1
|
Wang R, Mijiti S, Xu Q, Liu Y, Deng C, Huang J, Yasheng A, Tian Y, Cao Y, Su Y. The Potential Mechanism of Remission in Type 2 Diabetes Mellitus After Vertical Sleeve Gastrectomy. Obes Surg 2024; 34:3071-3083. [PMID: 38951388 DOI: 10.1007/s11695-024-07378-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 06/13/2024] [Accepted: 06/19/2024] [Indexed: 07/03/2024]
Abstract
In recent years, there has been a gradual increase in the prevalence of obesity and type 2 diabetes mellitus (T2DM), with bariatric surgery remaining the most effective treatment strategy for these conditions. Vertical sleeve gastrectomy (VSG) has emerged as the most popular surgical procedure for bariatric/metabolic surgeries, effectively promoting weight loss and improving or curing T2DM. The alterations in the gastrointestinal tract following VSG may improve insulin secretion and resistance by increasing incretin secretion (especially GLP-1), modifying the gut microbiota composition, and through mechanisms dependent on weight loss. This review focuses on the potential mechanisms through which the enhanced action of incretin and metabolic changes in the digestive system after VSG may contribute to the remission of T2DM.
Collapse
Affiliation(s)
- Rongfei Wang
- Department of Gastrointestinal Surgery, The Fifth Affiliated Hospital of Sun Yat-sen University, No.57 Mei Hua East Road, Xiang Zhou District, Zhuhai, 519000, Guangdong, China
| | - Salamu Mijiti
- Department of General Surgery, The First People's Hospital of Kashi, Autonomous Region, Kashi, 844000, Xinjiang Uygur, China
| | - Qilin Xu
- Department of General Surgery, The First People's Hospital of Kashi, Autonomous Region, Kashi, 844000, Xinjiang Uygur, China
| | - Yile Liu
- Department of Gastrointestinal Surgery, The Fifth Affiliated Hospital of Sun Yat-sen University, No.57 Mei Hua East Road, Xiang Zhou District, Zhuhai, 519000, Guangdong, China
| | - Chaolun Deng
- Department of Gastrointestinal Surgery, The Fifth Affiliated Hospital of Sun Yat-sen University, No.57 Mei Hua East Road, Xiang Zhou District, Zhuhai, 519000, Guangdong, China
| | - Jiangtao Huang
- Department of Gastrointestinal Surgery, The Fifth Affiliated Hospital of Sun Yat-sen University, No.57 Mei Hua East Road, Xiang Zhou District, Zhuhai, 519000, Guangdong, China
| | - Abudoukeyimu Yasheng
- Department of General Surgery, The First People's Hospital of Kashi, Autonomous Region, Kashi, 844000, Xinjiang Uygur, China
| | - Yunping Tian
- Department of General Surgery, The First People's Hospital of Kashi, Autonomous Region, Kashi, 844000, Xinjiang Uygur, China.
| | - Yanlong Cao
- Department of General Surgery, The First People's Hospital of Kashi, Autonomous Region, Kashi, 844000, Xinjiang Uygur, China.
| | - Yonghui Su
- Department of Gastrointestinal Surgery, The Fifth Affiliated Hospital of Sun Yat-sen University, No.57 Mei Hua East Road, Xiang Zhou District, Zhuhai, 519000, Guangdong, China.
| |
Collapse
|
2
|
Mietus-Snyder M, Perak AM, Cheng S, Hayman LL, Haynes N, Meikle PJ, Shah SH, Suglia SF. Next Generation, Modifiable Cardiometabolic Biomarkers: Mitochondrial Adaptation and Metabolic Resilience: A Scientific Statement From the American Heart Association. Circulation 2023; 148:1827-1845. [PMID: 37902008 DOI: 10.1161/cir.0000000000001185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/31/2023]
Abstract
Cardiometabolic risk is increasing in prevalence across the life span with disproportionate ramifications for youth at socioeconomic disadvantage. Established risk factors and associated disease progression are harder to reverse as they become entrenched over time; if current trends are unchecked, the consequences for individual and societal wellness will become untenable. Interrelated root causes of ectopic adiposity and insulin resistance are understood but identified late in the trajectory of systemic metabolic dysregulation when traditional cardiometabolic risk factors cross current diagnostic thresholds of disease. Thus, children at cardiometabolic risk are often exposed to suboptimal metabolism over years before they present with clinical symptoms, at which point life-long reliance on pharmacotherapy may only mitigate but not reverse the risk. Leading-edge indicators are needed to detect the earliest departure from healthy metabolism, so that targeted, primordial, and primary prevention of cardiometabolic risk is possible. Better understanding of biomarkers that reflect the earliest transitions to dysmetabolism, beginning in utero, ideally biomarkers that are also mechanistic/causal and modifiable, is critically needed. This scientific statement explores emerging biomarkers of cardiometabolic risk across rapidly evolving and interrelated "omic" fields of research (the epigenome, microbiome, metabolome, lipidome, and inflammasome). Connections in each domain to mitochondrial function are identified that may mediate the favorable responses of each of the omic biomarkers featured to a heart-healthy lifestyle, notably to nutritional interventions. Fuller implementation of evidence-based nutrition must address environmental and socioeconomic disparities that can either facilitate or impede response to therapy.
