Los Angeles, Los Angeles, CA, United States
| | - Shoichi Kageyama
- Department of Surgery, Hepato-Biliary-Pancreatic Surgery and Transplantation, Kyoto University, Kyoto, Japan
| | - Kojiro Nakamura
- Department of Surgery, Hepato-Biliary-Pancreatic Surgery and Transplantation, Kyoto University, Kyoto, Japan
| | - Kentaro Kadono
- Dumont-UCLA Transplantation Center, Department of Surgery, Division of Liver and Pancreas Transplantation, University of California, Los Angeles, Los Angeles, CA, United States
| | - Hidenobu Kojima
- Dumont-UCLA Transplantation Center, Department of Surgery, Division of Liver and Pancreas Transplantation, University of California, Los Angeles, Los Angeles, CA, United States
| | - Yao Siyuan
- Dumont-UCLA Transplantation Center, Department of Surgery, Division of Liver and Pancreas Transplantation, University of California, Los Angeles, Los Angeles, CA, United States
| | - Douglas G. Farmer
- Dumont-UCLA Transplantation Center, Department of Surgery, Division of Liver and Pancreas Transplantation, University of California, Los Angeles, Los Angeles, CA, United States
| | - Fady M. Kaldas
- Dumont-UCLA Transplantation Center, Department of Surgery, Division of Liver and Pancreas Transplantation, University of California, Los Angeles, Los Angeles, CA, United States
| | - Kenneth J. Dery
- Dumont-UCLA Transplantation Center, Department of Surgery, Division of Liver and Pancreas Transplantation, University of California, Los Angeles, Los Angeles, CA, United States
| | - Jerzy W. Kupiec-Weglinski
- Dumont-UCLA Transplantation Center, Department of Surgery, Division of Liver and Pancreas Transplantation, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
40
|
Griffiths A, Wang J, Song Q, Lee SM, Cordoba-Chacon J, Song Z. ATF4-mediated CD36 upregulation contributes to palmitate-induced lipotoxicity in hepatocytes. Am J Physiol Gastrointest Liver Physiol 2023; 324:G341-G353. [PMID: 36852918 PMCID: PMC10069970 DOI: 10.1152/ajpgi.00163.2022] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 01/24/2023] [Accepted: 02/13/2023] [Indexed: 03/01/2023]
Abstract
Hepatic lipotoxicity plays a central role in the pathogenesis of nonalcoholic fatty liver disease; however, the underlying mechanisms remain elusive. Here, using both cultured hepatocytes (AML-12 cells and primary mouse hepatocytes) and the liver-specific gene knockout mice, we investigated the mechanisms underlying palmitate-elicited upregulation of CD36, a class B scavenger receptor mediating long-chain fatty acids uptake, and its role in palmitate-induced hepatolipotoxicity. We found that palmitate upregulates hepatic CD36 expression. Despite being a well-established target gene of PPARγ transactivation, our data demonstrated that the palmitate-induced CD36 upregulation in hepatocytes is in fact PPARγ-independent. We previously reported that the activation of ATF4, one of three canonical pathways activated upon endoplasmic reticulum (ER) stress induction, contributes to palmitate-triggered lipotoxicity in hepatocytes. In this study, our data revealed for the first time that ATF4 plays a critical role in mediating hepatic CD36 expression. Genetic inhibition of ATF4 attenuated CD36 upregulation induced by either palmitate or ER stress inducer tunicamycin in hepatocytes. In mice, tunicamycin upregulates liver CD36 expression, whereas hepatocyte-specific ATF4 knockout mice manifest lower hepatic CD36 expression when compared with control animals. Furthermore, we demonstrated that CD36 upregulation upon palmitate exposure represents a feedforward mechanism in that siRNA knockdown of CD36 in hepatocytes blunted ATF4 activation induced by both palmitate and tunicamycin. Finally, we confirmed that the ATF4-CD36 pathway activation contributes to palmitate-induced hepatolipotoxicity as genetic inhibition of either ATF4 or CD36 alleviated cell death and intracellular triacylglycerol accumulation. Collectively, our data demonstrate that CD36 upregulation by ATF4 activation contributes to palmitate-induced hepatic lipotoxicity.NEW & NOTEWORTHY We provided the initial evidence that ATF4 is a principal transcription factor mediating hepatic CD36 expression in that both palmitate- and ER stress-elicited CD36 upregulation was blunted by ATF4 gene knockdown in hepatocytes, and hepatocyte-specific ATF4 knockout mice manifested lower hepatic CD36 expression. We further confirmed that the ATF4-CD36 pathway activation contributes to palmitate-induced hepatolipotoxicity as genetic inhibition of either ATF4 or CD36 alleviated cell death and intracellular triacylglycerol accumulation in response to exogenous palmitate exposure.
