1
|
Zhao R, Wang M, Wu Z, Zhao P, Dong H, Su Y, Zhao C, Qi M, Ling S, Jiang X. DET induces apoptosis and suppresses tumor invasion in glioma cells via PI3K/AKT pathway. Front Oncol 2025; 14:1528454. [PMID: 39850823 PMCID: PMC11755766 DOI: 10.3389/fonc.2024.1528454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 12/16/2024] [Indexed: 01/25/2025] Open
Abstract
Introduction Gliomas, particularly glioblastomas (GBM), are highly aggressive with a poor prognosis and low survival rate. Currently, deoxyelephantopin (DET) has shown promising anti-inflammatory and anti-tumor effects. Using clinical prognostic analysis, molecular docking, and network pharmacology, this study aims to explore the primary targets and signaling pathways to identify novel GBM treatment approaches. Methods Using PharmMapper, the chemical structure of DET was examined for possible targets after being acquired from PubChem. GBM-related targets were obtained through multi-omics approaches. A protein-protein interaction (PPI) network was constructed using Cytoscape and STRING, and target binding was evaluated through molecular docking. Enrichment analysis was conducted using Metascape. The effects of DET on GBM cell invasion, apoptosis, and proliferation were assessed through in vitro assays, including Transwell, EDU, CCK8, and flow cytometry. Western blot analysis was performed to examine the components of the PI3K/AKT signaling pathway. Results Among the sixty-four shared targets identified, JUN and CCND1 were the most frequently observed. Enrichment analysis demonstrated that DET influenced the MAPK and PI3K/AKT signaling pathways. In Transwell assays, DET significantly inhibited the invasive behavior of glioma cells. Western blot analysis further confirmed the downregulation of EGFR, JUN, and PI3K/AKT. Conclusion DET inhibits GBM cell invasion, proliferation, and apoptosis via modulating the PI3K/AKT signaling pathway, highlighting its potential as a novel therapeutic strategy for GBM treatment.
Collapse
Affiliation(s)
- Rui Zhao
- The Translational Research Institute for Neurological Disorders of Wannan Medical College, Department of Neurosurgery, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui, China
| | - Mengran Wang
- The Translational Research Institute for Neurological Disorders of Wannan Medical College, Department of Neurosurgery, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui, China
| | - Zeyu Wu
- The Translational Research Institute for Neurological Disorders of Wannan Medical College, Department of Neurosurgery, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui, China
| | - Panpan Zhao
- The Translational Research Institute for Neurological Disorders of Wannan Medical College, Department of Neurosurgery, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui, China
| | - Huiling Dong
- The Translational Research Institute for Neurological Disorders of Wannan Medical College, Department of Neurosurgery, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui, China
| | - Yue Su
- The Translational Research Institute for Neurological Disorders of Wannan Medical College, Department of Neurosurgery, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui, China
| | - Chenghui Zhao
- The Translational Research Institute for Neurological Disorders of Wannan Medical College, Department of Neurosurgery, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui, China
| | - Min Qi
- The Translational Research Institute for Neurological Disorders of Wannan Medical College, Department of Neurosurgery, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui, China
| | - Shizhang Ling
- The Translational Research Institute for Neurological Disorders of Wannan Medical College, Department of Neurosurgery, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui, China
- The Institutes of Brain Science, Wannan Medical College, Higher Education Park, Wuhu, Anhui, China
| | - Xiaochun Jiang
- The Translational Research Institute for Neurological Disorders of Wannan Medical College, Department of Neurosurgery, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui, China
- The Institutes of Brain Science, Wannan Medical College, Higher Education Park, Wuhu, Anhui, China
| |
Collapse
|
2
|
Sharma A, Raut SS, Shukla A, Gupta S, Singh A, Mishra A. DDX3X dynamics, glioblastoma's genetic landscape, therapeutic advances, and autophagic interplay. Med Oncol 2024; 41:258. [PMID: 39368002 DOI: 10.1007/s12032-024-02525-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 09/23/2024] [Indexed: 10/07/2024]
Abstract
Glioblastoma is one of the most aggressive and deadly forms of cancer, posing significant challenges for the medical community. This review focuses on key aspects of Glioblastoma, including its genetic differences between primary and secondary types. Temozolomide is a major first-line treatment for Glioblastoma, and this article explores its development, how it works, and the issue of resistance that limits its effectiveness, prompting the need for new treatment strategies. Gene expression profiling has greatly advanced cancer research by revealing the molecular mechanisms of tumors, which is essential for creating targeted therapies for Glioblastoma. One important protein in this context is DDX3X, which plays various roles in cancer, sometimes promoting it or otherwise suppressing it. Additionally, autophagy, a process that maintains cellular balance, has complex implications in cancer treatment. Understanding autophagy helps to identify resistance mechanisms and potential treatments, with Chloroquine showing promise in treating Glioblastoma. This review covers the interplay between Glioblastoma, DDX3X, and autophagy, highlighting the challenges and potential strategies in treating this severe disease.