Collapse
|
3
|
Yin M, Wang Y, Han M, Liang R, Li S, Wang G, Gang X. Mechanisms of bariatric surgery for weight loss and diabetes remission. J Diabetes 2023; 15:736-752. [PMID: 37442561 PMCID: PMC10509523 DOI: 10.1111/1753-0407.13443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 06/12/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
Obesity and type 2 diabetes(T2D) lead to defects in intestinal hormones secretion, abnormalities in the composition of bile acids (BAs), increased systemic and adipose tissue inflammation, defects of branched-chain amino acids (BCAAs) catabolism, and dysbiosis of gut microbiota. Bariatric surgery (BS) has been shown to be highly effective in the treatment of obesity and T2D, which allows us to view BS not simply as weight-loss surgery but as a means of alleviating obesity and its comorbidities, especially T2D. In recent years, accumulating studies have focused on the mechanisms of BS to find out which metabolic parameters are affected by BS through which pathways, such as which hormones and inflammatory processes are altered. The literatures are saturated with the role of intestinal hormones and the gut-brain axis formed by their interaction with neural networks in the remission of obesity and T2D following BS. In addition, BAs, gut microbiota and other factors are also involved in these benefits after BS. The interaction of these factors makes the mechanisms of metabolic improvement induced by BS more complicated. To date, we do not fully understand the exact mechanisms of the metabolic alterations induced by BS and its impact on the disease process of T2D itself. This review summarizes the changes of intestinal hormones, BAs, BCAAs, gut microbiota, signaling proteins, growth differentiation factor 15, exosomes, adipose tissue, brain function, and food preferences after BS, so as to fully understand the actual working mechanisms of BS and provide nonsurgical therapeutic strategies for obesity and T2D.
Collapse
Affiliation(s)
- Mengsha Yin
- Department of Endocrinology and MetabolismThe First Hospital of Jilin UniversityChangchunChina
| | - Yao Wang
- Department of OrthopedicsThe Second Hospital Jilin UniversityChangchunChina
| | - Mingyue Han
- Department of Endocrinology and MetabolismThe First Hospital of Jilin UniversityChangchunChina
| | - Ruishuang Liang
- Department of Endocrinology and MetabolismThe First Hospital of Jilin UniversityChangchunChina
| | - Shanshan Li
- Department of Endocrinology and MetabolismThe First Hospital of Jilin UniversityChangchunChina
| | - Guixia Wang
- Department of Endocrinology and MetabolismThe First Hospital of Jilin UniversityChangchunChina
| | - Xiaokun Gang
- Department of Endocrinology and MetabolismThe First Hospital of Jilin UniversityChangchunChina
| |
Collapse
|
4
|
Wang M, Huang Y, Xin M, Li T, Wang X, Fang Y, Liang S, Cai T, Xu X, Dong L, Wang C, Xu Z, Song X, Li J, Zheng Y, Sun W, Li L. The impact of microbially modified metabolites associated with obesity and bariatric surgery on antitumor immunity. Front Immunol 2023; 14:1156471. [PMID: 37266441 PMCID: PMC10230250 DOI: 10.3389/fimmu.2023.1156471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 04/24/2023] [Indexed: 06/03/2023] Open
Abstract
Obesity is strongly associated with the occurrence and development of many types of cancers. Patients with obesity and cancer present with features of a disordered gut microbiota and metabolism, which may inhibit the physiological immune response to tumors and possibly damage immune cells in the tumor microenvironment. In recent years, bariatric surgery has become increasingly common and is recognized as an effective strategy for long-term weight loss; furthermore, bariatric surgery can induce favorable changes in the gut microbiota. Some studies have found that microbial metabolites, such as short-chain fatty acids (SCFAs), inosine bile acids and spermidine, play an important role in anticancer immunity. In this review, we describe the changes in microbial metabolites initiated by bariatric surgery and discuss the effects of these metabolites on anticancer immunity. This review attempts to clarify the relationship between alterations in microbial metabolites due to bariatric surgery and the effectiveness of cancer treatment. Furthermore, this review seeks to provide strategies for the development of microbial metabolites mimicking the benefits of bariatric surgery with the aim of improving therapeutic outcomes in cancer patients who have not received bariatric surgery.
