1
|
Barbalace MC, Freschi M, Rinaldi I, Zallocco L, Malaguti M, Manera C, Ortore G, Zuccarini M, Ronci M, Cuffaro D, Macchia M, Hrelia S, Giusti L, Digiacomo M, Angeloni C. Unraveling the Protective Role of Oleocanthal and Its Oxidation Product, Oleocanthalic Acid, against Neuroinflammation. Antioxidants (Basel) 2024; 13:1074. [PMID: 39334733 PMCID: PMC11428454 DOI: 10.3390/antiox13091074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 08/30/2024] [Accepted: 09/01/2024] [Indexed: 09/30/2024] Open
Abstract
Neuroinflammation is a critical aspect of various neurodegenerative diseases, such as Alzheimer's and Parkinson's diseases. This study investigates the anti-neuroinflammatory properties of oleocanthal and its oxidation product, oleocanthalic acid, using the BV-2 cell line activated with lipopolysaccharide. Our findings revealed that oleocanthal significantly inhibited the production of pro-inflammatory cytokines and reduced the expression of inflammatory genes, counteracted oxidative stress induced by lipopolysaccharide, and increased cell phagocytic activity. Conversely, oleocanthalic acid was not able to counteract lipopolysaccharide-induced activation. The docking analysis revealed a plausible interaction of oleocanthal, with both CD14 and MD-2 leading to a potential interference with TLR4 signaling. Since our data show that oleocanthal only partially reduces the lipopolysaccharide-induced activation of NF-kB, its action as a TLR4 antagonist alone cannot explain its remarkable effect against neuroinflammation. Proteomic analysis revealed that oleocanthal counteracts the LPS modulation of 31 proteins, including significant targets such as gelsolin, clathrin, ACOD1, and four different isoforms of 14-3-3 protein, indicating new potential molecular targets of the compound. In conclusion, oleocanthal, but not oleocanthalic acid, mitigates neuroinflammation through multiple mechanisms, highlighting a pleiotropic action that is particularly important in the context of neurodegeneration.
Collapse
Affiliation(s)
- Maria Cristina Barbalace
- Department for Life Quality Studies, Alma Mater Studiorum, University of Bologna, Corso d'Augusto 237, 47921 Rimini, Italy
| | - Michela Freschi
- Department for Life Quality Studies, Alma Mater Studiorum, University of Bologna, Corso d'Augusto 237, 47921 Rimini, Italy
- Biostatistics and Clinical Trials Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", 47014 Meldola, Italy
| | - Irene Rinaldi
- Department for Life Quality Studies, Alma Mater Studiorum, University of Bologna, Corso d'Augusto 237, 47921 Rimini, Italy
| | - Lorenzo Zallocco
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy
| | - Marco Malaguti
- Department for Life Quality Studies, Alma Mater Studiorum, University of Bologna, Corso d'Augusto 237, 47921 Rimini, Italy
| | | | | | - Mariachiara Zuccarini
- Department of Medical, Oral and Biotechnological Sciences, University G. D'Annunzio of Chieti-Pescara, 66100 Chieti, Italy
| | - Maurizio Ronci
- Department of Medical, Oral and Biotechnological Sciences, University G. D'Annunzio of Chieti-Pescara, 66100 Chieti, Italy
- COIIM-Interuniversitary Consortium for Engineering and Medicine, 86100 Campobasso, Italy
| | - Doretta Cuffaro
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy
- Interdepartmental Research Center "Nutraceuticals and Food for Health", University of Pisa, 56100 Pisa, Italy
| | - Marco Macchia
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy
- Interdepartmental Research Center "Nutraceuticals and Food for Health", University of Pisa, 56100 Pisa, Italy
| | - Silvana Hrelia
- Department for Life Quality Studies, Alma Mater Studiorum, University of Bologna, Corso d'Augusto 237, 47921 Rimini, Italy
| | - Laura Giusti
- School of Pharmacy, University of Camerino, 62032 Camerino, Italy
| | - Maria Digiacomo
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy
- Interdepartmental Research Center "Nutraceuticals and Food for Health", University of Pisa, 56100 Pisa, Italy
| | - Cristina Angeloni
- Department for Life Quality Studies, Alma Mater Studiorum, University of Bologna, Corso d'Augusto 237, 47921 Rimini, Italy
| |
Collapse
|
2
|
Beghelli D, Giusti L, Zallocco L, Ronci M, Cappelli A, Pontifex MG, Muller M, Damiani C, Cirilli I, Hrelia S, Vauzour D, Vittadini E, Favia G, Angeloni C. Dietary fiber supplementation increases Drosophila melanogaster lifespan and gut microbiota diversity. Food Funct 2024; 15:7468-7477. [PMID: 38912918 DOI: 10.1039/d4fo00879k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
Dietary fiber has been shown to have multiple health benefits, including a positive effect on longevity and the gut microbiota. In the present study, Drosophila melanogaster has been chosen as an in vivo model organism to study the health effects of dietary fiber supplementation (DFS). DFS extended the mean half-life of male and female flies, but the absolute lifespan only increased in females. To reveal the underlying mechanisms, we examined the effect of DFS on gut microbiota diversity and abundance, local gut immunity, and the brain proteome. A significant difference in the gut microbial community was observed between groups with and without fiber supplementation, which reduced the gut pathogenic bacterial load. We also observed an upregulated expression of dual oxidase and a modulated expression of Attacin and Diptericin genes in the gut of older flies, possibly delaying the gut dysbiosis connected to the age-related gut immune dysfunction. Brain proteome analysis showed that DFS led to the modulation of metabolic processes connected to mitochondrial biogenesis, the RhoV-GTPase cycle, organelle biogenesis and maintenance, membrane trafficking and vesicle-mediated transport, possibly orchestrated through a gut-brain axis interaction. Taken together, our study shows that DFS can prolong the half-life and lifespan of flies, possibly by promoting a healthier gut environment and delaying the physiological dysbiosis that characterizes the ageing process. However, the RhoV-GTPase cycle at the brain level may deserve more attention in future studies.
Collapse
Affiliation(s)
- Daniela Beghelli
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III da Varano, 62032 Camerino, MC, Italy.
| | - Laura Giusti
- School of Pharmacy, University of Camerino, Via Gentile III da Varano, 62032 Camerino, MC, Italy
| | | | - Maurizio Ronci
- Department of Pharmacy, University G. d'Annunzio of Chieti-Pescara, Chieti, Italy
| | - Alessia Cappelli
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III da Varano, 62032 Camerino, MC, Italy.
| | - Matthew G Pontifex
- Norwich Medical School, Faculty of Medicine and Health Sciences, University of East Anglia, Norwich NR4 7TJ, UK
| | - Michael Muller
- Norwich Medical School, Faculty of Medicine and Health Sciences, University of East Anglia, Norwich NR4 7TJ, UK
| | - Claudia Damiani
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III da Varano, 62032 Camerino, MC, Italy.
| | - Ilenia Cirilli
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Silvana Hrelia
- Department for Life Quality Studies, Alma Mater Studiorum, University of Bologna, Corso d'Augusto 237, 47921 Rimini, RN, Italy
| | - David Vauzour
- Norwich Medical School, Faculty of Medicine and Health Sciences, University of East Anglia, Norwich NR4 7TJ, UK
| | - Elena Vittadini
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III da Varano, 62032 Camerino, MC, Italy.
| | - Guido Favia
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III da Varano, 62032 Camerino, MC, Italy.
| | - Cristina Angeloni
- Department for Life Quality Studies, Alma Mater Studiorum, University of Bologna, Corso d'Augusto 237, 47921 Rimini, RN, Italy
| |
Collapse
|
3
|
Silvestri R, Zallocco L, Corrado A, Ronci M, Aceto R, Ricci B, Cipollini M, Dell’Anno I, De Simone C, De Marco G, Ferrarini E, Beghelli D, Mazzoni MR, Lucacchini A, Gemignani F, Giusti L, Landi S. Polymorphism Pro64His within galectin-3 has functional consequences at proteome level in thyroid cells. Front Genet 2024; 15:1380495. [PMID: 38933925 PMCID: PMC11199678 DOI: 10.3389/fgene.2024.1380495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 05/22/2024] [Indexed: 06/28/2024] Open
Abstract
Introduction The single nucleotide polymorphism (SNP) rs4644 at codon 64 of galectin-3 (gal-3, gene name: LGALS3), specifying the variant proline (P64) to histidine (H64), is known to affect the protein's functions and has been associated with the risk of several types of cancer, including differentiated thyroid carcinoma (DTC). Materials and methods To deepen our understanding of the biological effects of this SNP, we analyzed the proteome of two isogenic cell lines (NC-P64 vs. NA-H64) derived from the immortalized non-malignant thyrocyte cell line Nthy-Ori, generated through the CRISPR-Cas9 technique to differ by rs4644 genotype. We compared the proteome of these cells to detect differentially expressed proteins and studied their proteome in relation to their transcriptome. Results Firstly, we found, consistently with previous studies, that gal-3-H64 could be detected as a monomer, homodimer, and heterodimer composed of one cleaved and one uncleaved monomer, whereas gal-3-P64 could be found only as a monomer or uncleaved homodimer. Moreover, results indicate that rs4644 influences the expression of several proteins, predominantly upregulated in NA-H64 cells. Overall, the differential protein expression could be attributed to the altered mRNA expression, suggesting that rs4644 shapes the function of gal-3 as a transcriptional co-regulator. However, this SNP also appeared to affect post-transcriptional regulatory mechanisms for proteins whose expression was oppositely regulated compared to mRNA expression. It is conceivable that the rs4644-dependent activities of gal-3 could be ascribed to the different modalities of self-dimerization. Conclusion Our study provided further evidence that rs4644 could affect the gal-3 functions through several routes, which could be at the base of differential susceptibility to diseases, as reported in case-control association studies.
Collapse
Affiliation(s)
- Roberto Silvestri
- Department of Biology, Genetic Unit, University of Pisa, Pisa, Italy
| | - Lorenzo Zallocco
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Alda Corrado
- Department of Biology, Genetic Unit, University of Pisa, Pisa, Italy
| | - Maurizio Ronci
- Department of Medical, Oral and Biotechnological Sciences, University “G.D’Annunzio” of Chieti-Pescara, Chieti, Italy
- COIIM, Interuniversitary Consortium for Engineering and Medicine, Campobasso, Italy
| | - Romina Aceto
- Department of Biology, Genetic Unit, University of Pisa, Pisa, Italy
| | - Benedetta Ricci
- Department of Biology, Genetic Unit, University of Pisa, Pisa, Italy
| | - Monica Cipollini
- Department of Biology, Genetic Unit, University of Pisa, Pisa, Italy
| | - Irene Dell’Anno
- Department of Biology, Genetic Unit, University of Pisa, Pisa, Italy
| | - Chiara De Simone
- Department of Medical, Oral and Biotechnological Sciences, University “G.D’Annunzio” of Chieti-Pescara, Chieti, Italy
| | - Giuseppina De Marco
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Eleonora Ferrarini
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Daniela Beghelli
- School of Biosciences and Veterinary Medicine, Via Gentile III da Varano, University of Camerino, Camerino, Italy
| | | | - Antonio Lucacchini
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | | | - Laura Giusti
- School of Pharmacy, University of Camerino, Camerino, Italy
| | - Stefano Landi
- Department of Biology, Genetic Unit, University of Pisa, Pisa, Italy
| |
Collapse
|
4
|
Moreira Vasconcelos CF, Neugebauer AZ, Basto Souza R. Exploring promising minor natural phenolic compounds in neuroprotection-related preclinical models. Basic Clin Pharmacol Toxicol 2024; 134:770-777. [PMID: 38566316 DOI: 10.1111/bcpt.14006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 01/30/2024] [Accepted: 03/06/2024] [Indexed: 04/04/2024]
Abstract
Neurodegenerative diseases, such as Alzheimer's disease and Parkinson's disease, are characterised by the progressive loss of specific neuronal cell populations due to multifactorial factors, including neurochemical and immunological disturbances. Consequently, patients can develop cognitive, motor and behavioural dysfunctions, which lead to impairments in their quality of life. Over the years, studies have reported on the neuroprotective properties inherent in phenolic compounds. Therefore, this review highlights the most recent scientific findings regarding phenolic compounds as promising neuroprotective molecules against neurodegenerative diseases.