Collapse
Affiliation(s)
- Arpit Sharma
- Biomolecular Engineering Laboratory, School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi, 221005, India
| | - Shruti S Raut
- Biomolecular Engineering Laboratory, School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi, 221005, India
| | - Alok Shukla
- Biomolecular Engineering Laboratory, School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi, 221005, India
| | - Shivani Gupta
- Biomolecular Engineering Laboratory, School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi, 221005, India
| | - Amit Singh
- Department of Pharmacology, IMS-Banaras Hindu University, Varanasi, 221005, India.
| | - Abha Mishra
- Biomolecular Engineering Laboratory, School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi, 221005, India.
| |
Collapse
|
3
|
Nafe R, Hattingen E. Forms of Non-Apoptotic Cell Death and Their Role in Gliomas-Presentation of the Current State of Knowledge. Biomedicines 2024; 12:1546. [PMID: 39062119 PMCID: PMC11274595 DOI: 10.3390/biomedicines12071546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/05/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
In addition to necrosis and apoptosis, the two forms of cell death that have been known for many decades, other non-apoptotic forms of cell death have been discovered, many of which also play a role in tumors. Starting with the description of autophagy more than 60 years ago, newer forms of cell death have become important for the biology of tumors, such as ferroptosis, pyroptosis, necroptosis, and paraptosis. In this review, all non-apoptotic and oncologically relevant forms of programmed cell death are presented, starting with their first descriptions, their molecular characteristics, and their role and their interactions in cell physiology and pathophysiology. Based on these descriptions, the current state of knowledge about their alterations and their role in gliomas will be presented. In addition, current efforts to therapeutically influence the molecular components of these forms of cell death will be discussed. Although research into their exact role in gliomas is still at a rather early stage, our review clarifies that all these non-apoptotic forms of cell death show significant alterations in gliomas and that important insight into understanding them has already been gained.
Collapse
Affiliation(s)
- Reinhold Nafe
- Department of Neuroradiology, Clinics of Johann Wolfgang Goethe-University, Schleusenweg 2-16, D-60528 Frankfurt am Main, Germany;
| | | |
Collapse
|
4
|
He Z, Sun C, Ma Y, Chen X, Wang Y, Chen K, Xie F, Zhang Y, Yuan Y, Liu C. Rejuvenating Aged Bone Repair through Multihierarchy Reactive Oxygen Species-Regulated Hydrogel. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2306552. [PMID: 37848015 DOI: 10.1002/adma.202306552] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/05/2023] [Indexed: 10/19/2023]
Abstract
Aging exacerbates the dysfunction of tissue regeneration at multiple levels and gradually diminishes individual's capacity to withstand stress, damage, and disease. The excessive accumulation of reactive oxygen species (ROS) is considered a hallmark feature of senescent stem cells, which causes oxidative stress, deteriorates the host microenvironment, and eventually becomes a critical obstacle for aged bone defect repair. Till now, the strategies cannot synchronously and thoroughly regulate intracellular and extracellular ROS in senescent cells. Herein, a multihierarchy ROS scavenging system for aged bone regeneration is developed by fabricating an injectable PEGylated poly(glycerol sebacate) (PEGS-NH2 )/poly(γ-glutamic acid) (γ-PGA) hydrogel containing rapamycin-loaded poly(diselenide-carbonate) nanomicelles (PSeR). This PSeR hydrogel exhibits highly sensitive ROS responsiveness to the local aged microenvironment and dynamically releases drug-loaded nanomicelles to scavenge the intracellular ROS accumulated in senescent bone mesenchymal stem cells. The PSeR hydrogel effectively tunes the antioxidant function and delays senescence of bone mesenchymal stem cells by safeguarding DNA replication in an oxidative environment, thereby promoting the self-renewal ability and enhancing the osteogenic capacity for aged bone repair in vitro and in vivo. Thus, this multihierarchy ROS-regulated hydrogel provides a new strategy for treating degenerative diseases.
