1
|
Jiang C, Zhao Z, East AK, Bandyopadhyay S, Jiang Z, Chan J. Logic-gated approach for targeted delivery and site-selective activation of photothermal agents in precision cancer treatment. Chem Sci 2025; 16:5155-5165. [PMID: 39981039 PMCID: PMC11837750 DOI: 10.1039/d4sc08228a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 02/02/2025] [Indexed: 02/22/2025] Open
Abstract
Logic-gated strategies represent a promising approach to achieving highly selective cancer therapies. In this work, we present LG-AB (Logic-Gated Aza-BODIPY), an OFF-ON photothermal therapy (PTT) agent designed to selectively target cancer cells. LG-AB undergoes a red-shift in its maximum absorbance wavelength when activated in the tumor microenvironment, enabling the molecule to precisely generate heat in the cancerous tissue upon light irradiation. Unlike conventional activatable agents that rely on a single biomarker, LG-AB employs an AND logic-gated design, where glucose transporter 1 (GLUT1) overexpression facilitates targeted cellular uptake in cancer cells, followed by activation through elevated glutathione (GSH) levels. Beyond demonstrating photothermal efficacy in human lung cancer and murine breast cancer cells, we show that LG-AB effectively attenuates cancer progression through heat-induced apoptosis, with minimal off-target effects to surrounding tissues. The versatility of this strategy is further demonstrated through the development and application of LG-CPT (Logic-Gated Camptothecin), which utilizes the same logic-gated design. Our results show that enhancing specificity and limiting collateral damage can be broadly applied across different therapeutic agents.
Collapse
Affiliation(s)
- Chang Jiang
- Department of Chemistry, Beckman Institute for Advanced Science and Technology, Cancer Center at Illinois, University of Illinois at Urbana-Champaign Urbana Illinois 61801 USA
| | - Zhengxiang Zhao
- Department of Chemistry, Beckman Institute for Advanced Science and Technology, Cancer Center at Illinois, University of Illinois at Urbana-Champaign Urbana Illinois 61801 USA
| | - Amanda K East
- Department of Chemistry, Beckman Institute for Advanced Science and Technology, Cancer Center at Illinois, University of Illinois at Urbana-Champaign Urbana Illinois 61801 USA
| | - Suritra Bandyopadhyay
- Department of Chemistry, Beckman Institute for Advanced Science and Technology, Cancer Center at Illinois, University of Illinois at Urbana-Champaign Urbana Illinois 61801 USA
| | - Ziyi Jiang
- Department of Chemistry, Beckman Institute for Advanced Science and Technology, Cancer Center at Illinois, University of Illinois at Urbana-Champaign Urbana Illinois 61801 USA
| | - Jefferson Chan
- Department of Chemistry, Beckman Institute for Advanced Science and Technology, Cancer Center at Illinois, University of Illinois at Urbana-Champaign Urbana Illinois 61801 USA
| |
Collapse
|
2
|
Doghish AS, Abdel Mageed SS, Mohammed OA, Abdel-Reheim MA, Zaki MB, Mohamed AH, Rizk NI, Abulsoud AI, Abdelmaksoud NM, El-Dakroury WA, Aly SH. Natural compounds as regulators of miRNAs: exploring a new avenue for treating colorectal cancer. Funct Integr Genomics 2025; 25:42. [PMID: 39982533 DOI: 10.1007/s10142-025-01547-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 01/15/2025] [Accepted: 02/01/2025] [Indexed: 02/22/2025]
Abstract
Colorectal cancer (CRC) ranks as the second leading cause of cancer-related death globally, impacting both genders equally. The increasing global mortality rates from CRC are strongly linked to contemporary dietary habits, characterized by excessive meat consumption, alcohol intake, and insufficient physical activity. Thus, there is an unprecedented need to develop less hazardous and new therapies for CRC. CRC affects a substantial global population. The main treatments for CRC include chemotherapy and surgical intervention. Nonetheless, the advancement of innovative, safer, and more effective pharmaceuticals for CRC therapy is of paramount importance due to the widespread adverse effects and the dynamic nature of drug resistance. A growing amount of research suggests that natural chemicals may effectively battle CRC and, in certain cases, serve as alternatives to chemotherapeutics. Evidence suggests that miRNAs control important cancer features, including the maintenance of proliferative signals. These features also involve evasion of growth inhibition, resistance to cell death, and immortalization of replication. Additionally, miRNAs play a role in angiogenesis, invasion, and metastasis. Numerous compounds, including those exhibiting cytotoxic and apoptogenic properties against different malignancies, such as CRC, are sourced from diverse marine and medicinal plants. These chemicals stimulate several signaling pathways originating from different phytochemical families. This article evaluates the existing understanding of the anti-CRC capabilities of several phytochemical substances. Furthermore, their impact on several signaling pathways associated with cancer is examined. This article also highlights the potential of medicinal plants as a source of promising anti-CRC chemicals through modulating miRNA expression and the role of nanoparticle-based miRNA therapeutics in enhancing CRC treatment by improving tumor targeting and minimizing off-target effects.
Collapse
Affiliation(s)
- Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt.
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo, 11231, Egypt.
| | - Sherif S Abdel Mageed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt
| | - Osama A Mohammed
- Department of Pharmacology, College of Medicine, University of Bisha, Bisha, 61922, Saudi Arabia
| | | | - Mohamed Bakr Zaki
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Sadat City, Menoufia, 32897, Egypt
- Department of Biochemistry, Faculty of Pharmacy, Menoufia National University, km Cairo- Alexandria Agricultural Road, Tukh Tanbisha, Menofia, Egypt
| | - Ashraf Hassan Mohamed
- Faculty of Physical Therapy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt
| | - Nehal I Rizk
- Department of Biochemistry, Faculty of Pharmacy and Drug Technology, Egyptian Chinese University, Cairo, 11786, Egypt
| | - Ahmed I Abulsoud
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo, 11231, Egypt
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo, 11785, Egypt
| | - Nourhan M Abdelmaksoud
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo, 11785, Egypt
| | - Walaa A El-Dakroury
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt
| | - Shaza H Aly
- Department of Pharmacognosy, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt
| |
Collapse
|
3
|
Jiang X, Nik Nabil WN, Ze Y, Dai R, Xi Z, Xu H. Unlocking Natural Potential: Antibody-Drug Conjugates With Naturally Derived Payloads for Cancer Therapy. Phytother Res 2025; 39:789-874. [PMID: 39688127 DOI: 10.1002/ptr.8407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 11/06/2024] [Accepted: 11/19/2024] [Indexed: 12/18/2024]
Abstract
Natural compound-derived chemotherapies remain central to cancer treatment, however, they often cause off-target side effects that negatively impact patients' quality of life. In contrast, antibody-drug conjugates (ADCs) combine cytotoxic payloads with antibodies to specifically target cancer cells. Most approved and clinically investigated ADCs utilize naturally derived payloads, while those with conventional synthetic molecular payloads remain limited. This review focuses on approved ADCs that enhance the efficacy of naturally derived payloads by linking them with antibodies. We provide an overview of the core components of ADCs, their working mechanisms, and FDA-approved ADCs featuring naturally derived payloads, such as calicheamicin, camptothecin, dolastatin 10, maytansine, pyrrolbenzodiazepine (PBD), and the immunotoxin Pseudomonas exotoxin A. This review also explores recent clinical advancements aimed at broadening the therapeutic potential of ADCs, their applicability in treating heterogeneously composed tumors and their potential use beyond oncology. Additionally, this review highlights naturally derived payloads that are currently being clinically investigated but have not yet received approval. By summarizing the current landscape, this review provides insights into promising avenues for exploration and contributes to the refinement of treatment protocols for improved patient outcomes.
Collapse
Affiliation(s)
- Xue Jiang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai, China
| | - Wan Najbah Nik Nabil
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- National Pharmaceutical Regulatory Agency, Ministry of Health, Selangor, Malaysia
| | - Yufei Ze
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai, China
| | - Rongchen Dai
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai, China
| | - Zhichao Xi
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai, China
| | - Hongxi Xu
- Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
4
|
Ragab AE, Al-Ashmawy GM, Afify SRE, El-Feky OA, Ibrahim AO. Synergistic anticancer effects of cisplatin and phenolic aglycones of the aerial part of Rumex dentatus L. in tongue squamous cell carcinoma: insights from network pharmacology and biological verification. BMC Complement Med Ther 2025; 25:25. [PMID: 39863836 PMCID: PMC11762535 DOI: 10.1186/s12906-024-04718-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 11/26/2024] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND Oral squamous cell carcinoma (OSCC) ranks as the sixth most common malignancy globally. Cisplatin is the standard chemotherapy for OSCC, but resistance often reduces its efficacy, necessitating new treatments with fewer side effects. Rumex dentatus L., from the Polygonaceae family, is known for its medicinal properties, but its anticancer potential has not been thoroughly explored. This study aimed to investigate the synergy between cisplatin and an extract from the aerial parts of R. dentatus L. in treating tongue carcinoma (HNO97) in vitro, using network pharmacology, biological verification, and phytochemical analysis. METHODS The study included UPLC-ESI-MS/MS analysis, cytotoxicity assays, cell cycle analysis, apoptosis assessment, and RT-qPCR for gene expression of Bcl2, p53, and ATG7. Potential targets were identified, and mechanisms of action were examined through online databases and enrichment analyses. RESULTS The R. dentatus L. extract contained 14 phenolic aglycons. Combining cisplatin and R. dentatus L. was more effective in inhibiting proliferation, inducing cell cycle arrest and apoptosis, and reducing autophagy in HNO97 cells than cisplatin alone. KEGG analysis indicated that the drug combination might work through pathways like PI3K-Akt signaling, microRNAs in cancer, and EGFR tyrosine kinase inhibitor resistance. CONCLUSIONS Combining cisplatin with R. dentatus L. may be a promising approach for treating tongue carcinoma by affecting multiple pathways, providing a new perspective for developing more effective treatments for OSCC.
Collapse
Affiliation(s)
- Amany E Ragab
- Department of Pharmacognosy, Faculty of Pharmacy, Tanta University, Tanta, 31527, Egypt.
| | - Ghada M Al-Ashmawy
- Department of Biochemistry, Faculty of Pharmacy, Tanta University, Tanta, 31527, Egypt.
- Department of Biochemistry, Faculty of Pharmacy, Alsalam University, Kafr Alzayat, Algharbia, 31611, Egypt.
| | - Sherin R El Afify
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alsalam University, Kafr Alzayat, Algharbia, 31611, Egypt
| | - Ola A El-Feky
- Department of Biochemistry, Faculty of Pharmacy, Tanta University, Tanta, 31527, Egypt
- Department of Biochemistry, Faculty of Pharmacy, Alsalam University, Kafr Alzayat, Algharbia, 31611, Egypt
| | - Amera O Ibrahim
- Department of Biochemistry, Faculty of Pharmacy, Tanta University, Tanta, 31527, Egypt
| |
Collapse
|
5
|
Shahzad A, Liu W, Sun Y, Liu X, Xia J, Cui K, Sai B, Zhu Y, Yang Z, Zhang Q. Flavonoids as modulators of metabolic reprogramming in renal cell carcinoma (Review). Oncol Rep 2024; 52:167. [PMID: 39422066 PMCID: PMC11526433 DOI: 10.3892/or.2024.8826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 08/30/2024] [Indexed: 10/19/2024] Open
Abstract
Renal cell carcinoma (RCC) is distinguished by its varied metabolic reprogramming driven by tumor suppressor gene dysregulation and oncogene activation. Tumors can adapt nutrient uptake and metabolism pathways to meet the altered biosynthetic, bioenergetic and redox demands of cancer cells, whereas conventional chemotherapeutics and molecular inhibitors predominantly target individual metabolic pathways without addressing this adaptability. Flavonoids, which are well‑known for their antioxidant and anti‑inflammatory properties, offer a unique approach by influencing multiple metabolic targets. The present comprehensive review reveals the intricate processes of RCC metabolic reprogramming, encompassing glycolysis, mitochondrial oxidative phosphorylation and fatty acid biosynthesis. The insights derived from the present review may contribute to the understanding of the specific anticancer mechanisms of flavonoids, potentially paving the way for the development of natural antitumor drugs focused on the metabolic reprogramming of RCC.
Collapse
Affiliation(s)
- Asif Shahzad
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Wenjing Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Yijian Sun
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Xiangjie Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Jiaojiao Xia
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Kun Cui
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Buqing Sai
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Yuechun Zhu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Zhe Yang
- Department of Pathology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Qiao Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| |
Collapse
|
6
|
Ahmadi M, Kim HL, Park SJ, Jung HJ. Echium amoenum and Rosmarinic Acid Suppress the Growth and Metastasis of Gastric Cancer AGS Cells by Promoting Apoptosis and Inhibiting EMT. Int J Mol Sci 2024; 25:12909. [PMID: 39684626 DOI: 10.3390/ijms252312909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/19/2024] [Accepted: 11/28/2024] [Indexed: 12/18/2024] Open
Abstract
Gastric cancer (GC) ranks as the fifth most prevalent cancer globally. Owing to the absence of early manifest symptoms, it is difficult to diagnose GC until it has metastasized to other organs. Hence, the prevention and treatment of GC have become major concerns for patients. Echium amoenum, a traditional medicinal plant from the Boraginaceae family, exhibits various biological activities. Although recent studies have reported the anticancer properties of E. amoenum, its effects and mechanisms of action on GC cells are not yet fully understood. This study examined the anticancer effects of the ethyl acetate extract of E. amoenum (EAEC) and its main active ingredient, rosmarinic acid (RA), in GC AGS cells. EAEC and RA suppressed AGS cell growth by inducing apoptosis through caspase mediation and inhibited AGS cell metastasis by influencing the expression of crucial epithelial-mesenchymal transition (EMT) biomarkers. Furthermore, the anti-growth and anti-metastatic effects of EAEC and RA on AGS cells involved inactivation of the STAT3, AKT, and ERK1/2 pathways. Additionally, RA notably inhibited the in vivo tumor growth in AGS cells. Overall, these results indicate that EAEC and RA could serve as potential anticancer and anti-metastasis agents for GC.
Collapse
Affiliation(s)
- Mahdieh Ahmadi
- Department of Life Science and Biochemical Engineering, Graduate School, Sun Moon University, Asan 31460, Republic of Korea
| | - Hong Lae Kim
- Department of Life Science and Biochemical Engineering, Graduate School, Sun Moon University, Asan 31460, Republic of Korea
| | - So Jin Park
- Department of Life Science and Biochemical Engineering, Graduate School, Sun Moon University, Asan 31460, Republic of Korea
| | - Hye Jin Jung
- Department of Life Science and Biochemical Engineering, Graduate School, Sun Moon University, Asan 31460, Republic of Korea
- Department of Pharmaceutical Engineering and Biotechnology, Sun Moon University, Asan 31460, Republic of Korea
| |
Collapse
|
7
|
Wen Y, Li Y, Li BB, Liu P, Qiu M, Li Z, Xu J, Bi B, Zhang S, Deng X, Liu K, Zhou S, Wang Q, Zhao J. Pyroptosis induced by natural products and their derivatives for cancer therapy. Biomater Sci 2024; 12:5656-5679. [PMID: 39429101 DOI: 10.1039/d4bm01023j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
Natural products, which are compounds extracted and/or refined from plants and microbes in nature, have great potential for the discovery of therapeutic agents, especially for infectious diseases and cancer. In recent years, natural products have been reported to induce multiple cell death pathways to exhibit antitumor effects. Among them, pyroptosis is a unique programmed cell death (PCD) characterized by continuous cell membrane permeability and intracellular content leakage. According to the canonical and noncanonical pathways, the formation of gasdermin-N pores involves a variety of transcriptional targets and post-translational modifications. Thus, tailored control of PCD may facilitate dying cells with sufficient immunogenicity to activate the immune system to eliminate other tumor cells. Therefore, we summarized the currently reported natural products or their derivatives and their nano-drugs that induce pyroptosis-related signaling pathways. We reviewed six main categories of bioactive compounds extracted from natural products, including flavonoids, terpenoids, polyphenols, quinones, artemisinins, and alkaloids. Correspondingly, the underlying mechanisms of how these compounds and their derivatives engage in pyroptosis are also discussed. Moreover, the synergistic effect of natural bioactive compounds with other antitumor therapies is proposed as a novel therapeutic strategy for traditional chemotherapy, radiotherapy, chemodynamic therapy, photodynamic therapy, photothermal therapy, hyperthermal therapy, and sonodynamic therapy. Consequently, we provide insights into natural products to develop a novel antitumor therapy or qualified adjuvant agents by inducing pyroptosis, which may eventually be applied clinically.