Collapse
|
5
|
Polini B, Zallocco L, Gado F, Ferrisi R, Ricardi C, Zuccarini M, Carnicelli V, Manera C, Ronci M, Lucacchini A, Zucchi R, Giusti L, Chiellini G. A Proteomic Approach Identified TFEB as a Key Player in the Protective Action of Novel CB2R Bitopic Ligand FD22a against the Deleterious Effects Induced by β-Amyloid in Glial Cells. Cells 2024; 13:875. [PMID: 38786097 PMCID: PMC11119469 DOI: 10.3390/cells13100875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/11/2024] [Accepted: 05/16/2024] [Indexed: 05/25/2024] Open
Abstract
Neurodegenerative diseases (NDDs) are progressive multifactorial disorders of the nervous system sharing common pathogenic features, including intracellular misfolded protein aggregation, mitochondrial deficit, and inflammation. Taking into consideration the multifaceted nature of NDDs, development of multitarget-directed ligands (MTDLs) has evolved as an attractive therapeutic strategy. Compounds that target the cannabinoid receptor type II (CB2R) are rapidly emerging as novel effective MTDLs against common NDDs, such as Alzheimer's disease (AD). We recently developed the first CB2R bitopic/dualsteric ligand, namely FD22a, which revealed the ability to induce neuroprotection with fewer side effects. To explore the potential of FD22a as a multitarget drug for the treatment of NDDs, we investigated here its ability to prevent the toxic effect of β-amyloid (Aβ25-35 peptide) on human cellular models of neurodegeneration, such as microglia (HMC3) and glioblastoma (U87-MG) cell lines. Our results displayed that FD22a efficiently prevented Aβ25-35 cytotoxic and proinflammatory effects in both cell lines and counteracted β-amyloid-induced depression of autophagy in U87-MG cells. Notably, a quantitative proteomic analysis of U87-MG cells revealed that FD22a was able to potently stimulate the autophagy-lysosomal pathway (ALP) by activating its master transcriptional regulator TFEB, ultimately increasing the potential of this novel CB2R bitopic/dualsteric ligand as a multitarget drug for the treatment of NDDs.
Collapse
Affiliation(s)
- Beatrice Polini
- Department of Pathology, University of Pisa, 56100 Pisa, Italy; (B.P.); (C.R.); (V.C.); (R.Z.)
| | - Lorenzo Zallocco
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy;
| | - Francesca Gado
- Department of Pharmaceutical Sciences, University of Milan, 20133 Milano, Italy; (F.G.); (R.F.)
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy;
| | - Rebecca Ferrisi
- Department of Pharmaceutical Sciences, University of Milan, 20133 Milano, Italy; (F.G.); (R.F.)
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy;
| | - Caterina Ricardi
- Department of Pathology, University of Pisa, 56100 Pisa, Italy; (B.P.); (C.R.); (V.C.); (R.Z.)
| | - Mariachiara Zuccarini
- Department of Medical, Oral and Biotechnological Sciences, University G. D’Annunzio of Chieti-Pescara, 66100 Chieti, Italy; (M.Z.); (M.R.)
| | - Vittoria Carnicelli
- Department of Pathology, University of Pisa, 56100 Pisa, Italy; (B.P.); (C.R.); (V.C.); (R.Z.)
| | | | - Maurizio Ronci
- Department of Medical, Oral and Biotechnological Sciences, University G. D’Annunzio of Chieti-Pescara, 66100 Chieti, Italy; (M.Z.); (M.R.)
- Interuniversitary Consortium for Engineering and Medicine (COIIM), 86100 Campobasso, Italy
| | - Antonio Lucacchini
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy;
| | - Riccardo Zucchi
- Department of Pathology, University of Pisa, 56100 Pisa, Italy; (B.P.); (C.R.); (V.C.); (R.Z.)
| | - Laura Giusti
- School of Pharmacy, University of Camerino, 62032 Camerino, Italy
| | - Grazia Chiellini
- Department of Pathology, University of Pisa, 56100 Pisa, Italy; (B.P.); (C.R.); (V.C.); (R.Z.)
| |
Collapse
|
6
|
Filardo S, Roberto M, Di Risola D, Mosca L, Di Pietro M, Sessa R. Olea europaea L-derived secoiridoids: Beneficial health effects and potential therapeutic approaches. Pharmacol Ther 2024; 254:108595. [PMID: 38301769 DOI: 10.1016/j.pharmthera.2024.108595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/21/2023] [Accepted: 01/08/2024] [Indexed: 02/03/2024]
Abstract
Over the years, health challenges have become increasingly complex and global and, at the beginning of the 21st century, chronic diseases, including cardiovascular, neurological, and chronic respiratory diseases, as well as cancer and diabetes, have been identified by World Health Organization as one of the biggest threats to human health. Recently, antimicrobial resistance has also emerged as a growing problem of public health for the management of infectious diseases. In this scenario, the exploration of natural products as supplementation or alternative therapeutic options is acquiring great importance, and, among them, the olive tree, Olea europaea L, specifically leaves, fruits, and oil, has been increasingly investigated for its health promoting properties. Traditionally, these properties have been largely attributed to the high concentration of monounsaturated fatty acids, although, in recent years, beneficial effects have also been associated to other components, particularly polyphenols. Among them, the most interesting group is represented by Olea europaea L secoiridoids, comprising oleuropein, oleocanthal, oleacein, and ligstroside, which display anti-inflammatory, antioxidant, cardioprotective, neuroprotective and anticancer activities. This review provides an overview of the multiple health beneficial effects, the molecular mechanisms, and the potential applications of secoiridoids from Olea europaea L.
Collapse
Affiliation(s)
- Simone Filardo
- Department of Public Health and Infectious Diseases, Sapienza University, p.le Aldo Moro, 5, 00185 Rome, Italy
| | - Mattioli Roberto
- Department of Biochemical Sciences, Faculty of Pharmacy and Medicine, Sapienza University, p.le Aldo Moro, 5, 00185 Rome, Italy
| | - Daniel Di Risola
- Department of Biochemical Sciences, Faculty of Pharmacy and Medicine, Sapienza University, p.le Aldo Moro, 5, 00185 Rome, Italy
| | - Luciana Mosca
- Department of Biochemical Sciences, Faculty of Pharmacy and Medicine, Sapienza University, p.le Aldo Moro, 5, 00185 Rome, Italy
| | - Marisa Di Pietro
- Department of Public Health and Infectious Diseases, Sapienza University, p.le Aldo Moro, 5, 00185 Rome, Italy
| | - Rosa Sessa
- Department of Public Health and Infectious Diseases, Sapienza University, p.le Aldo Moro, 5, 00185 Rome, Italy.
| |
Collapse
|
7
|
Pontifex MG, Connell E, Le Gall G, Lang L, Pourtau L, Gaudout D, Angeloni C, Zallocco L, Ronci M, Giusti L, Müller M, Vauzour D. A novel Mediterranean diet-inspired supplement ameliorates cognitive, microbial, and metabolic deficits in a mouse model of low-grade inflammation. Gut Microbes 2024; 16:2363011. [PMID: 38835220 PMCID: PMC11155709 DOI: 10.1080/19490976.2024.2363011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 05/29/2024] [Indexed: 06/06/2024] Open
Abstract
The Mediterranean diet (MD) and its bioactive constituents have been advocated for their neuroprotective properties along with their capacity to affect gut microbiota speciation and metabolism. Mediated through the gut brain axis, this modulation of the microbiota may partly contribute to the neuroprotective properties of the MD. To explore this potential interaction, we evaluated the neuroprotective properties of a novel bioactive blend (Neurosyn240) resembling the Mediterranean diet in a rodent model of chronic low-grade inflammation. Behavioral tests of cognition, brain proteomic analysis, 16S rRNA sequencing, and 1H NMR metabolomic analyses were employed to develop an understanding of the gut-brain axis interactions involved. Recognition memory, as assessed by the novel object recognition task (NOR), decreased in response to LPS insult and was restored with Neurosyn240 supplementation. Although the open field task performance did not reach significance, it correlated with NOR performance indicating an element of anxiety related to this cognitive change. Behavioral changes associated with Neurosyn240 were accompanied by a shift in the microbiota composition which included the restoration of the Firmicutes: Bacteroidota ratio and an increase in Muribaculum, Rikenellaceae Alloprevotella, and most notably Akkermansia which significantly correlated with NOR performance. Akkermansia also correlated with the metabolites 5-aminovalerate, threonine, valine, uridine monophosphate, and adenosine monophosphate, which in turn significantly correlated with NOR performance. The proteomic profile within the brain was dramatically influenced by both interventions, with KEGG analysis highlighting oxidative phosphorylation and neurodegenerative disease-related pathways to be modulated. Intriguingly, a subset of these proteomic changes simultaneously correlated with Akkermansia abundance and predominantly related to oxidative phosphorylation, perhaps alluding to a protective gut-brain axis interaction. Collectively, our results suggest that the bioactive blend Neurosyn240 conferred cognitive and microbiota resilience in response to the deleterious effects of low-grade inflammation.
Collapse
Affiliation(s)
- Matthew G. Pontifex
- Norwich Medical School, Faculty of Medicine and Health Sciences, University of East Anglia, Norwich, UK
| | - Emily Connell
- Norwich Medical School, Faculty of Medicine and Health Sciences, University of East Anglia, Norwich, UK
| | - Gwenaelle Le Gall
- Norwich Medical School, Faculty of Medicine and Health Sciences, University of East Anglia, Norwich, UK
| | - Leonie Lang
- Norwich Medical School, Faculty of Medicine and Health Sciences, University of East Anglia, Norwich, UK
| | | | | | - Cristina Angeloni
- Department for Life Quality Studies, Alma Mater Studiorum, University of Bologna, Alma, Italy
| | - Lorenzo Zallocco
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Maurizio Ronci
- Department of Pharmacy, University G. d’Annunzio of Chieti-Pescara, Chieti, Italy
| | - Laura Giusti
- School of Pharmacy, University of Camerino, Camerino, Italy
| | - Michael Müller
- Norwich Medical School, Faculty of Medicine and Health Sciences, University of East Anglia, Norwich, UK
| | - David Vauzour
- Norwich Medical School, Faculty of Medicine and Health Sciences, University of East Anglia, Norwich, UK
| |
Collapse
|
8
|
Infante R, Infante M, Pastore D, Pacifici F, Chiereghin F, Malatesta G, Donadel G, Tesauro M, Della-Morte D. An Appraisal of the Oleocanthal-Rich Extra Virgin Olive Oil (EVOO) and Its Potential Anticancer and Neuroprotective Properties. Int J Mol Sci 2023; 24:17323. [PMID: 38139152 PMCID: PMC10744258 DOI: 10.3390/ijms242417323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/01/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
Dietary consumption of olive oil represents a key pillar of the Mediterranean diet, which has been shown to exert beneficial effects on human health, such as the prevention of chronic non-communicable diseases like cancers and neurodegenerative diseases, among others. These health benefits are partly mediated by the high-quality extra virgin olive oil (EVOO), which is produced mostly in Mediterranean countries and is directly made from olives, the fruit of the olive tree (Olea europaea L.). Preclinical evidence supports the existence of antioxidant and anti-inflammatory properties exerted by the polyphenol oleocanthal, which belongs to the EVOO minor polar compound subclass of secoiridoids (like oleuropein). This narrative review aims to describe the antioxidant and anti-inflammatory properties of oleocanthal, as well as the potential anticancer and neuroprotective actions of this polyphenol. Based on recent evidence, we also discuss the reasons underlying the need to include the concentrations of oleocanthal and other polyphenols in the EVOO's nutrition facts label. Finally, we report our personal experience in the production of a certified organic EVOO with a "Protected Designation of Origin" (PDO), which was obtained from olives of three different cultivars (Rotondella, Frantoio, and Leccino) harvested in geographical areas located a short distance from one another (villages' names: Gorga and Camella) within the Southern Italy "Cilento, Vallo di Diano and Alburni National Park" of the Campania Region (Province of Salerno, Italy).