Collapse
Affiliation(s)
- Zirui He
- Basic Science Center Project of National Natural Science Foundation of China, Key Laboratory for Ultrafine Materials of Ministry of Education and School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Chuanhao Sun
- Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Yifan Ma
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, 43210, USA
| | - Xi Chen
- Basic Science Center Project of National Natural Science Foundation of China, Key Laboratory for Ultrafine Materials of Ministry of Education and School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Ying Wang
- Basic Science Center Project of National Natural Science Foundation of China, Key Laboratory for Ultrafine Materials of Ministry of Education and School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Kai Chen
- Basic Science Center Project of National Natural Science Foundation of China, Key Laboratory for Ultrafine Materials of Ministry of Education and School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Fangru Xie
- Basic Science Center Project of National Natural Science Foundation of China, Key Laboratory for Ultrafine Materials of Ministry of Education and School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Yan Zhang
- Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Yuan Yuan
- Basic Science Center Project of National Natural Science Foundation of China, Key Laboratory for Ultrafine Materials of Ministry of Education and School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Changsheng Liu
- Basic Science Center Project of National Natural Science Foundation of China, Key Laboratory for Ultrafine Materials of Ministry of Education and School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| |
Collapse
|
5
|
Cheng C, Yuan Y, Yuan F, Li X. Acute kidney injury: exploring endoplasmic reticulum stress-mediated cell death. Front Pharmacol 2024; 15:1308733. [PMID: 38434710 PMCID: PMC10905268 DOI: 10.3389/fphar.2024.1308733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 01/31/2024] [Indexed: 03/05/2024] Open
Abstract
Acute kidney injury (AKI) is a global health problem, given its substantial morbidity and mortality rates. A better understanding of the mechanisms and factors contributing to AKI has the potential to guide interventions aimed at mitigating the risk of AKI and its subsequent unfavorable outcomes. Endoplasmic reticulum stress (ERS) is an intrinsic protective mechanism against external stressors. ERS occurs when the endoplasmic reticulum (ER) cannot deal with accumulated misfolded proteins completely. Excess ERS can eventually cause pathological reactions, triggering various programmed cell death (autophagy, ferroptosis, apoptosis, pyroptosis). This article provides an overview of the latest research progress in deciphering the interaction between ERS and different programmed cell death. Additionally, the report consolidates insights into the roles of ERS in AKI and highlights the potential avenues for targeting ERS as a treatment direction toward for AKI.
Collapse
Affiliation(s)
- Cong Cheng
- Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yuan Yuan
- Department of Emergency, Changsha Hospital of Traditional Chinese Medicine (Changsha Eighth Hospital), Changsha, Hunan, China
| | - Fang Yuan
- Department of Pharmacy, The Third Hospital of Changsha, Changsha, Hunan, China
- Hunan Provincial Key Laboratory of Anti-Resistance Microbial Drugs, Changsha, Hunan, China
| | - Xin Li
- Department of Pharmacy, The Third Hospital of Changsha, Changsha, Hunan, China
- Hunan Provincial Key Laboratory of Anti-Resistance Microbial Drugs, Changsha, Hunan, China
| |
Collapse
|
6
|
Trejo-Solis C, Silva-Adaya D, Serrano-García N, Magaña-Maldonado R, Jimenez-Farfan D, Ferreira-Guerrero E, Cruz-Salgado A, Castillo-Rodriguez RA. Role of Glycolytic and Glutamine Metabolism Reprogramming on the Proliferation, Invasion, and Apoptosis Resistance through Modulation of Signaling Pathways in Glioblastoma. Int J Mol Sci 2023; 24:17633. [PMID: 38139462 PMCID: PMC10744281 DOI: 10.3390/ijms242417633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/11/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023] Open
Abstract
Glioma cells exhibit genetic and metabolic alterations that affect the deregulation of several cellular signal transduction pathways, including those related to glucose metabolism. Moreover, oncogenic signaling pathways induce the expression of metabolic genes, increasing the metabolic enzyme activities and thus the critical biosynthetic pathways to generate nucleotides, amino acids, and fatty acids, which provide energy and metabolic intermediates that are essential to accomplish the biosynthetic needs of glioma cells. In this review, we aim to explore how dysregulated metabolic enzymes and their metabolites from primary metabolism pathways in glioblastoma (GBM) such as glycolysis and glutaminolysis modulate anabolic and catabolic metabolic pathways as well as pro-oncogenic signaling and contribute to the formation, survival, growth, and malignancy of glioma cells. Also, we discuss promising therapeutic strategies by targeting the key players in metabolic regulation. Therefore, the knowledge of metabolic reprogramming is necessary to fully understand the biology of malignant gliomas to improve patient survival significantly.