Collapse
Affiliation(s)
- Yingfei Wen
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong 518107, China.
| | - You Li
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong 518107, China.
| | - Bin-Bin Li
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong 518107, China.
| | - Peng Liu
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong 518107, China.
| | - Miaojuan Qiu
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong 518107, China.
| | - Zihang Li
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong 518107, China.
| | - Jiaqi Xu
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong 518107, China.
| | - Bo Bi
- Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Shiqiang Zhang
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong 518107, China.
| | - Xinyi Deng
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong 518107, China.
| | - Kaiyuan Liu
- Department of Bone Tumor Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Shangbo Zhou
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong 518107, China.
| | - Qiang Wang
- Department of Geriatric Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China.
| | - Jing Zhao
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong 518107, China.
| |
Collapse
|
8
|
Palomino GJQ, Celiz HY, Gomes FDR, Tetaping GM, Novaes MAS, Rocha KAD, Raposo RDS, Rocha RMP, Duarte ABG, Pessoa ODL, Figueiredo JR, de Sá NAR, Rodrigues APR. Withanolide derivatives: natural compounds with anticancer potential offer low toxicity to fertility and ovarian follicles in mice. Anim Reprod 2024; 21:e20240027. [PMID: 39494127 PMCID: PMC11529970 DOI: 10.1590/1984-3143-ar2024-0027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 07/30/2024] [Indexed: 11/05/2024] Open
Abstract
Anticancer therapy often leads to premature ovarian insufficiency (POI) and infertility due to the extreme sensitivity of the ovarian follicle reserve to the effects of chemotherapy. Withanolides are known for their cytotoxic effect on cancer cells and low cytotoxicity on non-malignant or healthy cells. Therefore, this study aimed to investigate the in vivo effects of three withanolides derivatives: 27-dehydroxy-24,25-epoxywithaferin A (WT1), 27-dehydroxywithaferin A (WT2), and withaferin A (WTA) on fertility, and the ovarian preantral follicles of young female mice. To achieve this, mice received 7 intraperitoneal doses of WT1, WT2, or WTA at a concentration of 2 mg/kg (Experiment I) and 5 or 10 mg/kg (Experiment II) over 15 alternate days. In experiment I, two days after administration of the last dose, half of the mice were mated to evaluate the effects of withanolides on fertility. The other half of the mice, as well as all mice from experiment II, were sacrificed for histological, inflammation, senescence, and immunohistochemical analyses of the follicles present in the ovary. Regardless of the administered withanolide, the concentration of 2 mg/kg did not show toxicity on the follicular morphology, ovarian function, or fertility of the mice. However, at concentrations of 5 and 10 mg/kg, the three derivatives (WT1, WT2, and WTA) increased follicular activation, cell proliferation, and ovarian senescence without affecting inflammatory cells. Furthermore, at a concentration of 10 mg/kg, the three withanolides showed intensified toxic effects, leading to DNA damage as evidenced by the labeling of γH2AX, activated Caspase 3, and TUNEL. We conclude that the cytotoxic effect of the tested withanolide derivatives (WT1, WT2, and WTA) in the concentration of 2 mg/kg did not show toxicity on the ovary. However, in higher concentrations, such as 10 mg/kg, toxic effects are potentiated, causing DNA damage.
Collapse
Affiliation(s)
- Gaby Judith Quispe Palomino
- Laboratório de Manipulação de Oócitos e Folículos Ovarianos Pré-antrais – LAMOFOPA, Faculdade de Medicina Veterinária, Universidade Estadual do Ceará, Fortaleza, CE, Brasil
| | - Homero Ygnacio Celiz
- Laboratório de Manipulação de Oócitos e Folículos Ovarianos Pré-antrais – LAMOFOPA, Faculdade de Medicina Veterinária, Universidade Estadual do Ceará, Fortaleza, CE, Brasil
| | - Francisco Denilson Rodrigues Gomes
- Laboratório de Manipulação de Oócitos e Folículos Ovarianos Pré-antrais – LAMOFOPA, Faculdade de Medicina Veterinária, Universidade Estadual do Ceará, Fortaleza, CE, Brasil
| | - Gildas Mbemya Tetaping
- Laboratório de Manipulação de Oócitos e Folículos Ovarianos Pré-antrais – LAMOFOPA, Faculdade de Medicina Veterinária, Universidade Estadual do Ceará, Fortaleza, CE, Brasil
| | | | - Késya Amanda Dantas Rocha
- Laboratório de Análise Fitoquímica de Plantas Medicinais, Universidade Federal do Ceará, Fortaleza, CE, Brasil
| | | | | | - Ana Beatriz Graça Duarte
- Departamento de Morfologia, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, CE, Brasil
| | | | - José Ricardo Figueiredo
- Laboratório de Manipulação de Oócitos e Folículos Ovarianos Pré-antrais – LAMOFOPA, Faculdade de Medicina Veterinária, Universidade Estadual do Ceará, Fortaleza, CE, Brasil
| | - Naiza Arcângela Ribeiro de Sá
- Laboratório de Manipulação de Oócitos e Folículos Ovarianos Pré-antrais – LAMOFOPA, Faculdade de Medicina Veterinária, Universidade Estadual do Ceará, Fortaleza, CE, Brasil
| | - Ana Paula Ribeiro Rodrigues
- Laboratório de Manipulação de Oócitos e Folículos Ovarianos Pré-antrais – LAMOFOPA, Faculdade de Medicina Veterinária, Universidade Estadual do Ceará, Fortaleza, CE, Brasil
| |
Collapse
|
9
|
Alqarni A, Hosmani J, Alassiri S, Alqahtani AMA, Assiri HA. A Network Pharmacology Identified Metastasis Target for Oral Squamous Cell Carcinoma Originating from Breast Cancer with a Potential Inhibitor from F. sargassaceae. Pharmaceuticals (Basel) 2024; 17:1309. [PMID: 39458948 PMCID: PMC11510435 DOI: 10.3390/ph17101309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/16/2024] [Accepted: 09/20/2024] [Indexed: 10/28/2024] Open
Abstract
This study aimed to identify specific therapeutic targets for oral squamous cell carcinoma (OSCC) that metastasize from breast cancer (BC) by using network pharmacology. The Gene Expression Omnibus for OSCC and BC served as the source of gene expression datasets and their analysis. Upregulated genes and the common intersecting genes of these cancers were determined along with that of the phytochemicals of F. sargassum to predict the pharmacological targets. Further, gene enrichment analysis revealed that their metastasis signature and metastasis targets were determined via a protein interaction network. Molecular docking and pharmacokinetic screening determined the potential therapeutic phytochemicals against the targets. The interaction network of 39 genes thus identified encoding proteins revealed HIF1A as a prominent metastasis target due to its high degree of connectivity and its involvement in cancer-related pathways. Molecular docking showed a strong binding affinity of isonahocol D2, a sargassum-derived compound with HIF1A, presenting a binding energy of -7.1 kcal/mol. Further, pharmacokinetic screening showed favorable ADME properties and molecular dynamics simulations showed stable interactions between isonahocol D2 and HIF1A, with significant stability over 100 ns. This study's results emphasized that isonahocol D2 is a promising therapeutic candidate against HIF1A in OSCC metastasized from breast cancer in translational medicine.
Collapse
Affiliation(s)
| | - Jagadish Hosmani
- Department of Diagnostic Dental Sciences & Oral Biology, College of Dentistry, King Khalid University, Abha 61421, Saudi Arabia; (A.A.); (S.A.); (A.M.A.A.); (H.A.A.)
| | | | | | | |
Collapse
|
10
|
Banerjee S, Banerjee S, Bishayee A, Da Silva MN, Sukocheva OA, Tse E, Casarcia N, Bishayee A. Cellular and molecular mechanisms underlying the potential of betulinic acid in cancer prevention and treatment. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 132:155858. [PMID: 39053249 DOI: 10.1016/j.phymed.2024.155858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 06/13/2024] [Accepted: 07/03/2024] [Indexed: 07/27/2024]
Abstract
BACKGROUND Betulinic acid (BA), which is a pentacyclic triterpenoid found in the bark of plane, birch, and eucalyptus trees, has emerged as a compound of significant interest in scientific research due to its potential therapeutic applications. BA has a range of well-documented pharmacological and biological effects, including antibacterial, immunomodulatory, diuretic, antiviral, antiparasitic, antidiabetic, and anticancer activities. Although numerous research studies have explored the potential anticancer effects of BA, there is a noticeable gap in the literature, highlighting the need for a more up-to-date and comprehensive evaluation of BA's anticancer potential. PURPOSE The aim of this work is to critically assess the reported cellular and molecular mechanisms underlying the cancer preventive and therapeutic effects of BA. METHODS Relevant research on the inhibitory effects of BA against cancerous cells was searched using Science Direct, Scopus, Web of Science, and PubMed following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. RESULTS The anticancer properties of BA are mediated by the activation of cell death and cell cycle arrest, production of reactive oxygen species, increased mitochondrial permeability, modulation of nuclear factor-κB and Bcl-2 family signaling. Emerging evidence also underscores the combined anticancer effects of BA with other natural bioactive compounds or approved drugs. Notably, several novel BA nanoformulations have been found to exhibit encouraging antineoplastic activities. CONCLUSION BA, whether used alone or in combination, or as a form of nanoformulation, shows significant potential for cancer prevention and treatment. Nevertheless, further detailed studies are necessary to confirm the therapeutic effectiveness of this natural compound.
Collapse
Affiliation(s)
- Subhasis Banerjee
- Department of Pharmaceutical Chemistry, Gupta College of Technological Sciences, Asansol 713 301, West Bengal, India
| | - Sabyasachi Banerjee
- Department of Pharmaceutical Chemistry, Gupta College of Technological Sciences, Asansol 713 301, West Bengal, India
| | | | - Milton Nascimento Da Silva
- Laboratory of Liquid Chromatography, Institute of Exact and Natural Sciences, Federal University of Pará, Belém 66075-110, PA, Brazil; Chemistry Post-Graduation Program, Institute of Exact and Natural Sciences, Federal University of Pará, Belém 66075-110, PA, Brazil; Pharmaceutical Science Post-Graduation Program, Institute of Health Sciences, Federal University of Pará, Belém 66075-110, PA, Brazil
| | - Olga A Sukocheva
- Department of Hepatology, Royal Adelaide Hospital, Adelaide, SA 5000, Australia
| | - Edmund Tse
- Department of Hepatology, Royal Adelaide Hospital, Adelaide, SA 5000, Australia
| | - Nicolette Casarcia
- Department of Pharmacology, College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA
| | - Anupam Bishayee
- Department of Pharmacology, College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA.
| |
Collapse
|
11
|
Li H, Li R, Kang J, Hii KS, Mohamed HF, Xu X, Luo Z. Okeanomitos corallinicola gen. and sp. nov. (Nostocales, Cyanobacteria), a new toxic marine heterocyte-forming Cyanobacterium from a coral reef. JOURNAL OF PHYCOLOGY 2024; 60:908-927. [PMID: 38943258 DOI: 10.1111/jpy.13473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 05/05/2024] [Accepted: 05/11/2024] [Indexed: 07/01/2024]
Abstract
Cyanobacterial mats supplanting coral and spreading coral diseases in tropical reefs, intensified by environmental shifts caused by human-induced pressures, nutrient enrichment, and global climate change, pose grave risks to the survival of coral ecosystems. In this study, we characterized Okeanomitos corallinicola gen. and sp. nov., a newly discovered toxic marine heterocyte-forming cyanobacterium isolated from a coral reef ecosystem of the South China Sea. Phylogenetic analysis, based on the 16S rRNA gene and the secondary structure of the 16S-23S rRNA intergenic region, placed this species in a clade distinct from closely related genera, that is, Sphaerospermopsis stricto sensu, Raphidiopsis, and Amphiheterocytum. The O. corallinicola is a marine benthic species lacking gas vesicles, distinguishing it from other members of the Aphanizomenonaceae family. The genome of O. corallinicola is large and exhibits diverse functional capabilities, potentially contributing to the resilience and adaptability of coral reef ecosystems. In vitro assays revealed that O. corallinicola demonstrates notable cytotoxic activity against various cancer cell lines, suggesting its potential as a source of novel anticancer compounds. Furthermore, the identification of residual saxitoxin biosynthesis function in the genome of O. corallinicola, a marine cyanobacteria, supports the theory that saxitoxin genes in cyanobacteria and dinoflagellates may have been horizontally transferred between them or may have originated from a shared ancestor. Overall, the identification and characterization of O. corallinicola provides valuable contributions to cyanobacterial taxonomy, offering novel perspectives on complex interactions within coral reef ecosystems.
Collapse
Affiliation(s)
- Haiyan Li
- Key Laboratory of Marine Ecological Conservation and Restoration, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
- Institute of Marine Drugs/Guangxi Key Laboratory of Marine Drugs, Guangxi University of Chinese Medicine, Nanning, China
| | - Renhui Li
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou, China
| | - Jianhua Kang
- Key Laboratory of Marine Ecological Conservation and Restoration, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
| | - Kieng Soon Hii
- Bachok Marine Research Station, Institute of Ocean and Earth Sciences, University of Malaya, Bachok, Kelantan, Malaysia
| | - Hala F Mohamed
- Botany & Microbiology Department, Faculty of Science, Al-Azhar University (Girls Branch), Cairo, Egypt
| | - Xinya Xu
- Institute of Marine Drugs/Guangxi Key Laboratory of Marine Drugs, Guangxi University of Chinese Medicine, Nanning, China
| | - Zhaohe Luo
- Key Laboratory of Marine Ecological Conservation and Restoration, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
- Observation and Research Station of Coastal Wetland Ecosystem in Beibu Gulf, Ministry of Natural Resources, Beihai, China
| |
Collapse
|
12
|
Benjamaa R, Zhu A, Kim S, Kim D, Essamadi AK, Moujanni A, Terrab A, Cho N, Hong J. Two spurge species, Euphorbia resinifera O. Berg and Euphorbia officinarum subsp. echinus (Hook.f. & Coss.) Vindt inhibit colon cancer. BMC Complement Med Ther 2024; 24:261. [PMID: 38987732 PMCID: PMC11238497 DOI: 10.1186/s12906-024-04566-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 06/25/2024] [Indexed: 07/12/2024] Open
Abstract
BACKGROUND Colon cancer, a prominent contributor to global cancer-related deaths, prompts the need for innovative treatment strategies. Euphorbia resinifera O. Berg (E. resinifera) and Euphorbia officinarum subsp. echinus Hook. f. & Coss Vindt (E. echinus) and their bee-derived products have been integral to traditional Moroccan medicine due to their potential health benefits. These plants have historical use in addressing various health issues, including cancer. However, their effects against colon cancer remain unclear, and the specific mechanisms underlying their anti-cancer effects lack comprehensive investigation. METHODS The study aimed to assess the potential anti-cancer effects of Euphorbia extract on colon cancer cell lines (DLD-1) through various techniques. The apoptosis, migration, and proliferation of DLD-1 cells were measured in DLD-1 cells. In addition, we conducted High-Performance Liquid Chromatography (HPLC) analysis to identify the profile of phenolic compounds present in the studied extracts. RESULTS The extracts demonstrated inhibition of colon cancer cell migration. E. resinifera flower and E. echinus stem extracts show significant anti-migratory effects. Regarding anti-proliferative activity, E. resinifera flower extract hindered proliferation, whereas E. echinus flower extract exhibited dose-dependent inhibition. Apoptosis assays revealed E. resinifera flower extract inducing early-stage apoptosis and E. echinus flower extract promoting late-stage apoptosis. While apoptotic protein expression indicated, E. resinifera stem and propolis extracts had minimal impact on apoptosis. CONCLUSION The findings provide evidence supporting the beneficial effects of E resinifera and E. echinus extracts on colon cancer and exerting anti-cancer properties.
Collapse
Affiliation(s)
- Rania Benjamaa
- Department of Physiology, Daegu Catholic University School of Medicine, Daegu, 42472, South Korea
- Faculty of Sciences and Technologies, Laboratory of Biochemistry, Neurosciences, Natural Resources, and Environment, Hassan First University of Settat, Settat, 26000, Morocco
| | - Anlin Zhu
- Department of Physiology, Daegu Catholic University School of Medicine, Daegu, 42472, South Korea
- CaniCatiCare Inc., Daegu, 42078, South Korea
| | - Soeun Kim
- College of Pharmacy, Chonnam National University, Gwangju, 61186, South Korea
| | - Dohyang Kim
- Department of Physiology, Daegu Catholic University School of Medicine, Daegu, 42472, South Korea
| | - Abdel Khalid Essamadi
- Faculty of Sciences and Technologies, Laboratory of Biochemistry, Neurosciences, Natural Resources, and Environment, Hassan First University of Settat, Settat, 26000, Morocco
| | - Abdelkarim Moujanni
- Faculty of Sciences and Technologies, Laboratory of Biochemistry, Neurosciences, Natural Resources, and Environment, Hassan First University of Settat, Settat, 26000, Morocco
| | - Anass Terrab
- Department of Plant Biology and Ecology, University of Seville, Seville, 41012, Spain
| | - Namki Cho
- College of Pharmacy, Chonnam National University, Gwangju, 61186, South Korea.
| | - Jaewoo Hong
- Department of Physiology, Daegu Catholic University School of Medicine, Daegu, 42472, South Korea.