Collapse
Affiliation(s)
- Meng Wang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong, China
- National Institute of Traditional Chinese Medicine Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yuhong Huang
- College of Life Science, Yangtze University, Jingzhou, Hubei, China
| | - Meiling Xin
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong, China
| | - Tianxing Li
- National Institute of Traditional Chinese Medicine Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xueke Wang
- National Institute of Traditional Chinese Medicine Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
- The Second Clinical Medical College, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Yini Fang
- National Institute of Traditional Chinese Medicine Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
- Basic Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Shufei Liang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong, China
| | - Tianqi Cai
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong, China
| | - Xiaoxue Xu
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong, China
| | - Ling Dong
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong, China
| | - Chao Wang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong, China
| | - Zhengbao Xu
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong, China
| | - Xinhua Song
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong, China
| | - Jingda Li
- College of Life Science, Yangtze University, Jingzhou, Hubei, China
| | - Yanfei Zheng
- National Institute of Traditional Chinese Medicine Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Wenlong Sun
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong, China
| | - Lingru Li
- National Institute of Traditional Chinese Medicine Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
5
|
Łoniewski I, Szulińska M, Kaczmarczyk M, Podsiadło K, Styburski D, Skonieczna-Żydecka K, Bogdański P. Analysis of correlations between gut microbiota, stool short chain fatty acids, calprotectin and cardiometabolic risk factors in postmenopausal women with obesity: a cross-sectional study. J Transl Med 2022; 20:585. [PMID: 36503483 PMCID: PMC9743526 DOI: 10.1186/s12967-022-03801-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 12/01/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Microbiota and its metabolites are known to regulate host metabolism. In cross-sectional study conducted in postmenopausal women we aimed to assess whether the microbiota, its metabolites and gut barrier integrity marker are correlated with cardiometabolic risk factors and if microbiota is different between obese and non-obese subjects. METHODS We analysed the faecal microbiota of 56 obese, postmenopausal women by means of 16S rRNA analysis. Stool short chain fatty acids, calprotectin and anthropometric, physiological and biochemical parameters were correlates to microbiome analyses. RESULTS Alpha-diversity was inversely correlated with lipopolysaccharide (Rho = - 0.43, FDR P (Q) = 0.004). Bray-Curtis distance based RDA revealed that visceral fat and waist circumference had a significant impact on metabolic potential (P = 0.003). Plasma glucose was positively correlated with the Coriobacteriaceae (Rho = 0.48, Q = 0.004) and its higher taxonomic ranks, up to phylum (Actinobacteria, Rho = 0.46, Q = 0.004). At the metabolic level, the strongest correlation was observed for the visceral fat (Q < 0.15), especially with the DENOVOPURINE2-PWY, PWY-841 and PWY0-162 pathways. Bacterial abundance was correlated with SCFAs, thus some microbiota-glucose relationships may be mediated by propionate, as indicated by the significant average causal mediation effect (ACME): Lachnospiraceae (ACME 1.25, 95%CI (0.10, 2.97), Firmicutes (ACME 1.28, 95%CI (0.23, 3.83)) and Tenericutes (ACME - 0.39, 95%CI (- 0.87, - 0.03)). There were significant differences in the distribution of phyla between this study and Qiita database (P < 0.0001). CONCLUSIONS Microbiota composition and metabolic potential are associated with some CMRF and fecal SCFAs concentration in obese postmenopausal women. There is no unequivocal relationship between fecal SCFAs and the marker of intestinal barrier integrity and CMRF. Further studies with appropriately matched control groups are warranted to look for causality between SCFAs and CMRF.
Collapse
Affiliation(s)
- Igor Łoniewski
- grid.107950.a0000 0001 1411 4349Department of Biochemical Sciences, Pomeranian Medical University in Szczecin, Broniewskiego 24, 71-460 Szczecin, Poland ,Department of Human Nutrition and Metabolomics, Broniewskiego 24, 71-460 Szczecin, Poland ,Sanprobi Sp. Z O. O. Sp. K., Kurza Stopka 5/C, 70-535 Szczecin, Poland
| | - Monika Szulińska
- grid.22254.330000 0001 2205 0971Department of Treatment of Obesity, Metabolic Disorders and Clinical Dietetics, University of Medical Sciences in Poznań, Szamarzewskiego Str. 84, 60-569 Poznań, Poland
| | - Mariusz Kaczmarczyk
- Sanprobi Sp. Z O. O. Sp. K., Kurza Stopka 5/C, 70-535 Szczecin, Poland ,grid.107950.a0000 0001 1411 4349Department of Clinical Biochemistry, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland
| | - Konrad Podsiadło
- Sanprobi Sp. Z O. O. Sp. K., Kurza Stopka 5/C, 70-535 Szczecin, Poland
| | - Daniel Styburski
- Sanprobi Sp. Z O. O. Sp. K., Kurza Stopka 5/C, 70-535 Szczecin, Poland
| | - Karolina Skonieczna-Żydecka
- grid.107950.a0000 0001 1411 4349Department of Biochemical Sciences, Pomeranian Medical University in Szczecin, Broniewskiego 24, 71-460 Szczecin, Poland
| | - Paweł Bogdański
- grid.22254.330000 0001 2205 0971Department of Treatment of Obesity, Metabolic Disorders and Clinical Dietetics, University of Medical Sciences in Poznań, Szamarzewskiego Str. 84, 60-569 Poznań, Poland
| |
Collapse
|
6
|
Abstract
Metabolomics emerged as an important tool to gain insights on how the body responds to therapeutic interventions. Bariatric surgery is the most effective treatment for severe obesity and obesity-related co-morbidities. Our aim was to conduct a systematic review of the available data on metabolomics profiles that characterize patients submitted to different bariatric surgery procedures, which could be useful to predict clinical outcomes including weight loss and type 2 diabetes remission. For that, the Preferred Reporting Items for Systematic Reviews and Meta-Analyses - PRISMA guidelines were followed. Data from forty-seven original study reports addressing metabolomics profiles induced by bariatric surgery that met eligibility criteria were compiled and summarized. Amino acids, lipids, energy-related and gut microbiota-related were the metabolite classes most influenced by bariatric surgery. Among these, higher pre-operative levels of specific lipids including phospholipids, long-chain fatty acids and bile acids were associated with post-operative T2D remission. As conclusion, metabolite profiling could become a useful tool to predict long term response to different bariatric surgery procedures, allowing more personalized interventions and improved healthcare resources allocation.
Collapse
Affiliation(s)
- Matilde Vaz
- Endocrine & Metabolic Research, Unit for Multidisciplinary Research in Biomedicine (UMIB), University of Porto, Porto, Portugal
- Department of Anatomy, School of Medicine and Biomedical Sciences (ICBAS), University of Porto, Porto, Portugal
| | - Sofia S Pereira
- Endocrine & Metabolic Research, Unit for Multidisciplinary Research in Biomedicine (UMIB), University of Porto, Porto, Portugal
- Department of Anatomy, School of Medicine and Biomedical Sciences (ICBAS), University of Porto, Porto, Portugal
| | - Mariana P Monteiro
- Endocrine & Metabolic Research, Unit for Multidisciplinary Research in Biomedicine (UMIB), University of Porto, Porto, Portugal.