Collapse
Affiliation(s)
- Cristina Trejo-Solis
- Laboratorio Experimental de Enfermedades Neurodegenerativas, Laboratorio de Reprogramación Celular, Departamento de Neurofisiología, Instituto Nacional de Neurología y Neurocirugía, Ciudad de Mexico 14269, Mexico; (D.S.-A.); (N.S.-G.); (R.M.-M.)
| | - Daniela Silva-Adaya
- Laboratorio Experimental de Enfermedades Neurodegenerativas, Laboratorio de Reprogramación Celular, Departamento de Neurofisiología, Instituto Nacional de Neurología y Neurocirugía, Ciudad de Mexico 14269, Mexico; (D.S.-A.); (N.S.-G.); (R.M.-M.)
| | - Norma Serrano-García
- Laboratorio Experimental de Enfermedades Neurodegenerativas, Laboratorio de Reprogramación Celular, Departamento de Neurofisiología, Instituto Nacional de Neurología y Neurocirugía, Ciudad de Mexico 14269, Mexico; (D.S.-A.); (N.S.-G.); (R.M.-M.)
| | - Roxana Magaña-Maldonado
- Laboratorio Experimental de Enfermedades Neurodegenerativas, Laboratorio de Reprogramación Celular, Departamento de Neurofisiología, Instituto Nacional de Neurología y Neurocirugía, Ciudad de Mexico 14269, Mexico; (D.S.-A.); (N.S.-G.); (R.M.-M.)
| | - Dolores Jimenez-Farfan
- Laboratorio de Inmunología, División de Estudios de Posgrado e Investigación, Facultad de Odontología, Universidad Nacional Autónoma de México, Ciudad de Mexico 04510, Mexico;
| | - Elizabeth Ferreira-Guerrero
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca 62100, Mexico; (E.F.-G.); (A.C.-S.)
| | - Arturo Cruz-Salgado
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca 62100, Mexico; (E.F.-G.); (A.C.-S.)
| | | |
Collapse
|
7
|
Chen J, Rodriguez AS, Morales MA, Fang X. Autophagy Modulation and Its Implications on Glioblastoma Treatment. Curr Issues Mol Biol 2023; 45:8687-8703. [PMID: 37998723 PMCID: PMC10670099 DOI: 10.3390/cimb45110546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/26/2023] [Accepted: 10/26/2023] [Indexed: 11/25/2023] Open
Abstract
Autophagy is a vital cellular process that functions to degrade and recycle damaged organelles into basic metabolites. This allows a cell to adapt to a diverse range of challenging conditions. Autophagy assists in maintaining homeostasis, and it is tightly regulated by the cell. The disruption of autophagy has been associated with many diseases, such as neurodegenerative disorders and cancer. This review will center its discussion on providing an in-depth analysis of the current molecular understanding of autophagy and its relevance to brain tumors. We will delve into the current literature regarding the role of autophagy in glioma pathogenesis by exploring the major pathways of JAK2/STAT3 and PI3K/AKT/mTOR and summarizing the current therapeutic interventions and strategies for glioma treatment. These treatments will be evaluated on their potential for autophagy induction and the challenges associated with their utilization. By understanding the mechanism of autophagy, clinical applications for future therapeutics in treating gliomas can be better targeted.