- CaniCatiCare Inc., Daegu, 42078, South Korea.
| |
Collapse
|
13
|
Mallur DJ, Lavanya B, Temkar SS, Arun V, Paul BC. Exploring okra-derived compounds as prospective aromatase inhibitors: a computational study for enhanced breast cancer therapy. J Biomol Struct Dyn 2024:1-9. [PMID: 38887049 DOI: 10.1080/07391102.2024.2335301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 03/21/2024] [Indexed: 06/20/2024]
Abstract
Estrogen receptor-positive breast cancer represents itself as the most prevalent malignancy among postmenopausal women. One of the promising therapeutic approaches involves the use of Aromatase inhibitors, which competitively bind to Aromatase, reducing estrone and estradiol levels. While current drugs have improved survival rates, they are not without adverse effects. Consequently, this study explores the computational screening of medicinally relevant compounds derived from okra (Abelmoschus esculentus) for potential Aromatase inhibition. Molecular docking employing AMDock v1.5.2 was utilized to assess binding affinities with Aromatase (PDB:3EQM). Subsequently, in-depth molecular interactions were examined using Discovery Studio Visualizer v4.5, and the stability of docked complexes was evaluated via molecular dynamics with the GROMACS package, focusing on RMSD, RMSF, H-bond count, SASA, Free energy landscape, Principal Component Analysis and binding affinity assessment. The pharmacokinetic properties of the okra compounds were predicted using admetSAR v2.0. Our findings highlight Quercetin 3-gentiobioside as a standout candidate, demonstrating superior binding affinity (-10 kcal/mol) and an estimated Ki of 46.77 nM compared to letrozole and other okra compounds. Molecular dynamic analysis confirms the stability of Quercetin 3-gentiobioside binding in terms of H-bonds and conformational integrity. In conclusion, our computational investigation identifies Quercetin 3-gentiobioside, along with Quercetin 3-O-rutinoside and Hyperin, as promising candidates for preclinical studies in the pursuit of potential Aromatase inhibitors.
Collapse
Affiliation(s)
- Dhrithi Jayasimha Mallur
- Department of Biotechnology, Faculty of Biomedical Sciences and Technology, Sri Ramachandra Institute of Higher Education and Research, Porur, Chennai, India
| | - B Lavanya
- Department of Biotechnology, Faculty of Biomedical Sciences and Technology, Sri Ramachandra Institute of Higher Education and Research, Porur, Chennai, India
| | - Sheshadri S Temkar
- Department of Biotechnology, Faculty of Biomedical Sciences and Technology, Sri Ramachandra Institute of Higher Education and Research, Porur, Chennai, India
| | - V Arun
- Department of Biotechnology, Faculty of Biomedical Sciences and Technology, Sri Ramachandra Institute of Higher Education and Research, Porur, Chennai, India
| | - Benedict C Paul
- Department of Biotechnology, Faculty of Biomedical Sciences and Technology, Sri Ramachandra Institute of Higher Education and Research, Porur, Chennai, India
| |
Collapse
|
14
|
Motamedzadeh A, Rahmati-Dehkordi F, Heydari H, Behnam M, Rashidi Noshabad FZ, Tamtaji Z, Taheri AT, Nabavizadeh F, Aschner M, Mirzaei H, Tamtaji OR. Therapeutic potential of Phycocyanin in gastrointestinal cancers and related disorders. Mol Biol Rep 2024; 51:741. [PMID: 38874869 DOI: 10.1007/s11033-024-09675-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 05/23/2024] [Indexed: 06/15/2024]
Abstract
Gastrointestinal cancer is the most fatal cancer worldwide. The etiology of gastrointestinal cancer has yet to be fully characterized. Alcohol consumption, obesity, tobacco, Helicobacter pylori and gastrointestinal disorders, including gastroesophageal reflux disease, gastric ulcer, colon polyps and non-alcoholic fatty liver disease are among the several risks factors for gastrointestinal cancers. Phycocyanin which is abundant in Spirulina. Phycocyanin, a member of phycobiliprotein family with intense blue color, is an anti-diabetic, neuroprotective, anti-oxidative, anti-inflammatory, and anticancer compound. Evidence exists supporting that phycocyanin has antitumor effects, exerting its pharmacological effects by targeting a variety of cellular and molecular processes, i.e., apoptosis, cell-cycle arrest, migration and Wnt/β-catenin signaling. Phycocyanin has also been applied in treatment of several gastrointestinal disorders such as, gastric ulcer, ulcerative colitis and fatty liver that is known as a risk factor for progression to cancer. Herein, we summarize various cellular and molecular pathways that are affected by phycocyanin, its efficacy upon combined drug treatment, and the potential for nanotechnology in its gastrointestinal cancer therapy.
Collapse
Affiliation(s)
- Alireza Motamedzadeh
- Department of Internal Medicine, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Fatemeh Rahmati-Dehkordi
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
- Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Hoora Heydari
- Student Research Committee, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Mohammad Behnam
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | | | - Zeinab Tamtaji
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Abdolkarim Talebi Taheri
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Nabavizadeh
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
- Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran.
- Department of Physiology, School of Medicine, Tehran University of medical sciences, Tehran, Iran.
| | - Omid Reza Tamtaji
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran.
- Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran.
- Department of Physiology, School of Medicine, Tehran University of medical sciences, Tehran, Iran.
| |
Collapse
|
15
|
A. Alsubeie MS, Ibrahim NA, Alghamdi AA, Basher NS, Al-ammari BS, Dafaallah AB, Veettil VN. Cytotoxic, antioxidant, antibacterial activity of phytochemicals from Phragmanthera austroarabica. Bioinformation 2024; 20:487-494. [PMID: 39132230 PMCID: PMC11309120 DOI: 10.6026/973206300200487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 05/31/2024] [Accepted: 05/31/2024] [Indexed: 08/13/2024] Open
Abstract
The cytotoxic, antioxidant, anticancer, and antibacterial properties of ethanolic extracts from Phragmanthera austroarabica is of interest. Plants of P. austroarabica were gathered from the southern Saudi Arabian region of Albaha. P. austroarabica extract was assessed using DPPH (2, 2-diphenyl-1-picrylhydrazyl). The German Collection of Microorganisms and Cell Cultures (DSMZ) cancer cell lines used in this investigation. The cytotoxic activity of P. austroarabica extract was explored against MCF-7 breast and A549 lung cancer cell lines, along with doxorubicin as a positive control. In both treated cells, P. austroarabica showed a remarkable activity via suppressing the cell's survival. In terms of IC50 (concentration equivalent to a survival rate of 50%), MCF-7 breast cancer cells were more sensitive to P. austroarabica extract.) DPPH colorimetric assay was employed to assess the antioxidant properties of P. austroarabica extract, the antioxidant activity was increased along with increment of extract concentrations. The leaves aqueous extract of P. austroarabica inhibited the growth of S. aureus by 6.3±0.12 mm and 24±0.43 mm and 15±0.56 mm respectively for seed, leaf and stem at concentrations 50 µl. However, the same concentrations inhibited the growth of E. coli by 25±0.75, 0.00 mm and 24±0.18 mm, following the same order. Different superscript letters indicate means that are significantly different at level (p<0.05). Minimal inhibitory concentrations (MIC) of P. austroarabica ethanolic extracts against the tested microorganisms were 1.5, 1.6 and 1.5, respectively for seed, leaf and stem against Staph. Aureus and were 1.2, 0.00 and 1.2, respectively for seed, leaf and stem against E. coli.
Collapse
Affiliation(s)
- Moodi S A. Alsubeie
- Department of Biology, Faculty of Science, Imam Mohammed Ibn Saud Islamic University, Riyadh, Saudi Arabia
| | - Nasir A Ibrahim
- Department of Biology, Faculty of Science, Imam Mohammed Ibn Saud Islamic University, Riyadh, Saudi Arabia
| | - Ahmed A Alghamdi
- National Center for Vegetation Cover Development and Combating Desertification (NCVC), Ministry of Environment, Water and Agriculture, Riyadh, Kingdom of Saudi Arabia
| | - Nosiba S Basher
- Department of Biology, Faculty of Science, Imam Mohammed Ibn Saud Islamic University, Riyadh, Saudi Arabia
| | - BS Al-ammari
- Department of Biology, Faculty of Science, Imam Mohammed Ibn Saud Islamic University, Riyadh, Saudi Arabia
| | - Awadallah B Dafaallah
- National Center for Vegetation Cover Development and Combating Desertification (NCVC), Ministry of Environment, Water and Agriculture, Riyadh, Kingdom of Saudi Arabia
- Department of Crop Protection, Faculty of Agricultural Sciences, University of Gezira, Wad Medani, Sudan
| | - Vajid Nettoor Veettil
- Iqraa Centre for Research and Development, IQRAA International Hospital and Research Centre, Kozhikode, Kerala, India
- MHES College of Science and Technology, Kozhikode, Kerala, India
| |
Collapse
|
16
|
Khatua S, Nandi S, Nag A, Sen S, Chakraborty N, Naskar A, Gürer ES, Calina D, Acharya K, Sharifi-Rad J. Homoharringtonine: updated insights into its efficacy in hematological malignancies, diverse cancers and other biomedical applications. Eur J Med Res 2024; 29:269. [PMID: 38704602 PMCID: PMC11069164 DOI: 10.1186/s40001-024-01856-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 04/23/2024] [Indexed: 05/06/2024] Open
Abstract
HHT has emerged as a notable compound in the realm of cancer treatment, particularly for hematological malignancies. Its multifaceted pharmacological properties extend beyond traditional applications, warranting an extensive review of its mechanisms and efficacy. This review aims to synthesize comprehensive insights into the efficacy of HHT in treating hematological malignancies, diverse cancers, and other biomedical applications. It focuses on elucidating the molecular mechanisms, therapeutic potential, and broader applications of HHT. A comprehensive search for peer-reviewed papers was conducted across various academic databases, including ScienceDirect, Web of Science, Scopus, American Chemical Society, Google Scholar, PubMed/MedLine, and Wiley. The review highlights HHT's diverse mechanisms of action, ranging from its role in leukemia treatment to its emerging applications in managing other cancers and various biomedical conditions. It underscores HHT's influence on cellular processes, its efficacy in clinical settings, and its potential to alter pathological pathways. HHT demonstrates significant promise in treating various hematological malignancies and cancers, offering a multifaceted approach to disease management. Its ability to impact various physiological pathways opens new avenues for therapeutic applications. This review provides a consolidated foundation for future research and clinical applications of HHT in diverse medical fields.
Collapse
Affiliation(s)
- Somanjana Khatua
- Department of Botany, Faculty of Science, University of Allahabad, Prayagraj, Uttar Pradesh, 211002, India
| | - Sudeshna Nandi
- Department of Botany, Molecular and Applied Mycology and Plant Pathology Laboratory, University of Calcutta, 35, Ballygung Circular Road, Kolkata, India
| | - Anish Nag
- Department of Life Sciences, CHRIST (Deemed to Be University), Bangalore Central Campus, Bangalore, Karnataka, India
| | - Surjit Sen
- Department of Botany, Fakir Chand College, Diamond Harbour, South 24-Parganas, Kolkata, India
| | | | - Arghya Naskar
- Department of Botany, Molecular and Applied Mycology and Plant Pathology Laboratory, University of Calcutta, 35, Ballygung Circular Road, Kolkata, India
| | - Eda Sönmez Gürer
- Department of Pharmacognosy, Faculty of Pharmacy, Sivas Cumhuriyet University, Sivas, Turkey
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349, Craiova, Romania.
| | - Krishnendu Acharya
- Department of Botany, Molecular and Applied Mycology and Plant Pathology Laboratory, University of Calcutta, 35, Ballygung Circular Road, Kolkata, India.
| | | |
Collapse
|
17
|
Lee JS, Lee HY. Ginseng-derived compounds as potential anticancer agents targeting cancer stem cells. J Ginseng Res 2024; 48:266-275. [PMID: 38707642 PMCID: PMC11068999 DOI: 10.1016/j.jgr.2024.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 01/31/2024] [Accepted: 03/07/2024] [Indexed: 05/07/2024] Open
Abstract
Cancer stem cells (CSCs) are a rare subpopulation of cancer cells that exhibit stem cell-like characteristics, including self-renewal and differentiation in a multi-stage lineage state via symmetric or asymmetric division, causing tumor initiation, heterogeneity, progression, and recurrence and posing a major challenge to current anticancer therapy. Despite the importance of CSCs in carcinogenesis and cancer progression, currently available anticancer therapeutics have limitations for eradicating CSCs. Moreover, the efficacy and therapeutic windows of currently available anti-CSC agents are limited, suggesting the necessity to optimize and develop a novel anticancer agent targeting CSCs. Ginseng has been traditionally used for enhancing immunity and relieving fatigue. As ginseng's long history of use has demonstrated its safety, it has gained attention for its potential pharmacological properties, including anticancer effects. Several studies have identified the bioactive principles of ginseng, such as ginseng saponin (ginsenosides) and non-saponin compounds (e.g., polysaccharides, polyacetylenes, and phenolic compounds), and their pharmacological activities, including antioxidant, anticancer, antidiabetic, antifatigue, and neuroprotective effects. Notably, recent reports have shown the potential of ginseng-derived compounds as anti-CSC agents. This review investigates the biology of CSCs and efforts to utilize ginseng-derived components for cancer treatment targeting CSCs, highlighting their role in overcoming current therapeutic limitations.
Collapse
Affiliation(s)
- Ji-Sun Lee
- Department of Molecular, Cell & Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Ho-Young Lee
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
18
|
Andrade AKDS, de Franca MNF, Santos JF, Macêdo NA, de Lucca Junior W, Scher R, Cavalcanti SCDH, Corrêa CB. Anti-migratory and cytotoxic effect of indole derivative in C6 glioma cells. Toxicol In Vitro 2024; 96:105786. [PMID: 38301920 DOI: 10.1016/j.tiv.2024.105786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 12/28/2023] [Accepted: 01/25/2024] [Indexed: 02/03/2024]
Abstract
Gliomas are among the most common primary malignant brain tumors. Despite advances in cancer treatment, survival is very low, so the discovery of new therapeutic agents is essential. In this context, indole is an important source for the development of new bioactive molecules. A pharmacological screening of ten indole derivatives was carried out to evaluate the cytotoxic capacity against three tumor cell lines. After pharmacological screening, three compounds were selected, based on their high capacity to reduce cell proliferation, and their IC50 values were determined. Compound 9 exhibited the highest cytotoxic activity (IC50 = 0.4 μg/mL) in gliomas (C6 cell line), and were selected for further experiments. C6 cells were treated with compound 9 to evaluate cellular mechanisms such as colony formation and cell migration capacity and morphological alterations. Compound 9 decreased clone formation (0.4 and 0.8 μg/mL), and inhibited migration (0.2-0.8 μg/mL) in C6 cells. Morphological changes in cells treated with the compound 9 were also observed, such as chromatin condensation, and disorganization in cellular stress beams. Indole derivatives had a cytotoxic effect on tumor cells, and compound 9 showed the best anti-proliferative and anti-migratory activity in glioma cells.
Collapse
Affiliation(s)
- Ana Karolina de Souza Andrade
- Physiological Sciences Graduate Program, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil; Morphology Department, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil
| | - Mariana Nobre Farias de Franca
- Health Science Graduate Program, Federal University of Sergipe, Aracaju, Sergipe, Brazil; Morphology Department, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil.
| | - Jileno Ferreira Santos
- Physiological Sciences Graduate Program, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil; Morphology Department, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil
| | | | | | - Ricardo Scher
- Morphology Department, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil
| | | | - Cristiane Bani Corrêa
- Physiological Sciences Graduate Program, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil; Health Science Graduate Program, Federal University of Sergipe, Aracaju, Sergipe, Brazil; Morphology Department, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil
| |
Collapse
|
19
|
Chen T, Ding L, Zhao M, Song S, Hou J, Li X, Li M, Yin K, Li X, Wang Z. Recent advances in the potential effects of natural products from traditional Chinese medicine against respiratory diseases targeting ferroptosis. Chin Med 2024; 19:49. [PMID: 38519984 PMCID: PMC10958864 DOI: 10.1186/s13020-024-00918-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 03/07/2024] [Indexed: 03/25/2024] Open
Abstract
Respiratory diseases, marked by structural changes in the airways and lung tissues, can lead to reduced respiratory function and, in severe cases, respiratory failure. The side effects of current treatments, such as hormone therapy, drugs, and radiotherapy, highlight the need for new therapeutic strategies. Traditional Chinese Medicine (TCM) offers a promising alternative, leveraging its ability to target multiple pathways and mechanisms. Active compounds from Chinese herbs and other natural sources exhibit anti-inflammatory, antioxidant, antitumor, and immunomodulatory effects, making them valuable in preventing and treating respiratory conditions. Ferroptosis, a unique form of programmed cell death (PCD) distinct from apoptosis, necrosis, and others, has emerged as a key area of interest. However, comprehensive reviews on how natural products influence ferroptosis in respiratory diseases are lacking. This review will explore the therapeutic potential and mechanisms of natural products from TCM in modulating ferroptosis for respiratory diseases like acute lung injury (ALI), asthma, pulmonary fibrosis (PF), chronic obstructive pulmonary disease (COPD), lung ischemia-reperfusion injury (LIRI), pulmonary hypertension (PH), and lung cancer, aiming to provide new insights for research and clinical application in TCM for respiratory health.