Collapse
Affiliation(s)
- Raffaele Infante
- Department of Human Sciences and Quality of Life Promotion, San Raffaele University, 00166 Rome, Italy; (R.I.); (D.P.); (D.D.-M.)
| | - Marco Infante
- Section of Diabetes & Metabolic Disorders, UniCamillus, Saint Camillus International University of Health Sciences, 00131 Rome, Italy
| | - Donatella Pastore
- Department of Human Sciences and Quality of Life Promotion, San Raffaele University, 00166 Rome, Italy; (R.I.); (D.P.); (D.D.-M.)
| | - Francesca Pacifici
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (F.P.); (G.M.); (M.T.)
| | - Francesca Chiereghin
- Department of Human Sciences and Quality of Life Promotion, San Raffaele University, 00166 Rome, Italy; (R.I.); (D.P.); (D.D.-M.)
| | - Gina Malatesta
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (F.P.); (G.M.); (M.T.)
| | - Giulia Donadel
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, 00133 Rome, Italy;
| | - Manfredi Tesauro
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (F.P.); (G.M.); (M.T.)
| | - David Della-Morte
- Department of Human Sciences and Quality of Life Promotion, San Raffaele University, 00166 Rome, Italy; (R.I.); (D.P.); (D.D.-M.)
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (F.P.); (G.M.); (M.T.)
- Department of Neurology, Evelyn F. McKnight Brain Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
9
|
Pirone A, Ciregia F, Lazzarini G, Miragliotta V, Ronci M, Zuccarini M, Zallocco L, Beghelli D, Mazzoni MR, Lucacchini A, Giusti L. Proteomic Profiling Reveals Specific Molecular Hallmarks of the Pig Claustrum. Mol Neurobiol 2023; 60:4336-4358. [PMID: 37095366 PMCID: PMC10293365 DOI: 10.1007/s12035-023-03347-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 04/13/2023] [Indexed: 04/26/2023]
Abstract
The present study, employing a comparative proteomic approach, analyzes the protein profile of pig claustrum (CLA), putamen (PU), and insula (IN). Pig brain is an interesting model whose key translational features are its similarities with cortical and subcortical structures of human brain. A greater difference in protein spot expression was observed in CLA vs PU as compared to CLA vs IN. The deregulated proteins identified in CLA resulted to be deeply implicated in neurodegenerative (i.e., sirtuin 2, protein disulfide-isomerase 3, transketolase) and psychiatric (i.e., copine 3 and myelin basic protein) disorders in humans. Metascape analysis of differentially expressed proteins in CLA vs PU comparison suggested activation of the α-synuclein pathway and L1 recycling pathway corroborating the involvement of these anatomical structures in neurodegenerative diseases. The expression of calcium/calmodulin-dependent protein kinase and dihydropyrimidinase like 2, which are linked to these pathways, was validated using western blot analysis. Moreover, the protein data set of CLA vs PU comparison was analyzed by Ingenuity Pathways Analysis to obtain a prediction of most significant canonical pathways, upstream regulators, human diseases, and biological functions. Interestingly, inhibition of presenilin 1 (PSEN1) upstream regulator and activation of endocannabinoid neuronal synapse pathway were observed. In conclusion, this is the first study presenting an extensive proteomic analysis of pig CLA in comparison with adjacent areas, IN and PUT. These results reinforce the common origin of CLA and IN and suggest an interesting involvement of CLA in endocannabinoid circuitry, neurodegenerative, and psychiatric disorders in humans.
Collapse
Affiliation(s)
- Andrea Pirone
- Department of Veterinary Sciences, University of Pisa, Pisa, Italy.
| | - Federica Ciregia
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Giulia Lazzarini
- Department of Veterinary Sciences, University of Pisa, Pisa, Italy
| | | | - Maurizio Ronci
- Department of Medical, Oral and Biotechnological Sciences, University G. D'Annunzio of Chieti-Pescara, Chieti, Italy
- Interuniversitary Consortium for Engineering and Medicine, COIIM, Campobasso, Italy
| | - Mariachiara Zuccarini
- Department of Medical, Oral and Biotechnological Sciences, University G. D'Annunzio of Chieti-Pescara, Chieti, Italy
| | - Lorenzo Zallocco
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Daniela Beghelli
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy
| | | | - Antonio Lucacchini
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Laura Giusti
- School of Pharmacy, University of Camerino, Camerino, Italy
| |
Collapse
|
10
|
Piao M, Tu Y, Zhang N, Diao Q, Bi Y. Advances in the Application of Phytogenic Extracts as Antioxidants and Their Potential Mechanisms in Ruminants. Antioxidants (Basel) 2023; 12:antiox12040879. [PMID: 37107254 PMCID: PMC10135197 DOI: 10.3390/antiox12040879] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 03/24/2023] [Accepted: 03/29/2023] [Indexed: 04/08/2023] Open
Abstract
Under current breeding conditions, multiple stressors are important challenges facing animal husbandry in achieving animal wellbeing. For many years, the use of antibiotics has been a social concern in the livestock industry. With the implementation of the non-antibiotics policy, there is an urgent need to find relevant technologies and products to replace antibiotics and to solve the problem of disease prevention during animal growth. Phytogenic extracts have the unique advantages of being natural and extensive sources, having a low residue, and being pollution-free and renewable. They can relieve the various stresses, including oxidative stress, on animals and even control their inflammation by regulating the signaling pathways of proinflammatory cytokines, improving animal immunity, and improving the structure of microorganisms in the gastrointestinal tract, thereby becoming the priority choice for improving animal health. In this study, we reviewed the types of antioxidants commonly used in the livestock industry and their applicable effects on ruminants, as well as the recent research progress on their potential mechanisms of action. This review may provide a reference for further research and for the application of other phytogenic extracts and the elucidation of their precise mechanisms of action.
Collapse
Affiliation(s)
- Minyu Piao
- Key Laboratory of Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yan Tu
- Key Laboratory of Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Naifeng Zhang
- Key Laboratory of Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Qiyu Diao
- Key Laboratory of Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yanliang Bi
- Key Laboratory of Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
11
|
Angeloni C, Malaguti M, Prata C, Freschi M, Barbalace MC, Hrelia S. Mechanisms Underlying Neurodegenerative Disorders and Potential Neuroprotective Activity of Agrifood By-Products. Antioxidants (Basel) 2022; 12:94. [PMID: 36670956 PMCID: PMC9854890 DOI: 10.3390/antiox12010094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/23/2022] [Accepted: 12/25/2022] [Indexed: 01/03/2023] Open
Abstract
Neurodegenerative diseases, characterized by progressive loss in selected areas of the nervous system, are becoming increasingly prevalent worldwide due to an aging population. Despite their diverse clinical manifestations, neurodegenerative diseases are multifactorial disorders with standard features and mechanisms such as abnormal protein aggregation, mitochondrial dysfunction, oxidative stress and inflammation. As there are no effective treatments to counteract neurodegenerative diseases, increasing interest has been directed to the potential neuroprotective activities of plant-derived compounds found abundantly in food and in agrifood by-products. Food waste has an extremely negative impact on the environment, and recycling is needed to promote their disposal and overcome this problem. Many studies have been carried out to develop green and effective strategies to extract bioactive compounds from food by-products, such as peel, leaves, seeds, bran, kernel, pomace, and oil cake, and to investigate their biological activity. In this review, we focused on the potential neuroprotective activity of agrifood wastes obtained by common products widely produced and consumed in Italy, such as grapes, coffee, tomatoes, olives, chestnuts, onions, apples, and pomegranates.
Collapse
Affiliation(s)
- Cristina Angeloni
- Department for Life Quality Studies, Alma Mater Studiorum–University of Bologna, Corso D’Augusto 237, 47921 Rimini, Italy
| | - Marco Malaguti
- Department for Life Quality Studies, Alma Mater Studiorum–University of Bologna, Corso D’Augusto 237, 47921 Rimini, Italy
| | - Cecilia Prata
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum–University of Bologna, Via Irnerio 48, 40126 Bologna, Italy
| | - Michela Freschi
- Department for Life Quality Studies, Alma Mater Studiorum–University of Bologna, Corso D’Augusto 237, 47921 Rimini, Italy
| | - Maria Cristina Barbalace
- Department for Life Quality Studies, Alma Mater Studiorum–University of Bologna, Corso D’Augusto 237, 47921 Rimini, Italy
| | - Silvana Hrelia
- Department for Life Quality Studies, Alma Mater Studiorum–University of Bologna, Corso D’Augusto 237, 47921 Rimini, Italy
| |
Collapse
|
12
|
Miao F, Shan C, Geng S, Ning D. Oleocanthal alleviated lipopolysaccharide-induced acute lung injury in chickens by inhibiting TLR4/NF-κB pathway activation. Poult Sci 2022; 102:102458. [PMID: 36640559 PMCID: PMC9842928 DOI: 10.1016/j.psj.2022.102458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 12/09/2022] [Accepted: 12/25/2022] [Indexed: 12/31/2022] Open
Abstract
This study aimed to investigate the ameliorative effect of oleocanthal (OC) on lipopolysaccharide (LPS)-induced acute lung injury (ALI) in chickens and its possible mechanisms. In total, 20 chickens were randomly divided into 4 groups: control (CON) group, LPS group, LPS + OC group, and OC group. LPS + OC and OC groups were intragastrically administered a 5 mg/kg·d OC dose for 7 d. On d 8, the LPS group and LPS + OC group were intratracheally administered 2 mg/kg LPS for 12 h. It was found that OC ameliorated the pathological morphology and significantly suppressed apoptosis after OC treatment in LPS-induced ALI chicken (P < 0.01). Antioxidant capacity was higher in the LPS + OC group compared with the LPS group (P < 0.01). OC downregulated the related genes and proteins expression of toll-like receptor 4/nuclear factor-κB (TLR4/NF-κB) pathway in LPS group (P < 0.01). In conclusion, OC supplementation can alleviate LPS-induced ALI in chickens by suppressing apoptosis, enhancing lung antioxidant capacities and inhibiting TLR4/NF-κB pathway activation.