Collapse
Affiliation(s)
- Johnny Chen
- Department of Neuroscience, School of Medicine, University of Texas Rio Grande Valley, Edinburg, TX 78539, USA;
| | - Andrea Salinas Rodriguez
- Department of Health and Biomedical Sciences, University of Texas Rio Grande Valley, Edinburg, TX 78539, USA;
| | - Maximiliano Arath Morales
- Department of Biology, College of Science, University of Texas Rio Grande Valley, Edinburg, TX 78539, USA;
| | - Xiaoqian Fang
- Department of Neuroscience, School of Medicine, University of Texas Rio Grande Valley, Edinburg, TX 78539, USA;
| |
Collapse
|
8
|
Semyachkina-Glushkovskaya O, Sokolovski S, Fedosov I, Shirokov A, Navolokin N, Bucharskaya A, Blokhina I, Terskov A, Dubrovski A, Telnova V, Tzven A, Tzoy M, Evsukova A, Zhlatogosrkaya D, Adushkina V, Dmitrenko A, Manzhaeva M, Krupnova V, Noghero A, Bragin D, Bragina O, Borisova E, Kurths J, Rafailov E. Transcranial Photosensitizer-Free Laser Treatment of Glioblastoma in Rat Brain. Int J Mol Sci 2023; 24:13696. [PMID: 37762000 PMCID: PMC10530910 DOI: 10.3390/ijms241813696] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 08/29/2023] [Accepted: 09/02/2023] [Indexed: 09/29/2023] Open
Abstract
Over sixty years, laser technologies have undergone a technological revolution and become one of the main tools in biomedicine, particularly in neuroscience, neurodegenerative diseases and brain tumors. Glioblastoma is the most lethal form of brain cancer, with very limited treatment options and a poor prognosis. In this study on rats, we demonstrate that glioblastoma (GBM) growth can be suppressed by photosensitizer-free laser treatment (PS-free-LT) using a quantum-dot-based 1267 nm laser diode. This wavelength, highly absorbed by oxygen, is capable of turning triplet oxygen to singlet form. Applying 1267 nm laser irradiation for a 4 week course with a total dose of 12.7 kJ/cm2 firmly suppresses GBM growth and increases survival rate from 34% to 64%, presumably via LT-activated apoptosis, inhibition of the proliferation of tumor cells, a reduction in intracranial pressure and stimulation of the lymphatic drainage and clearing functions. PS-free-LT is a promising breakthrough technology in non- or minimally invasive therapy for superficial GBMs in infants as well as in adult patients with high photosensitivity or an allergic reaction to PSs.
Collapse
Affiliation(s)
- Oxana Semyachkina-Glushkovskaya
- Physics Department, Humboldt University, Newtonstrasse 15, 12489 Berlin, Germany;
- Department of Biology, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov, Russia; (A.S.); (N.N.); (I.B.); (A.T.); (V.T.); (A.T.); (A.E.); (D.Z.); (V.A.); (A.D.); (M.M.); (V.K.)
| | - Sergey Sokolovski
- Optoelectronics and Biomedical Photonics Group, AIPT, Aston University, Birmingham B4 7ET, UK;
| | - Ivan Fedosov
- Physics Department, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov, Russia; (I.F.); (A.D.); (M.T.)
| | - Alexander Shirokov
- Department of Biology, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov, Russia; (A.S.); (N.N.); (I.B.); (A.T.); (V.T.); (A.T.); (A.E.); (D.Z.); (V.A.); (A.D.); (M.M.); (V.K.)
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, Prospekt Entuziastov 13, 410049 Saratov, Russia
| | - Nikita Navolokin
- Department of Biology, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov, Russia; (A.S.); (N.N.); (I.B.); (A.T.); (V.T.); (A.T.); (A.E.); (D.Z.); (V.A.); (A.D.); (M.M.); (V.K.)
- Department of Pathological Anatomy, Saratov Medical State University, Bolshaya Kazachaya Str. 112, 410012 Saratov, Russia;
| | - Alla Bucharskaya
- Department of Pathological Anatomy, Saratov Medical State University, Bolshaya Kazachaya Str. 112, 410012 Saratov, Russia;
| | - Inna Blokhina
- Department of Biology, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov, Russia; (A.S.); (N.N.); (I.B.); (A.T.); (V.T.); (A.T.); (A.E.); (D.Z.); (V.A.); (A.D.); (M.M.); (V.K.)
| | - Andrey Terskov
- Department of Biology, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov, Russia; (A.S.); (N.N.); (I.B.); (A.T.); (V.T.); (A.T.); (A.E.); (D.Z.); (V.A.); (A.D.); (M.M.); (V.K.)
| | - Alexander Dubrovski
- Physics Department, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov, Russia; (I.F.); (A.D.); (M.T.)
| | - Valeria Telnova
- Department of Biology, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov, Russia; (A.S.); (N.N.); (I.B.); (A.T.); (V.T.); (A.T.); (A.E.); (D.Z.); (V.A.); (A.D.); (M.M.); (V.K.)
| | - Anna Tzven
- Department of Biology, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov, Russia; (A.S.); (N.N.); (I.B.); (A.T.); (V.T.); (A.T.); (A.E.); (D.Z.); (V.A.); (A.D.); (M.M.); (V.K.)
| | - Maria Tzoy
- Physics Department, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov, Russia; (I.F.); (A.D.); (M.T.)