- Department of Anatomy, School of Medicine and Biomedical Sciences (ICBAS), University of Porto, Porto, Portugal.
| |
Collapse
|
7
|
Gebrayel P, Nicco C, Al Khodor S, Bilinski J, Caselli E, Comelli EM, Egert M, Giaroni C, Karpinski TM, Loniewski I, Mulak A, Reygner J, Samczuk P, Serino M, Sikora M, Terranegra A, Ufnal M, Villeger R, Pichon C, Konturek P, Edeas M. Microbiota medicine: towards clinical revolution. J Transl Med 2022; 20:111. [PMID: 35255932 PMCID: PMC8900094 DOI: 10.1186/s12967-022-03296-9] [Citation(s) in RCA: 126] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 02/03/2022] [Indexed: 02/07/2023] Open
Abstract
The human gastrointestinal tract is inhabited by the largest microbial community within the human body consisting of trillions of microbes called gut microbiota. The normal flora is the site of many physiological functions such as enhancing the host immunity, participating in the nutrient absorption and protecting the body against pathogenic microorganisms. Numerous investigations showed a bidirectional interplay between gut microbiota and many organs within the human body such as the intestines, the lungs, the brain, and the skin. Large body of evidence demonstrated, more than a decade ago, that the gut microbial alteration is a key factor in the pathogenesis of many local and systemic disorders. In this regard, a deep understanding of the mechanisms involved in the gut microbial symbiosis/dysbiosis is crucial for the clinical and health field. We review the most recent studies on the involvement of gut microbiota in the pathogenesis of many diseases. We also elaborate the different strategies used to manipulate the gut microbiota in the prevention and treatment of disorders. The future of medicine is strongly related to the quality of our microbiota. Targeting microbiota dysbiosis will be a huge challenge.
Collapse
Affiliation(s)
| | - Carole Nicco
- Department Endocrinology, Metabolism and Diabetes, Faculté de Médecine Cochin-Port Royal, Université de Paris, INSERM U1016, Institut Cochin, 24 Rue du Faubourg St Jacques, 75014, Paris, France
- Laboratory of Excellence GR-Ex, Paris, France
| | - Souhaila Al Khodor
- Maternal and Child Health Department, Research Branch, Sidra Medicine, Doha, Qatar
| | | | | | | | | | - Cristina Giaroni
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | | | | | | | | | - Paulina Samczuk
- Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
| | - Matteo Serino
- IRSD, Université de Toulouse, INSERM, INRAE, ENVT, UPS, Toulouse, France
| | - Mariusz Sikora
- National Institute of Geriatrics, Rheumatology and Rehabilitation, Warsaw, Poland
| | - Annalisa Terranegra
- Maternal and Child Health Department, Research Branch, Sidra Medicine, Doha, Qatar
| | | | | | - Chantal Pichon
- Center for Molecular Biophysics CNRS UPR 4301, University of Orléans, Orléans, France
| | - Peter Konturek
- Teaching Hospital of the University of Jena, Jena, Germany
| | - Marvin Edeas
- Department Endocrinology, Metabolism and Diabetes, Faculté de Médecine Cochin-Port Royal, Université de Paris, INSERM U1016, Institut Cochin, 24 Rue du Faubourg St Jacques, 75014, Paris, France.
- Laboratory of Excellence GR-Ex, Paris, France.
| |
Collapse
|
8
|
Middleton ALO, Byrne JP, Calder PC. The Influence of Bariatric (Metabolic) Surgery on Blood Polyunsaturated Fatty Acids: A Systematic Review. Clin Nutr ESPEN 2022; 48:121-140. [DOI: 10.1016/j.clnesp.2022.02.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 01/27/2022] [Accepted: 02/02/2022] [Indexed: 11/15/2022]
|
9
|
Wei X, Lv H, Yang S, Yang X. CircRNA PLOD2 enhances ovarian cancer propagation by controlling miR-378. Saudi J Biol Sci 2021; 28:6260-6265. [PMID: 34759745 PMCID: PMC8568717 DOI: 10.1016/j.sjbs.2021.06.088] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 06/26/2021] [Accepted: 06/27/2021] [Indexed: 12/24/2022] Open
Abstract
It has been confirmed that circular RNA participates in tumorgenesis through a variety of ways, so it may be used as a molecular marker for tumor diagnosis and treatment. In this study, the expression of circ-LOPD2 in ovarian cancer tissues and cell lines was detected by qRT-PCR and Western blot. The dual luciferase report was used to verify the target of circ-LOPD2, and the silencing and overexpression of circ-CSPP1 in cell lines was used to explore its relationship with miRNA-378. The cell proliferation was detected by CCK8 method, and the expression level of miRNA-378 was detected by qRT-PCR. The results showed that circ-LOPD2 was highly expressed in ovarian cancer (OC) tissues, circ-LOPD2 expression levels were higher in OVCAR3 and A2780, and circ-LOPD2 expression levels in CAOV3 were lower. After silencing circ-LOPD2, the growth ability of OVCAR3 and A2780 cells decreased, while overexpression of circ-LOPD2 led to the opposite result. We also found that miR-378 is a target of circ-LOPD2. Silencing circ-LOPD2 will increase the expression of miR-378, and overexpression of circ-LOPD2 will decrease the expression of miR-378. In summary, our results show that circ-LOPD2 as a miR-378 sponge promotes the proliferation of ovarian cancer cells, which may in turn promote the development of OC.
