1
|
Khattak S, Ullah I, Sohail M, Akbar MU, Rauf MA, Ullah S, Shen J, Xu H. Endogenous/exogenous stimuli‐responsive smart hydrogels for diabetic wound healing. AGGREGATE 2024. [DOI: 10.1002/agt2.688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
AbstractDiabetes significantly impairs the body's wound‐healing capabilities, leading to chronic, infection‐prone wounds. These wounds are characterized by hyperglycemia, inflammation, hypoxia, variable pH levels, increased matrix metalloproteinase activity, oxidative stress, and bacterial colonization. These complex conditions complicate effective wound management, prompting the development of advanced diabetic wound care strategies that exploit specific wound characteristics such as acidic pH, high glucose levels, and oxidative stress to trigger controlled drug release, thereby enhancing the therapeutic effects of the dressings. Among the solutions, hydrogels emerge as promising due to their stimuli‐responsive nature, making them highly effective for managing these wounds. The latest advancements in mono/multi‐stimuli‐responsive smart hydrogels showcase their superiority and potential as healthcare materials, as highlighted by relevant case studies. However, traditional wound dressings fall short of meeting the nuanced needs of these wounds, such as adjustable adhesion, easy removal, real‐time wound status monitoring, and dynamic drug release adjustment according to the wound's specific conditions. Responsive hydrogels represent a significant leap forward as advanced dressings proficient in sensing and responding to the wound environment, offering a more targeted approach to diabetic wound treatment. This review highlights recent advancements in smart hydrogels for wound dressing, monitoring, and drug delivery, emphasizing their role in improving diabetic wound healing. It addresses ongoing challenges and future directions, aiming to guide their clinical adoption.
Collapse
Affiliation(s)
- Saadullah Khattak
- The Fifth Affiliated Hospital of Wenzhou Medical University Lishui China
| | - Ihsan Ullah
- Zhejiang Engineering Research Center for Tissue Repair Materials Wenzhou Institute University of Chinese Academy of Sciences Wenzhou China
| | - Mohammad Sohail
- The Fifth Affiliated Hospital of Wenzhou Medical University Lishui China
| | - Muhammad Usman Akbar
- Oujiang Laboratory Key Laboratory of Alzheimer's Disease of Zhejiang Province Institute of Aging Wenzhou Medical University Wenzhou China
| | - Mohd Ahmar Rauf
- Department of Internal Medicine, Heme Oncology Unit, University of Michigan Ann Arbor Michigan USA
| | - Salim Ullah
- The Fifth Affiliated Hospital of Wenzhou Medical University Lishui China
| | - Jianliang Shen
- National Engineering Research Center of Ophthalmology and Optometry Eye Hospital Wenzhou Medical University Wenzhou China
- Wenzhou Institute University of Chinese Academy of Sciences Wenzhou China
| | - Hong‐Tao Xu
- The Fifth Affiliated Hospital of Wenzhou Medical University Lishui China
| |
Collapse
|
2
|
Guan Y, Zhang W, Mao Y, Li S. Nanoparticles and bone microenvironment: a comprehensive review for malignant bone tumor diagnosis and treatment. Mol Cancer 2024; 23:246. [PMID: 39487487 PMCID: PMC11529338 DOI: 10.1186/s12943-024-02161-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 10/17/2024] [Indexed: 11/04/2024] Open
Abstract
Malignant bone tumors, which are difficult to treat with current clinical strategies, originate from bone tissues and can be classified into primary and secondary types. Due to the specificity of the bone microenvironment, the results of traditional means of treating bone tumors are often unsatisfactory, so there is an urgent need to develop new treatments for malignant bone tumors. Recently, nanoparticle-based approaches have shown great potential in diagnosis and treatment. Nanoparticles (NPs) have gained significant attention due to their versatility, making them highly suitable for applications in bone tissue engineering, advanced imaging techniques, and targeted drug delivery. For diagnosis, NPs enhance imaging contrast and sensitivity by integrating targeting ligands, which significantly improve the specific recognition and localization of tumor cells for early detection. For treatment, NPs enable targeted drug delivery, increasing drug accumulation at tumor sites while reducing systemic toxicity. In conclusion, understanding bone microenvironment and using the unique properties of NPs holds great promise in improving disease management, enhancing treatment outcomes, and ultimately improving the quality of life for patients with malignant bone tumors. Further research and development will undoubtedly contribute to the advancement of personalized medicine in the field of bone oncology.
Collapse
Affiliation(s)
- Yujing Guan
- Second Ward of Bone and Soft Tissue Tumor Surgery, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning, 110042, China
- The Liaoning Provincial Key Laboratory of Interdisciplinary Research on Gastrointestinal Tumor Combining Medicine with Engineering, Shenyang, Liaoning, 110042, China
- Institute of Cancer Medicine, Faculty of Medicine, Dalian University of Technology, Dalian, Liaoning, 116024, China
| | - Wei Zhang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province, 110016, P.R. China
| | - Yuling Mao
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province, 110016, P.R. China.
| | - Shenglong Li
- Second Ward of Bone and Soft Tissue Tumor Surgery, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning, 110042, China.
- The Liaoning Provincial Key Laboratory of Interdisciplinary Research on Gastrointestinal Tumor Combining Medicine with Engineering, Shenyang, Liaoning, 110042, China.
- Institute of Cancer Medicine, Faculty of Medicine, Dalian University of Technology, Dalian, Liaoning, 116024, China.
| |
Collapse
|
3
|
Kehr NS. The Effect of Co-Delivery of Oxygen and Anticancer Drugs on the Viability of Healthy and Cancer Cells under Normoxic and Hypoxic Conditions. Macromol Biosci 2024; 24:e2400181. [PMID: 38980997 DOI: 10.1002/mabi.202400181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/04/2024] [Indexed: 07/11/2024]
Abstract
Hypoxia, cancer, tissue damage, and acidic pH conditions are interrelated, as chronic hypoxic conditions enhance the malignant phenotype of cancer cells, causing more aggressive tissue destruction, and hypoxic cells rely on anaerobic glycolysis, leading to the accumulation of lactic acid. Therefore, the administration of oxygen is necessary to support the functions of healthy cells until the formation of new blood vessels and to increase the oxygen supply to cancerous tissues to improve the efficacy of antitumor drugs on tumor cells. In addition to O2 supply, pH-dependent delivery of anticancer drugs is desired to target cancer cells and reduce drug side effects on healthy cells. However, the simultaneous delivery of O2 and pH-dependent anticancer drugs via nanomaterials and their effects on the viability of normal and cancer cells under hypoxic conditions have not been studied in sufficient numbers. This study describes the synthesis of a pH-responsive nanomaterial containing oxygen and anticancer drugs that exhibits sustained O2 release over a 14 d period under hypoxic conditions and pH-dependent sustained release of anticancer drugs over 30 d. The simultaneous administration of O2 and anticancer drugs results in higher cell survival of normal cells than that of cancer cells under hypoxic and normoxic conditions.
Collapse
Affiliation(s)
- Nermin Seda Kehr
- Department of Chemistry, Izmir Institute of Technology, Urla/Izmir, 35430, Turkiye
| |
Collapse
|
4
|
Xin Z, Qin L, Tang Y, Guo S, Li F, Fang Y, Li G, Yao Y, Zheng B, Zhang B, Wu D, Xiao J, Ni C, Wei Q, Zhang T. Immune mediated support of metastasis: Implication for bone invasion. Cancer Commun (Lond) 2024; 44:967-991. [PMID: 39003618 PMCID: PMC11492328 DOI: 10.1002/cac2.12584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 06/05/2024] [Accepted: 06/18/2024] [Indexed: 07/15/2024] Open
Abstract
Bone is a common organ affected by metastasis in various advanced cancers, including lung, breast, prostate, colorectal, and melanoma. Once a patient is diagnosed with bone metastasis, the patient's quality of life and overall survival are significantly reduced owing to a wide range of morbidities and the increasing difficulty of treatment. Many studies have shown that bone metastasis is closely related to bone microenvironment, especially bone immune microenvironment. However, the effects of various immune cells in the bone microenvironment on bone metastasis remain unclear. Here, we described the changes in various immune cells during bone metastasis and discussed their related mechanisms. Osteoblasts, adipocytes, and other non-immune cells closely related to bone metastasis were also included. This review also summarized the existing treatment methods and potential therapeutic targets, and provided insights for future studies of cancer bone metastasis.
Collapse
Affiliation(s)
- Zengfeng Xin
- Department of Orthopedic SurgerySecond Affiliated HospitalZhejiang University School of MedicineZhejiang UniversityHangzhouZhejiangP. R. China
| | - Luying Qin
- Cancer Institute (Key Laboratory of Cancer Prevention and InterventionNational Ministry of Education)Second Affiliated HospitalZhejiang University School of MedicineZhejiang UniversityHangzhouZhejiangP. R. China
| | - Yang Tang
- Cancer Institute (Key Laboratory of Cancer Prevention and InterventionNational Ministry of Education)Second Affiliated HospitalZhejiang University School of MedicineZhejiang UniversityHangzhouZhejiangP. R. China
| | - Siyu Guo
- Cancer Institute (Key Laboratory of Cancer Prevention and InterventionNational Ministry of Education)Second Affiliated HospitalZhejiang University School of MedicineZhejiang UniversityHangzhouZhejiangP. R. China
- Department of Radiation OncologySecond Affiliated HospitalZhejiang University School of MedicineZhejiang UniversityHangzhouZhejiangP. R. China
| | - Fangfang Li
- Cancer Institute (Key Laboratory of Cancer Prevention and InterventionNational Ministry of Education)Second Affiliated HospitalZhejiang University School of MedicineZhejiang UniversityHangzhouZhejiangP. R. China
| | - Yuan Fang
- Cancer Institute (Key Laboratory of Cancer Prevention and InterventionNational Ministry of Education)Second Affiliated HospitalZhejiang University School of MedicineZhejiang UniversityHangzhouZhejiangP. R. China
| | - Gege Li
- Cancer Institute (Key Laboratory of Cancer Prevention and InterventionNational Ministry of Education)Second Affiliated HospitalZhejiang University School of MedicineZhejiang UniversityHangzhouZhejiangP. R. China
| | - Yihan Yao
- Cancer Institute (Key Laboratory of Cancer Prevention and InterventionNational Ministry of Education)Second Affiliated HospitalZhejiang University School of MedicineZhejiang UniversityHangzhouZhejiangP. R. China
| | - Binbin Zheng
- Department of Respiratory MedicineNingbo Hangzhou Bay HospitalNingboZhejiangP. R. China
| | - Bicheng Zhang
- Cancer Institute (Key Laboratory of Cancer Prevention and InterventionNational Ministry of Education)Second Affiliated HospitalZhejiang University School of MedicineZhejiang UniversityHangzhouZhejiangP. R. China
- Department of Radiation OncologySecond Affiliated HospitalZhejiang University School of MedicineZhejiang UniversityHangzhouZhejiangP. R. China
| | - Dang Wu
- Cancer Institute (Key Laboratory of Cancer Prevention and InterventionNational Ministry of Education)Second Affiliated HospitalZhejiang University School of MedicineZhejiang UniversityHangzhouZhejiangP. R. China
- Department of Radiation OncologySecond Affiliated HospitalZhejiang University School of MedicineZhejiang UniversityHangzhouZhejiangP. R. China
| | - Jie Xiao
- Department of Orthopedic SurgerySecond Affiliated Hospital (Jiande Branch)Zhejiang University School of MedicineHangzhouZhejiangP. R. China
| | - Chao Ni
- Cancer Institute (Key Laboratory of Cancer Prevention and InterventionNational Ministry of Education)Second Affiliated HospitalZhejiang University School of MedicineZhejiang UniversityHangzhouZhejiangP. R. China
- Department of Breast SurgerySecond Affiliated HospitalZhejiang University School of MedicineZhejiang UniversityHangzhouZhejiangP. R. China
| | - Qichun Wei
- Cancer Institute (Key Laboratory of Cancer Prevention and InterventionNational Ministry of Education)Second Affiliated HospitalZhejiang University School of MedicineZhejiang UniversityHangzhouZhejiangP. R. China
- Department of Radiation OncologySecond Affiliated HospitalZhejiang University School of MedicineZhejiang UniversityHangzhouZhejiangP. R. China
| | - Ting Zhang
- Cancer Institute (Key Laboratory of Cancer Prevention and InterventionNational Ministry of Education)Second Affiliated HospitalZhejiang University School of MedicineZhejiang UniversityHangzhouZhejiangP. R. China
- Department of Radiation OncologySecond Affiliated HospitalZhejiang University School of MedicineZhejiang UniversityHangzhouZhejiangP. R. China
| |
Collapse
|
5
|
Maji S, Kumar A, Emdad L, Fisher PB, Das SK. Molecular landscape of prostate cancer bone metastasis. Adv Cancer Res 2024; 161:321-365. [PMID: 39032953 DOI: 10.1016/bs.acr.2024.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
Prostate cancer (PC) has a high propensity to develop bone metastases, causing severe pain and pathological fractures that profoundly impact a patients' normal functions. Current clinical intervention is mainly palliative focused on pain management, and tumor progression is refractory to standard therapeutic regimens. This limited treatment efficacy is at least partially due to a lack of comprehensive understanding of the molecular landscape of the disease pathology, along with the intensive overlapping of physiological and pathological molecular signaling. The niche is overwhelmed with diverse cell types with inter- and intra-heterogeneity, along with growth factor-enriched cells that are supportive of invading cell proliferation, providing an additional layer of complexity. This review seeks to provide molecular insights into mechanisms underlying PC bone metastasis development and progression.
Collapse
Affiliation(s)
- Santanu Maji
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - Amit Kumar
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - Luni Emdad
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Massey Comprehensive Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - Paul B Fisher
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Massey Comprehensive Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States.
| | - Swadesh K Das
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Massey Comprehensive Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States.
| |
Collapse
|
6
|
Haider MT, Freytag V, Krause L, Spethmann T, Gosau T, Beine MC, Knies C, Schröder-Schwarz J, Horn M, Riecken K, Lange T. Comparison of ex vivo bioluminescence imaging, Alu-qPCR and histology for the quantification of spontaneous lung and bone metastases in subcutaneous xenograft mouse models. Clin Exp Metastasis 2024; 41:103-115. [PMID: 38353934 PMCID: PMC10972982 DOI: 10.1007/s10585-024-10268-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 01/16/2024] [Indexed: 03/28/2024]
Abstract
Bioluminescence imaging (BLI) is a non-invasive state-of-the-art-method for longitudinal tracking of tumor cells in mice. The technique is commonly used to determine bone metastatic burden in vivo and also suitable ex vivo to detect even smallest bone micro-metastases in spontaneous metastasis xenograft models. However, it is unclear to which extent ex vivo BLI correlates with alternative methods for metastasis quantification. Here, we compared ex vivo BLI, human DNA-based Alu-qPCR, and histology for the quantification of bone vs. lung metastases, which are amongst the most common sites of metastasis in prostate cancer (PCa) patients and spontaneous PCa xenograft models. Data from 93 immunodeficient mice were considered, each of which were subcutaneously injected with luciferase/RGB-labeled human PCa PC-3 cells. The primary tumors were resected at ~ 0.75 cm³ and mice were sacrificed ~ 3 weeks after surgery and immediately examined by ex vivo BLI. Afterwards, the right lungs and hind limbs with the higher BLI signal (BLIHi bone) were processed for histology, whereas the left lung lobes and hind limbs with the lower BLI signal (BLILo bone) were prepared for Alu-qPCR. Our data demonstrate remarkable differences in the correlation coefficients of the different methods for lung metastasis detection (r ~ 0.8) vs. bone metastasis detection (r ~ 0.4). However, the BLI values of the BLIHi and BLILo bones correlated very strongly (r ~ 0.9), indicating that the method per se was reliable under identical limitations; the overall level of metastasis to contralateral bones was astonishingly similar. Instead, the level of lung metastasis only weakly to moderately correlated with the level of bone metastasis formation. Summarized, we observed a considerable discrepancy between ex vivo BLI and histology/Alu-qPCR in the quantification of bone metastases, which was not observed in the case of lung metastases. Future studies using ex vivo BLI for bone metastasis quantification should combine multiple methods to accurately determine metastatic load in bone samples.