| | - Arina Evsukova
- Department of Biology, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov, Russia; (A.S.); (N.N.); (I.B.); (A.T.); (V.T.); (A.T.); (A.E.); (D.Z.); (V.A.); (A.D.); (M.M.); (V.K.)
| | - Daria Zhlatogosrkaya
- Department of Biology, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov, Russia; (A.S.); (N.N.); (I.B.); (A.T.); (V.T.); (A.T.); (A.E.); (D.Z.); (V.A.); (A.D.); (M.M.); (V.K.)
| | - Viktoria Adushkina
- Department of Biology, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov, Russia; (A.S.); (N.N.); (I.B.); (A.T.); (V.T.); (A.T.); (A.E.); (D.Z.); (V.A.); (A.D.); (M.M.); (V.K.)
| | - Alexander Dmitrenko
- Department of Biology, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov, Russia; (A.S.); (N.N.); (I.B.); (A.T.); (V.T.); (A.T.); (A.E.); (D.Z.); (V.A.); (A.D.); (M.M.); (V.K.)
| | - Maria Manzhaeva
- Department of Biology, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov, Russia; (A.S.); (N.N.); (I.B.); (A.T.); (V.T.); (A.T.); (A.E.); (D.Z.); (V.A.); (A.D.); (M.M.); (V.K.)
| | - Valeria Krupnova
- Department of Biology, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov, Russia; (A.S.); (N.N.); (I.B.); (A.T.); (V.T.); (A.T.); (A.E.); (D.Z.); (V.A.); (A.D.); (M.M.); (V.K.)
| | - Alessio Noghero
- Lovelace Biomedical Research Institute, Albuquerque, NM 87108, USA; (A.N.); (D.B.); (O.B.)
| | - Denis Bragin
- Lovelace Biomedical Research Institute, Albuquerque, NM 87108, USA; (A.N.); (D.B.); (O.B.)
- Department of Neurology, School of Medicine, University of New Mexico, Albuquerque, NM 87131, USA
| | - Olga Bragina
- Lovelace Biomedical Research Institute, Albuquerque, NM 87108, USA; (A.N.); (D.B.); (O.B.)
- Department of Neurology, School of Medicine, University of New Mexico, Albuquerque, NM 87131, USA
| | - Ekaterina Borisova
- Institute of Electronics, Bulgarian Academy of Sciences, Tsarigradsko Chaussee Blvd. 72, 1784 Sofia, Bulgaria;
| | - Jürgen Kurths
- Physics Department, Humboldt University, Newtonstrasse 15, 12489 Berlin, Germany;
- Department of Biology, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov, Russia; (A.S.); (N.N.); (I.B.); (A.T.); (V.T.); (A.T.); (A.E.); (D.Z.); (V.A.); (A.D.); (M.M.); (V.K.)
- Potsdam Institute for Climate Impact Research, Telegrafenberg A31, 14473 Potsdam, Germany
- Centre for Analysis of Complex Systems, Sechenov First Moscow State Medical University Moscow, 119991 Moscow, Russia
| | - Edik Rafailov
- Optoelectronics and Biomedical Photonics Group, AIPT, Aston University, Birmingham B4 7ET, UK;
| |
Collapse
|
9
|
Khizar H, Hu Y, Wu Y, Yang J. The role and implication of autophagy in cholangiocarcinoma. Cell Death Discov 2023; 9:332. [PMID: 37666811 PMCID: PMC10477247 DOI: 10.1038/s41420-023-01631-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 08/13/2023] [Accepted: 08/24/2023] [Indexed: 09/06/2023] Open
Abstract
Cholangiocarcinoma (CCA) is a malignant tumor that originates from the biliary epithelial cells. It is characterized by a difficult diagnosis and limited treatment options. Autophagy is a cellular survival mechanism that maintains nutrient and energy homeostasis and eliminates intracellular pathogens. It is involved in various physiological and pathological processes, including the development of cancer. However, the role, mechanism, and potential therapeutic targets of autophagy in CCA have not been thoroughly studied. In this review, we introduce the classification, characteristics, process, and related regulatory genes of autophagy. We summarize the regulation of autophagy on the progression of CCA and collect the latest research progress on some autophagy modulators with clinical potential in CCA. In conclusion, combining autophagy modulators with immunotherapy, chemotherapy, and targeted therapy has great potential in the treatment of CCA. This combination may be a potential therapeutic target for CCA in the future.