Collapse
Affiliation(s)
- Fujun Miao
- Yunnan Academy of Forestry and Grassland, Kunming, 650204, P. R. China.
| | - Chunlan Shan
- College of Animal Science, Guizhou University, Guiyang, 550000, P. R. China
| | - Shuxiang Geng
- Yunnan Academy of Forestry and Grassland, Kunming, 650204, P. R. China
| | - Delu Ning
- Yunnan Academy of Forestry and Grassland, Kunming, 650204, P. R. China
| |
Collapse
|
13
|
Costa M, Costa V, Lopes M, Paiva-Martins F. A biochemical perspective on the fate of virgin olive oil phenolic compounds in vivo. Crit Rev Food Sci Nutr 2022; 64:1403-1428. [PMID: 36094444 DOI: 10.1080/10408398.2022.2116558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The chemistry of the phenolic compounds found in virgin olive oil (VOO) is very complex due, not only to the different classes of polyphenols that can be found in it, but, above all, due to the existence of a very specific phenol class found only in oleaceae plants: the secoiridoids. Searching in the Scopus data base the keywords flavonoid, phenolic acid, lignin and secoiridoid, we can find a number of 148174, 79435, 11326 and 1392 research articles respectively, showing how little is devote to the latter class of compounds. Moreover, in contrast with other classes, that include only phenolic compounds, secoiridoids may include phenolic and non-phenolic compounds, being the articles concerning phenolic secoiridoids much less than the half of the abovementioned articles. Therefore, it is important to clarify the structures of these compounds and their chemistry, as this knowledge will help understand their bioactivity and metabolism studies, usually performed by researchers with a more health science's related background. In this review, all the structures found in many research articles concerning VOO phenolic compounds chemistry and metabolism was gathered, with a special attention devoted to the secoiridoids, the main phenolic compound class found in olives, VOO and olive leaf.
Collapse
Affiliation(s)
- Marlene Costa
- REQUIMTE-LAQV, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - Vânia Costa
- REQUIMTE-LAQV, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - Margarida Lopes
- REQUIMTE-LAQV, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - Fátima Paiva-Martins
- REQUIMTE-LAQV, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| |
Collapse
|
14
|
The Effect of Oleoylethanolamide (OEA) Add-On Treatment on Inflammatory, Oxidative Stress, Lipid, and Biochemical Parameters in the Acute Ischemic Stroke Patients: Randomized Double-Blind Placebo-Controlled Study. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:5721167. [PMID: 36120593 PMCID: PMC9477639 DOI: 10.1155/2022/5721167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 04/01/2022] [Accepted: 06/05/2022] [Indexed: 11/18/2022]
Abstract
Methods Sixty patients with a mean age of 68.60 ± 2.10 comprising 29 females (48.33%), who were admitted to an academic tertiary care facility within the first 12 hours poststroke symptoms onset or last known well (LKW), in case symptom onset time is not clear, were included in this study. AIS was confirmed based on a noncontrast head CT scan and also neurological symptoms. Patients were randomly and blindly assigned to OEA of 300 mg/day (n = 20) or 600 mg/day (n = 20) or placebo (n = 20) in addition to the standard AIS treatment for three days. A blood sample was drawn at 12 hours from symptoms onset or LKW as the baseline followed by the second blood sample at 72 hours post symptoms onset or LKW. Blood samples were assessed for inflammatory and biochemical parameters, oxidative stress (OS) biomarkers, and lipid profile. Results Compared to the baseline, there is a significant reduction in the urea, creatinine, triglyceride, high-density lipoprotein, cholesterol, alanine transaminase, total antioxidant capacity, malondialdehyde (MDA), total thiol groups (TTG), interleukin-6 (IL-6), and C-reactive protein levels on the follow-up blood testing in the OEA (300 mg/day) group. In patients receiving OEA (600 mg/day) treatment, there was only a significant reduction in the MDA level comparing baseline with follow-up blood testing. Also, the between-group analysis revealed a statistically significant difference between patients receiving OEA (300 mg/day) and placebo in terms of IL-6 and TTG level reduction when comparing them between baseline and follow-up blood testing. Conclusion OEA in moderate dosage, 300 mg/day, add-on to the standard stroke treatment improves short-term inflammatory, OS, lipid, and biochemical parameters in patients with AIS. This effect might lead to a better long-term neurological prognosis.
Collapse
|
15
|
Olive Oil Improves While Trans Fatty Acids Further Aggravate the Hypomethylation of LINE-1 Retrotransposon DNA in an Environmental Carcinogen Model. Nutrients 2022; 14:nu14040908. [PMID: 35215560 PMCID: PMC8878525 DOI: 10.3390/nu14040908] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/13/2022] [Accepted: 02/14/2022] [Indexed: 02/08/2023] Open
Abstract
DNA methylation is an epigenetic mechanism that is crucial for mammalian development and genomic stability. Aberrant DNA methylation changes have been detected not only in malignant tumor tissues; the decrease of global DNA methylation levels is also characteristic for aging. The consumption of extra virgin olive oil (EVOO) as part of a balanced diet shows preventive effects against age-related diseases and cancer. On the other hand, consuming trans fatty acids (TFA) increases the risk of cardiovascular diseases as well as cancer. The aim of the study was to investigate the LINE-1 retrotransposon (L1-RTP) DNA methylation pattern in liver, kidney, and spleen of mice as a marker of genetic instability. For that, mice were fed with EVOO or TFA and were pretreated with environmental carcinogen 7,12-dimethylbenz[a]anthracene (DMBA)-a harmful substance known to cause L1-RTP DNA hypomethylation. Our results show that DMBA and its combination with TFA caused significant L1-RTP DNA hypomethylation compared to the control group via inhibition of DNA methyltransferase (DNMT) enzymes. EVOO had the opposite effect by significantly decreasing DMBA and DMBA + TFA-induced hypomethylation, thereby counteracting their effects.
Collapse
|
16
|
Pterostilbene Promotes Mean Lifespan in Both Male and Female Drosophila Melanogaster Modulating Different Proteins in the Two Sexes. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:1744408. [PMID: 35222791 PMCID: PMC8865974 DOI: 10.1155/2022/1744408] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 02/02/2022] [Accepted: 02/03/2022] [Indexed: 11/17/2022]
Abstract
Aging is a multifactorial phenomenon characterized by degenerative processes closely connected to oxidative damage and chronic inflammation. Recently, many studies have shown that natural bioactive compounds are useful in delaying the aging process. In this work, we studied the effects of an in vivo supplementation of the stilbenoid pterostilbene on lifespan extension in Drosophila melanogaster. We found that the average lifespan of flies of both sexes was increased by pterostilbene supplementation with a higher effect in females. The expression of longevity related genes (Sir2, Foxo, and Notch) was increased in both sexes but with different patterns. Pterostilbene counteracted oxidative stress induced by ethanol and paraquat and up-regulated the antioxidant enzymes Ho e Trxr-1 in male but not in female flies. On the other hand, pterostilbene decreased the inflammatory mediators dome and egr only in female flies. Proteomic analysis revealed that pterostilbene modulates 113 proteins in male flies and only 9 in females. Only one of these proteins was modulated by pterostilbene in both sexes: vacuolar H[+] ATPase 68 kDa subunit 2 (Vha68-2) that was strongly down-regulated. These findings suggest a potential role of pterostilbene in increasing lifespan both in male and female flies by mechanisms that seem to be different in the two sexes, highlighting the need to conduct nutraceutical supplementation studies on males and females separately in order to give more reliable results.
Collapse
|
17
|
Oleocanthalic acid from extra-virgin olive oil: Analysis, preparative isolation and radical scavenging activity. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2021.104160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
18
|
De La Cruz Cortés JP, Pérez de Algaba I, Martín-Aurioles E, Arrebola MM, Ortega-Hombrados L, Rodríguez-Pérez MD, Fernández-Prior MÁ, Bermúdez-Oria A, Verdugo C, González-Correa JA. Extra Virgin Oil Polyphenols Improve the Protective Effects of Hydroxytyrosol in an In Vitro Model of Hypoxia-Reoxygenation of Rat Brain. Brain Sci 2021; 11:brainsci11091133. [PMID: 34573155 PMCID: PMC8471209 DOI: 10.3390/brainsci11091133] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/17/2021] [Accepted: 08/24/2021] [Indexed: 11/16/2022] Open
Abstract
Hydroxytyrosol (HT) is the component primarily responsible for the neuroprotective effect of extra virgin olive oil (EVOO). However, it is less effective on its own than the demonstrated neuroprotective effect of EVOO, and for this reason, it can be postulated that there is an interaction between several of the polyphenols of EVOO. The objective of the study was to assess the possible interaction of four EVOO polyphenols (HT, tyrosol, dihydroxyphenylglycol, and oleocanthal) in an experimental model of hypoxia-reoxygenation in rat brain slices. The lactate dehydrogenase (LDH) efflux, lipid peroxidation, and peroxynitrite production were determined as measures of cell death, oxidative stress, and nitrosative stress, respectively. First, the polyphenols were incubated with the brain slices in the same proportions that exist in EVOO, comparing their effects with those of HT. In all cases, the cytoprotective and antioxidant effects of the combination were greater than those of HT alone. Second, we calculated the concentration-effect curves for HT in the absence or presence of each polyphenol. Tyrosol did not significantly modify any of the variables inhibited by HT. Dihydroxyphenylglycol only increased the cytoprotective effect of HT at 10 µM, while it increased its antioxidant effect at 50 and 100 µM and its inhibitory effect on peroxynitrite formation at all the concentrations tested. Oleocanthal increased the cytoprotective and antioxidant effects of HT but did not modify its inhibitory effect on nitrosative stress. The results of this study show that the EVOO polyphenols DHPG and OLC increase the cytoprotective effect of HT in an experimental model of hypoxia-reoxygenation in rat brain slices, mainly due to a possibly synergistic effect on HT's antioxidant action. These results could explain the greater neuroprotective effect of EVOO than of the polyphenols alone.
Collapse
Affiliation(s)
- José Pedro De La Cruz Cortés
- Departmento de Farmacología, Facultad de Medicina, Instituto de Investigación Biomédica (IBIMA), Universidad de Málaga, 29010 Málaga, Spain; (L.O.-H.); (M.D.R.-P.); (C.V.); (J.A.G.-C.)
- Correspondence: ; Tel.: +34-952-131-567
| | | | | | | | - Laura Ortega-Hombrados
- Departmento de Farmacología, Facultad de Medicina, Instituto de Investigación Biomédica (IBIMA), Universidad de Málaga, 29010 Málaga, Spain; (L.O.-H.); (M.D.R.-P.); (C.V.); (J.A.G.-C.)
| | - María Dolores Rodríguez-Pérez
- Departmento de Farmacología, Facultad de Medicina, Instituto de Investigación Biomédica (IBIMA), Universidad de Málaga, 29010 Málaga, Spain; (L.O.-H.); (M.D.R.-P.); (C.V.); (J.A.G.-C.)
| | - María África Fernández-Prior
- Instituto de la Grasa, Consejo Superior de Investigaciones Científicas (CSIC), Ctra. Utrera Km 1, Campus Universitario Pablo de Olavide, Edificio 46, 41013 Seville, Spain; (M.Á.F.-P.); (A.B.-O.)
| | - Alejandra Bermúdez-Oria
- Instituto de la Grasa, Consejo Superior de Investigaciones Científicas (CSIC), Ctra. Utrera Km 1, Campus Universitario Pablo de Olavide, Edificio 46, 41013 Seville, Spain; (M.Á.F.-P.); (A.B.-O.)
| | - Cristina Verdugo
- Departmento de Farmacología, Facultad de Medicina, Instituto de Investigación Biomédica (IBIMA), Universidad de Málaga, 29010 Málaga, Spain; (L.O.-H.); (M.D.R.-P.); (C.V.); (J.A.G.-C.)
| | - José Antonio González-Correa
- Departmento de Farmacología, Facultad de Medicina, Instituto de Investigación Biomédica (IBIMA), Universidad de Málaga, 29010 Málaga, Spain; (L.O.-H.); (M.D.R.-P.); (C.V.); (J.A.G.-C.)