Collapse
Affiliation(s)
- Marie-Therese Haider
- Institute of Anatomy and Experimental Morphology, University Medical Center Hamburg- Eppendorf, Martinistrasse 52, Hamburg, 20246, Germany
| | - Vera Freytag
- Institute of Anatomy and Experimental Morphology, University Medical Center Hamburg- Eppendorf, Martinistrasse 52, Hamburg, 20246, Germany
| | - Linda Krause
- Institute of Medical Biometry and Epidemiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tanja Spethmann
- Institute of Anatomy and Experimental Morphology, University Medical Center Hamburg- Eppendorf, Martinistrasse 52, Hamburg, 20246, Germany
| | - Tobias Gosau
- Institute of Anatomy and Experimental Morphology, University Medical Center Hamburg- Eppendorf, Martinistrasse 52, Hamburg, 20246, Germany
| | - Mia C Beine
- Institute of Anatomy and Experimental Morphology, University Medical Center Hamburg- Eppendorf, Martinistrasse 52, Hamburg, 20246, Germany
| | - Christine Knies
- Institute of Anatomy and Experimental Morphology, University Medical Center Hamburg- Eppendorf, Martinistrasse 52, Hamburg, 20246, Germany
| | - Jennifer Schröder-Schwarz
- Institute of Anatomy and Experimental Morphology, University Medical Center Hamburg- Eppendorf, Martinistrasse 52, Hamburg, 20246, Germany
| | - Michael Horn
- Core Facility In Vivo Optical Imaging, University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Mildred Scheel Cancer Career Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Kristoffer Riecken
- Research Department Cell and Gene Therapy, Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tobias Lange
- Institute of Anatomy and Experimental Morphology, University Medical Center Hamburg- Eppendorf, Martinistrasse 52, Hamburg, 20246, Germany.
- Institute of Anatomy I, University Hospital Jena, Teichgraben 7, Jena, 07743, Germany.
- Comprehensive Cancer Center Central Germany (CCCG), Ulm, Germany.
| |
Collapse
|
7
|
Knowles HJ, Vasilyeva A, Sheth M, Pattinson O, May J, Rumney RMH, Hulley PA, Richards DB, Carugo D, Evans ND, Stride E. Use of oxygen-loaded nanobubbles to improve tissue oxygenation: Bone-relevant mechanisms of action and effects on osteoclast differentiation. Biomaterials 2024; 305:122448. [PMID: 38218121 DOI: 10.1016/j.biomaterials.2023.122448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 12/14/2023] [Accepted: 12/21/2023] [Indexed: 01/15/2024]
Abstract
Gas-loaded nanobubbles have potential as a method of oxygen delivery to increase tumour oxygenation and therapeutically alleviate tumour hypoxia. However, the mechanism(s) whereby oxygen-loaded nanobubbles increase tumour oxygenation are unknown; with their calculated oxygen-carrying capacity being insufficient to explain this effect. Intra-tumoural hypoxia is a prime therapeutic target, at least partly due to hypoxia-dependent stimulation of the formation and function of bone-resorbing osteoclasts which establish metastatic cells in bone. This study aims to investigate potential mechanism(s) of oxygen delivery and in particular the possible use of oxygen-loaded nanobubbles in preventing bone metastasis via effects on osteoclasts. Lecithin-based nanobubbles preferentially interacted with phagocytic cells (monocytes, osteoclasts) via a combination of lipid transfer, clathrin-dependent endocytosis and phagocytosis. This interaction caused general suppression of osteoclast differentiation via inhibition of cell fusion. Additionally, repeat exposure to oxygen-loaded nanobubbles inhibited osteoclast formation to a greater extent than nitrogen-loaded nanobubbles. This gas-dependent effect was driven by differential effects on the fusion of mononuclear precursor cells to form pre-osteoclasts, partly due to elevated potentiation of RANKL-induced ROS by nitrogen-loaded nanobubbles. Our findings suggest that oxygen-loaded nanobubbles could represent a promising therapeutic strategy for cancer therapy; reducing osteoclast formation and therefore bone metastasis via preferential interaction with monocytes/macrophages within the tumour and bone microenvironment, in addition to known effects of directly improving tumour oxygenation.
Collapse
Affiliation(s)
- Helen J Knowles
- Botnar Institute for Musculoskeletal Sciences, Nuffield Department of Orthopaedics Rheumatology & Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Alexandra Vasilyeva
- Botnar Institute for Musculoskeletal Sciences, Nuffield Department of Orthopaedics Rheumatology & Musculoskeletal Sciences, University of Oxford, Oxford, UK; Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, UK
| | - Mihir Sheth
- Botnar Institute for Musculoskeletal Sciences, Nuffield Department of Orthopaedics Rheumatology & Musculoskeletal Sciences, University of Oxford, Oxford, UK; Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, UK
| | - Oliver Pattinson
- Bone and Joint Research Group, Human Development and Health, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, UK
| | - Jonathan May
- Bone and Joint Research Group, Human Development and Health, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, UK
| | - Robin M H Rumney
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, UK
| | - Philippa A Hulley
- Botnar Institute for Musculoskeletal Sciences, Nuffield Department of Orthopaedics Rheumatology & Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Duncan B Richards
- Botnar Institute for Musculoskeletal Sciences, Nuffield Department of Orthopaedics Rheumatology & Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Dario Carugo
- Botnar Institute for Musculoskeletal Sciences, Nuffield Department of Orthopaedics Rheumatology & Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Nicholas D Evans
- Bone and Joint Research Group, Human Development and Health, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, UK
| | - Eleanor Stride
- Botnar Institute for Musculoskeletal Sciences, Nuffield Department of Orthopaedics Rheumatology & Musculoskeletal Sciences, University of Oxford, Oxford, UK; Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, UK.
| |
Collapse
|
8
|
Zhang L, Chen F, Xu L, Li N, Zhuo Q, Guo Y, Wang X, Wen M, Zhao Z, Li M. Comprehensive review of solid tumor bone marrow metastasis. Crit Rev Oncol Hematol 2024; 194:104248. [PMID: 38145832 DOI: 10.1016/j.critrevonc.2023.104248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 12/03/2023] [Accepted: 12/20/2023] [Indexed: 12/27/2023] Open
Abstract
Bone marrow metastasis (BMM) of solid tumors refers to a group of diseases that originate from non-hematopoietic malignant tumor cells invading the bone marrow (BM) through complex metastatic patterns. If BMM identification is delayed, the disease will rapidly develop into disseminated carcinogenesis of the BM, which manifests as a series of hematological disorders and microangiopathic hemolytic anemia, leading to serious life-threatening conditions. Although the study of solid tumor BMM is receiving increasing attention, study remains limited, and most descriptions are derived from case reports. Currently, clinicians have insufficient understanding of BMM, and BMM occurrence is often not recognized early or treated effectively, resulting in high mortality rates. In this article, we review the epidemiology, molecular mechanisms, clinical diagnosis, treatment, and prognosis of solid tumor BMM.
Collapse
Affiliation(s)
- Lanxin Zhang
- Department of Oncology, The Second Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Fengxi Chen
- Department of Oncology, The Second Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Lingzhi Xu
- Department of Oncology, The Second Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Ning Li
- Dalian Medical University, Dalian, Liaoning, China
| | - Qiping Zhuo
- Department of Oncology, The Second Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Yijin Guo
- Department of Oncology, The Second Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Xueqing Wang
- Department of Oncology, The Second Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Meijie Wen
- Department of Anesthesia & Operating Theater, China-Japan Friendship Hospital, Beijing, China
| | - Zuowei Zhao
- Department of Oncology, The Second Hospital of Dalian Medical University, Dalian, Liaoning, China; Department of Breast Surgery, The Second Hospital of Dalian Medical University, Dalian, Liaoning, China.
| | - Man Li
- Department of Oncology, The Second Hospital of Dalian Medical University, Dalian, Liaoning, China.
| |
Collapse
|
9
|
Kolipaka T, Pandey G, Abraham N, Srinivasarao DA, Raghuvanshi RS, Rajinikanth PS, Tickoo V, Srivastava S. Stimuli-responsive polysaccharide-based smart hydrogels for diabetic wound healing: Design aspects, preparation methods and regulatory perspectives. Carbohydr Polym 2024; 324:121537. [PMID: 37985111 DOI: 10.1016/j.carbpol.2023.121537] [Citation(s) in RCA: 37] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/27/2023] [Accepted: 10/28/2023] [Indexed: 11/22/2023]
Abstract
Diabetes adversely affects wound-healing responses, leading to the development of chronic infected wounds. Such wound microenvironment is characterized by hyperglycaemia, hyperinflammation, hypoxia, variable pH, upregulation of matrix metalloproteinases, oxidative stress, and bacterial colonization. These pathological conditions pose challenges for the effective wound healing. Therefore, there is a paradigm shift in diabetic wound care management wherein abnormal pathological conditions of the wound microenvironment is used as a trigger for controlling the drug release or to improve properties of wound dressings. Hydrogels composed of natural polysaccharides showed tremendous potential as wound dressings as well as stimuli-responsive materials due to their unique properties such as biocompatibility, biodegradability, hydrophilicity, porosity, stimuli-responsiveness etc. Hence, polysaccharide-based hydrogels have emerged as advanced healthcare materials for diabetic wounds. In this review, we presented important aspects for the design of hydrogel-based wound dressings with an emphasis on biocompatibility, biodegradability, entrapment of therapeutic agents, moisturizing ability, swelling, and mechanical properties. Further, various crosslinking methods that enable desirable properties and stimuli responsiveness to the hydrogels have been mentioned. Subsequently, state-of-the-art developments in mono- and multi- stimuli-responsive hydrogels have been presented along with the case studies. Finally regulatory perspectives, challenges for the clinical translation and future prospects have been discussed.
Collapse
Affiliation(s)
- Tejaswini Kolipaka
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Giriraj Pandey
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Noella Abraham
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Dadi A Srinivasarao
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Rajeev Singh Raghuvanshi
- Central Drugs Standard Control Organization (CDSCO), Directorate General of Health Services, Ministry of Health & Family Welfare, Government of India, India
| | - P S Rajinikanth
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, India
| | - Vidya Tickoo
- Department of Endocrinology, Yashoda Hospitals, Hyderabad, India
| | - Saurabh Srivastava
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India.
| |
Collapse
|
10
|
Wang J, Wang Y, Li L, Cai S, Mao D, Lou H, Zhao J. Network pharmacology-based pharmacological mechanism prediction of Lycii Fructus against postmenopausal osteoporosis. Medicine (Baltimore) 2023; 102:e36292. [PMID: 38050297 PMCID: PMC10695557 DOI: 10.1097/md.0000000000036292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 11/02/2023] [Indexed: 12/06/2023] Open
Abstract
Postmenopausal osteoporosis (PMOP) has become one of most frequent bone diseases worldwide with aging population. Lycii Fructus, a common plant fruit with the property of drug homologous food, has long since been used to treat PMOP. The aim of this study is to explore pharmacological mechanisms of Lycii Fructus against PMOP through using network pharmacology approach. The active ingredients of Lycii Fructus were obtained from Traditional Chinese Medicine System Pharmacology database. Target fishing was performed on these ingredients in UniProt database for identification of the relative targets. Then, we screened the targets related to PMOP using GeneCards database and DisGeNET database. The overlapping genes between PMOP and Lycii Fructus were obtained to perform protein-protein interaction, gene ontology analysis, Kyoto Encyclopedia of Genes and Genomes analysis. A total of 35 active ingredients were identified in Lycii Fructus, and fished 158 related targets. Simultaneously, 292 targets associated with PMOP were obtained from GeneCards database and DisGeNET database. By drawing Venn diagram, 41 overlapping genes were obtained, and were considered as therapeutically relevant. Gene ontology enrichment analysis predicted that anti-inflammation and promotion of angiogenesis might be 2 potential mechanism of Lycii Fructus for PMOP treatment. Kyoto Encyclopedia of Genes and Genomes enrichment analysis revealed several pathways, such as IL-17 pathway, TNF pathway, MAPK pathway, PI3K-Akt signaling pathway and HIF signaling pathway were involved in regulating these 2 biological processes. Through the method of network pharmacology, we systematically investigated the mechanisms of Lycii Fructus against PMOP. The identified multi-targets and multi-pathways provide new insights to further determinate its exact pharmacological mechanisms.
Collapse
Affiliation(s)
- Jianbo Wang
- Department of Orthopedic Surgery, The Third People’s Hospital Health Care Group of Cixi, Ningbo, China
| | - Yi Wang
- Department of Oncology, Ningbo Municipal Hospital of Traditional Chinese Medicine, Ningbo, China
| | - Leyan Li
- The 3rd School of Clinical Medicine, Zhejiang Chinese Medicine University, Hangzhou, China
| | - Shuiqi Cai
- Department of Orthopedic Surgery, The Third People’s Hospital Health Care Group of Cixi, Ningbo, China
| | - Dandan Mao
- Department of Orthopedic Surgery, Ningbo Municipal Hospital of Traditional Chinese Medicine, Ningbo, China
| | - Hongkan Lou
- Department of Orthopedic Surgery, Ningbo Municipal Hospital of Traditional Chinese Medicine, Ningbo, China
| | - Jian Zhao
- Changzhou No.2 People’s Hospital Affiliated to Nanjing Medical University, Changzhou, China
| |
Collapse
|
11
|
Habas E, Al Adab A, Arryes M, Alfitori G, Farfar K, Habas AM, Akbar RA, Rayani A, Habas E, Elzouki A. Anemia and Hypoxia Impact on Chronic Kidney Disease Onset and Progression: Review and Updates. Cureus 2023; 15:e46737. [PMID: 38022248 PMCID: PMC10631488 DOI: 10.7759/cureus.46737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/09/2023] [Indexed: 12/01/2023] Open
Abstract
Chronic kidney disease (CKD) is caused by hypoxia in the renal tissue, leading to inflammation and increased migration of pathogenic cells. Studies showed that leukocytes directly sense hypoxia and respond by initiating gene transcription, encoding the 2-integrin adhesion molecules. Moreover, other mechanisms participate in hypoxia, including anemia. CKD-associated anemia is common, which induces and worsens hypoxia, contributing to CKD progression. Anemia correction can slow CKD progression, but it should be cautiously approached. In this comprehensive review, the underlying pathophysiology mechanisms and the impact of renal tissue hypoxia and anemia in CKD onset and progression will be reviewed and discussed in detail. Searching for the latest updates in PubMed Central, Medline, PubMed database, Google Scholar, and Google search engines were conducted for original studies, including cross-sectional studies, cohort studies, clinical trials, and review articles using different keywords, phrases, and texts such as "CKD progression, anemia in CKD, CKD, anemia effect on CKD progression, anemia effect on CKD progression, and hypoxia and CKD progression". Kidney tissue hypoxia and anemia have an impact on CKD onset and progression. Hypoxia causes nephron cell death, enhancing fibrosis by increasing interstitium protein deposition, inflammatory cell activation, and apoptosis. Severe anemia correction improves life quality and may delay CKD progression. Detection and avoidance of the risk factors of hypoxia prevent recurrent acute kidney injury (AKI) and reduce the CKD rate. A better understanding of kidney hypoxia would prevent AKI and CKD and lead to new therapeutic strategies.