Collapse
Affiliation(s)
- Alexandra Griffiths
- Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, Illinois, United States
| | - Jun Wang
- Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, Illinois, United States
| | - Qing Song
- Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, Illinois, United States
| | - Samuel Man Lee
- Division of Endocrinology/Diabetes & Metabolism, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois, United States
| | - Jose Cordoba-Chacon
- Division of Endocrinology/Diabetes & Metabolism, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois, United States
| | - Zhenyuan Song
- Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, Illinois, United States
| |
Collapse
|
41
|
Thibonnier M, Ghosh S. Strategy for Pre-Clinical Development of Active Targeting MicroRNA Oligonucleotide Therapeutics for Unmet Medical Needs. Int J Mol Sci 2023; 24:ijms24087126. [PMID: 37108289 PMCID: PMC10138879 DOI: 10.3390/ijms24087126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/27/2023] [Accepted: 03/29/2023] [Indexed: 04/29/2023] Open
Abstract
We present here an innovative modular and outsourced model of drug research and development for microRNA oligonucleotide therapeutics (miRNA ONTs). This model is being implemented by a biotechnology company, namely AptamiR Therapeutics, in collaboration with Centers of Excellence in Academic Institutions. Our aim is to develop safe, effective and convenient active targeting miRNA ONT agents for the metabolic pandemic of obesity and metabolic-associated fatty liver disease (MAFLD), as well as deadly ovarian cancer.
Collapse
Affiliation(s)
| | - Sujoy Ghosh
- Duke-NUS Medical School, Singapore and Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA
| |
Collapse
|
42
|
Raths F, Karimzadeh M, Ing N, Martinez A, Yang Y, Qu Y, Lee TY, Mulligan B, Devkota S, Tilley WT, Hickey TE, Wang B, Giuliano AE, Bose S, Goodarzi H, Ray EC, Cui X, Knott SR. The molecular consequences of androgen activity in the human breast. CELL GENOMICS 2023; 3:100272. [PMID: 36950379 PMCID: PMC10025454 DOI: 10.1016/j.xgen.2023.100272] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 10/20/2022] [Accepted: 01/30/2023] [Indexed: 03/24/2023]
Abstract
Estrogen and progesterone have been extensively studied in the mammary gland, but the molecular effects of androgen remain largely unexplored. Transgender men are recorded as female at birth but identify as male and may undergo gender-affirming androgen therapy to align their physical characteristics and gender identity. Here we perform single-cell-resolution transcriptome, chromatin, and spatial profiling of breast tissues from transgender men following androgen therapy. We find canonical androgen receptor gene targets are upregulated in cells expressing the androgen receptor and that paracrine signaling likely drives sex-relevant androgenic effects in other cell types. We also observe involution of the epithelium and a spatial reconfiguration of immune, fibroblast, and vascular cells, and identify a gene regulatory network associated with androgen-induced fat loss. This work elucidates the molecular consequences of androgen activity in the human breast at single-cell resolution.