| |
Collapse
|
19
|
Majeed M, Pirzadah TB, Mir MA, Hakeem KR, Alharby HF, Alsamadany H, Bamagoos AA, Rehman RU. Comparative Study on Phytochemical Profile and Antioxidant Activity of an Epiphyte, Viscum album L. (White Berry Mistletoe), Derived from Different Host Trees. PLANTS 2021; 10:plants10061191. [PMID: 34208051 PMCID: PMC8230609 DOI: 10.3390/plants10061191] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 06/08/2021] [Accepted: 06/08/2021] [Indexed: 02/07/2023]
Abstract
The study aimed at evaluating the antioxidant profile of a medicinal epiphyte Viscum album L. harvested from three tree species, namely, Populus ciliata L, Ulmus villosa L., and Juglans regia L. The crude extracts were obtained with ethanol, methanol, and water and were evaluated for the total phenol content (TPC), total flavonoid content (TFC), and antioxidant activities using total reducing power (TRP), ferric reducing antioxidant power (FRAP), 1, 1-diphenyl 1-2-picryl-hydrazyl (DPPH), superoxide radical scavenging (SOR), and hydroxyl radical scavenging (•OH) assays. Our results showed that crude leaf extracts of plants harvested from the host Juglans regia L. exhibited higher yields of phytochemical constituents and noticeable antioxidative properties. The ethanolic leaf samples reported the highest phenols (13.46 ± 0.87 mg/g), flavonoids (2.38 ± 0.04 mg/g), FRAP (500.63 ± 12.58 μM Fe II/g DW), and DPPH (87.26% ± 0.30 mg/mL). Moreover, the highest values for TRP (4.24 ± 0.26 μg/mL), SOR (89.79% ± 0.73 mg/mL), and OH (67.16% ± 1.15 mg/mL) were obtained from aqueous leaf extracts. Further, Pearson correlation was used for quantifying the relationship between TPC, TFC, and antioxidant (FRAP, DPPH, SOR, OH) activities in Viscum album L. compared to their hosts. It was revealed that the epiphyte showed variation with the type of host plant and extracting solvent.
Collapse
Affiliation(s)
- Mahak Majeed
- Department of Bioresources, University of Kashmir, Hazratbal 190006, India; (M.M.); (M.A.M.)
| | - Tanveer Bilal Pirzadah
- University Centre for Research and Development (UCRD), Chandigarh University, Punjab 140413, India;
| | - Manzoor Ahmad Mir
- Department of Bioresources, University of Kashmir, Hazratbal 190006, India; (M.M.); (M.A.M.)
| | - Khalid Rehman Hakeem
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (H.F.A.); (H.A.); (A.A.B.)
- Correspondence: (K.R.H.); (R.U.R.)
| | - Hesham F. Alharby
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (H.F.A.); (H.A.); (A.A.B.)
| | - Hameed Alsamadany
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (H.F.A.); (H.A.); (A.A.B.)
| | - Atif A. Bamagoos
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (H.F.A.); (H.A.); (A.A.B.)
| | - Reiaz Ul Rehman
- Department of Bioresources, University of Kashmir, Hazratbal 190006, India; (M.M.); (M.A.M.)
- Correspondence: (K.R.H.); (R.U.R.)
| |
Collapse
|
20
|
Antioxidant and Anti-Inflammatory Profiles of Spent Coffee Ground Extracts for the Treatment of Neurodegeneration. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6620913. [PMID: 34104310 PMCID: PMC8159652 DOI: 10.1155/2021/6620913] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 04/06/2021] [Accepted: 04/29/2021] [Indexed: 11/17/2022]
Abstract
Spent coffee grounds (SCGs), waste products of coffee beverage production, are rich in organic compounds such as phenols. Different studies have demonstrated phenol beneficial effects in counteracting neurodegenerative diseases. These diseases are associated with oxidative stress and neuroinflammation, which initiates the degeneration of neurons by overactivating microglia. Unfortunately, to date, there are no pharmacological therapies to treat these pathologies. The aim of this study was to evaluate the phenolic content of 4 different SCG extracts and their ability to counteract oxidative stress and neuroinflammation. Caffeine and 5-O-caffeoylquinic acid were the most abundant compounds in all extracts, followed by 3-O-caffeoylquinic acid and 3,5-O-dicaffeoylquinic acid. The four extracts demonstrated a different ability to counteract oxidative stress and neuroinflammation in vitro. In particular, the methanol extract was the most effective in protecting neuron-like SH-SY5Y cells against H2O2-induced oxidative stress by upregulating endogenous antioxidant enzymes such as thioredoxin reductase, heme oxygenase 1, NADPH quinone oxidoreductase, and glutathione reductase. The water extract was the most effective in counteracting lipopolysaccharide-induced neuroinflammation in microglial BV-2 cells by strongly reducing the expression of proinflammatory mediators through the modulation of the TLR4/NF-κB pathway. On these bases, SCG extracts could represent valuable nutraceutical sources for the treatment of neurodegeneration.
Collapse
|
21
|
Zallocco L, Giusti L, Ronci M, Mussini A, Trerotola M, Mazzoni MR, Lucacchini A, Sebastiani L. Salivary Proteome Changes in Response to Acute Psychological Stress Due to an Oral Exam Simulation in University Students: Effect of an Olfactory Stimulus. Int J Mol Sci 2021; 22:4295. [PMID: 33919012 PMCID: PMC8122612 DOI: 10.3390/ijms22094295] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/16/2021] [Accepted: 04/18/2021] [Indexed: 12/11/2022] Open
Abstract
The autonomic nervous system (ANS) plays a crucial role both in acute and chronic psychological stress eliciting changes in many local and systemic physiological and biochemical processes. Salivary secretion is also regulated by ANS. In this study, we explored salivary proteome changes produced in thirty-eight University students by a test stress, which simulated an oral exam. Students underwent a relaxation phase followed by the stress test during which an electrocardiogram was recorded. To evaluate the effect of an olfactory stimulus, half of the students were exposed to a pleasant odor diffused in the room throughout the whole session. Saliva samples were collected after the relaxation phase (T0) and the stress test (T1). State anxiety was also evaluated at T0 and T1. Salivary proteins were separated by two-dimensional electrophoresis, and patterns at different times were compared. Spots differentially expressed were trypsin digested and identified by mass spectrometry. Western blot analysis was used to validate proteomic results. Anxiety scores and heart rate changes indicated that the fake exam induced anxiety. Significant changes of α-amylase, polymeric immunoglobulin receptor (PIGR), and immunoglobulin α chain (IGHA) secretion were observed after the stress test was performed in the two conditions. Moreover, the presence of pleasant odor reduced the acute social stress affecting salivary proteome changes. Therefore, saliva proteomic analysis was a useful approach to evaluate the rapid responses associated to an acute stress test also highlighting known biomarkers.
Collapse
Affiliation(s)
- Lorenzo Zallocco
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy; (L.Z.); (M.R.M.)
| | - Laura Giusti
- School of Pharmacy, University of Camerino, via Gentile III da Varano, 62032 Camerino, Italy
| | - Maurizio Ronci
- Department of Pharmacy, University G. D’Annunzio of Chieti-Pescara, via dei Vestini, 66100 Chieti, Italy;
| | - Andrea Mussini
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy; (A.M.); (L.S.)
| | - Marco Trerotola
- Laboratory of Cancer Pathology, Center for Advanced Studies and Technology (CAST), University “G. D’Annunzio”, 66100 Chieti, Italy;
- Department of Medical, Oral and Biotechnological Sciences, University “G. d’Annunzio”, 66100 Chieti, Italy
| | - Maria Rosa Mazzoni
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy; (L.Z.); (M.R.M.)
| | - Antonio Lucacchini
- Department of Clinical and Experimental Medicine, University of Pisa, via Savi, 56126 Pisa, Italy
| | - Laura Sebastiani
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy; (A.M.); (L.S.)
| |
Collapse
|
22
|
Antioxidant and Neuroprotective Activity of Extra Virgin Olive Oil Extracts Obtained from Quercetano Cultivar Trees Grown in Different Areas of the Tuscany Region (Italy). Antioxidants (Basel) 2021; 10:antiox10030421. [PMID: 33801925 PMCID: PMC8000409 DOI: 10.3390/antiox10030421] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/02/2021] [Accepted: 03/05/2021] [Indexed: 12/14/2022] Open
Abstract
Neurodegenerative diseases are driven by several mechanisms such as inflammation, abnormal protein aggregation, excitotoxicity, mitochondrial dysfunction and oxidative stress. So far, no therapeutic strategies are available for neurodegenerative diseases and in recent years the research is focusing on bioactive molecules present in food. In particular, extra-virgin olive oil (EVOO) phenols have been associated to neuroprotection. In this study, we investigated the potential antioxidant and neuroprotective activity of two different EVOO extracts obtained from Quercetano cultivar trees grown in two different areas (plain and hill) of the Tuscany region (Italy). The different geographical origin of the orchards influenced phenol composition. Plain extract presented a higher content of phenyl ethyl alcohols, cinnammic acids, oleacein, oleocanthal and flavones; meanwhile, hill extract was richer in lignans. Hill extract was more effective in protecting differentiated SH-SY5Y cells from peroxide stress thanks to a marked upregulation of the antioxidant enzymes heme oxygenase 1, NADPH quinone oxidoreductase 1, thioredoxin Reductase 1 and glutathione reductase. Proteomic analysis revealed that hill extract plays a role in the regulation of proteins involved in neuronal plasticity and activation of neurotrophic factors such as BDNF. In conclusion, these data demonstrate that EVOOs can have important neuroprotective activities, but these effects are strictly related to their specific phenol composition.
Collapse
|
23
|
In vivo effects of olive oil and trans-fatty acids on miR-134, miR-132, miR-124-1, miR-9-3 and mTORC1 gene expression in a DMBA-treated mouse model. PLoS One 2021; 16:e0246022. [PMID: 33539381 PMCID: PMC7861522 DOI: 10.1371/journal.pone.0246022] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 01/12/2021] [Indexed: 02/07/2023] Open
Abstract
Both the intake of beneficial olive oil and of harmful trans-fatty acids (TFAs) in consumed foods are of great significance in tumor biology. In our present study we examined the effects they exert on the expression patterns of miR-134, miR-132, miR-124-1, miR-9-3 and mTOR in the liver, spleen and kidney of mice treated with 7,12-dimethylbenz [a] anthracene (DMBA). Feeding of TFA-containing diet significantly increased the expression of all studied miRs and mTORC1 in all organs examined, except the expression of mTORC1 in the spleen and kidney. Diet containing olive oil significantly reduced the expression of miR-124-1, miR-9-3 and mTORC1 in the liver and spleen. In the kidney, apart from the mTORC1 gene, the expression of all miRs examined significantly decreased compared to the DMBA control. According to our results, the cell membrane protective, antioxidant, and anti-inflammatory effects of olive oil and the cell membrane damaging, inflammatory, and carcinogenic properties of TFA suggest negative feedback regulatory mechanisms. In contrast to our expectations, mTORC1 gene expression in the kidney has not been shown to be an appropriate biomarker-presumably, because the many complex effects that regulate mTOR expression may quench each other.