Collapse
Affiliation(s)
| | - Aisha Al Adab
- Internal Medicine, Hamad General Hospital, Doha, QAT
| | - Mehdi Arryes
- Internal Medicine, Hamad General Hospital, Doha, QAT
| | | | | | - Ala M Habas
- Internal Medicine, Tripoli University, Tripoli, LBY
| | - Raza A Akbar
- Internal Medicine, Hamad General Hospital, Doha, QAT
| | - Amnna Rayani
- Hemat-oncology Department, Pediatric Tripoli Hospital, Tripoli University, Tripoli, LBY
| | - Eshrak Habas
- Internal Medicine, Tripoli University, Tripoli, LBY
| | | |
Collapse
|
12
|
Hu G, Zhang Y, Yu Z, Cui T, Cui W. Dynamical characterization and multiple unbinding paths of two PreQ 1 ligands in one pocket. Phys Chem Chem Phys 2023; 25:24004-24015. [PMID: 37646322 DOI: 10.1039/d3cp03142j] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Riboswitches naturally regulate gene expression in bacteria by binding to specific small molecules. Class 1 preQ1 riboswitch aptamer is an important model not only for RNA folding but also as a target for designing small molecule antibiotics due to its well-known minimal aptamer domain. Here, we ran a total of 62.4 μs conventional and enhanced-sampling molecular dynamics (MD) simulations to characterize the determinants underlying the binding of the preQ1-II riboswitch aptamer to two preQ1 ligands in one binding pocket. Decomposition of binding free energy suggested that preQ1 ligands at α and β sites interact with four nucleotides (G5, C17, C18, and A30) and two nucleotides (A12 and C31), respectively. Mg2+ ions play a crucial role in both stabilizing the binding pocket and facilitating ligand binding. The flexible preQ1 ligand at the β site leads to the top of the binding pocket loosening and thus pre-organizes the riboswitch for ligand entry. Enhanced sampling simulations further revealed that the preQ1 ligand at the α site unbinds through two orthogonal pathways, which are dependent on whether or not a β site preQ1 ligand is present. One of the two preQ1 ligands has been identified in the binding pocket, which will aid to identify the second preQ1 Ligand. Our work provides new information for designing robust ligands.
Collapse
Affiliation(s)
- Guodong Hu
- Shandong Key Laboratory of Biophysics, Dezhou University, Dezhou 253023, China.
- Laoling People's Hospital, Dezhou 253600, China
| | | | - Zhiping Yu
- Shandong Key Laboratory of Biophysics, Dezhou University, Dezhou 253023, China.
| | - Tiejun Cui
- Laoling People's Hospital, Dezhou 253600, China
| | - Wanling Cui
- Shandong Key Laboratory of Biophysics, Dezhou University, Dezhou 253023, China.
- Laoling People's Hospital, Dezhou 253600, China
| |
Collapse
|
13
|
Li C, Zhao R, Yang H, Ren L. Construction of Bone Hypoxic Microenvironment Based on Bone-on-a-Chip Platforms. Int J Mol Sci 2023; 24:ijms24086999. [PMID: 37108162 PMCID: PMC10139217 DOI: 10.3390/ijms24086999] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/31/2023] [Accepted: 04/03/2023] [Indexed: 04/29/2023] Open
Abstract
The normal physiological activities and functions of bone cells cannot be separated from the balance of the oxygenation level, and the physiological activities of bone cells are different under different oxygenation levels. At present, in vitro cell cultures are generally performed in a normoxic environment, and the partial pressure of oxygen of a conventional incubator is generally set at 141 mmHg (18.6%, close to the 20.1% oxygen in ambient air). This value is higher than the mean value of the oxygen partial pressure in human bone tissue. Additionally, the further away from the endosteal sinusoids, the lower the oxygen content. It follows that the construction of a hypoxic microenvironment is the key point of in vitro experimental investigation. However, current methods of cellular research cannot realize precise control of oxygenation levels at the microscale, and the development of microfluidic platforms can overcome the inherent limitations of these methods. In addition to discussing the characteristics of the hypoxic microenvironment in bone tissue, this review will discuss various methods of constructing oxygen gradients in vitro and measuring oxygen tension from the microscale based on microfluidic technology. This integration of advantages and disadvantages to perfect the experimental study will help us to study the physiological responses of cells under more physiological-relevant conditions and provide a new strategy for future research on various in vitro cell biomedicines.
Collapse
Affiliation(s)
- Chen Li
- Key Laboratory of Flexible Electronics of Zhejiang Province, Ningbo Institute of Northwestern Polytechnical University, Ningbo 315103, China
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Rong Zhao
- Key Laboratory of Flexible Electronics of Zhejiang Province, Ningbo Institute of Northwestern Polytechnical University, Ningbo 315103, China
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Hui Yang
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Li Ren
- Key Laboratory of Flexible Electronics of Zhejiang Province, Ningbo Institute of Northwestern Polytechnical University, Ningbo 315103, China
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| |
Collapse
|
14
|
Yang J, Li Q, Feng Y, Zeng Y. Iron Deficiency and Iron Deficiency Anemia: Potential Risk Factors in Bone Loss. Int J Mol Sci 2023; 24:ijms24086891. [PMID: 37108056 PMCID: PMC10138976 DOI: 10.3390/ijms24086891] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/01/2023] [Accepted: 04/03/2023] [Indexed: 04/29/2023] Open
Abstract
Iron is one of the essential mineral elements for the human body and this nutrient deficiency is a worldwide public health problem. Iron is essential in oxygen transport, participates in many enzyme systems in the body, and is an important trace element in maintaining basic cellular life activities. Iron also plays an important role in collagen synthesis and vitamin D metabolism. Therefore, decrease in intracellular iron can lead to disturbance in the activity and function of osteoblasts and osteoclasts, resulting in imbalance in bone homeostasis and ultimately bone loss. Indeed, iron deficiency, with or without anemia, leads to osteopenia or osteoporosis, which has been revealed by numerous clinical observations and animal studies. This review presents current knowledge on iron metabolism under iron deficiency states and the diagnosis and prevention of iron deficiency and iron deficiency anemia (IDA). With emphasis, studies related to iron deficiency and bone loss are discussed, and the potential mechanisms of iron deficiency leading to bone loss are analyzed. Finally, several measures to promote complete recovery and prevention of iron deficiency are listed to improve quality of life, including bone health.
Collapse
Affiliation(s)
- Jiancheng Yang
- Department of Osteoporosis, Honghui Hospital, Xi'an Jiaotong University, Xi'an 710054, China
| | - Qingmei Li
- Department of Osteoporosis, Honghui Hospital, Xi'an Jiaotong University, Xi'an 710054, China
| | - Yan Feng
- Department of Osteoporosis, Honghui Hospital, Xi'an Jiaotong University, Xi'an 710054, China
| | - Yuhong Zeng
- Department of Osteoporosis, Honghui Hospital, Xi'an Jiaotong University, Xi'an 710054, China
| |
Collapse
|
15
|
Lu J, Hu D, Zhang Y, Ma C, Shen L, Shuai B. Current comprehensive understanding of denosumab (the RANKL neutralizing antibody) in the treatment of bone metastasis of malignant tumors, including pharmacological mechanism and clinical trials. Front Oncol 2023; 13:1133828. [PMID: 36860316 PMCID: PMC9969102 DOI: 10.3389/fonc.2023.1133828] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 02/01/2023] [Indexed: 02/16/2023] Open
Abstract
Denosumab, a fully humanized monoclonal neutralizing antibody, inhibits activation of the RANK/RANKL/OPG signaling pathway through competitive binding with RANKL, thereby inhibiting osteoclast-mediated bone resorption. Denosumab inhibits bone loss; therefore, it is used to treat metabolic bone diseases (including postmenopausal osteoporosis, male osteoporosis, and glucocorticoid-induced osteoporosis), in clinical practice. Since then, multiple effects of denosumab have been discovered. A growing body of evidence suggests that denosumab has a variety of pharmacological activities and broad potential in clinical diseases such as osteoarthritis, bone tumors, and other autoimmune diseases. Currently, Denosumab is emerging as a treatment for patients with malignancy bone metastases, and it also shows direct or indirect anti-tumor effects in preclinical models and clinical applications. However, as an innovative drug, its clinical use for bone metastasis of malignant tumors is still insufficient, and its mechanism of action needs to be further investigated. This review systematically summarizes the pharmacological mechanism of action of denosumab and the current understanding and clinical practice of the use of denosumab for bone metastasis of malignant tumors to help clinicians and researchers deepen their understanding of denosumab.
Collapse
Affiliation(s)
- Junjie Lu
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Desheng Hu
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yan Zhang
- Department of Pain, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chen Ma
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lin Shen
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bo Shuai
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China,*Correspondence: Bo Shuai,
| |
Collapse
|
16
|
Zhang Y, Fang Y, Abbaraju V, Bhattacharya S, Anker JN, Wang G, Li C. Oxygenation imaging in deep tissue with X-Ray luminescence computed tomography (XLCT). PROCEEDINGS OF SPIE--THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING 2023; 12468:124680I. [PMID: 38957374 PMCID: PMC11218916 DOI: 10.1117/12.2654446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Oxygenation concentration of tissue is an important factor in culturing stem cells and in studying the therapy response of cancer cells. The hypoxia bone marrow is the site to harbor cancer cells. Thus, direct high-resolution measurements of molecular 𝑂2 would provide powerful means of monitoring cultured stem cells and therapied cancer cells. We proposed an imaging approach to measure oxygenation concentration in deep tissues, based on the XLCT, with combined strengths of high chemical sensitivity and high spatial resolution. We have developed different biosensing films for oxygenation measurements and tested these films with X-ray luminescent experiments. We have also performed phantom experiments with multiple targets to validate the XLCT imaging system with measurements at two channels.
Collapse
Affiliation(s)
- Yibing Zhang
- Department of Bioengineering, University of California, Merced, Merced, CA 95343, USA
| | - Yile Fang
- Department of Bioengineering, University of California, Merced, Merced, CA 95343, USA
| | - Vigjna Abbaraju
- Department of Chemistry, Clemson University, Clemson, SC 29634, USA
| | | | - Jeffrey N. Anker
- Department of Chemistry, Clemson University, Clemson, SC 29634, USA
- Department of Bioengineering, Center for Optical Materials Science and Engineering Technology (COMSET), and Institute of Environment Toxicology (CU-ENTOX), Clemson University, Clemson, SC 29634, USA
| | - Ge Wang
- Department of Biomedical Engineering, Biomedical Imaging Center, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Changqing Li
- Department of Bioengineering, University of California, Merced, Merced, CA 95343, USA
| |
Collapse
|
17
|
Loers JU, Vermeirssen V. SUBATOMIC: a SUbgraph BAsed mulTi-OMIcs clustering framework to analyze integrated multi-edge networks. BMC Bioinformatics 2022; 23:363. [PMID: 36064320 PMCID: PMC9442970 DOI: 10.1186/s12859-022-04908-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 08/24/2022] [Indexed: 11/02/2022] Open
Abstract
BACKGROUND Representing the complex interplay between different types of biomolecules across different omics layers in multi-omics networks bears great potential to gain a deep mechanistic understanding of gene regulation and disease. However, multi-omics networks easily grow into giant hairball structures that hamper biological interpretation. Module detection methods can decompose these networks into smaller interpretable modules. However, these methods are not adapted to deal with multi-omics data nor consider topological features. When deriving very large modules or ignoring the broader network context, interpretability remains limited. To address these issues, we developed a SUbgraph BAsed mulTi-OMIcs Clustering framework (SUBATOMIC), which infers small and interpretable modules with a specific topology while keeping track of connections to other modules and regulators. RESULTS SUBATOMIC groups specific molecular interactions in composite network subgraphs of two and three nodes and clusters them into topological modules. These are functionally annotated, visualized and overlaid with expression profiles to go from static to dynamic modules. To preserve the larger network context, SUBATOMIC investigates statistically the connections in between modules as well as between modules and regulators such as miRNAs and transcription factors. We applied SUBATOMIC to analyze a composite Homo sapiens network containing transcription factor-target gene, miRNA-target gene, protein-protein, homologous and co-functional interactions from different databases. We derived and annotated 5586 modules with diverse topological, functional and regulatory properties. We created novel functional hypotheses for unannotated genes. Furthermore, we integrated modules with condition specific expression data to study the influence of hypoxia in three cancer cell lines. We developed two prioritization strategies to identify the most relevant modules in specific biological contexts: one considering GO term enrichments and one calculating an activity score reflecting the degree of differential expression. Both strategies yielded modules specifically reacting to low oxygen levels. CONCLUSIONS We developed the SUBATOMIC framework that generates interpretable modules from integrated multi-omics networks and applied it to hypoxia in cancer. SUBATOMIC can infer and contextualize modules, explore condition or disease specific modules, identify regulators and functionally related modules, and derive novel gene functions for uncharacterized genes. The software is available at https://github.com/CBIGR/SUBATOMIC .
Collapse
Affiliation(s)
- Jens Uwe Loers
- Lab for Computational Biology, Integromics and Gene Regulation (CBIGR), Cancer Research Institute Ghent (CRIG), Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.,Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Vanessa Vermeirssen
- Lab for Computational Biology, Integromics and Gene Regulation (CBIGR), Cancer Research Institute Ghent (CRIG), Ghent, Belgium. .,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium. .,Department of Biomolecular Medicine, Ghent University, Ghent, Belgium.
| |
Collapse
|
18
|
Resveratrol Ameliorates High Altitude Hypoxia-Induced Osteoporosis by Suppressing the ROS/HIF Signaling Pathway. Molecules 2022; 27:molecules27175538. [PMID: 36080305 PMCID: PMC9458036 DOI: 10.3390/molecules27175538] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 08/25/2022] [Accepted: 08/25/2022] [Indexed: 11/17/2022] Open
Abstract
Hypoxia at high-altitude leads to osteoporosis. Resveratrol (RES), as an antioxidant, has been reported to promote osteoblastogenesis and suppress osteoclastogenesis. However, the therapeutic effect of RES against osteoporosis induced by high-altitude hypoxia remains unclear. Thus, this study was intended to investigate the potential effects of RES on high-altitude hypoxia-induced osteoporosis both in vivo and in vitro. Male Wistar rats were given RES (400 mg/kg) once daily for nine weeks under hypoxia, while the control was allowed to grow under normoxia. Bone mineral density (BMD), the levels of bone metabolism-related markers, and the changes on a histological level were measured. Bone marrow-derived mesenchymal stem cells (BMSCs) and RAW264.7 were incubated with RES under hypoxia, with a control growing under normoxia, followed by the evaluation of proliferation and differentiation. The results showed that RES inhibited high-altitude hypoxia-induced reduction in BMD, enhanced alkaline phosphatase (ALP), osteocalcin (OCN), calcitonin (CT) and runt-related transcription factor 2 (RUNX2) levels, whereas it reduced cross-linked carboxy-terminal telopeptide of type I collagen (CTX-I) levels and tartrate-resistant acid phosphatase (TRAP) activity in vivo. In addition, RES attenuated histological deteriorations in the femurs. In vitro, RES promoted osteoblastogenesis and mineralization in hypoxia-exposed BMSCs, along with promotion in RUNX2, ALP, OCN and osteopontin (OPN) levels, and inhibited the proliferation and osteoclastogenesis of RAW264.7. The promotion effects of RES on osteoblastogenesis were accompanied by the down-regulation of reactive oxygen species (ROS) and hypoxia inducible factor-1α (HIF-1α) induced by hypoxia. These results demonstrate that RES can alleviate high-altitude hypoxia-induced osteoporosis via promoting osteoblastogenesis by suppressing the ROS/HIF-1α signaling pathway. Thus, we suggest that RES might be a potential treatment with minimal side effects to protect against high-altitude hypoxia-induced osteoporosis.