Collapse
Affiliation(s)
- Florian Raths
- Center for Bioinformatics and Functional Genomics, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Mehran Karimzadeh
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
- Vector Institute, Toronto, ON, Canada
- Peter Munk Cardiac Centre, University Health Network, Toronto, ON, Canada
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Nathan Ing
- Center for Bioinformatics and Functional Genomics, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Andrew Martinez
- Center for Bioinformatics and Functional Genomics, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Yoona Yang
- Center for Bioinformatics and Functional Genomics, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Ying Qu
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Tian-Yu Lee
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Brianna Mulligan
- Center for Bioinformatics and Functional Genomics, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Suzanne Devkota
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Wayne T. Tilley
- Dame Roma Mitchell Cancer Research Laboratories, Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
- Freemasons Centre for Male Health and Wellbeing, University of Adelaide, Adelaide, SA, Australia
| | - Theresa E. Hickey
- Dame Roma Mitchell Cancer Research Laboratories, Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Bo Wang
- Vector Institute, Toronto, ON, Canada
- Peter Munk Cardiac Centre, University Health Network, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Department of Computer Science, University of Toronto, Toronto, ON, Canada
| | | | - Shikha Bose
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Hani Goodarzi
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Edward C. Ray
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Transgender Surgery and Health Program, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Xiaojiang Cui
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Simon R.V. Knott
- Center for Bioinformatics and Functional Genomics, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| |
Collapse
|
43
|
Li X, Li Z, Dong X, Wu Y, Li B, Kuang B, Chen G, Zhang L. Astragaloside IV attenuates myocardial dysfunction in diabetic cardiomyopathy rats through downregulation of CD36-mediated ferroptosis. Phytother Res 2023. [PMID: 36882189 DOI: 10.1002/ptr.7798] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 02/14/2023] [Accepted: 02/20/2023] [Indexed: 03/09/2023]
Abstract
Diabetic cardiomyopathy (DCM), one of the major complications of type 2 diabetes, is a leading cause of heart failure and death in advanced diabetes. Although there is an association between DCM and ferroptosis in cardiomyocytes, the internal mechanism of ferroptosis leading to DCM development remains unknown. CD36 is a key molecule in lipid metabolism that mediates ferroptosis. Astragaloside IV (AS-IV) confers various pharmacological effects such as antioxidant, anti-inflammatory, and immunomodulatory. In this study, we demonstrated that AS-IV was able to recover the dysfunction of DCM. In vivo experiments showed that AS-IV ameliorated myocardial injury and improved contractile function, attenuated lipid deposition, and decreased the expression level of CD36 and ferroptosis-related factors in DCM rats. In vitro experiments showed that AS-IV decreased CD36 expression and inhibited lipid accumulation and ferroptosis in PA-induced cardiomyocytes. The results demonstrated that AS-IV decreased cardiomyocyte injury and myocardial dysfunction by inhibiting ferroptosis mediated by CD36 in DCM rats. Therefore, AS-IV regulated the lipid metabolism of cardiomyocytes and inhibited cellular ferroptosis, which may have potential clinical value in DCM treatment.
Collapse
Affiliation(s)
- Xin Li
- The First Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou, China
| | - Ziwei Li
- Baiyun Hospital of The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xin Dong
- The First Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou, China
| | - Yu Wu
- Guangzhou University of Traditional Chinese Medicine, Guangzhou, China
| | - Baohua Li
- The First Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou, China
| | - Bin Kuang
- Dongguan Hospital of Traditional Chinese Medicine, Dongguan, China
| | - Gangyi Chen
- The First Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou, China
| | - Liangyou Zhang
- The First Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou, China
| |
Collapse
|
44
|
Fructooligosaccharides attenuate non-alcoholic fatty liver disease by remodeling gut microbiota and association with lipid metabolism. Biomed Pharmacother 2023; 159:114300. [PMID: 36696803 DOI: 10.1016/j.biopha.2023.114300] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 01/18/2023] [Accepted: 01/20/2023] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Nonalcoholic fatty liver disease (NAFLD) is a common liver disease highly associated with metabolic diseases and gut dysbiosis. Several clinical trials have confirmed that fructooligosaccharides (FOSs) are a viable alternative treatment for NAFLD. However, the mechanisms underlying the activities of FOSs remain unclear. METHODS In this study, the effects of FOSs were investigated with the use of two C57BL/6 J mouse models of NAFLD induced by a high-fat, high-cholesterol (HFHC) diet and a methionine- and choline-deficient (MCD) diet, respectively. The measured metabolic parameters included body, fat, and liver weights; and blood glucose, glucose tolerance, and serum levels of glutamate transaminase, aspartate transaminase, and triglycerides. Liver tissues were collected for histological analysis. In addition, 16 S rRNA sequencing was conducted to investigate the effects of FOSs on the composition of the gut microbiota of mice in the HFHC and MCD groups and treated with FOSs. RESULTS FOS treatment attenuated severe metabolic changes and hepatic steatosis caused by the HFHC and MCD diets. In addition, FOSs remodeled the structure of gut microbiota in mice fed the HFHC and MCD diets, as demonstrated by increased abundances of Bacteroidetes (phylum level), Klebsiella variicola, Lactobacillus gasseri, and Clostridium perfringens (species level); and decreased abundances of Verrucomicrobia (phylum level) and the Fissicatena group (genus level). Moreover, the expression levels of genes associated with lipid metabolism and inflammation (i.e., ACC1, PPARγ, CD36, MTTP, APOC3, IL-6, and IL-1β) were down-regulated after FOS treatment. CONCLUSION FOSs alleviated the pathological phenotype of NAFLD via remodeling of the gut microbiota composition and decreasing hepatic lipid metabolism, suggesting that FOSs as functional dietary supplements can potentially reduce the risk of NAFLD.