Collapse
|
24
|
Lacerenza S, Ciregia F, Giusti L, Bonotti A, Greco V, Giannaccini G, D'Antongiovanni V, Fallahi P, Pieroni L, Cristaudo A, Lucacchini A, Mazzoni MR, Foddis R. Putative Biomarkers for Malignant Pleural Mesothelioma Suggested by Proteomic Analysis of Cell Secretome. Cancer Genomics Proteomics 2020; 17:225-236. [PMID: 32345664 DOI: 10.21873/cgp.20183] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 01/24/2020] [Accepted: 02/28/2020] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Malignant pleural mesothelioma (MPM) a rare neoplasm linked to asbestos exposure is characterized by a poor prognosis. Soluble mesothelin is currently considered the most specific diagnostic biomarker. The aim of the study was to identify novel biomarkers by proteomic analysis of two MPM cell lines secretome. MATERIALS AND METHODS The protein patterns of MPM cells secretome were examined and compared to a non-malignant mesothelial cell line using two-dimensional gel electrophoresis coupled to mass spectrometry. Serum levels of candidate biomarkers were determined in MPM patients and control subjects. RESULTS Two up-regulated proteins involved in cancer biology, prosaposin and quiescin Q6 sulfhydryl oxidase 1, were considered candidate biomarkers. Serum levels of both proteins were significantly higher in MPM patients than control subjects. Combining the data of each receiver-operating characteristic analysis predicted a good diagnostic accuracy. CONCLUSION A panel of the putative biomarkers represents a promising tool for MPM diagnosis.
Collapse
Affiliation(s)
| | - Federica Ciregia
- Department of Pharmacy, University of Pisa, Pisa, Italy.,Department of Rheumatology, GIGA Research, Centre Hospitalier Universitaire (CHU) de Liège, Liège, Belgium
| | - Laura Giusti
- School of Pharmacy, University of Camerino, Camerino, Italy.,Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Alessandra Bonotti
- Department of Translational Research and New Medical and Surgical Technologies, Occupational Medicine Unit, University-Hospital of Pisa, Pisa, Italy
| | - Viviana Greco
- Institute of Biochemistry and Clinical Chemistry, Università Cattolica del Sacro Cuore, Rome, Italy.,Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | | | | | - Poupak Fallahi
- Department of Translational Research and New Medical and Surgical Technologies, Occupational Medicine Unit, University-Hospital of Pisa, Pisa, Italy
| | - Luisa Pieroni
- Proteomics and Metabonomics Unit, IRCCS-Fondazione Santa Lucia, Rome, Italy
| | - Alfonso Cristaudo
- Department of Translational Research and New Medical and Surgical Technologies, Occupational Medicine Unit, University-Hospital of Pisa, Pisa, Italy
| | - Antonio Lucacchini
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | | | - Rudy Foddis
- Department of Translational Research and New Medical and Surgical Technologies, Occupational Medicine Unit, University-Hospital of Pisa, Pisa, Italy
| |
Collapse
|
25
|
Zeka K, Marrazzo P, Micucci M, Ruparelia KC, Arroo RRJ, Macchiarelli G, Annarita Nottola S, Continenza MA, Chiarini A, Angeloni C, Hrelia S, Budriesi R. Activity of Antioxidants from Crocus sativus L. Petals: Potential Preventive Effects towards Cardiovascular System. Antioxidants (Basel) 2020; 9:antiox9111102. [PMID: 33182461 PMCID: PMC7697793 DOI: 10.3390/antiox9111102] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 10/22/2020] [Accepted: 11/06/2020] [Indexed: 12/17/2022] Open
Abstract
The petals of the saffron crocus (Crocus sativus L.) are considered a waste material in saffron production, but may be a sustainable source of natural biologically active substances of nutraceutical interest. The aim of this work was to study the cardiovascular effects of kaempferol and crocin extracted from saffron petals. The antiarrhythmic, inotropic, and chronotropic effects of saffron petal extract (SPE), kaempferol, and crocin were evaluated through in vitro biological assays. The antioxidant activity of kaempferol and crocin was investigated through the 2',7'-dichlorodihydrofluorescein diacetate (DCFH-DA) assay using rat cardiomyoblast cell line H9c2. The MTT assay was applied to assess the effects of kaempferol and crocin on cell viability. SPE showed weak negative inotropic and chronotropic intrinsic activities but a significant intrinsic activity on smooth muscle with a potency on the ileum greater than on the aorta: EC50 = 0.66 mg/mL versus EC50 = 1.45 mg/mL. Kaempferol and crocin showed a selective negative inotropic activity. In addition, kaempferol decreased the contraction induced by KCl (80 mM) in guinea pig aortic and ileal strips, while crocin had no effect. Furthermore, following oxidative stress, both crocin and kaempferol decreased intracellular ROS formation and increased cell viability in a concentration-dependent manner. The results indicate that SPE, a by-product of saffron cultivation, may represent a good source of phytochemicals with a potential application in the prevention of cardiovascular diseases.
Collapse
Affiliation(s)
- Keti Zeka
- Department of Haematology, Cambridge Biomedical Campus, University of Cambridge, Long Road, Cambridge CB2 0PT, UK;
| | - Pasquale Marrazzo
- Department for Life Quality Studies, Alma Mater Studiorum-University of Bologna, Corso d’Augusto 237, 47921 Rimini, Italy; (P.M.); (S.H.)
| | - Matteo Micucci
- Nutraceutical Lab, Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy; (A.C.); (R.B.)
- Correspondence:
| | - Ketan C. Ruparelia
- Leicester School of Pharmacy, Faculty of Health and Life Sciences, De Montfort University, The Gateway, Leicester LE1 9BH, UK; (K.C.R.); (R.R.J.A.)
| | - Randolph R. J. Arroo
- Leicester School of Pharmacy, Faculty of Health and Life Sciences, De Montfort University, The Gateway, Leicester LE1 9BH, UK; (K.C.R.); (R.R.J.A.)
| | - Guido Macchiarelli
- Department of Life, Health and Environmental Sciences, University of L’Aquila, Via Vetoio, Coppito 2, 67100 L’Aquila, Italy; (G.M.); (M.A.C.)
| | - Stefania Annarita Nottola
- Department of Anatomy, Histology, Forensic Medicine and Orthopaedics, La Sapienza University of Rome, 00161 Rome, Italy;
| | - Maria Adelaide Continenza
- Department of Life, Health and Environmental Sciences, University of L’Aquila, Via Vetoio, Coppito 2, 67100 L’Aquila, Italy; (G.M.); (M.A.C.)
| | - Alberto Chiarini
- Nutraceutical Lab, Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy; (A.C.); (R.B.)
| | - Cristina Angeloni
- School of Pharmacy, University of Camerino, Via Madonna delle Carceri 9, 62032 Camerino (MC), Italy;
| | - Silvana Hrelia
- Department for Life Quality Studies, Alma Mater Studiorum-University of Bologna, Corso d’Augusto 237, 47921 Rimini, Italy; (P.M.); (S.H.)
| | - Roberta Budriesi
- Nutraceutical Lab, Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy; (A.C.); (R.B.)
| |
Collapse
|
26
|
Common Protective Strategies in Neurodegenerative Disease: Focusing on Risk Factors to Target the Cellular Redox System. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:8363245. [PMID: 32832006 PMCID: PMC7422410 DOI: 10.1155/2020/8363245] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 07/15/2020] [Indexed: 12/14/2022]
Abstract
Neurodegenerative disease is an umbrella term for different conditions which primarily affect the neurons in the human brain. In the last century, significant research has been focused on mechanisms and risk factors relevant to the multifaceted etiopathogenesis of neurodegenerative diseases. Currently, neurodegenerative diseases are incurable, and the treatments available only control the symptoms or delay the progression of the disease. This review is aimed at characterizing the complex network of molecular mechanisms underpinning acute and chronic neurodegeneration, focusing on the disturbance in redox homeostasis, as a common mechanism behind five pivotal risk factors: aging, oxidative stress, inflammation, glycation, and vascular injury. Considering the complex multifactorial nature of neurodegenerative diseases, a preventive strategy able to simultaneously target multiple risk factors and disease mechanisms at an early stage is most likely to be effective to slow/halt the progression of neurodegenerative diseases.
Collapse
|
27
|
Antognoni F, Potente G, Mandrioli R, Angeloni C, Freschi M, Malaguti M, Hrelia S, Lugli S, Gennari F, Muzzi E, Tartarini S. Fruit Quality Characterization of New Sweet Cherry Cultivars as a Good Source of Bioactive Phenolic Compounds with Antioxidant and Neuroprotective Potential. Antioxidants (Basel) 2020; 9:E677. [PMID: 32731644 PMCID: PMC7463759 DOI: 10.3390/antiox9080677] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 07/25/2020] [Accepted: 07/26/2020] [Indexed: 12/28/2022] Open
Abstract
Sweet cherries (Prunus avium L.) are highly appreciated fruits for their taste, color, nutritional value, and beneficial health effects. In this work, seven new cultivars of sweet cherry were investigated for their main quality traits and nutraceutical value. The phytochemical profile of three classes of phenolic compounds and the antioxidant activity of the new cultivars were investigated through high-performance liquid chromatography with diode array detection (HPLC-DAD) and spectrophotometric assays, respectively, and compared with those of commonly commercialized cultivars. Cyanidine-3-O-rutinoside was the main anthocyanin in all genotypes, and its levels in some new cultivars were about three-fold higher than in commercial ones. The ORAC-assayed antioxidant capacity was positively correlated with the total anthocyanin index. The nutraceutical value of the new cultivars was investigated in terms of antioxidant/neuroprotective capacity in neuron-like SH-SY5Y cells. Results demonstrated that the new cultivars were more effective in counteracting oxidative stress and were also able to upregulate brain-derived neurotrophic factor (BDNF), a pro-survival neurotrophin, suggesting their potential pleiotropic role in counteracting neurodegenerations.
Collapse
Affiliation(s)
- Fabiana Antognoni
- Department for Life Quality Studies, Alma Mater Studiorum—University of Bologna, Corso d’Augusto 237, 47921 Rimini, Italy; (F.A.); (G.P.); (M.F.); (M.M.); (S.H.)
| | - Giulia Potente
- Department for Life Quality Studies, Alma Mater Studiorum—University of Bologna, Corso d’Augusto 237, 47921 Rimini, Italy; (F.A.); (G.P.); (M.F.); (M.M.); (S.H.)
| | - Roberto Mandrioli
- Department for Life Quality Studies, Alma Mater Studiorum—University of Bologna, Corso d’Augusto 237, 47921 Rimini, Italy; (F.A.); (G.P.); (M.F.); (M.M.); (S.H.)
| | - Cristina Angeloni
- School of Pharmacy, University of Camerino, Via Madonna delle Carceri 9, 62032 Camerino (MC), Italy;
| | - Michela Freschi
- Department for Life Quality Studies, Alma Mater Studiorum—University of Bologna, Corso d’Augusto 237, 47921 Rimini, Italy; (F.A.); (G.P.); (M.F.); (M.M.); (S.H.)
| | - Marco Malaguti
- Department for Life Quality Studies, Alma Mater Studiorum—University of Bologna, Corso d’Augusto 237, 47921 Rimini, Italy; (F.A.); (G.P.); (M.F.); (M.M.); (S.H.)
| | - Silvana Hrelia
- Department for Life Quality Studies, Alma Mater Studiorum—University of Bologna, Corso d’Augusto 237, 47921 Rimini, Italy; (F.A.); (G.P.); (M.F.); (M.M.); (S.H.)
| | - Stefano Lugli
- Department of Agricultural and Food Sciences, Alma Mater Studiorum—University of Bologna, Viale Fanin 46, 40127 Bologna, Italy; (S.L.); (F.G.); (E.M.)