Collapse
Affiliation(s)
- Xiaoqiang Wei
- Gynecological Department, Qingdao Women and Children 's Hospital, Qingdao University Affiliated Qingdao Women and Children 's Hospital, 266011 Qingdao, P. R. China
| | - Hongmei Lv
- Gynecological Department,Qingdao Central Hospital, The Second Clinical Hospital of Qingdao University, 266042 Qingdao, P. R. China
| | - Shaowen Yang
- Gynecological Department,Qingdao Central Hospital, The Second Clinical Hospital of Qingdao University, 266042 Qingdao, P. R. China
| | - Xiufeng Yang
- Gynecological Department,Qingdao Central Hospital, The Second Clinical Hospital of Qingdao University, 266042 Qingdao, P. R. China
| |
Collapse
|
10
|
Ji Y, Lee H, Kaura S, Yip J, Sun H, Guan L, Han W, Ding Y. Effect of Bariatric Surgery on Metabolic Diseases and Underlying Mechanisms. Biomolecules 2021; 11:1582. [PMID: 34827579 PMCID: PMC8615605 DOI: 10.3390/biom11111582] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/11/2021] [Accepted: 10/15/2021] [Indexed: 12/17/2022] Open
Abstract
Obesity is a highly prevalent public health concern, attributed to multifactorial causes and limited in treatment options. Several comorbidities are closely associated with obesity such as the development of type 2 diabetes mellitus (T2DM), cardiovascular and cerebrovascular diseases, and nonalcoholic fatty liver disease (NAFLD). Bariatric surgery, which can be delivered in multiple forms, has been remarked as an effective treatment to decrease the prevalence of obesity and its associated comorbidities. The different types of bariatric surgery create a variety of new pathways for food to metabolize in the body and truncate the stomach's caliber. As a result, only a small quantity of food is tolerated, and the body mass index noticeably decreases. This review describes the improvements of obesity and its comorbidities following bariatric surgery and their mechanism of improvement. Additionally, endocrine function improvements after bariatric surgery, which contributes to the patients' health improvement, are described, including the role of glucagon-like peptide-1 (GLP-1), fibroblast growth factors 19 and 21 (FGF-19, FGF-21), and pancreatic peptide YY (PYY). Lastly, some of the complications of bariatric surgery, including osteoporosis, iron deficiency/anemia, and diarrhea, as well as their potential mechanisms, are described.
Collapse
Affiliation(s)
- Yu Ji
- Department of General Surgery, Beijing Luhe Clinical Institute, Capital Medical University, Beijing 101149, China;
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI 48201, USA; (H.L.); (S.K.); (L.G.); (Y.D.)
- John D. Dingell VA Medical Center, 4646 John R Street (11R), Detroit, MI 48201, USA
| | - Hangil Lee
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI 48201, USA; (H.L.); (S.K.); (L.G.); (Y.D.)
| | - Shawn Kaura
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI 48201, USA; (H.L.); (S.K.); (L.G.); (Y.D.)
| | - James Yip
- Department of General Surgery, Wayne State University School of Medicine, Detroit, MI 48201, USA;
| | - Hao Sun
- Central Laboratory, Beijing Luhe Clinical Institute, Capital Medical University, Beijing 101149, China;
| | - Longfei Guan
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI 48201, USA; (H.L.); (S.K.); (L.G.); (Y.D.)
- John D. Dingell VA Medical Center, 4646 John R Street (11R), Detroit, MI 48201, USA
- Department of General Surgery, Wayne State University School of Medicine, Detroit, MI 48201, USA;
- China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, Beijing 101149, China
| | - Wei Han
- Department of General Surgery, Beijing Luhe Clinical Institute, Capital Medical University, Beijing 101149, China;
| | - Yuchuan Ding
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI 48201, USA; (H.L.); (S.K.); (L.G.); (Y.D.)
| |
Collapse
|
11
|
Tomasova L, Grman M, Ondrias K, Ufnal M. The impact of gut microbiota metabolites on cellular bioenergetics and cardiometabolic health. Nutr Metab (Lond) 2021; 18:72. [PMID: 34266472 PMCID: PMC8281717 DOI: 10.1186/s12986-021-00598-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 07/02/2021] [Indexed: 12/20/2022] Open
Abstract
Recent research demonstrates a reciprocal relationship between gut microbiota-derived metabolites and the host in controlling the energy homeostasis in mammals. On the one hand, to thrive, gut bacteria exploit nutrients digested by the host. On the other hand, the host utilizes numerous products of gut bacteria metabolism as a substrate for ATP production in the colon. Finally, bacterial metabolites seep from the gut into the bloodstream and interfere with the host’s cellular bioenergetics machinery. Notably, there is an association between alterations in microbiota composition and the development of metabolic diseases and their cardiovascular complications. Some metabolites, like short-chain fatty acids and trimethylamine, are considered markers of cardiometabolic health. Others, like hydrogen sulfide and nitrite, demonstrate antihypertensive properties. Scientific databases were searched for pre-clinical and clinical studies to summarize current knowledge on the role of gut microbiota metabolites in the regulation of mammalian bioenergetics and discuss their potential involvement in the development of cardiometabolic disorders. Overall, the available data demonstrates that gut bacteria products affect physiological and pathological processes controlling energy and vascular homeostasis. Thus, the modulation of microbiota-derived metabolites may represent a new approach for treating obesity, hypertension and type 2 diabetes.