Collapse
|
45
|
A Novel in Duck Myoblasts: The Transcription Factor Retinoid X Receptor Alpha (RXRA) Inhibits Lipid Accumulation by Promoting CD36 Expression. Int J Mol Sci 2023; 24:ijms24021180. [PMID: 36674699 PMCID: PMC9864336 DOI: 10.3390/ijms24021180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/14/2022] [Accepted: 12/23/2022] [Indexed: 01/11/2023] Open
Abstract
Retinoid X receptor alpha (RXRA) is a well-characterized factor that regulates lipid metabolism; however, the regulatory mechanism in muscle cells of poultry is still unknown. The overexpression and the knockdown of RXRA in myoblasts (CS2 cells), RT-PCR, and western blotting were used to detect the expression levels of genes and proteins related to PPAR-signaling pathways. Intracellular triglycerides (TGs), cholesterol (CHOL), and nonesterified free fatty acids (NEFAs) were detected by the Elisa kit. Fat droplets were stained with Oil Red O. The double-fluorescein reporter gene and chromatin immunoprecipitation (CHIP) were used to verify the relationship between RXRA and candidate target genes. The RXRA gene was highly expressed in duck breast muscle, and its mRNA and its protein were reduced during the differentiation of CS2 cells. The CS2 cells, with the overexpression of RXRA, showed reduced content in TGs, CHOL, NEFAs, and lipid droplets and upregulated the mRNA expression of CD36, ACSL1, and PPARG genes and the protein expression of CD36 and PPARG. The knockdown of RXRA expression in CS2 cells enhanced the content of TGs, CHOL, NEFAs, and lipid droplets and downregulated the mRNA and protein expression of CD36, ACLS1, ELOVL6, and PPARG. The overexpression of the RXRA gene, the activity of the double-luciferase reporter gene of the wild-type CD36 promoter was higher than that of the mutant type. RXRA bound to -860/-852 nt, -688/-680 nt, and -165/-157 nt at the promoter region of CD36. Moreover, the overexpression of CD36 in CS2 cells could suppress the content of TGs, CHOL, NEFAs, and lipid droplets, while the knockdown expression of CD36 increased the content of TGs, CHOL, NEFAs, and lipid droplets. In this study, the transcription factor, RXRA, inhibited the accumulation of TGs, CHOL, NEFAs, and fat droplets in CS2 cells by promoting CD36 expression.
Collapse
|
46
|
Icariin Alleviates Nonalcoholic Fatty Liver Disease in Polycystic Ovary Syndrome by Improving Liver Fatty Acid Oxidation and Inhibiting Lipid Accumulation. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020517. [PMID: 36677577 PMCID: PMC9861792 DOI: 10.3390/molecules28020517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/03/2023] [Accepted: 01/03/2023] [Indexed: 01/06/2023]
Abstract
(1) Background: Icariin is the main component of the Chinese herb Epimedium. A number of studies have shown that it alleviates abnormal lipid metabolism. However, it is not clear whether and how icariin can ameliorate hepatic steatosis with polycystic ovary syndrome (PCOS). This study was designed to explore the anti-hepatosteatosis effect of icariin in rats with polycystic ovary syndrome. (2) Methods: Female Sprague Dawley(SD)rats were treated with a high-fat diet and letrozole for 21 days to make nonalcoholic fatty liver disease (NAFLD) in the polycystic ovary syndrome model. Then model rats were treated with icariin (by gavage, once daily) for 28 days. Serum hormones and biochemical variables were determined by ELISA or enzyme. RNA-sequence analysis was used to enrich related target pathways. Then, quantitative Real-time PCR (qRT-PCR) and Western blot were performed to verify target genes and proteins. (3) Results: Icariin treatment reduced excess serum levels of Testosterone (T), Estradiol (E2), Luteinizing hormone (LH), Follicle-stimulating hormone (FSH), LH/FSH ratio, insulin, triglycerides (TG), and aspartate aminotransferase (AST) in high-fat diet (HFD) and letrozole fed rats. Meanwhile, icariin ameliorated HFD and letrozole-induced fatty liver, as evidenced by a reduction in excess triglyceride accumulation, vacuolization, and Oil Red O staining area in the liver of model rats. Results of RNA-sequencing, western blotting, and qRT-PCR analyses indicated that icariin up-regulated fatty acid translocase (CD36), in mitochondria, and peroxisome proliferator-activated receptor α (PPARα) expression, which led to the enhancement of fatty acid oxidation molecules, such as cytochrome P450, family 4, subfamily a, polypeptide 3 (CYP4A3), carnitine palmitoyltransferase 1 α (CPT1α), acyl-CoA oxidase 1 (ACOX1), medium-chain acyl-CoA dehydrogenase (MCAD), and long-chain acyl-CoA dehydrogenase (LCAD). Besides, icariin reduced lipid synthesis, which elicited stearoyl-Coenzyme A desaturase 1 (SCD1), fatty acid synthase (FASN), and acetyl-CoA (ACC). (4) Conclusion: Icariin showed an ameliorative effect on hepatic steatosis induced by HFD and letrozole, which was associated with improved fatty acid oxidation and reduced lipid accumulation in the liver.