Collapse
|
19
|
Fan TD, Bei DK, Li SW. Nomogram Models Based on the Gene Expression in Prediction of Breast Cancer Bone Metastasis. JOURNAL OF HEALTHCARE ENGINEERING 2022; 2022:8431946. [PMID: 36046013 PMCID: PMC9424032 DOI: 10.1155/2022/8431946] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 06/01/2022] [Accepted: 06/28/2022] [Indexed: 12/24/2022]
Abstract
Objective The aim of this study is to design a weighted co-expression network and build gene expression signature-based nomogram (GESBN) models for predicting the likelihood of bone metastasis in breast cancer (BC) patients. Methods Dataset GSE124647 was used as a training set, while GSE16446, GSE45255, and GSE14020 were taken as validation sets. In the training cohort, the limma package in R was adopted to obtain differentially expressed genes (DEGs) between BC nonbone metastasis and bone metastasis patients, which were used for functional enrichment analysis. After weighted co-expression network analysis (WGCNA), univariate Cox regression and Kaplan-Meier plotter analyses were performed to screen potential prognosis-related genes. Then, GESBN models were constructed and evaluated. The prognostic value of the GESBN models was investigated in the GSE124647 dataset, which was validated in GSE16446 and GSE45255 datasets. Further, the expression levels of genes in the models were explored in the training set, which was validated in GSE14020. Finally, the expression and prognostic value of hub genes in BC were explored. Results A total of 1858 DEGs were obtained. The WGCNA result showed that the blue module was most significantly related to bone metastasis and prognosis. After survival analyses, GAJ1, SLC24A3, ITGBL1, and SLC44A1 were subjected to construct a GESBN model for overall survival (OS). While GJA1, IGFBP6, MDFI, TGFBI, ANXA2, and SLC24A3 were subjected to build a GESBN model for progression-free survival (PFS). Kaplan-Meier plotter and receiver operating characteristic analyses presented the reliable prediction ability of the models. Cox regression analysis further revealed that GESBN models were independent prognostic predictors for OS and PFS in BC patients. Besides, GJA1, IGFBP6, ITGBL1, SLC44A1, and TGFBI expressions were significantly different between the two groups in GSE124647 and GSE14020. The hub genes had a significant impact on patient prognosis. Conclusion Both the four-gene signature and six-gene signature could accurately predict patient prognosis, which may provide novel treatment insights for BC bone metastasis.
Collapse
Affiliation(s)
- Teng-di Fan
- Department of Orthopedics, Ningbo Medical Center Lihuili Hospital, Ningbo 315040, Zhejiang, China
| | - Di-kai Bei
- Department of Orthopedics, Ningbo Medical Center Lihuili Hospital, Ningbo 315040, Zhejiang, China
| | - Song-wei Li
- Department of Orthopedics, Ningbo Medical Center Lihuili Hospital, Ningbo 315040, Zhejiang, China
| |
Collapse
|
20
|
Cai G, Zhu J, Ning D, Li G, Zhang Y, Xiong Y, Liang J, Yu C, Chen X, Liang H, Ding Z. A Novel hepatocellular carcinoma specific hypoxic related signature for predicting prognosis and therapeutic responses. Front Immunol 2022; 13:997316. [PMID: 36059442 PMCID: PMC9428591 DOI: 10.3389/fimmu.2022.997316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 07/29/2022] [Indexed: 12/24/2022] Open
Abstract
Hypoxia is an important feature of the tumor microenvironment(TME) and is closely associated with cancer metastasis, immune evasion, and drug resistance. However, the precise role of hypoxia in hepatocellular carcinoma(HCC), as well as its influence on the TME, and drug sensitivity remains unclear. We found the excellent survival prediction value of Hypoxia_DEGs_Score model. In hypoxic HCC, somatic mutation, copy number variation, and DNA methylation were closely related to hypoxic changes and affected tumorigenesis, progression, metastasis, and drug resistance. In HCC, aggravated hypoxic stress was found to be accompanied by an immune exclusion phenotype and increased infiltration of immunosuppressive cells. In the validation cohort, patients with high Hypoxia_DEGs_Score were found to have worse immunotherapeutic outcomes and prognoses, and may benefit from drugs against cell cycle signaling pathways rather than those inhibiting the PI3K/mTOR pathway. Hypoxia_DEGs_Score has an excellent predictive capability of changes in the TME, the efficacy of immunotherapy, and the response of drugs. Therefore, Hypoxia_DEGs_Score can help develop personalized immunotherapy regimens and improve the prognosis of HCC patients.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Huifang Liang
- Hepatic Surgery Center, and Hubei Key Laboratory of Hepatic-Biliary-Pancreatic Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zeyang Ding
- Hepatic Surgery Center, and Hubei Key Laboratory of Hepatic-Biliary-Pancreatic Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
21
|
Akin AT, Kaymak E, Ceylan T, Ozturk E, Basaran KE, Karabulut D, Ozdamar S, Yakan B. Chloroquine attenuates chronic hypoxia-induced testicular damage via suppressing endoplasmic reticulum stress and apoptosis in experimental rat model. Clin Exp Pharmacol Physiol 2022; 49:813-823. [PMID: 35579513 DOI: 10.1111/1440-1681.13669] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 04/28/2022] [Accepted: 05/09/2022] [Indexed: 11/30/2022]
Abstract
Chronic hypoxia negatively affects male fertility by causing pathological changes in male reproductive system. However, underlying mechanisms of this damage are unknown. Chloroquine (CLQ) is an anti-inflammatory agent which is widely used in the treatment of inflammation-related diseases such as malaria and rheumatoid arthritis. This study aimed to investigate the therapeutic effects of CLQ in the hypoxia-induced testicular damage via assessment of hypoxic response, endoplasmic reticulum stress and apoptosis. For this purpose, 32 Wistar albino rats were divided into 4 groups as Control (given %20-21 O2 , no treatment), CLQ (given 50 mg/kg and %20-21 O2 for 28 days), HX (given %10 O2 for 28 days) and HX + CLQ (given 50 mg/kg and %10 O2 for 28 days). After experiment, blood samples and testicular tissues were taken. Histopathological evaluation was performed on testicular tissues and HIF1-α, HSP70, HSP90 and GADD153 expression levels were detected via immunohistochemistry. Moreover, apoptotic cells were detected via TUNEL staining and serum testosterone levels were determined by ELISA assay. Histopathological changes, apoptotic cell numbers and HIF1-α, HSP70, HSP90 and GADD153 expressions significantly increased in HX group (p < 0.05). Moreover, serum testosterone levels decreased in this group (p > 0.05). However, CLQ exerted a strong ameliorative effect on all parameters in HX + CLQ group. According to our results, we suggested that CLQ can be considered as an alternative protective agent for eliminating the negative effects of hypoxic conditions on male fertility. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Ali Tugrul Akin
- Biology Department, Faculty of Science, Erciyes University, Kayseri, Turkey
| | - Emin Kaymak
- Histology-Embriology Department, Faculty of Medicine, Yozgat Bozok University, Yozgat, Turkey
| | - Tayfun Ceylan
- Program of Pathology Laboratory Techniques, Kapadokya Vocational High School, Kapadokya University, Nevsehir, Turkey
| | - Emel Ozturk
- Histology-Embriology Department, Faculty of Medicine, Harran University, Sanliurfa, Turkey
| | - Kemal Erdem Basaran
- Physiology Department, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Derya Karabulut
- Histology-Embriology Department, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Saim Ozdamar
- Histology-Embriology Department, Faculty of Medicine, Pamukkale University, Denizli, Turkey
| | - Birkan Yakan
- Histology-Embriology Department, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| |
Collapse
|
22
|
Liu Z, Tian J, Peng F, Wang J. Hypermethylation of mitochondrial DNA facilitates bone metastasis of renal cell carcinoma. J Cancer 2022; 13:304-312. [PMID: 34976191 PMCID: PMC8692697 DOI: 10.7150/jca.62278] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 10/19/2021] [Indexed: 12/11/2022] Open
Abstract
Kidney cancers including clear cell carcinoma (RCC) are identified with very vulnerable mitochondria DNA (mtDNA) and frequent epigenetic aberrations. Bone metastasis from RCC is prevalent and destructive. Bone marrow contains a quite hypoxic microenvironment that usually insitigate 50% of hypermethylation events in conferring a selective advantage for tumor growth. We hypothesized that hypermethylation of mtDNA in RCC cells would significantly contribute to bone metastatic tumor progression. Methylation-specific polymerase chain reaction assay (MSP) was adopted to measure the methylation status of D-loop region of mtDNA in 15 pairs of bone metastatic and primary RCC as well as tumor adjescent normal kidney tissues. mtDNA copy number was examined by the real-time quantitative polymerase chain reaction (qPCR). Western blotting analysis was used to measure the accumulation of several DNA methyltransferases (DNMTs) in the mitochondria and nucleus fractions of bone metastatic RCC cells. mRNA expression of mitochondria encoded genes was examined by RT-PCR. Reactive oxygen species (ROS), mitochondrial membrane potential and ATP content were measured using in vitro cells treated with de-methylation drug 5-Azacytidine (5-Aza). Non-invasive bioluminescent imaging was performed to monitor tumor occurrence in skeleton in mice. Our results showed that the D-loop region in bone metastatic tumor cells was markedly hypermethylated than those in primary RCC tumor cells, that is associated with a decreased mtDNA copy number and accumulation of DNMT1 in the mitochondria. The bone-tropism tumor colonization and progression of RCC cells was significantly suppressed by demethylating the D-loop region of mtDNA and reducing the intracellular level of ROS and ATP by 5-Aza treatment. In conclusion, our study provided a direct association between hypermethylation of mtDNA in RCC with bone metastastic tumor growth.
Collapse
Affiliation(s)
- Zheng Liu
- Department of Oncology, People's hospital of Dongxihu District, Wuhan, Hubei 430040, P.R.China
| | - Jinhai Tian
- Department of Orthopedics, People's hospital of Dongxihu District, Wuhan, Hubei 430040, P.R.China
| | - Fuhong Peng
- Department of Orthopedics, Tongji hospital of Tongji Medical College, Hua Zhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Jiang Wang
- Department of Orthopedics, Tongji hospital of Tongji Medical College, Hua Zhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| |
Collapse
|
23
|
Hasan LK, Deadwiler B, Haratian A, Bolia IK, Weber AE, Petrigliano FA. Effects of COVID-19 on the Musculoskeletal System: Clinician's Guide. Orthop Res Rev 2021; 13:141-150. [PMID: 34584465 PMCID: PMC8464590 DOI: 10.2147/orr.s321884] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 09/06/2021] [Indexed: 12/13/2022] Open
Abstract
The global pandemic caused by SARS-CoV-2, or COVID-19, continues to impact all facets of daily life. Clinical manifestations of COVID-19 commonly include musculoskeletal symptoms such as myalgias, arthralgias, and neuropathies/myopathies. The inflammatory response and its impact on the respiratory system have been the focus of most studies. However, the literature is more limited regarding the inflammatory response and its implications for other organ systems, specifically the musculoskeletal system. Previous studies have described how systemic inflammation may play a role in bone and joint pathology. Furthermore, it is important to understand the effects current therapeutics used in the treatment of COVID-19 may have on the musculoskeletal system. In this study, we will review the current understanding of the effect COVID-19 has on the musculoskeletal system, provide an overview of musculoskeletal symptoms of patients infected with the virus, and address key issues for clinicians to address during the care of COVID-19 patients.
Collapse
Affiliation(s)
- Laith K Hasan
- USC Epstein Family Center for Sports Medicine at Keck Medicine of USC, Los Angeles, CA, USA
| | - Brittney Deadwiler
- USC Epstein Family Center for Sports Medicine at Keck Medicine of USC, Los Angeles, CA, USA
| | - Aryan Haratian
- USC Epstein Family Center for Sports Medicine at Keck Medicine of USC, Los Angeles, CA, USA
| | - Ioanna K Bolia
- USC Epstein Family Center for Sports Medicine at Keck Medicine of USC, Los Angeles, CA, USA
| | - Alexander E Weber
- USC Epstein Family Center for Sports Medicine at Keck Medicine of USC, Los Angeles, CA, USA
| | - Frank A Petrigliano
- USC Epstein Family Center for Sports Medicine at Keck Medicine of USC, Los Angeles, CA, USA
| |
Collapse
|
24
|
Di Pompo G, Cortini M, Baldini N, Avnet S. Acid Microenvironment in Bone Sarcomas. Cancers (Basel) 2021; 13:cancers13153848. [PMID: 34359749 PMCID: PMC8345667 DOI: 10.3390/cancers13153848] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/24/2021] [Accepted: 07/28/2021] [Indexed: 12/15/2022] Open
Abstract
Simple Summary Although rare, malignant bone sarcomas have devastating clinical implications for the health and survival of young adults and children. To date, efforts to identify the molecular drivers and targets have focused on cancer cells or on the interplay between cancer cells and stromal cells in the tumour microenvironment. On the contrary, in the current literature, the role of the chemical-physical conditions of the tumour microenvironment that may be implicated in sarcoma aggressiveness and progression are poorly reported and discussed. Among these, extracellular acidosis is a well-recognized hallmark of bone sarcomas and promotes cancer growth and dissemination but data presented on this topic are fragmented. Hence, we intended to provide a general and comprehensive overview of the causes and implications of acidosis in bone sarcoma. Abstract In bone sarcomas, extracellular proton accumulation is an intrinsic driver of malignancy. Extracellular acidosis increases stemness, invasion, angiogenesis, metastasis, and resistance to therapy of cancer cells. It reprograms tumour-associated stroma into a protumour phenotype through the release of inflammatory cytokines. It affects bone homeostasis, as extracellular proton accumulation is perceived by acid-sensing ion channels located at the cell membrane of normal bone cells. In bone, acidosis results from the altered glycolytic metabolism of bone cancer cells and the resorption activity of tumour-induced osteoclasts that share the same ecosystem. Proton extrusion activity is mediated by extruders and transporters located at the cell membrane of normal and transformed cells, including vacuolar ATPase and carbonic anhydrase IX, or by the release of highly acidic lysosomes by exocytosis. To date, a number of investigations have focused on the effects of acidosis and its inhibition in bone sarcomas, including studies evaluating the use of photodynamic therapy. In this review, we will discuss the current status of all findings on extracellular acidosis in bone sarcomas, with a specific focus on the characteristics of the bone microenvironment and the acid-targeting therapeutic approaches that are currently being evaluated.
Collapse
Affiliation(s)
- Gemma Di Pompo
- Biomedical Science and Technologies Lab, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (G.D.P.); (M.C.); (N.B.)
| | - Margherita Cortini
- Biomedical Science and Technologies Lab, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (G.D.P.); (M.C.); (N.B.)
| | - Nicola Baldini
- Biomedical Science and Technologies Lab, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (G.D.P.); (M.C.); (N.B.)