Collapse
Affiliation(s)
- Lenka Tomasova
- Institute of Clinical and Translational Research, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 845 05, Bratislava, Slovak Republic.
| | - Marian Grman
- Institute of Clinical and Translational Research, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 845 05, Bratislava, Slovak Republic
| | - Karol Ondrias
- Institute of Clinical and Translational Research, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 845 05, Bratislava, Slovak Republic
| | - Marcin Ufnal
- Department of Experimental Physiology and Pathophysiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, 02-091, Warsaw, Poland.
| |
Collapse
|
12
|
Barati-Boldaji R, Esmaeilinezhad Z, Babajafari S, Kazemi A, Clark CC, Mazidi M, Ofori-Asenso R, Haghighat N, Shafiee M, Mazloomi SM. Bariatric surgery reduces branched-chain amino acids’ levels: a systematic review and meta-analysis. Nutr Res 2021; 87:80-90. [DOI: 10.1016/j.nutres.2020.10.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 10/20/2020] [Accepted: 10/23/2020] [Indexed: 12/14/2022]
|
13
|
Herzog K, Berggren J, Al Majdoub M, Balderas Arroyo C, Lindqvist A, Hedenbro J, Groop L, Wierup N, Spégel P. Metabolic Effects of Gastric Bypass Surgery: Is It All About Calories? Diabetes 2020; 69:2027-2035. [PMID: 32527768 DOI: 10.2337/db20-0131] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 06/08/2020] [Indexed: 11/13/2022]
Abstract
Bariatric surgery is an efficient method to induce weight loss and also, frequently, remission of type 2 diabetes (T2D). Unpaired studies have shown bariatric surgery and dietary interventions to differentially affect multiple hormonal and metabolic parameters, suggesting that bariatric surgery causes T2D remission at least partially via unique mechanisms. In the current study, plasma metabolite profiling was conducted in patients with (n = 10) and without T2D (n = 9) subjected to Roux-en-Y gastric bypass surgery (RYGB). Mixed-meal tests were conducted at baseline, after the presurgical very-low-calorie diet (VLCD) intervention, immediately after RYGB, and after a 6-week recovery period. Thereby, we could compare fasted and postprandial metabolic consequences of RYGB and VLCD in the same patients. VLCD yielded a pronounced increase in fasting acylcarnitine levels, whereas RYGB, both immediately and after a recovery period, resulted in a smaller but opposite effect. Furthermore, we observed profound changes in lipid metabolism following VLCD but not in response to RYGB. Most changes previously associated with RYGB were found to be consequences of the presurgical dietary intervention. Overall, our results question previous findings of unique metabolic effects of RYGB and suggest that the effect of RYGB on the metabolite profile is mainly attributed to caloric restriction.
Collapse
Affiliation(s)
- Katharina Herzog
- Department of Chemistry, Centre for Analysis and Synthesis, Lund University, Lund, Sweden
| | - Johan Berggren
- Department of Surgery and Urology, Kalmar Hospital, Kalmar, Sweden
- Neuroendocrine Cell Biology, Department of Experimental Medical Science, Lund University Diabetes Centre, Malmö, Sweden
| | - Mahmoud Al Majdoub
- Unit of Molecular Metabolism, Department of Clinical Sciences, Lund University Diabetes Centre, Malmö, Sweden
| | | | - Andreas Lindqvist
- Neuroendocrine Cell Biology, Department of Experimental Medical Science, Lund University Diabetes Centre, Malmö, Sweden
| | - Jan Hedenbro
- Neuroendocrine Cell Biology, Department of Experimental Medical Science, Lund University Diabetes Centre, Malmö, Sweden
| | - Leif Groop
- Diabetes and Endocrinology, Department of Clinical Sciences, Lund University Diabetes Centre, Malmö, Sweden
| | - Nils Wierup
- Neuroendocrine Cell Biology, Department of Experimental Medical Science, Lund University Diabetes Centre, Malmö, Sweden
| | - Peter Spégel
- Department of Chemistry, Centre for Analysis and Synthesis, Lund University, Lund, Sweden
| |
Collapse
|
14
|
Anderson G, Maes M. Gut Dysbiosis Dysregulates Central and Systemic Homeostasis via Suboptimal Mitochondrial Function: Assessment, Treatment and Classification Implications. Curr Top Med Chem 2020; 20:524-539. [DOI: 10.2174/1568026620666200131094445] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 12/11/2019] [Accepted: 12/12/2019] [Indexed: 02/08/2023]
Abstract
:
The gut and mitochondria have emerged as two important hubs at the cutting edge of research
across a diverse array of medical conditions, including most psychiatric conditions. This article highlights
the interaction of the gut and mitochondria over the course of development, with an emphasis on
the consequences for transdiagnostic processes across psychiatry, but with relevance to wider medical
conditions. As well as raised levels of circulating lipopolysaccharide (LPS) arising from increased gut
permeability, the loss of the short-chain fatty acid, butyrate, is an important mediator of how gut dysbiosis
modulates mitochondrial function. Reactive cells, central glia and systemic immune cells are also
modulated by the gut, in part via impacts on mitochondrial function in these cells. Gut-driven alterations
in the activity of reactive cells over the course of development are proposed to be an important determinant
of the transdiagnostic influence of glia and the immune system. Stress, including prenatal stress,
also acts via the gut. The suppression of butyrate, coupled to raised LPS, drives oxidative and nitrosative
stress signalling that culminates in the activation of acidic sphingomyelinase-induced ceramide. Raised
ceramide levels negatively regulate mitochondrial function, both directly and via its negative impact on
daytime, arousal-promoting orexin and night-time sleep-promoting pineal gland-derived melatonin.