Collapse
Affiliation(s)
- Hayat Khizar
- Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of medicine, 310006, Hangzhou, Zhejiang, China
- Department of Oncology, The Fourth Affiliated Hospital, International Institute of Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Yufei Hu
- Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of medicine, 310006, Hangzhou, Zhejiang, China
- Department of Gastroenterology, The Fourth School of Clinical medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Yanhua Wu
- Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of medicine, 310006, Hangzhou, Zhejiang, China
- Department of Gastroenterology, The Fourth School of Clinical medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Jianfeng Yang
- Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of medicine, 310006, Hangzhou, Zhejiang, China.
- Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, 310006, Hangzhou, Zhejiang, China.
- Key Laboratory of Integrated Traditional Chinese and Western Medicine for Biliary and Pancreatic Diseases of Zhejiang Province, 310006, Hangzhou, Zhejiang, China.
- Hangzhou Institute of Digestive Diseases, 310006, Hangzhou, Zhejiang, China.
| |
Collapse
|
10
|
Ma Y, Wu S, Zhao F, Li H, Li Q, Zhang J, Li H, Yuan Z. Hirudin inhibits glioma growth through mTOR-regulated autophagy. J Cell Mol Med 2023; 27:2701-2713. [PMID: 37539490 PMCID: PMC10494300 DOI: 10.1111/jcmm.17851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 07/05/2023] [Accepted: 07/08/2023] [Indexed: 08/05/2023] Open
Abstract
Glioma is the most common primary malignant brain tumour, and survival is poor. Hirudin has anticancer pharmacological effects through suppression of glioma cell progression, but the molecular target and mechanism are poorly understood. In this study, we observed that hirudin dose- and time-dependently inhibited glioma invasion, migration and proliferation. Mechanistically, hirudin activated LC3-II but not Caspase-3 to induce the autophagic death of glioma cells by decreasing the phosphorylation of mTOR and its downstream substrates ULK1, P70S6K and 4EBP1. Furthermore, hirudin inhibited glioma growth and induced changes in autophagy in cell-derived xenograft (CDX) nude mice, with a decrease in mTOR activity and activation of LC3-II. Collectively, our results highlight a new anticancer mechanism of hirudin in which hirudin-induced inhibition of glioma progression through autophagy activation is likely achieved by inhibition of the mTOR signalling pathway, thus providing a molecular basis for hirudin as a potential and effective clinical drug for glioma therapy.
Collapse
Affiliation(s)
- Ying Ma
- Department of NeurologyInstitute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical UniversityGuangzhouChina
- Guangdong Province Key Laboratory of Brain Function and DiseaseGuangzhouChina
| | - Senbin Wu
- Department of NeurologyInstitute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical UniversityGuangzhouChina
- Guangdong Province Key Laboratory of Brain Function and DiseaseGuangzhouChina
| | - Fanyi Zhao
- Department of NeurologyInstitute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical UniversityGuangzhouChina
- Guangdong Province Key Laboratory of Brain Function and DiseaseGuangzhouChina
| | - Huifeng Li
- Department of NeurologyInstitute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical UniversityGuangzhouChina
- Guangdong Province Key Laboratory of Brain Function and DiseaseGuangzhouChina
| | - Qiaohong Li
- Department of NeurologyInstitute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical UniversityGuangzhouChina
- Guangdong Province Key Laboratory of Brain Function and DiseaseGuangzhouChina
| | - Jingzhi Zhang
- Department of Traditional Chinese MedicineThe Second Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
| | - Hua Li
- Laboratory animal center, The Second Affiliated HospitalGuangzhou Medical UniversityGuangzhouChina
| | - Zhongmin Yuan
- Department of NeurologyInstitute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical UniversityGuangzhouChina
- Guangdong Province Key Laboratory of Brain Function and DiseaseGuangzhouChina
- Guangdong‐Hong Kong‐Macao Greater Bay Area Center for Brain Science and Brain‐Inspired IntelligenceGuangzhouChina
| |
Collapse
|
11
|
Ma B, Hu Y, Zhu J, Zheng Z, Ye J. Research on the role of cellular autophagy in the sensitivity of human tongue cancer cells to radiotherapy and chemotherapy. JOURNAL OF STOMATOLOGY, ORAL AND MAXILLOFACIAL SURGERY 2023; 124:101430. [PMID: 36878357 DOI: 10.1016/j.jormas.2023.101430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 03/01/2023] [Indexed: 03/07/2023]
Abstract
OBJECTIVE This paper aims to investigate the role of cisplatin-induced autophagy in human tongue squamous carcinoma Tca8113 cells. METHODS After inhibiting the expression of autophagic proteins with different autophagy inhibitors (3-methyladenine, chloroquine), the sensitivity of human tongue squamous cell carcinoma (Tca8113) cells to killing by gradient concentrations of cisplatin and gradient doses of radiation was detected using a colony formation assay. Further, the changes of autophagy expression in Tca8113 cells that had been treated with cisplatin and radiation were detected using western immunoblot, GFP-LC3 fluorescence and transmission electron microscopy. RESULTS The sensitivity of Tca8113 cells to cisplatin and radiation was significantly increased (P < 0.05) after reducing autophagy expression using different autophagy inhibitors. Meanwhile, the expression of autophagy in the cells was significantly increased by cisplatin and radiation treatment. CONCLUSION Tca8113 cells upregulated autophagy under the effect of either radiation or cisplatin, and the sensitivity of Tca8113 cells to cisplatin and radiation could be improved by inhibiting autophagy using multiple pathways.