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| | - Sofia Avnet
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
- Correspondence:
| |
Collapse
|
25
|
Hu M, Li Y, Lu Y, Wang M, Li Y, Wang C, Li Q, Zhao H. The regulation of immune checkpoints by the hypoxic tumor microenvironment. PeerJ 2021; 9:e11306. [PMID: 34012727 PMCID: PMC8109006 DOI: 10.7717/peerj.11306] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 03/29/2021] [Indexed: 12/14/2022] Open
Abstract
The tumor microenvironment (TME) influences the occurrence and progression of tumors, and hypoxia is an important characteristic of the TME. The expression of programmed death 1 (PD1)/programmed death-ligand 1 (PDL1), cytotoxic T-lymphocyte-associated antigen 4 (CTLA4), and other immune checkpoints in hypoxic malignant tumors is often significantly increased, and is associated with poor prognosis. The application of immune checkpoint inhibitors (ICIs) for treating lung cancer, urothelial carcinoma, and gynecological tumors has achieved encouraging efficacy; however, the rate of efficacy of ICI single-drug treatment is only about 20%. In the present review, we discuss the possible mechanisms by which the hypoxic TME regulates immune checkpoints. By activating hypoxia-inducible factor-1α (HIF-1α), regulating the adenosine (Ado)-A2aR pathway, regulating the glycolytic pathway, and driving epithelial-mesenchymal transition (EMT) and other biological pathways, hypoxia regulates the expression levels of CTLA4, PD1, PDL1, CD47, lymphocyte activation gene 3 (LAG3), T-cell immunoglobulin and mucin domain 3 (TIM3), and other immune checkpoints, which interfere with the immune effector cell anti-tumor response and provide convenient conditions for tumors to escape immune surveillance. The combination of HIF-1α inhibitors, Ado-inhibiting tumor immune microenvironment regulatory drugs, and other drugs with ICIs has good efficacy in both preclinical studies and phase I-II clinical studies. Exploring the effects of TME hypoxia on the expression of immune checkpoints and the function of infiltrating immune cells has greatly clarified the relationship between the hypoxic TME and immune escape, which is of great significance for the development of new drugs and the search for predictive markers of the efficacy of immunotherapy for treating malignant tumors. In the future, combination therapy with hypoxia pathway inhibitors and ICIs may be an effective anti-tumor treatment strategy.
Collapse
Affiliation(s)
- Min Hu
- Department of Biochemistry & Molecular Biology, Basic Medical College, Shanxi Medical University, Taiyuan, Shanxi Province, China.,Department of Oncology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Yongfu Li
- Department of Oncology, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Department of Oncology, The Second Affiliated Hospital of Hainan Medical University, Haikou, Hainan Province, China
| | - Yuting Lu
- Department of Oncology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Miao Wang
- Department of Oncology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Yingrui Li
- Department of Biochemistry & Molecular Biology, Basic Medical College, Shanxi Medical University, Taiyuan, Shanxi Province, China.,Department of Oncology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Chaoying Wang
- Department of Oncology, The Second Affiliated Hospital of Hainan Medical University, Haikou, Hainan Province, China
| | - Qin Li
- Department of Oncology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Hong Zhao
- Department of Biochemistry & Molecular Biology, Basic Medical College, Shanxi Medical University, Taiyuan, Shanxi Province, China
| |
Collapse
|
26
|
Yoshida GJ, Saya H. Molecular pathology underlying the robustness of cancer stem cells. Regen Ther 2021; 17:38-50. [PMID: 33869685 PMCID: PMC8024885 DOI: 10.1016/j.reth.2021.02.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 02/08/2021] [Indexed: 02/06/2023] Open
Abstract
Intratumoral heterogeneity is tightly associated with the failure of anticancer treatment modalities including conventional chemotherapy, radiation therapy, and molecularly targeted therapy. Such heterogeneity is generated in an evolutionary manner not only as a result of genetic alterations but also by the presence of cancer stem cells (CSCs). CSCs are proposed to exist at the top of a tumor cell hierarchy and are undifferentiated tumor cells that manifest enhanced tumorigenic and metastatic potential, self-renewal capacity, and therapeutic resistance. Properties that contribute to the robustness of CSCs include the abilities to withstand redox stress, to rapidly repair damaged DNA, to adapt to a hyperinflammatory or hyponutritious tumor microenvironment, and to expel anticancer drugs by the action of ATP-binding cassette transporters as well as plasticity with regard to the transition between dormant CSC and transit-amplifying progenitor cell phenotypes. In addition, CSCs manifest the phenomenon of metabolic reprogramming, which is essential for maintenance of their self-renewal potential and their ability to adapt to changes in the tumor microenvironment. Elucidation of the molecular underpinnings of these biological features of CSCs is key to the development of novel anticancer therapies. In this review, we highlight the pathological relevance of CSCs in terms of their hallmarks and identification, the properties of their niche—both in primary tumors and at potential sites of metastasis—and their resistance to oxidative stress dependent on system xc (−). Intratumoral heterogeneity driven by CSCs is responsible for therapeutic resistance. CTCs survive in the distant organs and achieve colonization, causing metastasis. E/M hybrid cancer cells due to partial EMT exhibit the highest metastatic potential. The CSC niche regulates stemness in metastatic disease as well as in primary tumor. Activation of system xc(-) by CD44 variant in CSCs is a promising therapeutic target.
Collapse
Key Words
- ABC, ATP-binding cassette
- ALDH, Aldehyde dehydrogenase
- BMP, Bone morphogenetic protein
- CAF, Cancer-associated fibroblast
- CD44 variant
- CD44v, CD44 variant
- CSC, Cancer stem cell
- CTC, Circulating tumor cell
- CagA, Cytotoxin-associated gene A
- Cancer stem cell
- DTC, Disseminated tumor cell
- E/M, Epithelial/mesenchymal
- ECM, Extracellular matrix
- EGF, Epidermal growth factor
- EMT, Epithelial-to-mesenchymal transition
- EpCAM, Epithelial cell adhesion moleculeE
- Epithelial-to-mesenchymal transition (EMT)
- GSC, Glioma stem cell
- GSH, reduced glutathione
- HGF, Hepatocyte growth factor
- HNSCC, Head and neck squamous cell cancer
- IL, Interleukin
- Intratumoral heterogeneity
- MAPK, mitogen-activated protein kinase
- MET, mesenchymal-to-epithelial transition
- NSCLC, non–small cell lung cancer
- Niche
- Nrf2, nuclear factor erythroid 2–related factor 2
- OXPHOS, Oxidative phosphorylation
- Plasticity
- Prrx1, Paired-related homeodomain transcription factor 1
- ROS, Reactive oxygen species
- SRP1, Epithelial splicing regulatory protein 1
- TGF-β, Transforming growth factor–β
Collapse
Affiliation(s)
- Go J Yoshida
- Division of Gene Regulation, Institute for Advanced Medical Research (IAMR), Keio University School of Medicine, Tokyo, Japan
| | - Hideyuki Saya
- Division of Gene Regulation, Institute for Advanced Medical Research (IAMR), Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
27
|
Mechanical stimulation induced osteogenic differentiation of BMSCs through TWIST/E2A/p21 axis. Biosci Rep 2021; 40:222707. [PMID: 32309849 PMCID: PMC7199451 DOI: 10.1042/bsr20193876] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 04/02/2020] [Accepted: 04/16/2020] [Indexed: 12/11/2022] Open
Abstract
The relationship between mechanical force and alveolar bone remodeling is an important issue in orthodontics because tooth movement is dependent on the response of bone tissue to the mechanical force induced by the appliances used. Mechanical cyclical stretch plays an essential role in the cell osteogenic differentiation involved in bone remodeling. However, the underlying mechanisms are unclear, particularly the molecular pathways regulated by mechanical stimulation. In the present study, we reported a dynamic change of p21 level in response to mechanical cyclical stretch, and shRNA-p21 in bone marrow mesenchymal stem cells (BMSCs) induced osteogenic differentiation. The mechanism was mediated through TWIST/E2A/p21 axis. These results supported the mechanical stimulation-induced osteogenic differentiation is negatively regulated by p21.
Collapse
|
28
|
Graney PL, Tavakol DN, Chramiec A, Ronaldson-Bouchard K, Vunjak-Novakovic G. Engineered models of tumor metastasis with immune cell contributions. iScience 2021; 24:102179. [PMID: 33718831 PMCID: PMC7921600 DOI: 10.1016/j.isci.2021.102179] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Most cancer deaths are due to tumor metastasis rather than the primary tumor. Metastasis is a highly complex and dynamic process that requires orchestration of signaling between the tumor, its local environment, distant tissue sites, and immune system. Animal models of cancer metastasis provide the necessary systemic environment but lack control over factors that regulate cancer progression and often do not recapitulate the properties of human cancers. Bioengineered "organs-on-a-chip" that incorporate the primary tumor, metastatic tissue targets, and microfluidic perfusion are now emerging as quantitative human models of tumor metastasis. The ability of these systems to model tumor metastasis in individualized, patient-specific settings makes them uniquely suitable for studies of cancer biology and developmental testing of new treatments. In this review, we focus on human multi-organ platforms that incorporate circulating and tissue-resident immune cells in studies of tumor metastasis.
Collapse
|
29
|
Muscarella AM, Aguirre S, Hao X, Waldvogel SM, Zhang XHF. Exploiting bone niches: progression of disseminated tumor cells to metastasis. J Clin Invest 2021; 131:143764. [PMID: 33720051 PMCID: PMC7954594 DOI: 10.1172/jci143764] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Many solid cancers metastasize to the bone and bone marrow (BM). This process may occur even before the diagnosis of primary tumors, as evidenced by the discovery of disseminated tumor cells (DTCs) in patients without occult malignancies. The cellular fates and metastatic progression of DTCs are determined by complicated interactions between cancer cells and BM niches. Not surprisingly, these niches also play important roles in normal biology, including homeostasis and turnover of skeletal and hematopoiesis systems. In this Review, we summarize recent findings on functions of BM niches in bone metastasis (BoMet), particularly during the early stage of colonization. In light of the rich knowledge of hematopoiesis and osteogenesis, we highlight how DTCs may progress into overt BoMet by taking advantage of niche cells and their activities in tissue turnover, especially those related to immunomodulation and bone repair.
Collapse
Affiliation(s)
- Aaron M. Muscarella
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas, USA
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
- Graduate Program in Integrative Molecular and Biomedical Sciences, Baylor College of Medicine, Houston, Texas, USA
| | - Sergio Aguirre
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas, USA
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
- Graduate Program in Integrative Molecular and Biomedical Sciences, Baylor College of Medicine, Houston, Texas, USA
| | - Xiaoxin Hao
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas, USA
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Sarah M. Waldvogel
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas, USA
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
- Medical Scientist Training Program, Baylor College of Medicine, Houston, Texas, USA
| | - Xiang H.-F. Zhang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas, USA
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
- McNair Medical Institute, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
30
|
Luan N, Mu Y, Mu J, Chen Y, Ye X, Zhou Q, Xu M, Deng Q, Hu Y, Tang Z, Wang J. Dicer1 Promotes Colon Cancer Cell Invasion and Migration Through Modulation of tRF-20-MEJB5Y13 Expression Under Hypoxia. Front Genet 2021; 12:638244. [PMID: 33763118 PMCID: PMC7982525 DOI: 10.3389/fgene.2021.638244] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 02/15/2021] [Indexed: 01/01/2023] Open
Abstract
Hypoxia plays a key role in colorectal cancer (CRC) metastasis, but its underlying mechanism remains largely unknown. Dicer1, an RNase, has been considered as a tumor regulator in many tumors. However, whether Dicer1 affects CRC progression under hypoxia remains uncertain. In this study, we found that Dicer1 expression was induced by hypoxia in CRC cells and it mediates hypoxia-induced CRC cell progression. Furthermore, we found that the expression of tRF-20-MEJB5Y13, a small non-coding RNA derived from tRNA, was increased under hypoxic conditions, and its upregulation by Dicer1 resulted in hypoxia-induced CRC cell invasion and migration. These results advance the current understanding of the role of Dicer1 in regulating hypoxia signals and provide a new pathway for the development of therapeutic interventions for inhibiting cancer progression.
Collapse
Affiliation(s)
- Na Luan
- Department of Colorectal Surgery, 4th Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Department of Colorectal Surgery and Oncology, 2nd Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yali Mu
- Department of Colorectal Surgery, 4th Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Department of Colorectal Surgery and Oncology, 2nd Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiayi Mu
- Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Department of Colorectal Surgery and Oncology, 2nd Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yiquan Chen
- Department of Colorectal Surgery, 4th Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Department of Colorectal Surgery and Oncology, 2nd Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xun Ye
- Department of Colorectal Surgery, 4th Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Department of Colorectal Surgery and Oncology, 2nd Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qin Zhou
- Department of Colorectal Surgery, 4th Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Department of Colorectal Surgery and Oncology, 2nd Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Miaorong Xu
- Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Department of Colorectal Surgery and Oncology, 2nd Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qun Deng
- Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Department of Colorectal Surgery and Oncology, 2nd Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yeting Hu
- Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Department of Colorectal Surgery and Oncology, 2nd Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhe Tang
- Department of Surgery, 4th Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Department of Surgery, 2nd Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jianwei Wang
- Department of Colorectal Surgery, 4th Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Department of Colorectal Surgery and Oncology, 2nd Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
31
|
Soni S, Torvund M, Mandal CC. Molecular insights into the interplay between adiposity, breast cancer and bone metastasis. Clin Exp Metastasis 2021; 38:119-138. [PMID: 33591548 DOI: 10.1007/s10585-021-10076-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Accepted: 02/03/2021] [Indexed: 01/20/2023]
Abstract
Cancer is a complex disease, with various pre-existing health ailments enhancing its pathology. In cancer, the extracellular environment contains various intrinsic physiological factors whose levels are altered with aging and pre-existing conditions. In obesity, the tumor microenvironment and metastases are enriched with factors that are both derived locally, and from other physiological compartments. Similarly, in obesity, the cancer cell environment both at the site of origin and at the secondary site i.e., metastatic niche, contains significantly more phenotypically-altered adipocytes than that of un-obese cancer patients. Indeed, obesity has been linked with cancer progression, metastasis, and therapy resistance. Adipocytes not only interact with tumor cells, but also with adjacent stromal cells at primary and metastatic sites. This review emphasizes the importance of bidirectional interactions between adipocytes and breast tumor cells in breast cancer progression and its bone metastases. This paper not only chronicles the role of various adipocyte-derived factors in tumor growth, but also describes the significance of adipocyte-derived bone metastatic factors in the development of bone metastasis of breast cancer. It provides a molecular view of the interplay between the adipocytes and tumor cells involved in breast cancer bone metastasis. However, more research is needed to determine if targeting cancer-associated adipocytes holds promise as a potential therapeutic approach for breast cancer bone metastasis treatment. Interplay between adipocytes and breast cancer cells at primary cancer site and metastatic bone microenvironment. AMSC Adipose-derived mesenchymal stem cell, CAA Cancer associated adipocytes, CAF Cancer associated fibroblast, BMSC Bone marrow derived mesenchymal stem cell, BMA Bone marrow adipocyte.