Collapse
Affiliation(s)
- Tian Chen
- College of Integrated Traditional Chinese and Western Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Lu Ding
- Northeast Asia Research Institute of Traditional Chinese Medicine, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, 130117, China
- Research Center of Traditional Chinese Medicine, College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, 130021, China
| | - Meiru Zhao
- College of Integrated Traditional Chinese and Western Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Siyu Song
- Northeast Asia Research Institute of Traditional Chinese Medicine, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, 130117, China
| | - Juan Hou
- College of Integrated Traditional Chinese and Western Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Xueyan Li
- College of Integrated Traditional Chinese and Western Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Min Li
- College of Integrated Traditional Chinese and Western Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Kai Yin
- College of Integrated Traditional Chinese and Western Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Xiangyan Li
- Northeast Asia Research Institute of Traditional Chinese Medicine, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, 130117, China.
| | - Zeyu Wang
- Northeast Asia Research Institute of Traditional Chinese Medicine, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, 130117, China.
| |
Collapse
|
20
|
Afzal M, Qais FA, Abduh NA, Christy M, Ayub R, Alarifi A. Identification of bioactive compounds of Zanthoxylum armatum as potential inhibitor of pyruvate kinase M2 (PKM2): Computational and virtual screening approaches. Heliyon 2024; 10:e27361. [PMID: 38495183 PMCID: PMC10943388 DOI: 10.1016/j.heliyon.2024.e27361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 02/26/2024] [Accepted: 02/28/2024] [Indexed: 03/19/2024] Open
Abstract
PKM2 (Pyruvate kinase M2) is the isoform of pyruvate kinase which is known to catalyse the last step of glycolysis that is responsible for energy production. This specific isoform is known to be highly expressed in certain cancerous conditions. Considering the role of this protein in various cancer conditions, we used PKM2 as a target protein to identify the potential compounds against this target. In this study, we have examined 96 compounds of Zanthoxylum armatum using an array of computational and in silico tools. The compounds were assessed for toxicity then their anticancer potential was predicted. The virtual screening was done with molecular docking followed by a detailed examination using molecular dynamics simulation. The majority of the compounds showed a higher probability of being antineoplastic. Based on toxicity, predicted anticancer potential, binding affinity, and binding site, three compounds (nevadensin, asarinin, and kaempferol) were selected as hit compounds. The binding energy of these compounds with PKM2 ranged from -7.7 to -8.3 kcal/mol and all hit compounds interact at the active site of the protein. The selected hit compounds formed a stable complex with PKM2 when simulated under physiological conditions. The dynamic analysis showed that these compounds remained attached to the active site till the completion of molecular simulation. MM-PBSA analysis showed that nevadensin exhibited a higher affinity towards PKM2 compared to asarinin and kaempferol. These compounds need to be assessed properties in vivo and in vitro to validate their efficacy.
Collapse
Affiliation(s)
- Mohd Afzal
- Department of Chemistry, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Faizan Abul Qais
- Department of Agricultural Microbiology, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh, UP, 202002, India
| | - Naaser A.Y. Abduh
- Department of Chemistry, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Maria Christy
- Department of Energy Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, South Korea
| | - Rashid Ayub
- Department of Science Technology and Innovation, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Abdullah Alarifi
- Department of Chemistry, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
21
|
Liu W, Wang Y, Xia L, Li J. Research Progress of Plant-Derived Natural Products against Drug-Resistant Cancer. Nutrients 2024; 16:797. [PMID: 38542707 PMCID: PMC10975298 DOI: 10.3390/nu16060797] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/04/2024] [Accepted: 03/04/2024] [Indexed: 01/04/2025] Open
Abstract
As one of the malignant diseases globally, cancer seriously endangers human physical and mental health because of its high morbidity and mortality. Conventional cancer treatment strategies, such as surgical resection and chemoradiotherapy, are effective at the early stage of cancer but have limited efficacy for advanced cancer. Along with cancer progress and treatment, resistance develops gradually within the population of tumor cells. As a consequence, drug resistance become the major cause that leads to disease progression and poor clinical prognosis in some patients. The mechanisms of cancer drug resistance are quite complex and involve various molecular and cellular mechanisms. Therefore, exploring the mechanisms and finding specific targets are becoming imperative to overcome drug resistance. In recent years, plant-derived natural products have been evaluated as potential therapeutic candidates against cancer with drug resistance due to low side effects and high anticancer efficacy. A growing number of studies have shown that natural products can achieve superior antitumor effects through multiple signaling pathways. The mechanisms include regulation of multiple drug resistance (MDR)-related genes, inhibition of the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) signaling pathway, induction of autophagy, and blockade of the cell cycle. This paper reviews the molecular and cellular mechanisms of cancer drug resistance, as well as the therapeutic effects and mechanisms of plant-derived natural products against cancer drug resistance. It provides references for developing therapeutic medication for drug-resistant cancer treatment with high efficacy and low side effects.
Collapse
Affiliation(s)
| | | | - Lijie Xia
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China; (W.L.); (Y.W.)
| | - Jinyao Li
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China; (W.L.); (Y.W.)
| |
Collapse
|
22
|
Fakhri S, Moradi SZ, Faraji F, Kooshki L, Webber K, Bishayee A. Modulation of hypoxia-inducible factor-1 signaling pathways in cancer angiogenesis, invasion, and metastasis by natural compounds: a comprehensive and critical review. Cancer Metastasis Rev 2024; 43:501-574. [PMID: 37792223 DOI: 10.1007/s10555-023-10136-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 09/07/2023] [Indexed: 10/05/2023]
Abstract
Tumor cells employ multiple signaling mediators to escape the hypoxic condition and trigger angiogenesis and metastasis. As a critical orchestrate of tumorigenic conditions, hypoxia-inducible factor-1 (HIF-1) is responsible for stimulating several target genes and dysregulated pathways in tumor invasion and migration. Therefore, targeting HIF-1 pathway and cross-talked mediators seems to be a novel strategy in cancer prevention and treatment. In recent decades, tremendous efforts have been made to develop multi-targeted therapies to modulate several dysregulated pathways in cancer angiogenesis, invasion, and metastasis. In this line, natural compounds have shown a bright future in combating angiogenic and metastatic conditions. Among the natural secondary metabolites, we have evaluated the critical potential of phenolic compounds, terpenes/terpenoids, alkaloids, sulfur compounds, marine- and microbe-derived agents in the attenuation of HIF-1, and interconnected pathways in fighting tumor-associated angiogenesis and invasion. This is the first comprehensive review on natural constituents as potential regulators of HIF-1 and interconnected pathways against cancer angiogenesis and metastasis. This review aims to reshape the previous strategies in cancer prevention and treatment.
Collapse
Affiliation(s)
- Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, 6734667149, Iran
| | - Seyed Zachariah Moradi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, 6734667149, Iran
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, 6734667149, Iran
| | - Farahnaz Faraji
- Department of Pharmaceutics, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Leila Kooshki
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, 6714415153, Iran
| | - Kassidy Webber
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, 5000 Lakewood Ranch Boulevard, Bradenton, FL, 34211, USA
| | - Anupam Bishayee
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, 5000 Lakewood Ranch Boulevard, Bradenton, FL, 34211, USA.
| |
Collapse
|
23
|
Sun K, Chen P, Zhang L, Lu Z, Jin Q. Deguelin inhibits the proliferation of human multiple myeloma cells by inducing apoptosis and G2/M cell cycle arrest: Involvement of Akt and p38 MAPK signalling pathway. ACTA PHARMACEUTICA (ZAGREB, CROATIA) 2024; 74:101-115. [PMID: 38554386 DOI: 10.2478/acph-2024-0003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/25/2023] [Indexed: 04/01/2024]
Abstract
Deguelin exhibits antiproliferative activity against various cancer cell types. Previous studies have reported that deguelin exhibits pro-apoptotic activity against human cancer cells. The current study aimed at further elaborating the anticancer effects of deguelin against multiple myeloma cells. Cell growth estimations were made through MTT assay. Phase contrast microscopy was used for the analysis of the viability of multiple myeloma cells. Colony formation from multiple myeloma cells was studied using a clonogenic assay. Antioxidative assays for determining levels of glutathione (GSH) and superoxide dismutase (SOD) were carried out after treating multiple myeloma cells with deguelin. The apoptosis of multiple myeloma cells was studied using AO/EB and Annexin V-FITC/PI staining methods. Multiple myeloma cell cycle analysis was performed through flow cytometry. mRNA expression levels were depicted using qRT-PCR. Migration and invasion of multiple myeloma cells were determined with the wound-healing and transwell assays, respectively. Deguelin specifically inhibited the multiple myeloma cell growth while the normal plasma cells were minimally affected. Multiple myeloma cells when treated with deguelin exhibited remarkably lower viability and colony-forming ability. Multiple myeloma cells treated with deguelin produced more SOD and had higher GSH levels. The multiple myeloma cell growth, migration, and invasion were significantly declined by in vitro administration of deguelin. In conclusion, deguelin treatment, when applied in vitro, induced apoptotic cell death and resulted in mitotic cessation at the G2/M phase through modulation of cell cycle regulatory mRNAs in multiple myeloma cells.
Collapse
Affiliation(s)
- Kening Sun
- Department of Orthopedics Ward 3 The General Hospital of Ningxia Medical University, Yinchuan Ningxia, China
| | - Ping Chen
- Medical Experiment Center, General Hospital of Ningxia Medical University, Ningxia, China
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Ningxia China
| | - Liang Zhang
- Department of Orthopedics Ward 3 The General Hospital of Ningxia Medical University, Yinchuan Ningxia, China
| | - Zhidong Lu
- Department of Orthopedics Ward 3 The General Hospital of Ningxia Medical University, Yinchuan Ningxia, China
| | - Qunhua Jin
- Department of Orthopedics Ward 3 The General Hospital of Ningxia Medical University, Yinchuan Ningxia, China
| |
Collapse
|
24
|
Tayeb BA, Kusuma IY, Osman AAM, Minorics R. Herbal compounds as promising therapeutic agents in precision medicine strategies for cancer: A systematic review. JOURNAL OF INTEGRATIVE MEDICINE 2024; 22:137-162. [PMID: 38462407 DOI: 10.1016/j.joim.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 01/30/2024] [Indexed: 03/12/2024]
Abstract
BACKGROUND The field of personalized medicine has gained increasing attention in cancer care, with the aim of tailoring treatment strategies to individual patients for improved outcomes. Herbal medicine, with its long-standing historical use and extensive bioactive compounds, offers a rich source of potential treatments for various diseases, including cancer. OBJECTIVE To provide an overview of the current knowledge and evidence associated with incorporating herbal compounds into precision medicine strategies for cancer diseases. Additionally, to explore the general characteristics of the studies included in the analysis, focusing on their key features and trends. SEARCH STRATEGY A comprehensive literature search was conducted from multiple online databases, including PubMed, Scopus, Web of Science, and CINAHL-EBSCO. The search strategy was designed to identify studies related to personalized cancer medicine and herbal interventions. INCLUSION CRITERIA Publications pertaining to cancer research conducted through in vitro, in vivo, and clinical studies, employing natural products were included in this review. DATA EXTRACTION AND ANALYSIS Two review authors independently applied inclusion and inclusion criteria, data extraction, and assessments of methodological quality. The quality assessment and biases of the studies were evaluated based on modified Jadad scales. A detailed quantitative summary of the included studies is presented, providing a comprehensive description of their key features and findings. RESULTS A total of 121 studies were included in this review for analysis. Some of them were considered as comprehensive experimental investigations both in vitro and in vivo. The majority (n = 85) of the studies included in this review were conducted in vitro, with 44 of them specifically investigating the effects of herbal medicine on animal models. Additionally, 7 articles with a combined sample size of 31,271 patients, examined the impact of herbal medicine in clinical settings. CONCLUSION Personalized medication can optimize the use of herbal medicine in cancer treatment by considering individual patient factors such as genetics, medical history, and other treatments. Additionally, active phytochemicals found in herbs have shown potential for inhibiting cancer cell growth and inducing apoptosis, making them a promising area of research in preclinical and clinical investigations. Please cite this article as: Tayeb BA, Kusuma IY, Osman AAM, Minorics R. Herbal compounds as promising therapeutic agents in precision medicine strategies for cancer: A systematic review. J Integr Med. 2024; 22(2): 137-162.
Collapse
Affiliation(s)
- Bizhar Ahmed Tayeb
- Institute of Pharmacodynamics and Biopharmacy, Faculty of Pharmacy, University of Szeged, 6720 Szeged, Hungary.
| | - Ikhwan Yuda Kusuma
- Institution of Clinical Pharmacy, Faculty of Pharmacy, University of Szeged, 6725 Szeged, Hungary; Pharmacy Study Program, Faculty of Health, Universitas Harapan Bangsa, Purwokerto 53182, Indonesia
| | - Alaa A M Osman
- Institute of Pharmacodynamics and Biopharmacy, Faculty of Pharmacy, University of Szeged, 6720 Szeged, Hungary; Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, University of Gezira, 20 Wad Madani, Sudan
| | - Renáta Minorics
- Institute of Pharmacodynamics and Biopharmacy, Faculty of Pharmacy, University of Szeged, 6720 Szeged, Hungary
| |
Collapse
|
25
|
Nazeam JA, El-Emam SZ. Middle Eastern Plants with Potent Cytotoxic Effect Against Lung Cancer Cells. J Med Food 2024; 27:198-207. [PMID: 38381516 DOI: 10.1089/jmf.2022.0098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024] Open
Abstract
Cancer is one of the leading causes of increasing global mortality with uprising health concerns and threats. Unfortunately, conventional chemotherapy has substantial side effects, limiting its relevance and prompting a quest for safe and efficient alternatives. For thousands of years, plants have provided a rich reservoir for curing a variety of ailments, including cancer. According to the World Health Organization, medicinal plants would be the best source of medications. However, only 25% of drugs in the present pharmacopoeia are derived from plants. Hence, further research into different plants is required to better understand their efficacy. Twenty extracts of widely distributed Middle Eastern plants were screened for the cytotoxic effect against lung cancer cell lines (A549). Eleven plants showed IC50 below 25 μg/mL, consequently, the bioactive extracts were further fractionated by graded precipitation using absolute ethanol. All fraction A (FA; crude polysaccharides precipitate) showed potent IC50, 0.2-5.5 μg/mL except the FA of Brassica juncea, Silybum marianum, and Phaseolus vulgaris, whereas FB fractions (filtrate) of Anastatica hierochuntica, Plantago ovate, Tussilago farfara, and Cucurbita moschata had lower efficacy than other fractions with IC50 values in the range of 0.1-7.7 μg/mL. The fractions of FA Taraxacum officinale and FB Ziziphus spina possess the most potent cytotoxic activity with IC50, 0.2 and 0.1 μg/mL, respectively. Moreover, cell cycle analysis of both fractions revealed an arrest at G1/S-phase and activation of apoptosis rather than necrosis as the mode of cell death. Therefore, T. officinale and Z. spina fractions may pave the way to manage lung carcinoma as an alternative and complementary food regimen.