Both orexin and melatonin positively regulate mitochondria oxidative phosphorylation. Consequently,
gut-mediated increases in ceramide have impacts on the circadian rhythm and the circadian regulation of
mitochondrial function. Butyrate, orexin and melatonin can positively regulate mitochondria via the disinhibition
of the pyruvate dehydrogenase complex, leading to increased conversion of pyruvate to acetyl-
CoA. Acetyl-CoA is a necessary co-substrate for the initiation of the melatonergic pathway in mitochondria
and therefore the beneficial effects of mitochondria melatonin synthesis on mitochondrial function.
This has a number of treatment implications across psychiatric and wider medical conditions, including
the utilization of sodium butyrate and melatonin.
:
Overall, gut dysbiosis and increased gut permeability have significant impacts on central and systemic
homeostasis via the regulation of mitochondrial function, especially in central glia and systemic immune
cells.
Collapse
Affiliation(s)
- George Anderson
- CRC Scotland & London, Eccleston Square, London, United Kingdom
| | - Michael Maes
- Department of Psychiatry, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
15
|
Shao J, Liu Y, Wang H, Luo Y, Chen L. An Integrated Fecal Microbiome and Metabolomics in T2DM Rats Reveal Antidiabetes Effects from Host-Microbial Metabolic Axis of EtOAc Extract from Sophora flavescens. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:1805418. [PMID: 32566075 PMCID: PMC7273480 DOI: 10.1155/2020/1805418] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 03/24/2020] [Accepted: 04/04/2020] [Indexed: 02/06/2023]
Abstract
Type 2 diabetes mellitus (T2DM) is a chronic metabolic disease. Sophora flavescens (S. flavescens), also named Kushen, is a famous Chinese herbal medicine that has been used to prevent and cure T2DM both in folk medicine and in medical institution. However, its mechanism of action remains unclear. In this study, the pharmacodynamic effects of S. flavescens EtOAc extract (SFE) on high-fat diet and low-dose streptozotocin-induced T2DM rats were examined. Fecal metabolomics analysis and 16S rRNA gene sequencing were applied to determine the influence of T2DM and SFE treatment on gut microbiota and host metabolism. Based on the consistency of the results of metabolic pathways in metabolomics analysis and phylogenetic investigation of communities by reconstruction of unobserved state (PICRUSt) analysis of 16S rRNA gene sequencing, the level of metabolites and the operational taxonomic units of gut bacteria were combined, and Spearman's analysis was implemented. Our data showed that SFE significantly decreased fasted blood glucose levels and improved lipid profile, glycosylated serum protein, glycosylated hemoglobin index, and pancreas damage. Metabolomics and 16S rRNA gene sequencing analysis indicated gut bacteria disorder, disturbed lipid metabolism, carbohydrate metabolism, and especially amino acid metabolism in T2DM and that SFE can regulated these metabolic pathways through the influence on gut bacteria. Spearman's analysis indicated that the amino acid metabolism that included tryptophan, branched chain amino acid, aromatic amino acid, beta-alanine, and glycine, serine and threonine metabolism, lipid metabolism, including lysophosphatidylcholines and lysophosphatidylethanolamines, primary bile acid and linoleic acid metabolism, carbohydrate metabolism, and nucleotide metabolism positively correlated with Faecalibacterium, Flexispira, Phascolarctobacterium, Prevotella, Roseburia, and [Prevotella]. In addition, arginine and proline metabolism, steroid hormone, steroid biosynthesis, and sphingolipid metabolism positively correlated with Lactobacillus, Oscillospira, Parabacteroides, Ruminococcus, and Streptococcus. Taken together, we speculated that SFE may have an effect on T2DM by mediating host-microbial metabolic axis. Exploration of SFE treatment for T2DM by multiomics is expected to provide a reference for clinical treatment.
Collapse
Affiliation(s)
- Jing Shao
- 1Key Laboratory of Digital Quality Evaluation of Chinese Materia Medical of State Administration of TCM, China
- 2Engineering & Technology Research Centre for Chinese Materia Medical Quality of Guangdong Province, School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yi Liu
- 3School of Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Huan Wang
- 1Key Laboratory of Digital Quality Evaluation of Chinese Materia Medical of State Administration of TCM, China
- 2Engineering & Technology Research Centre for Chinese Materia Medical Quality of Guangdong Province, School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yun Luo
- 1Key Laboratory of Digital Quality Evaluation of Chinese Materia Medical of State Administration of TCM, China
- 2Engineering & Technology Research Centre for Chinese Materia Medical Quality of Guangdong Province, School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Lei Chen
- 1Key Laboratory of Digital Quality Evaluation of Chinese Materia Medical of State Administration of TCM, China
- 2Engineering & Technology Research Centre for Chinese Materia Medical Quality of Guangdong Province, School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| |
Collapse
|
16
|
Ceperuelo-Mallafré V, Llauradó G, Keiran N, Benaiges E, Astiarraga B, Martínez L, Pellitero S, González-Clemente JM, Rodríguez A, Fernández-Real JM, Lecube A, Megía A, Vilarrasa N, Vendrell J, Fernández-Veledo S. Preoperative Circulating Succinate Levels as a Biomarker for Diabetes Remission After Bariatric Surgery. Diabetes Care 2019; 42:1956-1965. [PMID: 31375523 DOI: 10.2337/dc19-0114] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 07/11/2019] [Indexed: 02/03/2023]
Abstract
OBJECTIVE To determine the potential use of baseline circulating succinate to predict type 2 diabetes remission after bariatric surgery. RESEARCH DESIGN AND METHODS Forty-five obese patients with diabetes were randomly assigned to Roux-en-Y gastric bypass (RYGB), sleeve gastrectomy (SG), or laparoscopic greater curvature plication. Anthropometric parameters were evaluated, and a complete biochemical analysis including circulating serum succinate concentrations was performed at baseline and 1 year after surgery. The results were externally validated in a second cohort including 88 obese patients with diabetes assigned to RYGB or SG based on clinical criteria. RESULTS Succinate baseline concentrations were an independent predictor of diabetes remission after bariatric surgery. Patients achieving remission after 1 year had lower levels of baseline succinate (47.8 [37.6-64.6] µmol/L vs. 64.1 [52.5-82.9] µmol/L; P = 0.018). Moreover, succinate concentrations were significantly decreased 1 year after surgery (58.9 [46.4-82.4] µmol/L vs. 46.0 [35.8-65.3] µmol/L, P = 0.005). In multivariate analysis, the best logistic regression model showed that baseline succinate (odds ratio [OR] 11.3, P = 0.031) and the type of surgery (OR 26.4, P = 0.010) were independently associated with remission. The C-statistic for this model was 0.899 (95% CI 0.809-0.989) in the derivation cohort, which significantly improved the prediction of remission compared with current available scores, and 0.729 (95% CI 0.612-0.846) in the validation cohort. Interestingly, patients had a different response to the type of surgery according to baseline succinate, with significant differences in remission rates. CONCLUSIONS Circulating succinate is reduced after bariatric surgery. Baseline succinate levels have predictive value for diabetes remission independently of previously described presurgical factors and improve upon the current available scores to predict remission.