Collapse
Affiliation(s)
- Sneha Soni
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, NH-8, Bandarsindri, Kishangarh, Ajmer, Rajasthan, 305817, India
| | - Meaghan Torvund
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, USA
| | - Chandi C Mandal
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, NH-8, Bandarsindri, Kishangarh, Ajmer, Rajasthan, 305817, India.
| |
Collapse
|
32
|
Guo L, Li H, Li W, Tang J. Construction and investigation of a combined hypoxia and stemness index lncRNA-associated ceRNA regulatory network in lung adenocarcinoma. BMC Med Genomics 2020; 13:166. [PMID: 33148251 PMCID: PMC7643392 DOI: 10.1186/s12920-020-00816-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 10/25/2020] [Indexed: 02/08/2023] Open
Abstract
Hypoxia and stemness are important factors in tumor progression. We aimed to explore the ncRNA classifier associated with hypoxia and stemness in lung adenocarcinoma (LUAD). We found that the prognosis of LUAD patients with high hypoxia and stemness index was worse than that of patients with low hypoxia and stemness index. RNA expression profiles of these two clusters were analyzed, and 6867 differentially expressed (DE) mRNAs were screened. Functional analysis showed that DE mRNAs were associated with cell cycle and DNA replication.
Protein–protein interaction network analysis revealed 20 hub genes, among which CENPF, BUB1, BUB1B, KIF23 and TTK had significant influence on prognosis. In addition, 807 DE lncRNAs and 243 DE miRNAs were identified. CeRNA network analysis indicated that AC079160.1-miR-539-5p-CENPF may be an important regulatory axis that potentially regulates the progression of LUAD. The expression of AC079160.1 and CENPF were positively correlated with hypoxia and stemness index, while miR-539-5p expression level was negatively correlated with hypoxia and stemness index. Overall, we identified CENPF, BUB1, BUB1B, KIF23 and TTK as potentially key genes involved in regulating hypoxia-induced tumor cell stemness, and found that AC079160.1-miR-539-5p-CENPF axis may be involved in regulating hypoxia induced tumor cell stemness in LUAD.
Collapse
Affiliation(s)
- Lili Guo
- Department of Medical Oncology, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, No. 1 Beiguandajie, Tongzhou District, Beijing, 101149, China
| | - Hongxia Li
- Department of Medical Oncology, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, No. 1 Beiguandajie, Tongzhou District, Beijing, 101149, China
| | - Weiying Li
- Department of Cellular and Molecular Biology, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing, 101149, China
| | - Junfang Tang
- Department of Medical Oncology, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, No. 1 Beiguandajie, Tongzhou District, Beijing, 101149, China.
| |
Collapse
|
33
|
Dysimmunity and inflammatory storm: Watch out for bone lesions in COVID-19 infection. Med Hypotheses 2020; 145:110332. [PMID: 33039950 PMCID: PMC7536122 DOI: 10.1016/j.mehy.2020.110332] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 09/29/2020] [Accepted: 10/01/2020] [Indexed: 12/12/2022]
Abstract
At the end of 2019, a new kind of pneumonia which was proven to be supported by novel coronaviruses named SARS-CoV-2 emerges and it seems to be more complicate in its clinical course and management. Related researches have demonstrated that SARS-CoV-2 serves roles in respiratory, intestinal and neuronal diseases. Given the growing cases of COVID-19, analyzing the relevance between COVID-19 and fragile patients who suffer from bone destruction is entirely indispensable. Accordingly, the recapitulatory commentary is necessary to advance our knowledge on COVID-19 and orthopedics. In this article, we particularly clarify the possible relationship between the newly COVID-19 infection and bone lesions from the standpoints of dysimmunity and inflammatory storm.
Collapse
|
34
|
Liu C, Zhao Q, Yu X. Bone Marrow Adipocytes, Adipocytokines, and Breast Cancer Cells: Novel Implications in Bone Metastasis of Breast Cancer. Front Oncol 2020; 10:561595. [PMID: 33123472 PMCID: PMC7566900 DOI: 10.3389/fonc.2020.561595] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 08/27/2020] [Indexed: 02/05/2023] Open
Abstract
Accumulating discoveries highlight the importance of interaction between marrow stromal cells and cancer cells for bone metastasis. Bone is the most common metastatic site of breast cancer and bone marrow adipocytes (BMAs) are the most abundant component of the bone marrow microenvironment. BMAs are unique in their origin and location, and recently they are found to serve as an endocrine organ that secretes adipokines, cytokines, chemokines, and growth factors. It is reasonable to speculate that BMAs contribute to the modification of bone metastatic microenvironment and affecting metastatic breast cancer cells in the bone marrow. Indeed, BMAs may participate in bone metastasis of breast cancer through regulation of recruitment, invasion, survival, colonization, proliferation, angiogenesis, and immune modulation by their production of various adipocytokines. In this review, we provide an overview of research progress, focusing on adipocytokines secreted by BMAs and their potential roles for bone metastasis of breast cancer, and investigating the mechanisms mediating the interaction between BMAs and metastatic breast cancer cells. Based on current findings, BMAs may function as a pivotal modulator of bone metastasis of breast cancer, therefore targeting BMAs combined with conventional treatment programs might present a promising therapeutic option.
Collapse
Affiliation(s)
- Chang Liu
- Department of Endocrinology and Metabolism, Laboratory of Endocrinology and Metabolism, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Qian Zhao
- Department of Endocrinology and Metabolism, Laboratory of Endocrinology and Metabolism, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China.,Department of General Practice, West China Hospital, Sichuan University, Chengdu, China
| | - Xijie Yu
- Department of Endocrinology and Metabolism, Laboratory of Endocrinology and Metabolism, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
35
|
Gola C, Iussich S, Noury S, Martano M, Gattino F, Morello E, Martignani E, Maniscalco L, Accornero P, Buracco P, Aresu L, De Maria R. Clinical significance and in vitro cellular regulation of hypoxia mimicry on HIF-1α and downstream genes in canine appendicular osteosarcoma. Vet J 2020; 264:105538. [PMID: 33012439 DOI: 10.1016/j.tvjl.2020.105538] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 09/02/2020] [Accepted: 09/02/2020] [Indexed: 12/11/2022]
Abstract
Cellular adaptation to a hypoxic microenvironment is essential for tumour progression and is largely mediated by HIF-1α and hypoxia-regulated factors, including CXCR4, VEGF-A and GLUT-1. In human osteosarcoma, hypoxia is associated with resistance to chemotherapy as well as with metastasis and poor survival, whereas little is known about its role in canine osteosarcoma (cOSA). This study aimed primarily to evaluate the prognostic value of several known hypoxic markers in cOSA. Immunohistochemical analysis for HIF-1α, CXCR4, VEGF-A and GLUT-1 was performed on 56 appendicular OSA samples; correlations with clinicopathological features and outcome was investigated. The second aim was to investigate the in vitro regulation of markers under chemically induced hypoxia (CoCl2). Two primary canine osteosarcoma cell lines were selected, and Western blotting, immunofluorescence and qRT-PCR were used to study protein and gene expression. Dogs with high-grade OSA (35.7%) were more susceptible to the development of metastases (P = 0.047) and showed high HIF-1α protein expression (P = 0.007). Moreover, HIF-1α overexpression (56%) was correlated with a shorter disease-free interval (DFI; P = 0.01), indicating that it is a reliable negative prognostic marker. The in vitro experiments identified an accumulation of HIF-1α in cOSA cells after chemically induced hypoxia, leading to a significant increase in GLUT-1 transcript (P = 0.02). HIF-1α might be a promising prognostic marker, highlighting opportunities for the use of therapeutic strategies targeting the hypoxic microenvironment in cOSA. These results reinforce the role of the dog as a comparative animal model since similar hypoxic mechanisms are reported in human osteosarcoma.
Collapse
Affiliation(s)
- C Gola
- Department of Veterinary Science, University of Turin, Grugliasco (TO), Italy
| | - S Iussich
- Department of Veterinary Science, University of Turin, Grugliasco (TO), Italy
| | - S Noury
- Hassan II Institute of Agronomy and Veterinary Medicine, Rabat, Morocco
| | - M Martano
- Department of Veterinary Science, University of Parma, Parma (PR)
| | - F Gattino
- Department of Veterinary Science, University of Turin, Grugliasco (TO), Italy
| | - E Morello
- Department of Veterinary Science, University of Turin, Grugliasco (TO), Italy
| | - E Martignani
- Department of Veterinary Science, University of Turin, Grugliasco (TO), Italy
| | - L Maniscalco
- Department of Veterinary Science, University of Turin, Grugliasco (TO), Italy
| | - P Accornero
- Department of Veterinary Science, University of Turin, Grugliasco (TO), Italy
| | - P Buracco
- Department of Veterinary Science, University of Turin, Grugliasco (TO), Italy
| | - L Aresu
- Department of Veterinary Science, University of Turin, Grugliasco (TO), Italy
| | - R De Maria
- Department of Veterinary Science, University of Turin, Grugliasco (TO), Italy.
| |
Collapse
|
36
|
Du X, Todorov P, Isachenko E, Rahimi G, Mallmann P, Meng Y, Isachenko V. Increasing of malignancy of breast cancer cells after cryopreservation: molecular detection and activation of angiogenesis after CAM-xenotransplantation. BMC Cancer 2020; 20:753. [PMID: 32787800 PMCID: PMC7425039 DOI: 10.1186/s12885-020-07227-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 07/28/2020] [Indexed: 02/06/2023] Open
Abstract
Background Ovarian tissue cryopreservation has a wide range of cancerous indications. Avoiding relapse becomes a specific concern that clinicians frequently encounter. The data about the comparative viability of cancer cells after cryopreservation are limited. This study aimed to evaluate the effect of cryopreservation on breast cancer cells. Methods We used in-vitro cultured ZR-75-1 and MDA-MB-231 cell lines. Cell samples of each lineage were distributed into the non-intervened and cryopreserved groups. The cryopreservation procedures comprised programmed slow freezing followed by thawing at 100 °C, 60 s. Biological phenotypes and the related protein markers were compared between the two groups. The EVOS FL Auto 2 Cell Image System was used to monitor cell morphology. Cell proliferation, motility, and penetration were characterized by CCK-8, wound-healing, and transmembrane assay, respectively. The expression of Ki-67, P53, GATA3, E-cadherin, Vimentin, and F-Actin was captured by immunofluorescent staining and western blotting as the proxy measurements of the related properties. The chorioallantoic membrane (CAM) xenotransplantation was conducted to explore angiogenesis induced by cancer cells. Results After 5 days in vitro culture, the cell concentration of cryopreserved and non-intervened groups was 15.7 × 104 vs. 14.4 × 104cells/ml, (ZR-75-1, p > 0.05), and 25.1 × 104 vs. 26.6 × 104 cells/ml (MDA-MB-231, p > 0.05). Some cryopreserved ZR-75-1 cells presented spindle shape with filopodia and lamellipodia and dissociated from the cell cluster after cryopreservation. Both cell lines demonstrated increased cell migrating capability and invasion after cryopreservation. The expression of Ki-67 and P53 did not differ between the cryopreserved and non-intervened groups. E-cadherin and GATA3 expression downregulated in the cryopreserved ZR-75-1 cells. Vimentin and F-actin exhibited an upregulated level in cryopreserved ZR-75-1 and MDA-MB-231 cells. The cryopreserved MDA-MB-231 cells induced significant angiogenesis around the grafts on CAM with the vascular density 0.313 ± 0.03 and 0.342 ± 0.04, compared with that of non-intervened cells of 0.238 ± 0.05 and 0.244 ± 0.03, p < 0.0001. Conclusions Cryopreservation promotes breast cancer cells in terms of epithelial-mesenchymal transition and angiogenesis induction, thus increasing metastasis risk.
Collapse
Affiliation(s)
- Xinxin Du
- Research Group for Reproductive Medicine, IVF-Laboratory and Department of Gynecology, University of Cologne, Kerpener str. 34, 50931, Cologne, NRW, Germany.,Department of Obstetrics and Gynecology, PLA General Hospital, Beijing, China
| | - Plamen Todorov
- Institute of Biology and Immunology of Reproduction, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Evgenia Isachenko
- Research Group for Reproductive Medicine, IVF-Laboratory and Department of Gynecology, University of Cologne, Kerpener str. 34, 50931, Cologne, NRW, Germany
| | - Gohar Rahimi
- Research Group for Reproductive Medicine, IVF-Laboratory and Department of Gynecology, University of Cologne, Kerpener str. 34, 50931, Cologne, NRW, Germany
| | - Peter Mallmann
- Research Group for Reproductive Medicine, IVF-Laboratory and Department of Gynecology, University of Cologne, Kerpener str. 34, 50931, Cologne, NRW, Germany
| | - Yuanguang Meng
- Department of Obstetrics and Gynecology, PLA General Hospital, Beijing, China
| | - Vladimir Isachenko
- Research Group for Reproductive Medicine, IVF-Laboratory and Department of Gynecology, University of Cologne, Kerpener str. 34, 50931, Cologne, NRW, Germany.
| |
Collapse
|
37
|
Zeng Y, Zhou M, Chen L, Fang H, Liu S, Zhou C, Sun J, Wang Z. Alendronate loaded graphene oxide functionalized collagen sponge for the dual effects of osteogenesis and anti-osteoclastogenesis in osteoporotic rats. Bioact Mater 2020; 5:859-870. [PMID: 32637749 PMCID: PMC7327758 DOI: 10.1016/j.bioactmat.2020.06.010] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 06/07/2020] [Accepted: 06/14/2020] [Indexed: 12/16/2022] Open
Abstract
Graphene Oxide (GO)-related hydrogels have been extensively studied in hard tissue repair, because GO can not only enhance the mechanical properties of polymers but also promote osteogenic differentiation of mesenchymal stem cells. However, simple GO-related hydrogels are not ideal for the repair of osteoporotic bone defects as the overactive osteoclasts in osteoporosis. Alendronate (Aln) is known to inhibit osteoclasts and may bind to GO through covalent connection. Therefore, delivering Aln in GO-related hydrogels may be effective to repair osteoporotic bone defects. Here, we developed a control-released system which is constructed by collagen (Col)-GO sponges loaded with Aln (Col-GO-Aln) for osteoporotic bone defect repair. In vitro, Col-GO-Aln sponges prolonged the release period of Aln, and the sponge containing 0.05% (w/v) GO released Aln faster than sponge with 0.2% GO. Furthermore, tartrate-resistant acid phosphatase (TRAP) and F-actin staining demonstrated that Col-GO-Aln sponges effectively inhibited osteoclastogenesis of monocyte-macrophages. In vivo, micro-CT scan showed that the volume of newborn bone in defect site by 0.05% GO sponge was nearly three times larger than that of other groups. Moreover, the CT and histological examinations of rat femur proved that Col-GO-Aln sponges decreased the number of osteoclasts and suppressed the systemic bone loss in osteoporotic rats. These findings reveal that the application of GO as carriers of anti-osteoporosis drugs is a viable treatment for osteoporosis. The results also underscore the potential of GO-related hydrogels with Aln-releasing capacity for bone regeneration in osteoporosis. Alendronate-loading graphene oxide modified collagen sponge (Col-GO-Aln) exhibit a sustained drug delivery. Col-GO-Aln sponge showed active anti-osteoclastogenesis and osteogenesis ability in vitro and in situ repair. Col-GO-Aln sponge achieved a potential systemic resistance to bone loss in osteoporotic rats.