Collapse
Affiliation(s)
- Jilan A Nazeam
- Department of Pharmacognosy, Faculty of Pharmacy, October 6 University, Giza, Egypt
| | - Soad Z El-Emam
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, October 6 University, Giza, Egypt
| |
Collapse
|
26
|
Singh J, Khanduja KL, Avti PK. Multi-target therapeutic modulation with natural compounds towards DNA repair MRN-checkpoint sensor genes (MRN-CSGs) and oncogenic miRNAs in breast cancer patients: a Clinico-Informatic study. Integr Biol (Camb) 2024; 16:zyae019. [PMID: 39568384 DOI: 10.1093/intbio/zyae019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 08/28/2024] [Accepted: 11/15/2024] [Indexed: 11/22/2024]
Abstract
Breast cancer, more prevalent in women, often arises due to abnormalities in the MRN-checkpoint sensor genes (MRN-CSG), responsible for DNA damage detection and repair. Abnormality in this complex is due to the suppression of various effectors such as siRNAs, miRNAs, and transcriptional factors responsible for breast tumor progression. This study analyzed breast tumor samples (n = 60) and identified four common miRNAs (miR-1-3p, miR-210-3p, miR-16-5p, miR-34a-5p) out of 12, exploring their interactions with MRN-CSG. The 3D structures of these miRNA-MRN-CSG complexes displayed strong thermodynamic stability. Screening 7711 natural compounds resulted in two natural compounds (F0870-0001 and F0922-0471) with the lowest ligand binding energies (ΔG = -8.4 to-11.6 kcal/mol), targeting two common miRNAs. Docking results showed that one natural compound (PubChem id-5 281 614) bound to all MRN-CSG components (ΔG = -6.2 to -7.3 kcal/mol), while F6782-0723 bound only to RAD50 and NBN. These compounds exhibited minimal dissociation constants (Kd and Ki) and thermodynamically stable minimum free energy (MMGBSA) values. Molecular dynamics simulations indicated highly stable natural compound-MRN-CSG complexes, with consistent RMSD, RMSF, and strong residual correlation. These top-selected compounds displayed robust intermolecular H-bonding, low carcinogenicity, low toxicity, and drug-like properties. Consequently, these compounds hold promise for regulating miRNA and MRN-CSG DNA repair mechanisms in breast cancer therapy. Insight Box: This study investigated breast tumor samples (n = 60) and identified four miRNAs (miR-1-3p, miR-210-3p, miR-16-5p, miR-34a-5p) that interact with MRN-checkpoint sensor genes (MRN-CSG), crucial for DNA damage repair. Screening 7711 natural compounds highlighted two compounds (F0870-0001 and F0922-0471) with the lowest binding energies (ΔG = -8.4 to -11.6 kcal/mol), targeting two common miRNAs (miR-1-3p and miR-34a-5p). Another natural compound (PubChem id-5 281 614, ΔG = -6.2 to -7.3 kcal/mol) bound all MRN-CSG components, while F6782-0723 targeted RAD50 and NBN. These compounds showed strong binding stability, favorable MMGBSA values, and minimal dissociation constants. Molecular dynamics simulations confirmed the stability and drug-like properties of these compounds, indicating their potential in breast cancer therapy by modulating miRNA and MRN-CSG DNA repair mechanisms.
Collapse
Affiliation(s)
- Jitender Singh
- Department of Biophysics, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh 160012India
| | - Krishan L Khanduja
- Department of Biophysics, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh 160012India
| | - Pramod K Avti
- Department of Biophysics, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh 160012India
| |
Collapse
|
27
|
Puyol McKenna P, Naughton PJ, Dooley JSG, Ternan NG, Lemoine P, Banat IM. Microbial Biosurfactants: Antimicrobial Activity and Potential Biomedical and Therapeutic Exploits. Pharmaceuticals (Basel) 2024; 17:138. [PMID: 38276011 PMCID: PMC10818721 DOI: 10.3390/ph17010138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/14/2024] [Accepted: 01/18/2024] [Indexed: 01/27/2024] Open
Abstract
The rapid emergence of multidrug-resistant pathogens worldwide has raised concerns regarding the effectiveness of conventional antibiotics. This can be observed in ESKAPE pathogens, among others, whose multiple resistance mechanisms have led to a reduction in effective treatment options. Innovative strategies aimed at mitigating the incidence of antibiotic-resistant pathogens encompass the potential use of biosurfactants. These surface-active agents comprise a group of unique amphiphilic molecules of microbial origin that are capable of interacting with the lipidic components of microorganisms. Biosurfactant interactions with different surfaces can affect their hydrophobic properties and as a result, their ability to alter microorganisms' adhesion abilities and consequent biofilm formation. Unlike synthetic surfactants, biosurfactants present low toxicity and high biodegradability and remain stable under temperature and pH extremes, making them potentially suitable for targeted use in medical and pharmaceutical applications. This review discusses the development of biosurfactants in biomedical and therapeutic uses as antimicrobial and antibiofilm agents, in addition to considering the potential synergistic effect of biosurfactants in combination with antibiotics. Furthermore, the anti-cancer and anti-viral potential of biosurfactants in relation to COVID-19 is also discussed.
Collapse
Affiliation(s)
- Patricia Puyol McKenna
- The Nutrition Innovation Centre for Food and Health (NICHE), School of Biomedical Sciences, Faculty of Life and Health Sciences, Ulster University, Coleraine BT52 1 SA, UK; (P.P.M.); (P.J.N.); (J.S.G.D.); (N.G.T.)
| | - Patrick J. Naughton
- The Nutrition Innovation Centre for Food and Health (NICHE), School of Biomedical Sciences, Faculty of Life and Health Sciences, Ulster University, Coleraine BT52 1 SA, UK; (P.P.M.); (P.J.N.); (J.S.G.D.); (N.G.T.)
| | - James S. G. Dooley
- The Nutrition Innovation Centre for Food and Health (NICHE), School of Biomedical Sciences, Faculty of Life and Health Sciences, Ulster University, Coleraine BT52 1 SA, UK; (P.P.M.); (P.J.N.); (J.S.G.D.); (N.G.T.)
| | - Nigel G. Ternan
- The Nutrition Innovation Centre for Food and Health (NICHE), School of Biomedical Sciences, Faculty of Life and Health Sciences, Ulster University, Coleraine BT52 1 SA, UK; (P.P.M.); (P.J.N.); (J.S.G.D.); (N.G.T.)
| | - Patrick Lemoine
- Nanotechnology and Integrated Bioengineering Centre (NIBEC), School of Engineering, Ulster University, Belfast BT15 1ED, UK;
| | - Ibrahim M. Banat
- Pharmaceutical Science Research Group, Biomedical Sciences Research Institute, Ulster University, Coleraine BT52 1SA, UK
| |
Collapse
|
28
|
Mostofa MG, Reza AA, Khan Z, Munira MS, Khatoon MM, Kabir SR, Sadik MG, Ağagündüz D, Capasso R, Kazi M, Alam AHMK. Apoptosis-inducing anti-proliferative and quantitative phytochemical profiling with in silico study of antioxidant-rich Leea aequata L. leaves. Heliyon 2024; 10:e23400. [PMID: 38170014 PMCID: PMC10759211 DOI: 10.1016/j.heliyon.2023.e23400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/24/2023] [Accepted: 12/03/2023] [Indexed: 01/05/2024] Open
Abstract
Natural products have been important parts of traditional medicine since ancient times, with various promising health effects. Leea aequata (L. aequata), a natural product, has been widely used for treating several diseases due to its promising pharmacological activities. Therefore, the present study aimed to explore the phytochemical profiling and molecular docking of the antioxidant-rich part of L. aequata leaves and its antiproliferative activity. L. aequata leaves were extracted with methanol, followed by fractionation with the respective solvents to obtain the petroleum ether, chloroform, ethyl acetate, and aqueous fractions. The antioxidant activity was evaluated by spectrophotometric methods. The cytotoxic and antiproliferative activities were detected using MTT colorimetric and confocal microscopy methods, respectively. Phytochemical compositions were analyzed using gas chromatography‒mass spectrometry analysis. Computer aided (molecular docking SwissADME, AdmetSAR and pass prediction) analyses were undertaken to sort out the best-fit phytochemicals present in the plant responsible for antioxidant and anticancer effects. Among the fractions, the ethyl acetate fraction was the most abundant polyphenol-rich fraction and showed the highest antioxidant, reducing power, and free radical scavenging activities. Compared to untreated MCF-7 cells, ethyl acetate fraction-treated MCF-7 cells showed an increase in apoptotic characteristics, such as membrane blebbing, chromatin condensation, and nuclear fragmentation, causing apoptosis and decreased proliferation of HeLa and MCF-7 cells. Furthermore, gas chromatography mass spectrometry data revealed that the ethyl acetate fraction contained 16 compounds, including methyl esters of long-chain fatty acids, which are the major chemical constituents. Moreover, hexadecanoic acid, methyl ester; 9-octadecenoic acid (Z)-, methyl ester; 9,12-octadecadienoic acid, methyl ester (Z, Z) and phenol, 2,4-bis(1,1-dimethylethyl) are known to have antioxidant and cytotoxic activity, as confirmed by computer-aided models. A strong correlation was observed between the antioxidant and polyphenolic contents and the anticancer activity. In conclusion, we explored the possibility that L. aequata could be a promising source of antioxidants and anticancer agents with a high phytochemical profile.
Collapse
Affiliation(s)
- Md Golam Mostofa
- Department of Pharmacy, University of Rajshahi, Rajshahi 6205, Bangladesh
- Department of Pharmacy, Gono Bishwabidyalay (University), Mirzanagar, Savar, Dhaka 1344, Bangladesh
| | - A.S.M. Ali Reza
- Department of Pharmacy, International Islamic University Chittagong, Chittagong 4318, Bangladesh
| | - Zidan Khan
- Department of Pharmacy, International Islamic University Chittagong, Chittagong 4318, Bangladesh
| | | | - Mst Mahfuza Khatoon
- Department of Pharmacy, Gono Bishwabidyalay (University), Mirzanagar, Savar, Dhaka 1344, Bangladesh
| | - Syed Rashel Kabir
- Department of Biochemistry and Molecular Biology, Rajshahi University, Rajshahi, 6205, Bangladesh
| | - Md Golam Sadik
- Department of Pharmacy, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - Duygu Ağagündüz
- Department of Nutrition and Dietetics, Gazi University, Emek, Ankara 06490, Turkey
| | - Raffaele Capasso
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy
| | - Mohsin Kazi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - AHM Khurshid Alam
- Department of Pharmacy, University of Rajshahi, Rajshahi 6205, Bangladesh
| |
Collapse
|
29
|
Mirra S, Marfany G. From Beach to the Bedside: Harnessing Mitochondrial Function in Human Diseases Using New Marine-Derived Strategies. Int J Mol Sci 2024; 25:834. [PMID: 38255908 PMCID: PMC10815353 DOI: 10.3390/ijms25020834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/04/2024] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
Mitochondria are double-membrane organelles within eukaryotic cells that act as cellular power houses owing to their ability to efficiently generate the ATP required to sustain normal cell function. Also, they represent a "hub" for the regulation of a plethora of processes, including cellular homeostasis, metabolism, the defense against oxidative stress, and cell death. Mitochondrial dysfunctions are associated with a wide range of human diseases with complex pathologies, including metabolic diseases, neurodegenerative disorders, and cancer. Therefore, regulating dysfunctional mitochondria represents a pivotal therapeutic opportunity in biomedicine. Marine ecosystems are biologically very diversified and harbor a broad range of organisms, providing both novel bioactive substances and molecules with meaningful biomedical and pharmacological applications. Recently, many mitochondria-targeting marine-derived molecules have been described to regulate mitochondrial biology, thus exerting therapeutic effects by inhibiting mitochondrial abnormalities, both in vitro and in vivo, through different mechanisms of action. Here, we review different strategies that are derived from marine organisms which modulate specific mitochondrial processes or mitochondrial molecular pathways and ultimately aim to find key molecules to treat a wide range of human diseases characterized by impaired mitochondrial function.
Collapse
Affiliation(s)
- Serena Mirra
- Stazione Zoologica Anton Dohrn, Department of Biology and Evolution of Marine Organisms, Villa Comunale, 80121 Naples, Italy;
| | - Gemma Marfany
- Departament of Genetics, Microbiology and Statistics, Universitat de Barcelona, Avda. Diagonal 643, 08028 Barcelona, Spain
- Centro de Investigación Biomédica en Red Enfermedades Raras (CIBERER), Instituto de Salud Carlos III (ISCIII), Universitat de Barcelona, 08028 Barcelona, Spain
- Institute of Biomedicine (IBUB, IBUB-IRSJD), Universitat de Barcelona, 08028 Barcelona, Spain
| |
Collapse
|
30
|
Alshwyeh HA, Al-Sheikh WMS, Rasedee A, Alnasser SM, Al-Qubaisi MS, Ibrahim WN. Mangifera indica L. kernel ethanol extract inhibits cell viability and proliferation with induction of cell cycle arrest and apoptosis in lung cancer cells. Mol Cell Oncol 2024; 11:2299046. [PMID: 38196561 PMCID: PMC10773660 DOI: 10.1080/23723556.2023.2299046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 12/20/2023] [Indexed: 01/11/2024]
Abstract
In this study, we investigated the effects of an ethanolic extract of Mangifera indica L. kernel on the viability and proliferation of human lung cancer cells. We utilized MTT and BrdU cell proliferation assays, morphological assessments, cell cycle analyses, and apoptosis assays to investigate the extract's effects on lung cancer (A549 and NCI-H292) and normal lung (MRC-5) cells. The extract demonstrated a toxicity toward cancer cells compared to normal cells with dose-dependent anti-proliferative effect on lung cancer cells. The extract also caused differential effects on the cell cycle, inducing G0/G1 arrest and increasing the Sub-G1 population in both lung cancer and normal lung cells. Notably, the extract induced loss of membrane integrity, shrinkage, membrane blebbing, and apoptosis in lung cancer cells, while normal cells exhibited only early apoptosis. Furthermore, the extract exhibited higher toxicity towards NCI-H292 cells, followed by A549 and normal MRC-5 cells in decreasing order of potency. Our results suggest that the ethanolic extract of M. indica L. kernel has significant potential as a novel therapeutic agent for treating lung cancer cells, given its ability to induce apoptosis in cancer cell lines while causing minimal harm to normal cells.
Collapse
Affiliation(s)
- Hussah Abdullah Alshwyeh
- Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University (IAU), Dammam, Saudi Arabia
- Basic & Applied Scientific Research Center, College of Science, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | | | - Abdullah Rasedee
- Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Sulaiman Mohammed Alnasser
- Department of Pharmacology and Toxicology, Unaizah College of Pharmacy, Qassim University, Buraydah, Saudi Arabia
| | | | - Wisam Nabeel Ibrahim
- Department of Biomedical Science, College of Health Sciences, QU health, Qatar University, Doha, Qatar
| |
Collapse
|
31
|
Alkan AH, Ensoy M, Cansaran-Duman D. Strategic and Innovative Roles of lncRNAs Regulated by Naturally-derived Small Molecules in Cancer Therapy. Curr Med Chem 2024; 31:6672-6691. [PMID: 37921177 DOI: 10.2174/0109298673264372230919102758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 07/22/2023] [Accepted: 08/17/2023] [Indexed: 11/04/2023]
Abstract
In the field of precision and personalized medicine, the next generation sequencing method has begun to take an active place as genome-wide screening applications in the diagnosis and treatment of diseases. Studies based on the determination of the therapeutic efficacy of personalized drug use in cancer treatment in the size of the transcriptome and its extension, lncRNA, have been increasing rapidly in recent years. Targeting and/or regulating noncoding RNAs (ncRNAs) consisting of long noncoding RNAs (lncRNAs) are promising strategies for cancer treatment. Within the scope of rapidly increasing studies in recent years, it has been shown that many natural agents obtained from biological organisms can potentially alter the expression of many lncRNAs associated with oncogenic functions. Natural agents include effective small molecules that provide anti-cancer effects and have been used as chemotherapy drugs or in combination with standard anti-cancer drugs used in routine treatment. In this review, it was aimed to provide detailed information about the potential of natural agents to regulate and/or target non-coding RNAs and their mechanisms of action to provide an approach for cancer therapy. The discovery of novel anti-cancer targets and subsequent development of effective drugs or combination strategies that are still needed for most cancers will be promising for cancer treatment.
Collapse
Affiliation(s)
- Ayşe Hale Alkan
- Biotechnology Institute, Ankara University, Keçiören, Ankara, Turkey
- Department of Molecular Biology and Genetics, Faculty of Science, Bartın University, Bartın, Turkey
| | - Mine Ensoy
- Biotechnology Institute, Ankara University, Keçiören, Ankara, Turkey
| | | |
Collapse
|
32
|
Khabour OF, Abuhammad S, Alzoubi KH, Alkofahi AS. Coriandrum sativum and Aloysia triphylla can Protect the Development of Cancer: An in Vivo Study using Mouse Painting Assay. Curr Cancer Drug Targets 2024; 24:455-462. [PMID: 37592785 DOI: 10.2174/1568009623666230817101757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/15/2023] [Accepted: 07/18/2023] [Indexed: 08/19/2023]
Abstract
AIM The aim of this study is to examine the protective properties of Coriandrum sativum and Aloysia triphylla against the development of skin cancer. METHODS The skin cancer balb/c mouse model was utilized in the study. Plant extracts were administered to animals using oral gavage. In addition, skin cancer was induced using 7,12-dimethylbenz( a) anthracene (DMBA). RESULTS The study found that A. triphylla extract reduced both tumor incidence (P<0.01) and papilloma frequency (P<0.001) and delayed the onset of tumor development (P<0.001). The A. triphylla extract did not affect tumor size in animals. C. sativum leaf extract reduced the number of tumors per animal, the incidence of tumors, and the frequency of papilloma (P<0.05). In addition, it delayed (P<0.01) the onset of tumors. Treatment of animals with C. sativum seed extract reduced the frequency of papilloma (P<0.05) and delayed the onset of tumors (P<0.05). However, the examined plant extracts did not impact the size of tumors induced by DMBA (P>0.05). CONCLUSION The findings of this study revealed that C. sativum and A. triphylla could protect against cancer development as indicated using the animal model of skin painting assay.