- Department of Life Sciences, University of Modena and Reggio Emilia, Biology Building, Via Giuseppe Campi 213/D, 41125 Modena, Italy;
| | - Fabio Gennari
- Department of Agricultural and Food Sciences, Alma Mater Studiorum—University of Bologna, Viale Fanin 46, 40127 Bologna, Italy; (S.L.); (F.G.); (E.M.)
| | - Enrico Muzzi
- Department of Agricultural and Food Sciences, Alma Mater Studiorum—University of Bologna, Viale Fanin 46, 40127 Bologna, Italy; (S.L.); (F.G.); (E.M.)
| | - Stefano Tartarini
- Department of Life Sciences, University of Modena and Reggio Emilia, Biology Building, Via Giuseppe Campi 213/D, 41125 Modena, Italy;
| |
Collapse
|
28
|
El Haouari M, Quintero JE, Rosado JA. Anticancer molecular mechanisms of oleocanthal. Phytother Res 2020; 34:2820-2834. [PMID: 32449241 DOI: 10.1002/ptr.6722] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 03/23/2020] [Accepted: 04/23/2020] [Indexed: 12/13/2022]
Abstract
Cancer is among the leading causes of mortality worldwide. Current cancer therapies are associated with serious side effects, which further damage patients' health. Therefore, the search for new anticancer agents with no toxic effects on normal and healthy cells is of great interest. Recently, we and other groups have demonstrated that oleocanthal (OLC), a phenolic compound from extra virgin olive oil, exhibits antitumor activity in various tumor models. However, the underlying mechanisms and intracellular targets of OLC remain to be completely elucidated. This review summarizes the current advancers concerning the anticancer activity of OLC, with particular emphasis on the molecular signaling pathways modulated by this compound in different tumor cell types. The major mechanisms of action of OLC include modulation of the apoptotic pathway, the HGF/c-Met pathway, and the signal transducer and activator of transcription 3 signaling pathway, among others. Furthermore, OLC has synergistic effects with anticancer drugs in vitro. Also discussed are OLC bioavailability and its concentration in olive oil. Data summarized here will represent a database for more extensive studies aimed at providing information on molecular mechanisms against cancer induced by OLC.
Collapse
Affiliation(s)
- Mohammed El Haouari
- Laboratoire d'Ingénierie Pédagogique et Didactique des Sciences (IPDSM), Centre Régional des Métiers de l'Education et de la Formation (CRMEF Fès-Meknès), Taza, Morocco.,Laboratoire Substances Naturelles, Pharmacologie, Environnement, Modélisation, Santé & Qualité de vie (SNAMOPEQ), Faculté Polydisciplinaire de Taza, Université Sidi Mohamed Ben Abdellah, Taza, Morocco
| | - Juan E Quintero
- Department of Physiology (Cell Physiology Research Group), Institute of Molecular Pathology Biomarkers, University of Extremadura, Cáceres, Spain
| | - Juan A Rosado
- Department of Physiology (Cell Physiology Research Group), Institute of Molecular Pathology Biomarkers, University of Extremadura, Cáceres, Spain
| |
Collapse
|
29
|
Hrelia S, Angeloni C. New Mechanisms of Action of Natural Antioxidants in Health and Disease. Antioxidants (Basel) 2020; 9:antiox9040344. [PMID: 32340104 PMCID: PMC7222351 DOI: 10.3390/antiox9040344] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 04/21/2020] [Indexed: 12/13/2022] Open
Affiliation(s)
- Silvana Hrelia
- Department for Life Quality Studies, Alma Mater Studiorum, University of Bologna, Corso d’Augusto 237, 47921 Rimini (RN), Italy;
| | - Cristina Angeloni
- School of Pharmacy, University of Camerino, Via Gentile III da Varano, 62032 Camerino (MC), Italy
- Correspondence:
| |
Collapse
|
30
|
Nzekoue FK, Angeloni S, Navarini L, Angeloni C, Freschi M, Hrelia S, Vitali LA, Sagratini G, Vittori S, Caprioli G. Coffee silverskin extracts: Quantification of 30 bioactive compounds by a new HPLC-MS/MS method and evaluation of their antioxidant and antibacterial activities. Food Res Int 2020; 133:109128. [PMID: 32466943 DOI: 10.1016/j.foodres.2020.109128] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 02/05/2020] [Accepted: 02/25/2020] [Indexed: 01/08/2023]
Abstract
The research of value-added applications for coffee silverskin (CSS) requires studies to investigate potential bioactive compounds and biological activities in CSS extracts. In this study, different ultrasound-assisted extraction (UAE) methods have been tested to extract bioactive compounds from CSS. The obtained extracts, were characterized using a new HPLC-MS/MS method to detect and quantify 30 bioactive compounds of 2 classes: alkaloids and polyphenols (including phenolic acids, flavonoids, and secoiridoids). CSS extracts obtained with ethanol/water (70:30) as extraction solvent showed the highest levels (p ≤ 0.05) of bioactive compounds (4.01 ± 0.34% w/w). High content of caffeine was observed with levels varying from 1.00% to 3.59% of dry weight of extract (dw). 18 phenolic compounds were detected in CSS extracts with caffeoylquinic acids (3-CQA, 5-CQA and 3,5-diCQA) as the most abundant polyphenols (3115.6 µg g to -5444.0 µg g-1). This study is also one of the first to characterize in-depth flavonoids in CSS revealing the levels of different flavonoids compounds such as rutin (1.63-8.70 µg g-1), quercetin (1.53-2.46 µg g-1), kaempferol (0.76-1.66 µg g-1) and quercitrin (0.15-0.51 µg g-1). Neuroprotective activity of silverskin extracts against H2O2-induced damage was evaluated for the first time suggesting for methanol and ethanol/water (70:30) extracts a potential role as protective agents against neurodegeneration due to their ability to counteract oxidative stress and maintain cell viability. Silverskin extracts were not inhibiting the growth of anyone of the bacterial species included in this study but data obtained by water extract might deserve a deeper future investigation on biofilm-related activities, such as quorum sensing or virulence factors' expression. From their composition and their evidenced biological activities, CSS extracts could represent valuable ingredients in nutraceutical formulations.
Collapse
Affiliation(s)
| | - Simone Angeloni
- School of Pharmacy, University of Camerino, Via Sant' Agostino 1, 62032 Camerino, Italy; International Hub for Coffee Research and Innovation, Belforte del Chienti, MC, Italy
| | | | - Cristina Angeloni
- School of Pharmacy, University of Camerino, Via Sant' Agostino 1, 62032 Camerino, Italy
| | - Michela Freschi
- Department for Life Quality Studies, Alma Mater Studiorum University of Bologna, Rimini 47921, Italy
| | - Silvana Hrelia
- Department for Life Quality Studies, Alma Mater Studiorum University of Bologna, Rimini 47921, Italy
| | - Luca A Vitali
- School of Pharmacy, University of Camerino, Via Sant' Agostino 1, 62032 Camerino, Italy
| | - Gianni Sagratini
- School of Pharmacy, University of Camerino, Via Sant' Agostino 1, 62032 Camerino, Italy
| | - Sauro Vittori
- School of Pharmacy, University of Camerino, Via Sant' Agostino 1, 62032 Camerino, Italy
| | - Giovanni Caprioli
- School of Pharmacy, University of Camerino, Via Sant' Agostino 1, 62032 Camerino, Italy.
| |
Collapse
|
31
|
Panagiotidou E, Chondrogianni N. We Are What We Eat: Ubiquitin–Proteasome System (UPS) Modulation Through Dietary Products. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1233:329-348. [DOI: 10.1007/978-3-030-38266-7_15] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
32
|
Qusa MH, Siddique AB, Nazzal S, El Sayed KA. Novel olive oil phenolic (-)-oleocanthal (+)-xylitol-based solid dispersion formulations with potent oral anti-breast cancer activities. Int J Pharm 2019; 569:118596. [PMID: 31394181 PMCID: PMC6765396 DOI: 10.1016/j.ijpharm.2019.118596] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 07/26/2019] [Accepted: 08/03/2019] [Indexed: 12/15/2022]
Abstract
Epidemiological studies have compellingly documented the ability of the Mediterranean diet rich in extra-virgin olive oil to reduce the incidence of certain malignancies, and cardiovascular diseases, and slow the Alzheimer's disease progression. S-(-)-Oleocanthal (OC) was identified as the most bioactive olive oil phenolic with documented anti-inflammatory, anticancer, and anti-Alzheimer's activities. OC consumption causes irritating sensation at the oropharynx via activation of TRPA1. Accordingly, a taste-masked formulation of OC is needed for its future use as a nutraceutical while maintaining its bioactivity and unique chemistry. Therefore, the goal of this study was to prepare a taste-masked OC solid formulation with improved dissolution and pharmacodynamic profiles, by using (+)-xylitol as an inert carrier. Xylitol was hypothesized to serve as an ideal vehicle for the preparation of OC solid dispersions due to its low melting point and sweetness. The optimized OC-(+)-xylitol solid dispersion was physically and chemically characterized and showed effective taste masking and enhanced dissolution properties. Furthermore, OC-(+)-xylitol solid dispersion maintained potent in vivo anti-breast cancer activity. It effectively suppressed the human triple negative breast cancer development, growth, and recurrence after primary tumor surgical excision in nude mice orthotopic xenograft models. Collectively, these results suggest the OC-(+)-xylitol solid dispersion formulation as a potential nutraceutical for effective control and prevention of human triple negative breast cancer.
Collapse
Affiliation(s)
- Mohammed H Qusa
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, 1800 Bienville Drive, Monroe, LA 71201, United States
| | - Abu Bakar Siddique
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, 1800 Bienville Drive, Monroe, LA 71201, United States
| | - Sami Nazzal
- Department of Pharmaceutical Sciences, Jerry H Hodge School of Pharmacy, Texas Tech University Health Sciences Center, 5920 Forest Park Road, Dallas, TX 75235, United States
| | - Khalid A El Sayed
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, 1800 Bienville Drive, Monroe, LA 71201, United States.
| |
Collapse
|
33
|
Gorini I, Iorio S, Ciliberti R, Licata M, Armocida G. Olive oil in pharmacological and cosmetic traditions. J Cosmet Dermatol 2019; 18:1575-1579. [PMID: 30618094 DOI: 10.1111/jocd.12838] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 09/25/2018] [Accepted: 11/06/2018] [Indexed: 01/24/2023]
Abstract
Among the numerous natural substances used in medical remedies, oil certainly plays an important role and, over the centuries, there have been many functions and properties attributed to it. We present the processes that have seen it as protagonist in the pharmacological field and in the cosmetic field.
Collapse
Affiliation(s)
- Ilaria Gorini
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Silvia Iorio
- Unit of History of Medicine and Bioethics, Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | | | - Marta Licata
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Giuseppe Armocida
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| |
Collapse
|
34
|
Marrazzo P, Angeloni C, Hrelia S. Combined Treatment with Three Natural Antioxidants Enhances Neuroprotection in a SH-SY5Y 3D Culture Model. Antioxidants (Basel) 2019; 8:antiox8100420. [PMID: 31547034 PMCID: PMC6827135 DOI: 10.3390/antiox8100420] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 09/11/2019] [Accepted: 09/18/2019] [Indexed: 12/12/2022] Open
Abstract
Currently, the majority of cell-based studies on neurodegeneration are carried out on two-dimensional cultured cells that do not represent the cells residing in the complex microenvironment of the brain. Recent evidence has suggested that three-dimensional (3D) in vitro microenvironments may better model key features of brain tissues in order to study molecular mechanisms at the base of neurodegeneration. So far, no drugs have been discovered to prevent or halt the progression of neurodegenerative disorders. New therapeutic interventions can come from phytochemicals that have a broad spectrum of biological activities. On this basis, we evaluated the neuroprotective effect of three phytochemicals (sulforaphane, epigallocatechin gallate, and plumbagin) alone or in combination, focusing on their ability to counteract oxidative stress. The combined treatment was found to be more effective than the single treatments. In particular, the combined treatment increased cell viability and reduced glutathione (GSH) levels, upregulated antioxidant enzymes and insulin-degrading enzymes, and downregulated nicotinamide adenine dinucleotide phosphate (NADPH) oxidase 1 and 2 in respect to peroxide-treated cells. Our data suggest that a combination of different phytochemicals could be more effective than a single compound in counteracting neurodegeneration, probably thanks to a pleiotropic mechanism of action.