Collapse
Affiliation(s)
- Yuyang Zeng
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Wuhan Clinical Research Center for Superficial Organ Reconstruction, Wuhan, 430022, China
| | - Muran Zhou
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Wuhan Clinical Research Center for Superficial Organ Reconstruction, Wuhan, 430022, China
| | - Lifeng Chen
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Wuhan Clinical Research Center for Superficial Organ Reconstruction, Wuhan, 430022, China
| | - Huimin Fang
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Wuhan Clinical Research Center for Superficial Organ Reconstruction, Wuhan, 430022, China
| | - Shaokai Liu
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Wuhan Clinical Research Center for Superficial Organ Reconstruction, Wuhan, 430022, China
| | - Chuchao Zhou
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Wuhan Clinical Research Center for Superficial Organ Reconstruction, Wuhan, 430022, China
| | - Jiaming Sun
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Wuhan Clinical Research Center for Superficial Organ Reconstruction, Wuhan, 430022, China
| | - Zhenxing Wang
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Wuhan Clinical Research Center for Superficial Organ Reconstruction, Wuhan, 430022, China
| |
Collapse
|
38
|
Nollet EA, Cardo-Vila M, Ganguly SS, Tran JD, Schulz VV, Cress A, Corey E, Miranti CK. Androgen receptor-induced integrin α6β1 and Bnip3 promote survival and resistance to PI3K inhibitors in castration-resistant prostate cancer. Oncogene 2020; 39:5390-5404. [PMID: 32565538 PMCID: PMC7395876 DOI: 10.1038/s41388-020-1370-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 06/09/2020] [Accepted: 06/11/2020] [Indexed: 11/09/2022]
Abstract
The androgen receptor (AR) is the major driver of prostate cancer growth and survival. However, almost all patients relapse with castration resistant disease (CRPC) when treated with anti-androgen therapy. In CRPC, AR is often aberrantly activated independent of androgen. Targeting survival pathways downstream of AR could be a viable strategy to overcome CRPC. Surprisingly, little is known about how AR drives prostate cancer survival. Furthermore, CRPC tumors in which Pten is lost are also resistant to eradication by PI3K inhibitors. We sought to identify the mechanism by which AR drives tumor survival in CRPC to identify ways to overcome resistance to PI3K inhibition. We found that integrin α6β1 and Bnip3 are selectively elevated in CRPC downstream of AR. While integrin α6 promotes survival and is a direct transcriptional target of AR, the ability of AR to induce Bnip3 is dependent on adhesion to laminin and integrin α6β1-dependent nuclear translocation of HIF1α. Integrin α6β1 and Bnip3 were found to promote survival of CRPC cells selectively on laminin through the induction of autophagy and mitophagy. Furthermore, blocking Bnip3 or integrin α6β1 restored sensitivity to PI3K inhibitors in Pten-negative CRPC. We identified an AR driven pathway that cooperates with laminin and hypoxia to drive resistance to PI3K inhibitors. These findings can help explain in part why PI3K inhibitors have failed in clinical trials to overcome AR-dependent CRPC.
Collapse
Affiliation(s)
| | - Marina Cardo-Vila
- Department of Cellular and Molecular Medicine and Prostate Cancer Research Program at University of Arizona Cancer Center, Tucson, AZ, USA
| | - Sourik S Ganguly
- Department of Cellular and Molecular Medicine and Prostate Cancer Research Program at University of Arizona Cancer Center, Tucson, AZ, USA
| | - Jack D Tran
- Department of Cellular and Molecular Medicine and Prostate Cancer Research Program at University of Arizona Cancer Center, Tucson, AZ, USA
| | | | - Anne Cress
- Department of Cellular and Molecular Medicine and Prostate Cancer Research Program at University of Arizona Cancer Center, Tucson, AZ, USA
| | - Eva Corey
- Department of Urology, University of Washington, Seattle, WA, USA
| | - Cindy K Miranti
- Van Andel Research Institute, Grand Rapids, MI, USA. .,Department of Cellular and Molecular Medicine and Prostate Cancer Research Program at University of Arizona Cancer Center, Tucson, AZ, USA.
| |
Collapse
|
39
|
Kähkönen TE, Halleen JM, Bernoulli J. Immunotherapies and Metastatic Cancers: Understanding Utility and Predictivity of Human Immune Cell Engrafted Mice in Preclinical Drug Development. Cancers (Basel) 2020; 12:cancers12061615. [PMID: 32570871 PMCID: PMC7352707 DOI: 10.3390/cancers12061615] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/12/2020] [Accepted: 06/17/2020] [Indexed: 12/14/2022] Open
Abstract
Metastases cause high mortality in several cancers and immunotherapies are expected to be effective in the prevention and treatment of metastatic disease. However, only a minority of patients benefit from immunotherapies. This creates a need for novel therapies that are efficacious regardless of the cancer types and metastatic environments they are growing in. Preclinical immuno-oncology models for studying metastases have long been limited to syngeneic or carcinogenesis-inducible models that have murine cancer and immune cells. However, the translational power of these models has been questioned. Interactions between tumor and immune cells are often species-specific and regulated by different cytokines in mice and humans. For increased translational power, mice engrafted with functional parts of human immune system have been developed. These humanized mice are utilized to advance understanding the role of immune cells in the metastatic process, but increasingly also to study the efficacy and safety of novel immunotherapies. From these aspects, this review will discuss the role of immune cells in the metastatic process and the utility of humanized mouse models in immuno-oncology research for metastatic cancers, covering several models from the perspective of efficacy and safety of immunotherapies.
Collapse
Affiliation(s)
- Tiina E. Kähkönen
- OncoBone Ltd., Kalimenojankuja 3 C 4, FI-90810 Kiviniemi, Finland;
- Correspondence:
| | - Jussi M. Halleen
- OncoBone Ltd., Kalimenojankuja 3 C 4, FI-90810 Kiviniemi, Finland;
| | - Jenni Bernoulli
- Institute of Biomedicine, University of Turku, Kiinamyllynkatu 10, FI-20520 Turku, Finland;
| |
Collapse
|
40
|
Ohshima H, Amizuka N. Oral biosciences: The annual review 2019. J Oral Biosci 2020; 62:1-8. [PMID: 32109566 DOI: 10.1016/j.job.2020.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 02/10/2020] [Accepted: 02/10/2020] [Indexed: 10/24/2022]
Abstract
BACKGROUND Journal of Oral Biosciences is devoted to the advancement and dissemination of fundamental knowledge concerning every aspect of oral biosciences. HIGHLIGHT This review features review articles in the fields of "Bone Cell Biology," "Microbiology," "Oral Heath," "Biocompatible Materials," "Mouth Neoplasm," and "Biological Evolution" in addition to the review articles by winners of the Lion Dental Research Award ("Role of nicotinic acetylcholine receptors for modulation of microcircuits in the agranular insular cortex" and "Phospholipase C-related catalytically inactive protein: A novel signaling molecule for modulating fat metabolism and energy expenditure") and the Rising Members Award ("Pain mechanism of oral ulcerative mucositis and the therapeutic traditional herbal medicine hangeshashinto," "Mechanisms underlying the induction of regulatory T cells by sublingual immunotherapy," and "Regulation of osteoclast function via Rho-Pkn3-c-Src pathways"), presented by the Japanese Association for Oral Biology. CONCLUSION These reviews in the Journal of Oral Biosciences have inspired the readers of the journal to broaden their knowledge regarding various aspects of oral biosciences. The current editorial review introduces these exciting review articles.
Collapse
Affiliation(s)
- Hayato Ohshima
- Division of Anatomy and Cell Biology of the Hard Tissue, Department of Tissue Regeneration and Reconstruction, Niigata University Graduate School of Medical and Dental Science, 2-5274 Gakkocho-dori, Chuo-ku, Niigata 951-8514, Japan.
| | - Norio Amizuka
- Department of Developmental Biology of Hard Tissue, Graduate School of Dental Medicine, Faculty of Dental Medicine, Hokkaido University, Kita 13 Nishi 7 Kita-ku, Sapporo 060-8586, Japan
| |
Collapse
|
41
|
Fu Y, Wang D, Wang H, Cai M, Li C, Zhang X, Chen H, Hu Y, Zhang X, Ying M, He W, Zhang J. TSPO deficiency induces mitochondrial dysfunction, leading to hypoxia, angiogenesis, and a growth-promoting metabolic shift toward glycolysis in glioblastoma. Neuro Oncol 2020; 22:240-252. [PMID: 31563962 PMCID: PMC7442372 DOI: 10.1093/neuonc/noz183] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND The ligands of mitochondrial translocator protein (TSPO) have been widely used as diagnostic biomarkers for glioma. However, the true biological actions of TSPO in vivo and its role in glioma tumorigenesis remain elusive. METHODS TSPO knockout xenograft and spontaneous mouse glioma models were employed to assess the roles of TSPO in the pathogenesis of glioma. A Seahorse Extracellular Flux Analyzer was used to evaluate mitochondrial oxidative phosphorylation and glycolysis in TSPO knockout and wild-type glioma cells. RESULTS TSPO deficiency promoted glioma cell proliferation in vitro in mouse GL261 cells and patient-derived stem cell-like GBM1B cells. TSPO knockout increased glioma growth and angiogenesis in intracranial xenografts and a mouse spontaneous glioma model. Loss of TSPO resulted in a greater number of fragmented mitochondria, increased glucose uptake and lactic acid conversion, decreased oxidative phosphorylation, and increased glycolysis. CONCLUSION TSPO serves as a key regulator of glioma growth and malignancy by controlling the metabolic balance between mitochondrial oxidative phosphorylation and glycolysis.1. TSPO deficiency promotes glioma growth and angiogenesis.2. TSPO regulates the balance between mitochondrial oxidative phosphorylation and glycolysis.
Collapse
Affiliation(s)
- Yi Fu
- Department of Immunology, Research Center on Pediatric Development and Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, State Key Laboratory of Medical Molecular Biology, Beijing, China
| | - Dongdong Wang
- Department of Immunology, Research Center on Pediatric Development and Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, State Key Laboratory of Medical Molecular Biology, Beijing, China
| | - Huaishan Wang
- Department of Immunology, Research Center on Pediatric Development and Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, State Key Laboratory of Medical Molecular Biology, Beijing, China
| | - Menghua Cai
- Department of Immunology, Research Center on Pediatric Development and Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, State Key Laboratory of Medical Molecular Biology, Beijing, China
| | - Chao Li
- Department of Immunology, Research Center on Pediatric Development and Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, State Key Laboratory of Medical Molecular Biology, Beijing, China
| | - Xue Zhang
- Department of Immunology, Research Center on Pediatric Development and Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, State Key Laboratory of Medical Molecular Biology, Beijing, China
| | - Hui Chen
- Department of Immunology, Research Center on Pediatric Development and Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, State Key Laboratory of Medical Molecular Biology, Beijing, China
| | - Yu Hu
- Department of Immunology, Research Center on Pediatric Development and Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, State Key Laboratory of Medical Molecular Biology, Beijing, China
| | - Xuan Zhang
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Mingyao Ying
- Hugo W. Moser Research Institute at Kennedy Krieger, and Department of Neurology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Wei He
- Department of Immunology, Research Center on Pediatric Development and Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, State Key Laboratory of Medical Molecular Biology, Beijing, China
| | - Jianmin Zhang
- Department of Immunology, Research Center on Pediatric Development and Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, State Key Laboratory of Medical Molecular Biology, Beijing, China
| |
Collapse
|
42
|
Williams ED, Gao D, Redfern A, Thompson EW. Controversies around epithelial-mesenchymal plasticity in cancer metastasis. Nat Rev Cancer 2019; 19:716-732. [PMID: 31666716 PMCID: PMC7055151 DOI: 10.1038/s41568-019-0213-x] [Citation(s) in RCA: 282] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/18/2019] [Indexed: 02/07/2023]
Abstract
Experimental evidence accumulated over decades has implicated epithelial-mesenchymal plasticity (EMP), which collectively encompasses epithelial-mesenchymal transition and the reverse process of mesenchymal-epithelial transition, in tumour metastasis, cancer stem cell generation and maintenance, and therapeutic resistance. However, the dynamic nature of EMP processes, the apparent need to reverse mesenchymal changes for the development of macrometastases and the likelihood that only minor cancer cell subpopulations exhibit EMP at any one time have made such evidence difficult to accrue in the clinical setting. In this Perspectives article, we outline the existing preclinical and clinical evidence for EMP and reflect on recent controversies, including the failure of initial lineage-tracing experiments to confirm a major role for EMP in dissemination, and discuss accumulating data suggesting that epithelial features and/or a hybrid epithelial-mesenchymal phenotype are important in metastasis. We also highlight strategies to address the complexities of therapeutically targeting the EMP process that give consideration to its spatially and temporally divergent roles in metastasis, with the view that this will yield a potent and broad class of therapeutic agents.
Collapse
Affiliation(s)
- Elizabeth D Williams
- Institute of Health and Biomedical Innovation and School of Biomedical Sciences, Queensland University of Technology (QUT), Brisbane, Queensland, Australia
- Translational Research Institute (TRI), Brisbane, Queensland, Australia
- Australian Prostate Cancer Research Centre - Queensland (APCRC-Q) and Queensland Bladder Cancer Initiative (QBCI), Brisbane, Queensland, Australia
| | - Dingcheng Gao
- Department of Cardiothoracic Surgery, Department of Cell and Developmental Biology and Neuberger Berman Lung Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Andrew Redfern
- Department of Medicine, School of Medicine, University of Western Australia, Fiona Stanley Hospital Campus, Perth, Western Australia, Australia
| | - Erik W Thompson
- Institute of Health and Biomedical Innovation and School of Biomedical Sciences, Queensland University of Technology (QUT), Brisbane, Queensland, Australia.
- Translational Research Institute (TRI), Brisbane, Queensland, Australia.
| |
Collapse
|
43
|
Ma Y, Wu Y, Xia Z, Li J, Li X, Xu P, Zhou X, Xue M. Anti-Hypoxic Molecular Mechanisms of Rhodiola crenulata Extract in Zebrafish as Revealed by Metabonomics. Front Pharmacol 2019; 10:1356. [PMID: 31780949 PMCID: PMC6861209 DOI: 10.3389/fphar.2019.01356] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 10/25/2019] [Indexed: 12/19/2022] Open
Abstract
The health supplement of Rhodiola crenulata (RC) is well known for its effective properties against hypoxia. However, the mechanisms of its anti-hypoxic action were still unclear. The objective of this work was to evaluate the molecular mechanisms of RC extract against hypoxia in a hypoxic zebrafish model through metabonomics and network pharmacology analysis. The hypoxic zebrafish model in the environment with low concentration (3%) of oxygen was constructed and used to explore the anti-hypoxic effects of RC extract, followed by detecting the changes of the metabolome in the brain through liquid chromatography-high resolution mass spectrometry. An in silico network for metabolite-protein interactions was further established to examine the potential mechanisms of RC extract, and the mRNA expression levels of the key nodes were validated by real-time quantitative PCR. As results, RC extract could keep zebrafish survive after 72-h hypoxia via improving lactate dehydrogenase, citrate synthase, and hypoxia-induced factor-1α in brains. One hundred and forty-two differential metabolites were screened in the metabonomics, and sphingolipid metabolism pathway was significantly regulated after RC treatment. The constructed protein-metabolites network indicated that the HIF-related signals were recovered, and the mRNA level of AMPK was elevated. In conclusion, RC extract had markedly anti-hypoxic effects in zebrafish via changing sphingolipid metabolism, HIF-related and AMPK signaling pathways.