Collapse
Affiliation(s)
- Victoria Ceperuelo-Mallafré
- Institut d'Investigació Sanitària Pere Virgili, Endocrinology and Nutrition Service, Hospital Universitari de Tarragona Joan XXIII, Tarragona, Spain.,CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM)-Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Gemma Llauradó
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM)-Instituto de Salud Carlos III (ISCIII), Madrid, Spain.,Department of Endocrinology and Nutrition, Hospital del Mar, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona, Spain
| | - Noelia Keiran
- Institut d'Investigació Sanitària Pere Virgili, Endocrinology and Nutrition Service, Hospital Universitari de Tarragona Joan XXIII, Tarragona, Spain.,CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM)-Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Ester Benaiges
- Institut d'Investigació Sanitària Pere Virgili, Endocrinology and Nutrition Service, Hospital Universitari de Tarragona Joan XXIII, Tarragona, Spain.,CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM)-Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Brenno Astiarraga
- Institut d'Investigació Sanitària Pere Virgili, Endocrinology and Nutrition Service, Hospital Universitari de Tarragona Joan XXIII, Tarragona, Spain.,CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM)-Instituto de Salud Carlos III (ISCIII), Madrid, Spain.,Department of Diabetes, Endocrinology and Nutrition, Institut d'Investigació Biomèdica de Girona, CIBEROBN (CB06/03/010) and ISCIII, Girona, Spain
| | - Laia Martínez
- Institut d'Investigació Sanitària Pere Virgili, Endocrinology and Nutrition Service, Hospital Universitari de Tarragona Joan XXIII, Tarragona, Spain
| | - Silvia Pellitero
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM)-Instituto de Salud Carlos III (ISCIII), Madrid, Spain.,Department of Endocrinology and Nutrition, Germans Trias i Pujol Research Institute, Barcelona, Spain
| | - Jose Miguel González-Clemente
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM)-Instituto de Salud Carlos III (ISCIII), Madrid, Spain.,Department of Endocrinology and Nutrition, Hospital de Sabadell, Corporació Sanitària Parc Taulí, Institut d'Investigació i Innovació Parc Taulí (Universitat Autònoma de Barcelona), Sabadell, Spain
| | - Amaia Rodríguez
- Metabolic Research Laboratory, Clínica Universidad de Navarra, CIBEROBN, Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain
| | - José Manuel Fernández-Real
- Department of Diabetes, Endocrinology and Nutrition, Institut d'Investigació Biomèdica de Girona, CIBEROBN (CB06/03/010) and ISCIII, Girona, Spain
| | - Albert Lecube
- Endocrinology and Nutrition Department, Hospital Universitari Arnau de Vilanova, Lleida, Spain
| | - Ana Megía
- Institut d'Investigació Sanitària Pere Virgili, Endocrinology and Nutrition Service, Hospital Universitari de Tarragona Joan XXIII, Tarragona, Spain.,CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM)-Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Nuria Vilarrasa
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM)-Instituto de Salud Carlos III (ISCIII), Madrid, Spain.,Obesity Unit and Endocrinology and Nutrition Departments, Hospital Universitari de Bellvitge, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Joan Vendrell
- Institut d'Investigació Sanitària Pere Virgili, Endocrinology and Nutrition Service, Hospital Universitari de Tarragona Joan XXIII, Tarragona, Spain .,CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM)-Instituto de Salud Carlos III (ISCIII), Madrid, Spain.,Rovira I Virgili University, Tarragona, Spain
| | - Sonia Fernández-Veledo
- Institut d'Investigació Sanitària Pere Virgili, Endocrinology and Nutrition Service, Hospital Universitari de Tarragona Joan XXIII, Tarragona, Spain .,CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM)-Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| |
Collapse
|
17
|
Metabonomics in Gastroenterology and Hepatology. Int J Mol Sci 2019; 20:ijms20153638. [PMID: 31349596 PMCID: PMC6695751 DOI: 10.3390/ijms20153638] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 07/23/2019] [Indexed: 12/11/2022] Open
|