Collapse
Affiliation(s)
- Omar F Khabour
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, Jordan University of Science and Technology, Irbid, Jordan
| | - Sawsan Abuhammad
- Department of Maternal and Child Health, Jordan University of Science and Technology, Irbid, Jordan
| | - Karem H Alzoubi
- Department of Clinical Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - Ahmad S Alkofahi
- Department of Medicinal Chemistry and Pharmacognosy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, 22110, Jordan
| |
Collapse
|
33
|
Zhang M, Ji X, Li Y, Chen X, Wu X, Tan R, Jiang H. Anthriscus sylvestris: An overview on Bioactive Compounds and Anticancer Mechanisms from a Traditional Medicinal Plant to Modern Investigation. Mini Rev Med Chem 2024; 24:1162-1176. [PMID: 38288817 DOI: 10.2174/0113895575271848231116095447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/20/2023] [Accepted: 10/05/2023] [Indexed: 07/16/2024]
Abstract
Anthriscus sylvestris (L.) Hoffm. Gen. is a biennial or perennial herb commonly found in China. It has a long history of use in traditional Chinese medicine to treat various ailments such as cough, gastric disorders, spleen deficiency, and limb weakness. Recently, its potential as an anticancer agent has gained considerable attention and has been the subject of extensive research focusing on extract efficacy, identification of active compounds, and proposed molecular mechanisms. Nevertheless, further high-quality research is still required to fully evaluate its potential as an anticancer drug. This review aims to comprehensively summarize the anticancer properties exhibited by the active components found in Anthriscus sylvestris. We conducted a comprehensive search, collation, and analysis of published articles on anticancer activity and active compounds of A. sylvestris using various databases that include, but are not limited to, PubMed, Web of Science, Science Direct and Google Scholar. The primary chemical composition of A. sylvestris consists of phenylpropanoids, flavonoids, steroids, fatty acids, and organic acids, showcasing an array of pharmacological activities like anticancer, antioxidant, anti-aging, and immunoregulatory properties. Thus, this review highlights the active compounds isolated from A. sylvestris extracts, which provide potential leads for the development of novel anticancer drugs and a better understanding of the plant's pharmacological effects, particularly its anticancer mechanism of action.
Collapse
Affiliation(s)
- Mengyu Zhang
- School of Life Science and Engineering, Southwest Jiaotong University, Jinniu District, Sichuan Province, Chengdu 610031, P.R. China
| | - Xiaoyun Ji
- School of Life Science and Engineering, Southwest Jiaotong University, Jinniu District, Sichuan Province, Chengdu 610031, P.R. China
| | - Yuxin Li
- School of Life Science and Engineering, Southwest Jiaotong University, Jinniu District, Sichuan Province, Chengdu 610031, P.R. China
| | - Xin Chen
- Department of Laboratory Medicine, The Third People's Hospital of Chengdu/ Affiliated Hospital of Southwest Jiaotong University, Chengdu 610031, P.R. China
| | - Xiaoqing Wu
- School of Life Science and Engineering, Southwest Jiaotong University, Jinniu District, Sichuan Province, Chengdu 610031, P.R. China
| | - Rui Tan
- School of Life Science and Engineering, Southwest Jiaotong University, Jinniu District, Sichuan Province, Chengdu 610031, P.R. China
| | - Hezhong Jiang
- School of Life Science and Engineering, Southwest Jiaotong University, Jinniu District, Sichuan Province, Chengdu 610031, P.R. China
| |
Collapse
|
34
|
Dong W, Wang X, Qian S, Wang Y, Zhao C. Regio-selective synthesis and activity research on 7-icaritin norcantharidin conjugates. Nat Prod Res 2024; 38:311-319. [PMID: 36095033 DOI: 10.1080/14786419.2022.2121828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 09/02/2022] [Accepted: 09/02/2022] [Indexed: 10/14/2022]
Abstract
Due to complexity of tumor diseases and resistance of targeted drug, targeted drug usually cannot meet the needs of cancer treatment. Therefore, the conjugate constructed by two anticancer agents maybe a better solution for the tumor diseases. As natural anticancer agents, icaritin and norcantharidin are selected for the construction of conjugate. In the condition of EDCI/DMAP, icaritin is reacted with norcantharidin esters to give the desired 7-esters selectively in a moderate yield. MTT method was used to test the cytotoxicity and intensity on Hep G2 and MCF-7 in vitro. Some of the compounds (4a, 4i and 4j) show a better inhibition against Hep G2 and MCF-7 cell lines in vitro, and are deserved to be a potential drug candidate to develop in vivo.
Collapse
Affiliation(s)
- Weiwei Dong
- School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Xianheng Wang
- School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Shuang Qian
- School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Yuhe Wang
- Department of Clinical Pharmacy, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Changkuo Zhao
- School of Pharmacy, Zunyi Medical University, Zunyi, China
| |
Collapse
|
35
|
Lee JH, Choi JH, Lee KM, Lee MW, Ku JL, Oh DC, Shin YH, Kim DH, Cho IR, Paik WH, Ryu JK, Kim YT, Lee SH, Lee SK. Antiproliferative Activity of Piceamycin by Regulating Alpha-Actinin-4 in Gemcitabine-Resistant Pancreatic Cancer Cells. Biomol Ther (Seoul) 2024; 32:123-135. [PMID: 38148558 PMCID: PMC10762279 DOI: 10.4062/biomolther.2023.109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 06/22/2023] [Accepted: 07/05/2023] [Indexed: 12/28/2023] Open
Abstract
Although gemcitabine-based regimens are widely used as an effective treatment for pancreatic cancer, acquired resistance to gemcitabine has become an increasingly common problem. Therefore, a novel therapeutic strategy to treat gemcitabine-resistant pancreatic cancer is urgently required. Piceamycin has been reported to exhibit antiproliferative activity against various cancer cells; however, its underlying molecular mechanism for anticancer activity in pancreatic cancer cells remains unexplored. Therefore, the present study evaluated the antiproliferation activity of piceamycin in a gemcitabine-resistant pancreatic cancer cell line and patient-derived pancreatic cancer organoids. Piceamycin effectively inhibited the proliferation and suppressed the expression of alpha-actinin-4, a gene that plays a pivotal role in tumorigenesis and metastasis of various cancers, in gemcitabine-resistant cells. Long-term exposure to piceamycin induced cell cycle arrest at the G0/G1 phase and caused apoptosis. Piceamycin also inhibited the invasion and migration of gemcitabine-resistant cells by modulating focal adhesion and epithelial-mesenchymal transition biomarkers. Moreover, the combination of piceamycin and gemcitabine exhibited a synergistic antiproliferative activity in gemcitabine-resistant cells. Piceamycin also effectively inhibited patient-derived pancreatic cancer organoid growth and induced apoptosis in the organoids. Taken together, these findings demonstrate that piceamycin may be an effective agent for overcoming gemcitabine resistance in pancreatic cancer.
Collapse
Affiliation(s)
- Jee-Hyung Lee
- Department of Internal Medicine and Liver Research Institute, Seoul National University Hospital, College of Medicine, Seoul National University, Seoul 03080, Republic of Korea
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Jin Ho Choi
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea
| | - Kyung-Min Lee
- Department of Internal Medicine and Liver Research Institute, Seoul National University Hospital, College of Medicine, Seoul National University, Seoul 03080, Republic of Korea
| | - Min Woo Lee
- Department of Internal Medicine and Liver Research Institute, Seoul National University Hospital, College of Medicine, Seoul National University, Seoul 03080, Republic of Korea
| | - Ja-Lok Ku
- Department of Biomedical Sciences, Korean Cell Line Bank, Laboratory of Cell Biology and Cancer Research Institute, College of Medicine, Seoul National University, Seoul 03080, Republic of Korea
| | - Dong-Chan Oh
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Yern-Hyerk Shin
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Dae Hyun Kim
- Dxome Co. Ltd., Seongnam 13558, Republic of Korea
| | - In Rae Cho
- Department of Internal Medicine and Liver Research Institute, Seoul National University Hospital, College of Medicine, Seoul National University, Seoul 03080, Republic of Korea
| | - Woo Hyun Paik
- Department of Internal Medicine and Liver Research Institute, Seoul National University Hospital, College of Medicine, Seoul National University, Seoul 03080, Republic of Korea
| | - Ji Kon Ryu
- Department of Internal Medicine and Liver Research Institute, Seoul National University Hospital, College of Medicine, Seoul National University, Seoul 03080, Republic of Korea
| | - Yong-Tae Kim
- Department of Internal Medicine and Liver Research Institute, Seoul National University Hospital, College of Medicine, Seoul National University, Seoul 03080, Republic of Korea
| | - Sang Hyub Lee
- Department of Internal Medicine and Liver Research Institute, Seoul National University Hospital, College of Medicine, Seoul National University, Seoul 03080, Republic of Korea
| | - Sang Kook Lee
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
36
|
Saha C, Naskar R, Chakraborty S. Antiviral Flavonoids: A Natural Scaffold with Prospects as Phytomedicines against SARS-CoV2. Mini Rev Med Chem 2024; 24:39-59. [PMID: 37138419 DOI: 10.2174/1389557523666230503105053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 03/01/2023] [Accepted: 03/13/2023] [Indexed: 05/05/2023]
Abstract
Flavonoids are vital candidates to fight against a wide range of pathogenic microbial infections. Due to their therapeutic potential, many flavonoids from the herbs of traditional medicine systems are now being evaluated as lead compounds to develop potential antimicrobial hits. The emergence of SARS-CoV-2 caused one of the deadliest pandemics that has ever been known to mankind. To date, more than 600 million confirmed cases of SARS-CoV2 infection have been reported worldwide. Situations are worse due to the unavailability of therapeutics to combat the viral disease. Thus, there is an urgent need to develop drugs against SARS-CoV2 and its emerging variants. Here, we have carried out a detailed mechanistic analysis of the antiviral efficacy of flavonoids in terms of their potential targets and structural feature required for exerting their antiviral activity. A catalog of various promising flavonoid compounds has been shown to elicit inhibitory effects against SARS-CoV and MERS-CoV proteases. However, they act in the high-micromolar regime. Thus a proper leadoptimization against the various proteases of SARS-CoV2 can lead to high-affinity SARS-CoV2 protease inhibitors. To enable lead optimization, a quantitative structure-activity relationship (QSAR) analysis has been developed for the flavonoids that have shown antiviral activity against viral proteases of SARS-CoV and MERS-CoV. High sequence similarities between coronavirus proteases enable the applicability of the developed QSAR to SARS-CoV2 proteases inhibitor screening. The detailed mechanistic analysis of the antiviral flavonoids and the developed QSAR models is a step forward toward the development of flavonoid-based therapeutics or supplements to fight against COVID-19.
Collapse
Affiliation(s)
- Chiranjeet Saha
- Amity Institute of Biotechnology, Amity University, Kolkata, 700135, India
| | - Roumi Naskar
- Amity Institute of Biotechnology, Amity University, Kolkata, 700135, India
| | - Sandipan Chakraborty
- Center for Innovation in Molecular and Pharmaceutical Sciences (CIMPS), Dr. Reddy's Institute of Life Sciences, University of Hyderabad Campus, Gachibowli, Hyderabad, 500046, India
| |
Collapse
|
37
|
Sun CX, Li DH, Xu YP, Yang ZF, Wei LY, Gao YM, Liu Y, Yan CH, Li YZ. Hua-Zhuo-Jie-Du Decoction Combined with Cisplatin Inhibits the Development of Gastric Cancer Cells by Regulating Immune and Autophagy Signaling. Biol Pharm Bull 2024; 47:1823-1831. [PMID: 39522975 DOI: 10.1248/bpb.b24-00256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Host immunity and autophagy of cancer cells markedly impact the development of gastric cancer. Hua-Zhuo-Jie-Du decoction (TDP) has been used in gastritis clinically. This study aimed to evaluate the effects of TDP combined with cisplatin (DDP) on gastric cancer and explore the molecular mechanism. A total of 16 BALB/c nude mice were used to model the SGC7901 cells xenograft and treated with TDP and DDP or both, with the model group as the control. Hematoxylin-Eosin (H&E) and terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labeling (TUNEL) staining were performed, and the expression levels of CD31 and Ki-67 were quantified by immunohistochemistry staining. Additionally, cyclooxygenase (COX)-2, matrix metalloproteinas (MMP)-2, and MMP-9 expression levels were quantified using quantitative real-time PCR (qRT-PCR) and Western blotting (WB). WB was used to determine Cleaved-caspase3, Beclin-1, LC3B, and p-p62 levels. Lastly, flow cytometry was employed to evaluate immune responses in mice. TDP and DDP significantly decreased tumor weight and nuclear division, resulting in loosely distributed cells. Besides, TDP and DDP down-regulated the protein expression levels of Ki-67, CD31, COX-2, MMP-2, and MMP-9, as well as decreased the number of CD4+ IL-17+ cells. Conversely, TDP and DDP up-regulated Cleaved-caspase3 expression and the proportion of CD3+/CD4+ and CD8+/CD3+ cells. Notably, optimal effects were achieved using the combination of DDP and TDP. Furthermore, DDP increased the LCII/LCI ratio and the Beclin-1 levels while down-regulating p62 levels. However, TDP alleviated these effects. These results collectively indicated that the combination of TDP with DDP can inhibit the development of gastric cancer cells by mediating the immune and autophagy signaling pathways.
Collapse
Affiliation(s)
| | - De-Hui Li
- Second Oncology, Hebei Province Hospital of TCM
| | - Ya-Pei Xu
- Department of Digestive Endoscopy, Hebei Province Hospital of TCM
| | - Zhu-Feng Yang
- Department of Digestive Endoscopy, Hebei Province Hospital of TCM
| | - Li-Ying Wei
- Second Oncology, Hebei Province Hospital of TCM
| | | | - Yi Liu
- Second Oncology, Hebei Province Hospital of TCM
| | - Cui-Huan Yan
- College of Integrated Chinese and Western Medicine, Hebei University of Chinese Medicine
| | - Yong-Zhang Li
- Department of Urology, Hebei Province Hospital of Chinese Medicine
| |
Collapse
|
38
|
Silva CA, Véras JH, Ventura JA, de Melo Bisneto AV, de Oliveira MG, Cardoso Bailão EFL, E Silva CR, Cardoso CG, da Costa Santos S, Chen-Chen L. Chemopreventive effect and induction of DNA repair by oenothein B ellagitannin isolated from leaves of Eugenia uniflora in Swiss Webster treated mice. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2023; 86:929-941. [PMID: 37728073 DOI: 10.1080/15287394.2023.2259425] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
Abstract
Oenothein B (OeB) is a dimeric ellagitannin with potent antioxidative, antitumor, immunomodulatory, and anti-inflammatory properties. Despite the promising activities of OeB, studies examining the genotoxic or protective effects of this ellagitannin on DNA are scarce. Therefore, to further comprehensively elucidate the chemopreventive profile of OeB, the aim of this study was to evaluate the mutagenic and antimutagenic actions of OeB using Salmonella typhimurium strains with the Ames test. The micronucleus (MN) test and comet assay were used to assess the anticytotoxic and antigenotoxic effects of OeB on mouse bone marrow cells following differing treatments (pre-, co-, and post-treatment) in response to cyclophosphamide (CPA)-induced DNA damage. In addition, histopathological analyses were performed to assess liver and kidney tissues of Swiss Webster treated mice. Our results did not detect mutagenic or antimutagenic activity attributed to OeB at any concentration in the Ames test. Regarding the MN test, data showed that this ellagitannin exerted antigenotoxic and anticytotoxic effects against CPA-induced DNA damage under all treatment conditions. However, no anticytotoxic action was observed in MN test after pre-treatment with the highest doses of OeB. In addition, OeB demonstrated antigenotoxic effects in the comet assay for all treatments. Histopathological analyses indicated that OeB attenuated the toxic effects of CPA in mouse liver and kidneys. These findings suggest that OeB exerted a chemoprotective effect following pre- and co-treatments and a DNA repair action in post-treatment experiments. Our findings indicate that OeB protects DNA against CPA-induced damaging agents and induces post-damage DNA repair.