Collapse
Affiliation(s)
- Pasquale Marrazzo
- Department for Life Quality Studies, Alma Mater Studiorum, University of Bologna, 47921 Rimini, Italy.
| | | | - Silvana Hrelia
- School of Pharmacy, University of Camerino, 62032 Camerino, Italy.
| |
Collapse
|
35
|
Lozano-Castellón J, López-Yerena A, Rinaldi de Alvarenga JF, Romero Del Castillo-Alba J, Vallverdú-Queralt A, Escribano-Ferrer E, Lamuela-Raventós RM. Health-promoting properties of oleocanthal and oleacein: Two secoiridoids from extra-virgin olive oil. Crit Rev Food Sci Nutr 2019; 60:2532-2548. [PMID: 31423808 DOI: 10.1080/10408398.2019.1650715] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Extra virgin olive oil (EVOO) polyphenols, including the secoiridoids oleocanthal (OLC) and oleacein (OLE), are attracting attention because of their beneficial effects on health. Data on OLC and OLE bioavailability are scarce, as most research on EVOO polyphenols has concentrated on hydroxytyrosol, tyrosol, and oleuropein. Consequently, relevant goals for future research are the elucidation of OLC and OLE bioavailability and finding evidence for their beneficial effects through pre-clinical and clinical studies. The aim of this review is to shed light on OLC and OLE, focusing on their precursors in the olive fruit and the impact of agronomic and processing factors on their presence in EVOO. Also discussed are their bioavailability and absorption, and finally, their bioactivity and health-promoting properties.
Collapse
Affiliation(s)
- Julián Lozano-Castellón
- Nutrition, Food Science and Gastronomy Department, XaRTA, Institute of Nutrition and Food Safety (INSA-UB), School of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain.,CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Institute of Health Carlos III, Madrid, Spain
| | - Anallely López-Yerena
- Nutrition, Food Science and Gastronomy Department, XaRTA, Institute of Nutrition and Food Safety (INSA-UB), School of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
| | - José Fernando Rinaldi de Alvarenga
- Nutrition, Food Science and Gastronomy Department, XaRTA, Institute of Nutrition and Food Safety (INSA-UB), School of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
| | - Jaume Romero Del Castillo-Alba
- Nutrition, Food Science and Gastronomy Department, XaRTA, Institute of Nutrition and Food Safety (INSA-UB), School of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
| | - Anna Vallverdú-Queralt
- Nutrition, Food Science and Gastronomy Department, XaRTA, Institute of Nutrition and Food Safety (INSA-UB), School of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain.,CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Institute of Health Carlos III, Madrid, Spain
| | - Elvira Escribano-Ferrer
- CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Institute of Health Carlos III, Madrid, Spain.,Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Biopharmaceutics and Pharmacokinetics Unit, Institute of Nanoscience and Nanotechnology (IN2UB), Pharmacy and Food Sciences School, University of Barcelona, Barcelona, Spain
| | - Rosa M Lamuela-Raventós
- Nutrition, Food Science and Gastronomy Department, XaRTA, Institute of Nutrition and Food Safety (INSA-UB), School of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain.,CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Institute of Health Carlos III, Madrid, Spain
| |
Collapse
|
36
|
Karković Marković A, Torić J, Barbarić M, Jakobušić Brala C. Hydroxytyrosol, Tyrosol and Derivatives and Their Potential Effects on Human Health. Molecules 2019; 24:molecules24102001. [PMID: 31137753 PMCID: PMC6571782 DOI: 10.3390/molecules24102001] [Citation(s) in RCA: 296] [Impact Index Per Article: 49.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 05/17/2019] [Accepted: 05/24/2019] [Indexed: 12/14/2022] Open
Abstract
The Mediterranean diet and olive oil as its quintessential part are almost synonymous with a healthy way of eating and living nowadays. This kind of diet has been highly appreciated and is widely recognized for being associated with many favorable effects, such as reduced incidence of different chronic diseases and prolonged longevity. Although olive oil polyphenols present a minor fraction in the composition of olive oil, they seem to be of great importance when it comes to the health benefits, and interest in their biological and potential therapeutic effects is huge. There is a growing body of in vitro and in vivo studies, as well as intervention-based clinical trials, revealing new aspects of already known and many new, previously unknown activities and health effects of these compounds. This review summarizes recent findings regarding biological activities, metabolism and bioavailability of the major olive oil phenolic compounds—hydroxytyrosol, tyrosol, oleuropein, oleocanthal and oleacein—the most important being their antiatherogenic, cardioprotective, anticancer, neuroprotective and endocrine effects. The evidence presented in the review concludes that these phenolic compounds have great pharmacological potential, however, further studies are still required.
Collapse
Affiliation(s)
- Ana Karković Marković
- Faculty of Pharmacy and Biochemistry, University of Zagreb, A.Kovačića 1, 10 000 Zagreb, Croatia.
| | - Jelena Torić
- Faculty of Pharmacy and Biochemistry, University of Zagreb, A.Kovačića 1, 10 000 Zagreb, Croatia.
| | - Monika Barbarić
- Faculty of Pharmacy and Biochemistry, University of Zagreb, A.Kovačića 1, 10 000 Zagreb, Croatia.
| | - Cvijeta Jakobušić Brala
- Faculty of Pharmacy and Biochemistry, University of Zagreb, A.Kovačića 1, 10 000 Zagreb, Croatia.
| |
Collapse
|
37
|
MST1 Regulates Neuronal Cell Death via JNK/Casp3 Signaling Pathway in HFD Mouse Brain and HT22 Cells. Int J Mol Sci 2019; 20:ijms20102504. [PMID: 31117242 PMCID: PMC6566356 DOI: 10.3390/ijms20102504] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 05/19/2019] [Accepted: 05/20/2019] [Indexed: 02/06/2023] Open
Abstract
Oxidative stress has been considered as the main mediator in neurodegenerative diseases. A high-fat diet (HFD) and metabolic diseases result in oxidative stress generation, leading to various neurodegenerative diseases via molecular mechanisms that remain largely unknown. Protein kinases play an important role in the homeostasis between cell survival and cell apoptosis. The mammalian sterile 20-like kinase-1 (MST1) protein kinase plays an important role in cellular apoptosis in different organ systems, including the central nervous system. In this study, we evaluated the MST1/c-Jun N-terminal kinase (JNK) dependent oxidative damage mediated cognitive dysfunction in HFD-fed mice and stress-induced hippocampal HT22 (mice hippocampal) cells. Our Western blot and immunofluorescence results indicate that HFD and stress-induced hippocampal HT22 cells activate MST1/JNK/Caspase-3 (Casp-3) signaling, which regulates neuronal cell apoptosis and beta-amyloid-cleaving enzyme (BACE1) expression and leads to impaired cognition. Moreover, MST1 expression inhibition by shRNA significantly reduced JNK/Casp-3 signaling. Our in vivo and in vitro experiments mimicking metabolic stress, such as a high-fat diet, hyperglycemia, and an inflammatory response, determined that MST1 plays a key regulatory role in neuronal cell death and cognition, suggesting that MST1 could be a potential therapeutic target for numerous neurodegenerative diseases.
Collapse
|
38
|
Giusti L, Molinaro A, Alessandrì MG, Boldrini C, Ciregia F, Lacerenza S, Ronci M, Urbani A, Cioni G, Mazzoni MR, Pizzorusso T, Lucacchini A, Baroncelli L. Brain mitochondrial proteome alteration driven by creatine deficiency suggests novel therapeutic venues for creatine deficiency syndromes. Neuroscience 2019; 409:276-289. [PMID: 31029731 DOI: 10.1016/j.neuroscience.2019.03.030] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 03/09/2019] [Accepted: 03/12/2019] [Indexed: 01/15/2023]
Abstract
Creatine (Cr) is a small metabolite with a central role in energy metabolism and mitochondrial function. Creatine deficiency syndromes are inborn errors of Cr metabolism causing Cr depletion in all body tissues and particularly in the nervous system. Patient symptoms involve intellectual disability, language and behavioral disturbances, seizures and movement disorders suggesting that brain cells are particularly sensitive to Cr depletion. Cr deficiency was found to affect metabolic activity and structural abnormalities of mitochondrial organelles; however a detailed analysis of molecular mechanisms linking Cr deficit, energy metabolism alterations and brain dysfunction is still missing. Using a proteomic approach we evaluated the proteome changes of the brain mitochondrial fraction induced by the deletion of the Cr transporter (CrT) in developing mutant mice. We found a marked alteration of the mitochondrial proteomic landscape in the brain of CrT deficient mice, with the overexpression of many proteins involved in energy metabolism and response to oxidative stress. Moreover, our data suggest possible abnormalities of dendritic spines, synaptic function and plasticity, network excitability and neuroinflammatory response. Intriguingly, the alterations occurred in coincidence with the developmental onset of neurological symptoms. Thus, cerebral mitochondrial alterations could represent an early response to Cr deficiency that could be targeted for therapeutic intervention.
Collapse
Affiliation(s)
- Laura Giusti
- Department of Clinical and Experimental Medicine, University of Pisa, I-56126, Pisa, Italy; School of Pharmacy, University of Camerino, I-62032 Camerino, Italy
| | - Angelo Molinaro
- Department of Neuroscience, Psychology, Drug Research and Child Health NEUROFARBA, University of Florence, I-50135, Florence, Italy; Institute of Neuroscience, National Research Council (CNR), I-56124, Pisa, Italy
| | - Maria Grazia Alessandrì
- Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, I-56128 Pisa, Italy
| | - Claudia Boldrini
- Department of Pharmacy, University of Pisa, I-56126, Pisa, Italy
| | - Federica Ciregia
- Department of Pharmacy, University of Pisa, I-56126, Pisa, Italy; Department of Rheumatology, GIGA Research, Centre Hospitalier Universitaire (CHU) de Liège, B-4000, Liège, Belgium
| | - Serena Lacerenza
- Department of Pharmacy, University of Pisa, I-56126, Pisa, Italy
| | - Maurizio Ronci
- Department of Medical, Oral and Biotechnological Sciences, University G. d'Annunzio of Chieti-Pescara, I-66100, Chieti, Italy
| | - Andrea Urbani
- Institute of Biochemistry and Clinical Chemistry, Catholic university of the sacred heart, I-00168, Rome, Italy
| | - Giovanni Cioni
- Department of Clinical and Experimental Medicine, University of Pisa, I-56126, Pisa, Italy; Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, I-56128 Pisa, Italy
| | | | - Tommaso Pizzorusso
- Department of Neuroscience, Psychology, Drug Research and Child Health NEUROFARBA, University of Florence, I-50135, Florence, Italy; Institute of Neuroscience, National Research Council (CNR), I-56124, Pisa, Italy
| | - Antonio Lucacchini
- Department of Clinical and Experimental Medicine, University of Pisa, I-56126, Pisa, Italy
| | - Laura Baroncelli
- Institute of Neuroscience, National Research Council (CNR), I-56124, Pisa, Italy; Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, I-56128 Pisa, Italy.
| |
Collapse
|
39
|
Angeloni C, Giusti L, Hrelia S. New neuroprotective perspectives in fighting oxidative stress and improving cellular energy metabolism by oleocanthal. Neural Regen Res 2019; 14:1217-1218. [PMID: 30804251 PMCID: PMC6425829 DOI: 10.4103/1673-5374.251327] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Affiliation(s)
| | - Laura Giusti
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Silvana Hrelia
- Department for Life Quality Studies, Alma Mater Studiorum - University of Bologna, Rimini, Italy
| |
Collapse
|