Collapse
Affiliation(s)
- Yi Ma
- Department of Pharmacology, Beijing Laboratory for Biomedical Detection Technology and Instrument, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Yi Wu
- Department of Pharmacology, Beijing Laboratory for Biomedical Detection Technology and Instrument, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Zhengchao Xia
- Department of Pharmacology, Beijing Laboratory for Biomedical Detection Technology and Instrument, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Jingyi Li
- Department of Pharmacology, Beijing Laboratory for Biomedical Detection Technology and Instrument, School of Basic Medical Sciences, Capital Medical University, Beijing, China
- Beijing Tropical Medicine Research Institute, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Xiaorong Li
- Department of Pharmacology, Beijing Laboratory for Biomedical Detection Technology and Instrument, School of Basic Medical Sciences, Capital Medical University, Beijing, China
- Beijing Engineering Research Center for Nerve System Drugs, Capital Medical University, Beijing, China
| | - Pingxiang Xu
- Department of Pharmacology, Beijing Laboratory for Biomedical Detection Technology and Instrument, School of Basic Medical Sciences, Capital Medical University, Beijing, China
- Beijing Engineering Research Center for Nerve System Drugs, Capital Medical University, Beijing, China
| | - Xuelin Zhou
- Department of Pharmacology, Beijing Laboratory for Biomedical Detection Technology and Instrument, School of Basic Medical Sciences, Capital Medical University, Beijing, China
- Beijing Engineering Research Center for Nerve System Drugs, Capital Medical University, Beijing, China
| | - Ming Xue
- Department of Pharmacology, Beijing Laboratory for Biomedical Detection Technology and Instrument, School of Basic Medical Sciences, Capital Medical University, Beijing, China
- Beijing Engineering Research Center for Nerve System Drugs, Capital Medical University, Beijing, China
| |
Collapse
|
44
|
Pansy K, Feichtinger J, Ehall B, Uhl B, Sedej M, Roula D, Pursche B, Wolf A, Zoidl M, Steinbauer E, Gruber V, Greinix HT, Prochazka KT, Thallinger GG, Heinemann A, Beham-Schmid C, Neumeister P, Wrodnigg TM, Fechter K, Deutsch AJ. The CXCR4-CXCL12-Axis Is of Prognostic Relevance in DLBCL and Its Antagonists Exert Pro-Apoptotic Effects In Vitro. Int J Mol Sci 2019; 20:E4740. [PMID: 31554271 PMCID: PMC6801866 DOI: 10.3390/ijms20194740] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 09/19/2019] [Accepted: 09/21/2019] [Indexed: 12/13/2022] Open
Abstract
In tumor cells of more than 20 different cancer types, the CXCR4-CXCL12-axis is involved in multiple key processes including proliferation, survival, migration, invasion, and metastasis. Since data on this axis in diffuse large B cell lymphoma (DLBCL) are inconsistent and limited, we comprehensively studied the CXCR4-CXCL12-axis in our DLBCL cohort as well as the effects of CXCR4 antagonists on lymphoma cell lines in vitro. In DLBCL, we observed a 140-fold higher CXCR4 expression compared to non-neoplastic controls, which was associated with poor clinical outcome. In corresponding bone marrow biopsies, we observed a correlation of CXCL12 expression and lymphoma infiltration rate as well as a reduction of CXCR4 expression in remission of bone marrow involvement after treatment. Additionally, we investigated the effects of three CXCR4 antagonists in vitro. Therefore, we used AMD3100 (Plerixafor), AMD070 (Mavorixafor), and WKI, the niacin derivative of AMD070, which we synthesized. WK1 demonstrated stronger pro-apoptotic effects than AMD070 in vitro and induced expression of pro-apoptotic genes of the BCL2-family in CXCR4-positive lymphoma cell lines. Finally, WK1 treatment resulted in the reduced expression of JNK-, ERK1/2- and NF-κB/BCR-target genes. These data indicate that the CXCR4-CXCL12-axis impacts the pathogenesis of DLBCL and represents a potential therapeutic target in aggressive lymphomas.
Collapse
MESH Headings
- Aminoquinolines
- Antineoplastic Agents/pharmacology
- Apoptosis/drug effects
- Benzimidazoles
- Biomarkers
- Butylamines
- Cell Line, Tumor
- Cell Movement/drug effects
- Cell Proliferation/drug effects
- Chemokine CXCL12/genetics
- Chemokine CXCL12/metabolism
- Exons
- Female
- Gene Expression
- Heterocyclic Compounds, 1-Ring/pharmacology
- Humans
- Lymphoma, Large B-Cell, Diffuse/metabolism
- Lymphoma, Large B-Cell, Diffuse/mortality
- Lymphoma, Large B-Cell, Diffuse/pathology
- Male
- Mutation
- Neoplasm Staging
- Prognosis
- Receptors, CXCR4/antagonists & inhibitors
- Receptors, CXCR4/genetics
- Receptors, CXCR4/metabolism
- Signal Transduction/drug effects
Collapse
Affiliation(s)
- Katrin Pansy
- Division of Hematology, Medical University Graz; Auenbruggerplatz 38, 8036 Graz, Austria.
| | - Julia Feichtinger
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Medical University of Graz, Neue Stiftingtalstraße 6/II, 8010 Graz, Austria.
| | - Barbara Ehall
- Division of Hematology, Medical University Graz; Auenbruggerplatz 38, 8036 Graz, Austria.
| | - Barbara Uhl
- Division of Hematology, Medical University Graz; Auenbruggerplatz 38, 8036 Graz, Austria.
| | - Miriam Sedej
- Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Universitätsplatz 4/I, 8010 Graz, Austria.
| | - David Roula
- Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Universitätsplatz 4/I, 8010 Graz, Austria.
| | - Beata Pursche
- Division of Hematology, Medical University Graz; Auenbruggerplatz 38, 8036 Graz, Austria.
| | - Axel Wolf
- Division of General Otorhinolaryngology, Medical University of Graz, Auenbruggerplatz 26, 8036 Graz, Austria.
| | - Manuel Zoidl
- Institute of Organic Chemistry, Graz University of Technology, Stremayrgasse 9/4, 8010 Graz, Austria.
| | - Elisabeth Steinbauer
- Diagnostic & Research Institute of Pathology, Medical University Graz, Neue Stiftingtalstraße 6, 8010 Graz, Austria.
| | - Verena Gruber
- Diagnostic & Research Institute of Pathology, Medical University Graz, Neue Stiftingtalstraße 6, 8010 Graz, Austria.
| | - Hildegard T Greinix
- Division of Hematology, Medical University Graz; Auenbruggerplatz 38, 8036 Graz, Austria.
| | - Katharina T Prochazka
- Division of Hematology, Medical University Graz; Auenbruggerplatz 38, 8036 Graz, Austria.
| | - Gerhard G Thallinger
- Institute of Computational Biotechnology, Graz University of Technology, Petersgasse 14/V, 8010 Graz, Austria.
- OMICS Center Graz, BioTechMed Graz, Stiftingtalstraße 24, 8010 Graz, Austria.
| | - Akos Heinemann
- Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Universitätsplatz 4/I, 8010 Graz, Austria.
| | - Christine Beham-Schmid
- Diagnostic & Research Institute of Pathology, Medical University Graz, Neue Stiftingtalstraße 6, 8010 Graz, Austria.
| | - Peter Neumeister
- Division of Hematology, Medical University Graz; Auenbruggerplatz 38, 8036 Graz, Austria.
| | - Tanja M Wrodnigg
- Institute of Organic Chemistry, Graz University of Technology, Stremayrgasse 9/4, 8010 Graz, Austria.
| | - Karoline Fechter
- Division of Hematology, Medical University Graz; Auenbruggerplatz 38, 8036 Graz, Austria.
| | - Alexander Ja Deutsch
- Division of Hematology, Medical University Graz; Auenbruggerplatz 38, 8036 Graz, Austria.
| |
Collapse
|
45
|
Skeletal Metastases of Unknown Primary: Biological Landscape and Clinical Overview. Cancers (Basel) 2019; 11:cancers11091270. [PMID: 31470608 PMCID: PMC6770264 DOI: 10.3390/cancers11091270] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 08/16/2019] [Accepted: 08/27/2019] [Indexed: 02/06/2023] Open
Abstract
Skeletal metastases of unknown primary (SMUP) represent a clinical challenge in dealing with patients diagnosed with bone metastases. Management of these patients has improved significantly in the past few years. however, it is fraught with a lack of evidence. While some patients have achieved impressive gains, a more systematic and tailored treatment is required. Nevertheless, in real-life practice, the outlook at the beginning of treatment for SMUP is decidedly somber. An incomplete translational relevance of pathological and clinical data on the mortality and morbidity rate has had unsatisfactory consequences for SMUP patients and their physicians. We examined several approaches to confront the available evidence; three key points emerged. The characterization of the SMUP biological profile is essential to driving clinical decisions by integrating genetic and molecular profiles into a multi-step diagnostic work-up. Nonetheless, a pragmatic investigation plan and therapy of SMUP cannot follow a single template; it must be adapted to different pathophysiological dynamics and coordinated with efforts of a systematic algorithm and high-quality data derived from statistically powered clinical trials. The discussion in this review points out that greater efforts are required to face the unmet needs present in SMUP patients in oncology.
Collapse
|
46
|
Abstract
PURPOSE OF REVIEW We discuss recent discoveries in hypoxic cellular pathophysiology and explore the interplay between hypoxic malignant cells and other stromal elements. This review will provide an update on the effects of hypoxia on cancer outcomes and therapeutic resistance. RECENT FINDINGS Hypoxia has been discovered to be a key driver for tumor progression, both because of impacts on tumor cells and separately on the wider tumor microenvironment. The latter effects occur via epithelial mesenchymal transition, autophagy and metabolic switching. Through epithelial mesenchymal transition, hypoxia both drives metastasis and renders key target tissues receptive to metastasis. Autophagy is a double-edged sword which requires greater understanding to ascertain when it is a threat. Metabolic switching allows tumor cells to access hypoxic survival mechanisms even under normoxic conditions.Every element of the malignant stroma contributes to hypoxia-driven progression. Exosomal transfer of molecules from hypoxic tumor cells to target stromal cell types and the importance of microRNAs in intercellular communication have emerged as key themes.Antiangiogenic resistance can be caused by hypoxia-driven vasculogenic mimicry. Beyond this, hypoxia contributes to resistance to virtually all oncological treatment modalities. SUMMARY Recent advances have moved us closer to being able to exploit hypoxic mechanisms to overcome hypoxia-driven progression and therapy failure.
Collapse
Affiliation(s)
- Andrew Redfern
- School of Medicine, The University of Western Australia, Perth
| | - Veenoo Agarwal
- Department of Medical Oncology, Fiona Stanley Hospital, Murdoch, Western Australia
| | - Erik W Thompson
- Institute of Health and Biomedical Innovation and School of Biomedical Sciences, Queensland University of Technology (QUT), Brisbane
- Translational Research Institute, Woolloongabba, Australia
| |
Collapse
|
47
|
Bone Metastasis Phenotype and Growth Undergo Regulation by Micro-Environment Stimuli: Efficacy of Early Therapy with HGF or TGFβ1-Type I Receptor Blockade. Int J Mol Sci 2019; 20:ijms20102520. [PMID: 31121879 PMCID: PMC6567054 DOI: 10.3390/ijms20102520] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 05/15/2019] [Accepted: 05/17/2019] [Indexed: 12/20/2022] Open
Abstract
Hepatocyte growth factor (HGF) and transforming growth factor β1 (TGFβ1) are biological stimuli of the micro-environment which affect bone metastasis phenotype through transcription factors, but their influence on the growth is scarcely known. In a xenograft model prepared with 1833 bone metastatic cells, derived from breast carcinoma cells, we evaluated mice survival and Twist and Snail expression and localization after competitive inhibition of HGF with NK4, or after blockade of TGFβ1-type I receptor (RI) with SB431542: in the latter condition HGF was also measured. To explain the in vivo data, in 1833 cells treated with SB431542 plus TGFβ1 we measured HGF formation and the transduction pathway involved. Altogether, HGF seemed relevant for bone-metastatic growth, being hampered by NK4 treatment, which decreased Twist more than Snail in the metastasis bulk. TGFβ1-RI blockade enhanced HGF in metastasis and adjacent bone marrow, while reducing prevalently Snail expression at the front and bulk of bone metastasis. The HGF accumulation in 1833 cells depended on an auxiliary signaling pathway, triggered by TGFβ1 under SB431542, which interfered in the transcription of HGF activator inhibitor type 1 (HAI-1) downstream of TGFβ-activated kinase 1 (TAK1): HGF stimulated Twist transactivation. In conclusion, the impairment of initial outgrowth with NK4 seemed therapeutically promising more than SB431542 chemotherapy; a functional correlation between Twist and Snail in bone metastasis seemed to be influenced by the biological stimuli of the micro-environment, and the targeting of these phenotype biomarkers might inhibit metastasis plasticity and colonization, even if it would be necessary to consider the changes of HGF levels in bone metastases undergoing TGFβ1-RI blockade.
Collapse
|
48
|
Bone metastasis: Interaction between cancer cells and bone microenvironment. J Oral Biosci 2019; 61:95-98. [PMID: 31109867 DOI: 10.1016/j.job.2019.02.002] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 02/18/2019] [Accepted: 02/25/2019] [Indexed: 01/16/2023]
Abstract
BACKGROUND Bone is one of the most common target organs for cancer metastasis, especially in patients with advanced breast and prostate cancers. Despite recent advances in therapeutic approaches, bone metastases remain incurable and produce multiple complications called skeletal-related events, including hypercalcemia, pathological fractures, spinal compression, and bone pain, which are associated with poor prognosis. HIGHLIGHT Although the precise mechanisms are yet to be fully elucidated, accumulating evidence suggests that bone provides a favorable microenvironment that enables circulating cancer cells to home, proliferate, and colonize, resulting in the formation of metastasis. Cancer cells that metastasize to bone also possess unique features, enabling them to utilize the bone microenvironment. Thus, communication between cancer cells and bone is believed to be critical for the development and progression of bone metastases. CONCLUSION Continued studies are warranted to understand the molecular mechanisms underlying bone metastases and to develop mechanism-based and effective therapeutic interventions.
Collapse
|
49
|
Xu WN, Zheng HL, Yang RZ, Jiang LS, Jiang SD. HIF-1α Regulates Glucocorticoid-Induced Osteoporosis Through PDK1/AKT/mTOR Signaling Pathway. Front Endocrinol (Lausanne) 2019; 10:922. [PMID: 32047474 PMCID: PMC6997475 DOI: 10.3389/fendo.2019.00922] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 12/17/2019] [Indexed: 01/29/2023] Open
Abstract
Long-term and high dose glucocorticoid treatment can cause decreased viability and function of osteoblasts, which leads to osteoporosis and osteonecrosis. In this study, we investigated the role and mechanism of action of HIF-1α in glucocorticoid-induced osteogenic inhibition in MC3T3-E1 cells. Our results showed that HIF-1α protein expression was reduced when MC3T3-E1 cells were exposed to dexamethasone (Dex) at varying concentrations ranging from 10-9 to 10-6 M. PDK1 expression was also decreased in MC3T3-E1 cells after dexamethasone treatment. MC3T3-E1 cells when treated with the glucocorticoid receptor antagonist RU486 along with dexamethasone showed enhanced HIF-1α expression. In addition, upregulated expression of HIF-1α was capable of promoting the osteogenic ability of MC3T3-E1 cells and PDK1 expression. However, the HIF-1α antagonist 2-methoxyestradiol (2-ME) had a reverse effect in MC3T3-E1 cells exposed to dexamethasone. Furthermore, the PDK1 antagonist dichloroacetate could repress the osteogenic ability of MC3T3-E1 cells, although HIF-1α was upregulated when transduced with adenovirus-HIF-1α construct. The PDK1 agonist PS48 was able to promote the osteogenic ability of MC3T3-E1 cells treated with dexamethasone. Importantly, the protein levels of p-AKT and p-mTOR were increased in MC3T3-E1 cells treated with dexamethasone after PS48 treatment. in vivo, the PDK1 agonist PS48 could maintain the bone mass of mice treated with dexamethasone. This study provides a new understanding of the mechanism of glucocorticoid-induced osteoporosis.
Collapse
|