Collapse
Affiliation(s)
| | | | - Joyce Aves Ventura
- Institute of Biological Sciences, Federal University of Goiás, Goiânia-GO, Brazil
| | | | | | | | | | - Clever Gomes Cardoso
- Institute of Biological Sciences, Federal University of Goiás, Goiânia-GO, Brazil
| | | | - Lee Chen-Chen
- Institute of Biological Sciences, Federal University of Goiás, Goiânia-GO, Brazil
| |
Collapse
|
39
|
Aliabadi A, Khanniri E, Mahboubi-Rabbani M, Bayanati M. Dual COX-2/15-LOX inhibitors: A new avenue in the prevention of cancer. Eur J Med Chem 2023; 261:115866. [PMID: 37862815 DOI: 10.1016/j.ejmech.2023.115866] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 10/07/2023] [Accepted: 10/09/2023] [Indexed: 10/22/2023]
Abstract
Dual cyclooxygenase 2/15-lipoxygenase inhibitors constitute a valuable alternative to classical non-steroidal anti-inflammatory drugs (NSAIDs) and selective COX-2 (cyclooxygenase-2) inhibitors for the treatment of inflammatory diseases, as well as preventing the cancer. Indeed, these latter present diverse side effects, which are reduced or absent in dual-acting agents. In this review, COX-2 and 15-LOX (15-lipoxygenase) pathways are first described in order to highlight the therapeutic interest of designing such compounds. Various structural families of dual inhibitors are illustrated. This study discloses various structural families of dual 15-LOX/COX-2 inhibitors, thus pave the way to design potentially-active anticancer agents with balanced dual inhibition of these enzymes.
Collapse
Affiliation(s)
- Ali Aliabadi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Elham Khanniri
- Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Mahboubi-Rabbani
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Maryam Bayanati
- Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
40
|
Abdoul-Latif FM, Ainane A, Houmed Aboubaker I, Mohamed J, Ainane T. An Overview of Cancer in Djibouti: Current Status, Therapeutic Approaches, and Promising Endeavors in Local Essential Oil Treatment. Pharmaceuticals (Basel) 2023; 16:1617. [PMID: 38004482 PMCID: PMC10674319 DOI: 10.3390/ph16111617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 10/24/2023] [Accepted: 10/31/2023] [Indexed: 11/26/2023] Open
Abstract
Djibouti, a developing economy, grapples with significant socioeconomic obstacles and the prevalence of infectious pathologies, including certain forms of neoplasms. These challenges are exacerbated by limited access to affordable medical technologies for diagnosis, coupled with a lack of preventive interventions, particularly in disadvantaged areas. The attention devoted to local phytotherapeutic treatments underscores the uniqueness of Djibouti's flora, resulting from its distinctive geographical position. International focus specifically centers on harnessing this potential as a valuable resource, emphasizing the phytoconstituents used to counter pathologies, notably carcinomas. This comprehensive overview covers a broad spectrum, commencing with an examination of the current state of knowledge, namely an in-depth investigation of oncological risk factors. Essential elements of control are subsequently studied, highlighting the fundamental prerequisites for effective management. The significance of dietary habits in cancer prevention and support is explored in depth, while traditional methods are examined, highlighting the cultural significance of indigenous essential oil therapies and encouraging further research based on the promising results.
Collapse
Affiliation(s)
- Fatouma Mohamed Abdoul-Latif
- Medicinal Research Institute, Center for Studies and Research of Djibouti, IRM-CERD, Route de l’Aéroport, Haramous, Djibouti P.O. Box 486, Djibouti;
| | - Ayoub Ainane
- Superior School of Technology of Khenifra (EST-Khenifra), University of Sultan Moulay Slimane, P.O. Box 170, Khenifra 54000, Morocco; (A.A.); (T.A.)
| | | | - Jalludin Mohamed
- Medicinal Research Institute, Center for Studies and Research of Djibouti, IRM-CERD, Route de l’Aéroport, Haramous, Djibouti P.O. Box 486, Djibouti;
| | - Tarik Ainane
- Superior School of Technology of Khenifra (EST-Khenifra), University of Sultan Moulay Slimane, P.O. Box 170, Khenifra 54000, Morocco; (A.A.); (T.A.)
| |
Collapse
|
41
|
Fathima Hinaz ZH, Pragya S, Ezhilarasan D, Shree Harini K. Anticancer Potential of Farnesol Against Human Osteosarcoma Saos-2 Cells and Human Colorectal Carcinoma HCT-116 Cells. Cureus 2023; 15:e49372. [PMID: 38149135 PMCID: PMC10750447 DOI: 10.7759/cureus.49372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 11/24/2023] [Indexed: 12/28/2023] Open
Abstract
INTRODUCTION Increased colorectal carcinoma (CRC) and osteosarcoma prevalence, low survival rate, poor prognosis, and the limitations of existing anticancer therapies like side effects of drugs, non-specificity, short half-life, etc., pose a need for novel anticancer drugs. Farnesol, an organic sesquiterpene compound, found in the essential oils of various plants has been shown to possess antioxidant, anti-inflammatory, and anticancer properties. However, the anticancer effect of farnesol against CRC and osteosarcoma has not yet been adequately elucidated. AIM The aim of the study was to analyze the anticancer effects of farnesol against human osteosarcoma and CRC cell lines. MATERIALS AND METHODS Human osteosarcoma (Saos-2) and colorectal carcinoma (HCT-116) cell lines were procured and cultured at 37oC and 5% CO2. The cells were treated with 10, 20, 40, 60, 80, and 100 µM/ml and 20, 40, 60, 80, 100, and 120 µM/ml of farnesol for 24 hours, respectively. 3-(4,5-dimethylthiazol-2-yl)-2,5 diphenyl tetrazolium bromide assay was performed to assess the cytotoxicity of farnesol on Saos-2 and HCT-116 cells. Acridine orange/ethidium bromide staining was carried out to analyze apoptosis. 4',6-diamidino-2-phenylindole staining was done to observe the nuclear changes. Dichloro-dihydro-fluorescein diacetate staining was performed to assess the farnesol-induced reactive oxygen species (ROS)-mediated cell death. RESULTS Farnesol reduced the viability and proliferation of Saos-2 and HCT-116 cells in a dose-dependent manner. Farnesol was able to alter the cellular and nuclear morphology of Saos-2 and HCT-116 cells, promoting cell death. Farnesol-induced apoptosis in human osteosarcoma and colorectal carcinoma cell lines. Early apoptosis was observed in farnesol-treated HCT-116 cells. Additionally, ROS-mediated apoptotic cell death was reported in Saos-2 cells. CONCLUSION Farnesol has the potential to induce cytotoxicity against human osteosarcoma and CRC cell lines.
Collapse
Affiliation(s)
- Zakir Hussain Fathima Hinaz
- Dentistry, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| | - Santhosh Pragya
- Dentistry, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| | - Devaraj Ezhilarasan
- Pharmacology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| | - Karthik Shree Harini
- Pharmacology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| |
Collapse
|
42
|
Khuda F, Zahir I, Khalil AAK, Ali S, Ullah N, Albariqi AH, Ahn MJ, Shafique M, Mehtap Büyüker S, Almawash S. Preparation, Characterization, and Evaluation of Physcion Nanoparticles for Enhanced Oral Bioavailability: An Attempt to Improve Its Antioxidant and Anticancer Potential. ACS OMEGA 2023; 8:33955-33965. [PMID: 37744808 PMCID: PMC10515591 DOI: 10.1021/acsomega.3c04821] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 08/29/2023] [Indexed: 09/26/2023]
Abstract
This study aims to enhance the dissolution rate of a poorly water-soluble drug physcion by producing its nanoparticles (NPs) using an antisolvent precipitation with a syringe pump (APSP) method and to assess its antioxidant and cytotoxic potential. The NPs were prepared using a simple and cost-effective APSP method and subsequently characterized by different analytical techniques including dynamic light scattering (DLS), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and X-ray powder diffractometry (XRD). They were also subjected to solubility and dissolution studies, and different parameters such as dissolution efficiency (DE), mean dissolution time (MDT), and difference (f1) and similarity factors (f2) were determined. Furthermore, physcion and its NPs were investigated for antioxidant and cytotoxic effects using various in vitro assays. SEM and DLS analysis indicated that the average size of physcion NPs was 110 and 195 ± 5.6 nm, respectively. The average ζ-potential and polydispersibility index (PDI) of the prepared NPs were -22.5 mV and 0.18, respectively, showing excellent dispersibility. XRD confirmed the amorphous nature of physcion NPs. The solubility and dissolution rates of NPs were significantly higher than those of the original powder. The antioxidant potential studied by the (DPPH), FRAP, and H2O2 assays was greater for physcion NPs than that for the raw powder. The IC50 values of physcion NPs against the aforementioned models were 57.56, 22.30, and 22.68 μg/mL, respectively. Likewise, the cytotoxic potential investigated through the MTT assay showed that physcion NPs were more cytotoxic to cancer cell lines A549 (IC50 4.12 μg/mL), HepG2 (IC50 2.84 μg/mL), and MDA-MB-231 (IC50 2.97 μg/mL), while it had less effect on HPAEpiC (IC50 8.68 μg/mL) and HRPTEpiC (IC50 10.71 μg/mL) normal human epithelial cells. These findings have proved that the APSP method successfully produced physcion NPs with enhanced solubility, dissolution rate, and antioxidant and cytotoxic activities.
Collapse
Affiliation(s)
- Fazli Khuda
- Department
of Pharmacy, University of Peshawar, Peshawar 25120, Pakistan
| | - Irum Zahir
- Department
of Pharmacy, University of Peshawar, Peshawar 25120, Pakistan
| | - Atif Ali Khan Khalil
- Department
of Pharmacognosy, Institute of Pharmacy,
Lahore College for Women University, Lahore 54000, Pakistan
| | - Sajid Ali
- Department
of Biotechnology, Abdul Wali Khan University, Mardan 23200, Pakistan
| | - Naveed Ullah
- Department
of Pharmacy, University of Swabi, Swabi 23430, Pakistan
| | - Ahmed H. Albariqi
- Department
of Pharmaceutics, College of Pharmacy, Jazan
University, Jazan 45142, Saudi Arabia
| | - Mi-Jeong Ahn
- College
of
Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Muhammad Shafique
- Department
of Pharmaceutical Sciences, College of Pharmacy, Shaqra University, Shaqra 11961, Saudi Arabia
| | | | - Saud Almawash
- Department
of Pharmaceutical Sciences, College of Pharmacy, Shaqra University, Shaqra 11961, Saudi Arabia
| |
Collapse
|
43
|
Tabassum M, Lone BA, Bhat MN, Bhushan A, Banjare N, Manrique E, Gupta P, Mondhe DM, Gupta PN. Apoptotic Potential and Antitumor Efficacy of Trilliumoside A: A New Steroidal Saponin Isolated from Rhizomes of Trillium govanianum. ACS OMEGA 2023; 8:31914-31927. [PMID: 37692233 PMCID: PMC10483520 DOI: 10.1021/acsomega.3c03649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 08/08/2023] [Indexed: 09/12/2023]
Abstract
Natural product-derived molecules exhibit potential as anticancer agents. Trilliumoside A, a new steroidal saponin, was obtained from rhizomes of Trillium govanianum, and its anticancer activity was investigated in the presented study. Trilliumoside A was investigated in a panel of cell lines, and it exhibited promising cytotoxic activity on the A549 cells (human lung cancer cells) with an IC50 of 1.83 μM. The mechanism of cell death induced by Trilliumoside A in A549 cells and its anticancer potential in murine tumor models (EAC and EAT) were presented in the current research. Trilliumoside A was found to induce apoptosis in A549 cells by increasing the expression of various apoptotic proteins, such as Bax, Puma, cytochrome C, cleaved PARP, and cleaved caspase 3. Additionally, Trilliumoside A regulates the expression of p53, CDK2, and Cyclin A by decreasing the mitochondrial membrane potential, elevating reactive oxygen species, and stopping the growth of A549 cells in the synthesis phase (S) of the cell cycle. Trilliumoside A showed a considerable reduction in the tumor volume, the amount of ascitic fluid, and the total cell number without affecting the body weight of animals. Our results demonstrate that Trilliumoside A inhibits the proliferation of human lung cancer cells by inducing DNA damage, arresting the cell cycle, and activating the mitochondrial signaling pathway. The study demonstrated the potential of Trilliumoside A as a potential anticancer agent.
Collapse
Affiliation(s)
- Misbah Tabassum
- Pharmacology
Division, CSIR-Indian Institute of Integrative
Medicine, Jammu 180001, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Bashir Ahmad Lone
- Natural
Products and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Mudasir Nazir Bhat
- Plant
Science and Agrotechnology Division, CSIR-Indian
Institute of Integrative Medicine, Canal Road, Jammu 180001, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Anil Bhushan
- Natural
Products and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Nagma Banjare
- Pharmacology
Division, CSIR-Indian Institute of Integrative
Medicine, Jammu 180001, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Esteban Manrique
- Real
Jardin Botanico-CSIC, Claudio Moyano 1, 28760 Madrid, Spain
| | - Prasoon Gupta
- Natural
Products and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Dilip M. Mondhe
- Pharmacology
Division, CSIR-Indian Institute of Integrative
Medicine, Jammu 180001, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Prem N. Gupta
- Pharmacology
Division, CSIR-Indian Institute of Integrative
Medicine, Jammu 180001, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
44
|
Zafar S, Armaghan M, Khan K, Hassan N, Sharifi-Rad J, Habtemariam S, Kieliszek M, Butnariu M, Bagiu IC, Bagiu RV, Cho WC. New insights into the anticancer therapeutic potential of maytansine and its derivatives. Biomed Pharmacother 2023; 165:115039. [PMID: 37364476 DOI: 10.1016/j.biopha.2023.115039] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 06/19/2023] [Accepted: 06/20/2023] [Indexed: 06/28/2023] Open
Abstract
Maytansine is a pharmacologically active 19-membered ansamacrolide derived from various medicinal plants and microorganisms. Among the most studied pharmacological activities of maytansine over the past few decades are anticancer and anti-bacterial effects. The anticancer mechanism of action is primarily mediated through interaction with the tubulin thereby inhibiting the assembly of microtubules. This ultimately leads to decreased stability of microtubule dynamics and cause cell cycle arrest, resulting in apoptosis. Despite its potent pharmacological effects, the therapeutic applications of maytansine in clinical medicine are quite limited due to its non-selective cytotoxicity. To overcome these limitations, several derivatives have been designed and developed mostly by modifying the parent structural skeleton of maytansine. These structural derivatives exhibit improved pharmacological activities as compared to maytansine. The present review provides a valuable insight into maytansine and its synthetic derivatives as anticancer agents.
Collapse
Affiliation(s)
- Sameen Zafar
- Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Punjab, Pakistan
| | - Muhammad Armaghan
- Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Punjab, Pakistan
| | - Khushbukhat Khan
- Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Punjab, Pakistan.
| | - Nazia Hassan
- Department of Biochemistry, University of Agriculture Faisalabad, Pakistan
| | | | - Solomon Habtemariam
- Pharmacognosy Research & Herbal Analysis Services UK, University of Greenwich, Central Avenue, Chatham-Maritime, Kent ME4 4TB, UK.
| | - Marek Kieliszek
- Department of Food Biotechnology and Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159 C, 02-776 Warsaw, Poland.
| | - Monica Butnariu
- University of Life Sciences "King Mihai I" from Timisoara, 300645, Calea Aradului 119, Timis, Romania.
| | - Iulia-Cristina Bagiu
- Victor Babes University of Medicine and Pharmacy of Timisoara, Department of Microbiology, Timisoara, Romania; Multidisciplinary Research Center on Antimicrobial Resistance, Timisoara, Romania
| | - Radu Vasile Bagiu
- Victor Babes University of Medicine and Pharmacy of Timisoara, Department of Microbiology, Timisoara, Romania; Preventive Medicine Study Center, Timisoara, Romania
| | - William C Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong Special Administrative Region.
| |
Collapse
|
45
|
Kwan K, Han AY, Mukdad L, Barragan F, Selim O, Alhiyari Y, St. John M. Anticancer effects of thymoquinone in head and neck squamous cell carcinoma: A scoping review. Laryngoscope Investig Otolaryngol 2023; 8:876-885. [PMID: 37731860 PMCID: PMC10508265 DOI: 10.1002/lio2.1097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 04/12/2023] [Accepted: 05/16/2023] [Indexed: 09/22/2023] Open
Abstract
Objective Thymoquinone (TQ), the active constituent of Nigella sativa, has been shown to have anticancer effects in head and neck squamous cell carcinoma (HNSCC). This review aims to outline the properties of TQ, the known drivers in HNSCC formation, and summarize the anticancer effects of TQ in SCC. Data Sources Three databases (PubMed, Embase, and Google Scholar) were queried for the key words "thymoquinone squamous cell carcinoma." Review Methods Publications that were not original research and publications that did not have full-text available for review were excluded. Results Sixteen research articles met the inclusion criteria. Our review demonstrates that TQ-induced cytotoxicity is associated with increased expression and activity of the tumor suppressor p53, proapoptotic proteins Bax and caspases, as well as decreased expression and activity of antiapoptotic proteins Bcl-2 and Mdm2. Additionally, TQ modulates cell-survival pathways such as the PI3k/Akt pathway. TQ synergizes with therapeutics including cisplatin and radiation. Early TQ administration may prevent carcinogenesis via upregulation of antioxidant enzymes, and TQ administration in the presence of cancer can result in disease mitigation via induction of oxidative stress. Conclusion TQ acts as an upregulator of proapoptotic pathways and downregulator of antiapoptotic pathways, modulates the oxidative stress balance in tumor development, and works synergistically alongside other chemotherapeutics to increase cytotoxicity. TQ has the potential to prevent carcinogenesis in patients who are at high-risk for SCC and adjuvant treatment for SCC patients undergoing conventional treatments. Future studies should aim to identify specific populations in which TQ's effects would be the most beneficial. Level of Evidence Not available.