Collapse
|
47
|
FABP4 Controls Fat Mass Expandability (Adipocyte Size and Number) through Inhibition of CD36/SR-B2 Signalling. Int J Mol Sci 2023; 24:ijms24021032. [PMID: 36674544 PMCID: PMC9867004 DOI: 10.3390/ijms24021032] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 12/31/2022] [Accepted: 01/02/2023] [Indexed: 01/07/2023] Open
Abstract
Adipose tissue hypertrophy during obesity plays pleiotropic effects on health. Adipose tissue expandability depends on adipocyte size and number. In mature adipocytes, lipid accumulation as triglycerides into droplets is imbalanced by lipid uptake and lipolysis. In previous studies, we showed that adipogenesis induced by oleic acid is signed by size increase and reduction of FAT/CD36 (SR-B2) activity. The present study aims to decipher the mechanisms involved in fat mass regulation by fatty acid/FAT-CD36 signalling. Human adipose stem cells, 3T3-L1, and its 3T3-MBX subclone cell lines were used in 2D cell cultures or co-cultures to monitor in real-time experiments proliferation, differentiation, lipolysis, and/or lipid uptake and activation of FAT/CD36 signalling pathways regulated by oleic acid, during adipogenesis and/or regulation of adipocyte size. Both FABP4 uptake and its induction by fatty acid-mediated FAT/CD36-PPARG gene transcription induce accumulation of intracellular FABP4, which in turn reduces FAT/CD36, and consequently exerts a negative feedback loop on FAT/CD36 signalling in both adipocytes and their progenitors. Both adipocyte size and recruitment of new adipocytes are under the control of FABP4 stores. This study suggests that FABP4 controls fat mass homeostasis.
Collapse
|
48
|
Ramos-Jiménez A, Zavala-Lira RA, Moreno-Brito V, González-Rodríguez E. FAT/CD36 Participation in Human Skeletal Muscle Lipid Metabolism: A Systematic Review. J Clin Med 2022; 12:318. [PMID: 36615118 PMCID: PMC9821548 DOI: 10.3390/jcm12010318] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/16/2022] [Accepted: 12/26/2022] [Indexed: 01/03/2023] Open
Abstract
Fatty acid translocase/cluster of differentiation 36 (FAT/CD36) is a multifunctional membrane protein activated by a high-fat diet, physical exercise, fatty acids (FAs), leptin, and insulin. The principal function of FAT/CD36 is to facilitate the transport of long-chain fatty acids through cell membranes such as myocytes, adipocytes, heart, and liver. Under high-energy expenditure, the different isoforms of FAT/CD36 in the plasma membrane and mitochondria bind to the mobilization and oxidation of FAs. Furthermore, FAT/CD36 is released in its soluble form and becomes a marker of metabolic dysfunction. Studies with healthy animals and humans show that physical exercise and a high-lipid diet increase FAT/CD36 expression and caloric expenditure. However, several aspects such as obesity, diabetes, Single Nucleotide polymorphisms (SNPs), and oxidative stress affect the normal FAs metabolism and function of FAT/CD36, inducing metabolic disease. Through a comprehensive systematic review of primary studies, this work aimed to document molecular mechanisms related to FAT/CD36 in FAs oxidation and trafficking in skeletal muscle under basal conditions, physical exercise, and diet in healthy individuals.