Collapse
Affiliation(s)
- Kera Kwan
- UCLA Department of SurgeryUniversity of California Los AngelesCaliforniaLos AngelesUSA
| | - Albert Y. Han
- Department of Head and Neck SurgeryUniversity of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Laith Mukdad
- UCLA Head and Neck Cancer SurgeryUniversity of California Los AngelesCaliforniaLos AngelesUSA
| | - Frida Barragan
- UCLA Head and Neck Cancer SurgeryUniversity of California Los AngelesCaliforniaLos AngelesUSA
| | - Omar Selim
- UCLA Head and Neck Cancer SurgeryUniversity of California Los AngelesCaliforniaLos AngelesUSA
| | - Yazeed Alhiyari
- UCLA Head and Neck Cancer SurgeryUniversity of California Los AngelesCaliforniaLos AngelesUSA
| | - Maie St. John
- UCLA Head and Neck Cancer SurgeryUniversity of California Los AngelesCaliforniaLos AngelesUSA
| |
Collapse
|
46
|
Anand U, Dey A, Chandel AKS, Sanyal R, Mishra A, Pandey DK, De Falco V, Upadhyay A, Kandimalla R, Chaudhary A, Dhanjal JK, Dewanjee S, Vallamkondu J, Pérez de la Lastra JM. Cancer chemotherapy and beyond: Current status, drug candidates, associated risks and progress in targeted therapeutics. Genes Dis 2023; 10:1367-1401. [PMID: 37397557 PMCID: PMC10310991 DOI: 10.1016/j.gendis.2022.02.007] [Citation(s) in RCA: 474] [Impact Index Per Article: 237.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 02/15/2022] [Accepted: 02/21/2022] [Indexed: 11/28/2022] Open
Abstract
Cancer is an abnormal state of cells where they undergo uncontrolled proliferation and produce aggressive malignancies that causes millions of deaths every year. With the new understanding of the molecular mechanism(s) of disease progression, our knowledge about the disease is snowballing, leading to the evolution of many new therapeutic regimes and their successive trials. In the past few decades, various combinations of therapies have been proposed and are presently employed in the treatment of diverse cancers. Targeted drug therapy, immunotherapy, and personalized medicines are now largely being employed, which were not common a few years back. The field of cancer discoveries and therapeutics are evolving fast as cancer type-specific biomarkers are progressively being identified and several types of cancers are nowadays undergoing systematic therapies, extending patients' disease-free survival thereafter. Although growing evidence shows that a systematic and targeted approach could be the future of cancer medicine, chemotherapy remains a largely opted therapeutic option despite its known side effects on the patient's physical and psychological health. Chemotherapeutic agents/pharmaceuticals served a great purpose over the past few decades and have remained the frontline choice for advanced-stage malignancies where surgery and/or radiation therapy cannot be prescribed due to specific reasons. The present report succinctly reviews the existing and contemporary advancements in chemotherapy and assesses the status of the enrolled drugs/pharmaceuticals; it also comprehensively discusses the emerging role of specific/targeted therapeutic strategies that are presently being employed to achieve better clinical success/survival rate in cancer patients.
Collapse
Affiliation(s)
- Uttpal Anand
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, Kolkata, West Bengal 700073, India
| | - Arvind K. Singh Chandel
- Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Rupa Sanyal
- Department of Botany, Bhairab Ganguly College (affiliated to West Bengal State University), Kolkata, West Bengal 700056, India
| | - Amarnath Mishra
- Faculty of Science and Technology, Amity Institute of Forensic Sciences, Amity University Uttar Pradesh, Noida 201313, India
| | - Devendra Kumar Pandey
- Department of Biotechnology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Valentina De Falco
- Institute of Endocrinology and Experimental Oncology (IEOS), National Research Council (CNR), Department of Molecular Medicine and Medical Biotechnology (DMMBM), University of Naples Federico II, Naples 80131, Italy
| | - Arun Upadhyay
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Bandar Sindari, Kishangarh Ajmer, Rajasthan 305817, India
| | - Ramesh Kandimalla
- CSIR-Indian Institute of Chemical Technology, Hyderabad, Telangana 500007, India
- Department of Biochemistry, Kakatiya Medical College, Warangal, Telangana 506007, India
| | - Anupama Chaudhary
- Orinin-BioSystems, LE-52, Lotus Road 4, CHD City, Karnal, Haryana 132001, India
| | - Jaspreet Kaur Dhanjal
- Department of Computational Biology, Indraprastha Institute of Information Technology Delhi (IIIT-D), Okhla Industrial Estate, Phase III, New Delhi 110020, India
| | - Saikat Dewanjee
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India
| | - Jayalakshmi Vallamkondu
- Department of Physics, National Institute of Technology-Warangal, Warangal, Telangana 506004, India
| | - José M. Pérez de la Lastra
- Biotechnology of Macromolecules Research Group, Instituto de Productos Naturales y Agrobiología, IPNA-CSIC, San Cristóbal de La Laguna 38206, Tenerife, Spain
| |
Collapse
|
47
|
Singh S, Singh A, Hallan SS, Brangule A, Kumar B, Bhatia R. A Compiled Update on Nutrition, Phytochemicals, Processing Effects, Analytical Testing and Health Effects of Chenopodium album: A Non-Conventional Edible Plant (NCEP). Molecules 2023; 28:4902. [PMID: 37446567 DOI: 10.3390/molecules28134902] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/15/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023] Open
Abstract
Bathua (Chenopodium album) is a rich source of extensive-ranging nutrients, including bio-active carbohydrates, flavonoids and phenolics, minerals, and vitamins that translate to countless health benefits such as anticancer, antidiabetic, anti-inflammatory, antimicrobial, and antioxidant activity. Ascaridole, an important phytoconstituent present in aerial parts of the plant, contributes to its anthelmintic property. Even with vast historical use and significant health benefits, its renown has not spread, and utilization has significantly decreased in recent decades. Gradually, the plant has become known under the name of Non-conventional edible plant (NCEP). This compilation is prepared to bring out the plant under the spotlight for further research by foregrounding previous studies on the plant. Scientific research databases, including PubMed, Google Scholar, Scopus, SpringerLink, ScienceDirect, and Wiley Online, were used to fetch data on C. album. This review offers over up-to-date knowledge on nutritious values, phytochemical composition, volatile compounds, as well as health benefits of C. album. The ethnobotanical and ethnomedicinal uses of the plant in India and other parts of the world are deliberately discussed. Scrutinizing the reported literature on C. album reveals its powerful nutrient composition advantageous in the development of food products. The impact of various cooking and processing methods on the nutritional profile and bioavailability are discussed. The future perspectives with regards to the potential for food and nutraceutical products are critically addressed. This review proves the necessity of breakthrough research to investigate the pharmacology and safety of phytochemicals and nutraceutical development studies on the C. album.
Collapse
Affiliation(s)
- Sukhwinder Singh
- Department of Pharmaceutical Analysis, ISF College of Pharmacy, Moga 142001, Punjab, India
| | - Amandeep Singh
- Department of Pharmaceutics, ISF College of Pharmacy, Moga 142001, Punjab, India
| | - Supandeep Singh Hallan
- Department of Pharmaceutical Chemistry, Riga Stradins University, Konsula 21, LV-1007 Riga, Latvia
- Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, Kalku Street 1, LV-1658 Riga, Latvia
| | - Agnese Brangule
- Department of Pharmaceutical Chemistry, Riga Stradins University, Konsula 21, LV-1007 Riga, Latvia
- Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, Kalku Street 1, LV-1658 Riga, Latvia
| | - Bhupinder Kumar
- Department of Pharmaceutical Sciences, HNB Garhwal University, Chauras Campus, Srinagar 246174, Uttarakhand, India
- Department of Chemistry, Graphic Era (Deemed to be University), Dehradun 248002, Uttarakhand, India
| | - Rohit Bhatia
- Department of Pharmaceutical Analysis, ISF College of Pharmacy, Moga 142001, Punjab, India
| |
Collapse
|
48
|
Sanejouand YH. On the Unknown Proteins of Eukaryotic Proteomes. J Mol Evol 2023:10.1007/s00239-023-10116-1. [PMID: 37219573 DOI: 10.1007/s00239-023-10116-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 05/07/2023] [Indexed: 05/24/2023]
Abstract
To study unknown proteins on a large scale, a reference system has been set up for the three better studied eukaryotic kingdoms, built with 36 proteomes as taxonomically diverse as possible. Proteins from 362 other eukaryotic proteomes with no known homologue in this set were then analyzed, focusing noteworthy on singletons, that is, on such proteins with no known homologue in their own proteome. Consistently, for a given species, no more than 12% of the singletons thus found are known at the protein level, according to Uniprot. In addition, since they rely on the information found in the alignment of homologous sequences, predictions of AlphaFold2 for their tridimensional structure are poor. In the case of metazoan species, the number of singletons rarely exceeds 1000 for the species the closest to the reference system (divergence times below 75 Myr). Interestingly, in the cases of viridiplantae and fungi, larger amounts of singletons are found for such species, as if the timescale on which singletons are added to proteomes were different in metazoa and in other eukaryotic kingdoms. In order to confirm this phenomenon, further studies of proteomes closer to those of the reference system are, however, needed.
Collapse
Affiliation(s)
- Yves-Henri Sanejouand
- US2B, UMR 6286 of CNRS, Nantes University, rue de la Houssinière, 44322, Nantes, France.
| |
Collapse
|
49
|
Baldassari S, Balboni A, Drava G, Donghia D, Canepa P, Ailuno G, Caviglioli G. Phytochemicals and Cancer Treatment: Cell-Derived and Biomimetic Vesicles as Promising Carriers. Pharmaceutics 2023; 15:1445. [PMID: 37242687 PMCID: PMC10221807 DOI: 10.3390/pharmaceutics15051445] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/04/2023] [Accepted: 05/06/2023] [Indexed: 05/28/2023] Open
Abstract
The majority of anticancer agents currently used derive from natural sources: plants, frequently the ones employed in traditional medicines, are an abundant source of mono- and diterpenes, polyphenols, and alkaloids that exert antitumor activity through diverse mechanisms. Unfortunately, many of these molecules are affected by poor pharmacokinetics and limited specificity, shortcomings that may be overcome by incorporating them into nanovehicles. Cell-derived nanovesicles have recently risen to prominence, due to their biocompatibility, low immunogenicity and, above all, targeting properties. However, due to difficult scalability, the industrial production of biologically-derived vesicles and consequent application in clinics is difficult. As an efficient alternative, bioinspired vesicles deriving from the hybridization of cell-derived and artificial membranes have been conceived, revealing high flexibility and appropriate drug delivery ability. In this review, the most recent advances in the application of these vesicles to the targeted delivery of anticancer actives obtained from plants are presented, with specific focus on vehicle manufacture and characterization, and effectiveness evaluation performed through in vitro and in vivo assays. The emerging overall outlook appears promising in terms of efficient drug loading and selective targeting of tumor cells, suggesting further engrossing developments in the future.
Collapse
Affiliation(s)
- Sara Baldassari
- Department of Pharmacy, University of Genova, 16148 Genova, Italy; (S.B.); (A.B.); (G.D.); (D.D.)
| | - Alice Balboni
- Department of Pharmacy, University of Genova, 16148 Genova, Italy; (S.B.); (A.B.); (G.D.); (D.D.)
| | - Giuliana Drava
- Department of Pharmacy, University of Genova, 16148 Genova, Italy; (S.B.); (A.B.); (G.D.); (D.D.)
| | - Daniela Donghia
- Department of Pharmacy, University of Genova, 16148 Genova, Italy; (S.B.); (A.B.); (G.D.); (D.D.)
| | - Paolo Canepa
- Department of Physics, University of Genova, 16146 Genova, Italy;
| | - Giorgia Ailuno
- Department of Pharmacy, University of Genova, 16148 Genova, Italy; (S.B.); (A.B.); (G.D.); (D.D.)
| | - Gabriele Caviglioli
- Department of Pharmacy, University of Genova, 16148 Genova, Italy; (S.B.); (A.B.); (G.D.); (D.D.)
| |
Collapse
|
50
|
Lopes da Silva FL, Scotti AS, Garcia ALH, Brodt Lemes ML, Grivicich I, Dos Reis GM, Dias JF, Menezes Boaretto FB, Picada JN, da Silva J, Ferraz ADBF. Toxicological potential of Aloysia gratissima: Insights from chemical analysis and in vitro studies. JOURNAL OF ETHNOPHARMACOLOGY 2023; 314:116614. [PMID: 37164253 DOI: 10.1016/j.jep.2023.116614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/24/2023] [Accepted: 05/06/2023] [Indexed: 05/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Aloysia gratissima leaves are popularly used to treat respiratory, digestive, and nervous system disorders. Several studies have been carried out to determine the biological activity of A. gratissima, such as its antibacterial and anti-edematogenic activities, but despite the beneficial uses of A. gratissima, few studies have examined the toxicological profile of this plant. AIM OF THE STUDY This study aimed to determine the chemical composition, cytotoxic, genotoxic, mutagenic potential, and antioxidant activity of an aqueous extract of A. gratissima leaves (AG-AEL). MATERIAL AND METHODS The phytochemical constitution of AG-AEL was assessed by colorimetric analyses and High-performance liquid chromatography (HPLC). The inorganic elements were detected by Particle-Induced X-ray Emission (PIXE). The antioxidant, cytotoxicity, genotoxic, and mutagenic activities were evaluated in vitro by Di(phenyl)-(2,4,6-trinitrophenyl)iminoazanium (DPPH), Sulforhodamine B (SRB) assay, comet assay, and Salmonella/microsome assays. RESULTS AG-AEL indicated the presence of terpenoids, flavonoids, and phenolic acids. HPLC detected rutin at 2.41 ± 0.33 mg/100 mg. PIXE analysis indicated the presence of Mg, Si, P, S, K, Ca, Mn, and Zn. The 50% inhibitory concentration was 84.17 ± 3.17 μg/mL in the DPPH assay. Genotoxic effects were observed using the Comet assay in neuroblastoma (SH-SY5Y) cells and mutations were observed in TA102 and TA97a strains. The extract showed cytotoxic activities against ovarian (OVCAR-3), glioblastoma (U87MG), and colon (HT-29) cancer cell lines. CONCLUSIONS In conclusion, AG-AEL increased DNA damage, induced frameshift, and oxidative mutations, and showed cytotoxic activities against different cancer cells. The in vitro toxicological effects observed suggest that this plant preparation should be used with caution, despite its pharmacological potential.
Collapse
Affiliation(s)
- Francisco Laerte Lopes da Silva
- Postgraduate Program in Molecular and Cell Biology Applied to Health, Lutheran University of Brazil (ULBRA), Canoas, RS, Brazil
| | - Amanda Souza Scotti
- Postgraduate Program in Molecular and Cell Biology Applied to Health, Lutheran University of Brazil (ULBRA), Canoas, RS, Brazil
| | - Ana Letícia Hilário Garcia
- Postgraduate Program in Molecular and Cell Biology Applied to Health, Lutheran University of Brazil (ULBRA), Canoas, RS, Brazil; Postgraduate Program in Health and Human Development. University La Salle, Canoas, Brazil
| | - Maria Luiza Brodt Lemes
- Postgraduate Program in Molecular and Cell Biology Applied to Health, Lutheran University of Brazil (ULBRA), Canoas, RS, Brazil
| | - Ivana Grivicich
- Postgraduate Program in Molecular and Cell Biology Applied to Health, Lutheran University of Brazil (ULBRA), Canoas, RS, Brazil
| | - Gabriela Mendonça Dos Reis
- Postgraduate Program in Molecular and Cell Biology Applied to Health, Lutheran University of Brazil (ULBRA), Canoas, RS, Brazil
| | - Johnny Ferraz Dias
- Ion Implantation Laboratory, Institute of Physics, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Fernanda Brião Menezes Boaretto
- Postgraduate Program in Molecular and Cell Biology Applied to Health, Lutheran University of Brazil (ULBRA), Canoas, RS, Brazil
| | - Jaqueline Nascimento Picada
- Postgraduate Program in Molecular and Cell Biology Applied to Health, Lutheran University of Brazil (ULBRA), Canoas, RS, Brazil
| | - Juliana da Silva
- Postgraduate Program in Molecular and Cell Biology Applied to Health, Lutheran University of Brazil (ULBRA), Canoas, RS, Brazil; Postgraduate Program in Health and Human Development. University La Salle, Canoas, Brazil.
| | - Alexandre de Barros Falcão Ferraz
- Regional Scientific Development Program (PDCR-FAPEPI/CNPq). Department of Chemistry, Federal Institute of Piauí (IFPI), Teresina, PI, Brazil.
| |
Collapse
|