Collapse
Affiliation(s)
- Arnulfo Ramos-Jiménez
- Instituto de Ciencias Biomédicas, Universidad Autónoma de Ciudad Juárez, Anillo Envolvente del PRONAF y Estocolmo S/N, Ciudad Juárez 32310, Chihuahua, Mexico
| | - Ruth A. Zavala-Lira
- Instituto de Ciencias Biomédicas, Universidad Autónoma de Ciudad Juárez, Anillo Envolvente del PRONAF y Estocolmo S/N, Ciudad Juárez 32310, Chihuahua, Mexico
| | - Verónica Moreno-Brito
- Facultad de Medicina, Circuito Universitario Campus II, Universidad Autónoma de Chihuahua, Chihuahua 31124, Chihuahua, Mexico
| | - Everardo González-Rodríguez
- Facultad de Medicina, Circuito Universitario Campus II, Universidad Autónoma de Chihuahua, Chihuahua 31124, Chihuahua, Mexico
| |
Collapse
|
49
|
Zhang J, Zhang F, Ge J. SGLT2 inhibitors protect cardiomyocytes from myocardial infarction: a direct mechanism? Future Cardiol 2022; 18:867-882. [PMID: 36111579 DOI: 10.2217/fca-2022-0058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
SGLT2 inhibitors have been developed as a novel class of glucose-lowering drugs affecting reabsorption of glucose and metabolic processes. They have been recently identified to be remarkably favorable in treating cardiovascular diseases, especially heart failure. Preclinical experiments have shown that SGLT2 inhibitors could hinder the progression of myocardial infarction and alleviate cardiac remodeling by mechanisms of metabolism influence, autophagy induction, inflammation attenuation and fibrosis reduction. Here we summarize the direct mechanism of SGLT2 inhibitors on myocardial infarction and investigate whether it could be applied to the clinic in improving cardiac function and healing after myocardial infarction.
Collapse
Affiliation(s)
- Jian Zhang
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Feng Zhang
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Junbo Ge
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| |
Collapse
|
50
|
Huang J, Tagawa T, Ma S, Suzuki K. Black Ginger ( Kaempferia parviflora) Extract Enhances Endurance Capacity by Improving Energy Metabolism and Substrate Utilization in Mice. Nutrients 2022; 14:3845. [PMID: 36145222 PMCID: PMC9501856 DOI: 10.3390/nu14183845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/09/2022] [Accepted: 09/11/2022] [Indexed: 11/17/2022] Open
Abstract
Black ginger (Kaempferia parviflora) extract (KPE), extracted from KP, a member of the ginger family that grows in Thailand, has a good promotion effect on cellular energy metabolism and therefore has been used to enhance exercise performance and treatment of obesity in previous studies. However, the effect of single-dose administration of KPE on endurance capacity has not been thoroughly studied, and whether the positive effect of KPE on cellular energy metabolism can have a positive effect on exercise capacity in a single dose is unknown. In the present study, we used a mouse model to study the effects of acute KPE administration 1 h before exercise on endurance capacity and the underlying mechanisms. The purpose of our study was to determine whether a single administration of KPE could affect endurance performance in mice and whether the effect was produced through a pro-cellular energy metabolic pathway. We found that a single administration of KPE (62.5 mg/kg·bodyweight) can significantly prolong the exercise time to exhaustion. By measuring the mRNA expression of Hk2, Slc2a4 (Glut4), Mct1, Ldh, Cd36, Cpt1β, Cpt2, Lpl, Pnpla2 (Atgl), Aco, Acadm (Mcad), Hadh, Acacb (Acc2), Mlycd (Mcd), Pparg, Ppargc1a (Pgc-1α), Tfam, Gp, Gs, Pfkm, Pck1 (Pepck), G6pc (G6pase), Cs, and Pfkl in skeletal muscle and liver, we found that acute high-concentration KPE administration significantly changed the soleus muscle gene expression levels (p < 0.05) related to lipid, lactate, and glycogen metabolism and mitochondrial function. In gastrocnemius muscle and liver, glycogen metabolism-related gene expression is significantly changed by a single-dose administration of KPE. These results suggest that KPE has the potential to improve endurance capacity by enhancing energy metabolism and substrate utilization in muscles and liver.
Collapse
Affiliation(s)
- Jiapeng Huang
- Graduate School of Sport Sciences, Tokorozawa Campus, Waseda University, Tokorozawa 3591192, Japan
| | - Takashi Tagawa
- Maruzen Pharmaceuticals Co., Ltd., Hiroshima 7293102, Japan
| | - Sihui Ma
- Faculty of Sport Sciences, Tokorozawa Campus, Waseda University, Tokorozawa 3591192, Japan
| | - Katsuhiko Suzuki
- Faculty of Sport Sciences, Tokorozawa Campus, Waseda University, Tokorozawa 3591192, Japan
| |
Collapse
|