Collapse
Affiliation(s)
- Ben Ma
- Department of Oral and Maxillofacial Surgery, Shenzhen Stomatology Hospital (Pingshan) of Southern Medical University, Shenzhen, 518118, China; Jiangsu Key Laboratory of Oral Disease, Nanjing Medical University, Nanjing 210029, China
| | - Yong Hu
- Department of Stomatology, The Affiliated Suzhou Science and Technology, Town Hospital of Nanjing Medical University, Suzhou, 215153, China
| | - Jiadong Zhu
- Department of Stomatology, The Affiliated Suzhou Science and Technology, Town Hospital of Nanjing Medical University, Suzhou, 215153, China
| | - Zeguang Zheng
- Department of Stomatology, The Affiliated Suzhou Science and Technology, Town Hospital of Nanjing Medical University, Suzhou, 215153, China
| | - Jinhai Ye
- Jiangsu Key Laboratory of Oral Disease, Nanjing Medical University, Nanjing 210029, China; Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, 210029, China.
| |
Collapse
|
12
|
Nafe R, Hattingen E. The Spectrum of Molecular Pathways in Gliomas-An Up-to-Date Review. Biomedicines 2023; 11:2281. [PMID: 37626776 PMCID: PMC10452344 DOI: 10.3390/biomedicines11082281] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/02/2023] [Accepted: 08/04/2023] [Indexed: 08/27/2023] Open
Abstract
During the last 20 years, molecular alterations have gained increasing significance in the diagnosis and biological assessment of tumors. Gliomas represent the largest group of tumors of the central nervous system, and the main aim of this review is to present the current knowledge on molecular pathways and their alterations in gliomas. A wide range of new insights has been gained, including evidence for the involvement of the WNT pathway or the hippo pathway in the pathobiology of gliomas, indicating a broad involvement of different pathways formerly not considered to play a central role in gliomas. Even new aspects of angiogenic, apoptotic, and metabolic pathways are presented, as well as the rapidly growing field of epigenetic processes, including non-coding RNAs. The two major conclusions drawn from the present review are the distinct interconnectivity of the whole spectrum of molecular pathways and the prominent role of non-coding RNAs, especially circular RNAs, in the regulation of specific targets. All these new insights are discussed, even considering the topic of the resistance to therapy of gliomas, along with aspects that are still incompletely understood, like the role of hydroxymethylation, or even ferroptosis, in the pathobiology of gliomas.
Collapse
Affiliation(s)
- Reinhold Nafe
- Department of Neuroradiology, Clinics of Johann Wolfgang Goethe-University, Schleusenweg 2-16, D-60528 Frankfurt am Main, Germany;
| | | |
Collapse
|
13
|
Okamoto R, Toya K, Ogino Y, Sato A. Downregulation of long noncoding RNA TP73-AS1 expression confers resistance to temozolomide in human glioblastoma cells. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2023; 43:86-98. [PMID: 37452786 DOI: 10.1080/15257770.2023.2234960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 06/27/2023] [Accepted: 07/04/2023] [Indexed: 07/18/2023]
Abstract
Glioblastoma multiforme (GBM), the most aggressive primary malignant brain tumor, is resistant to conventional radiotherapies and chemotherapies, including temozolomide (TMZ). Overcoming GBM resistance to the chemotherapeutic agent TMZ poses an important therapeutic problem. This study established an association between the long noncoding RNA TP73-AS1 and TMZ sensitivity regulation in human GBM cells (U87MG). Transcriptomic analysis revealed that TP73-AS1 expression was reduced in TMZ-resistant U87MGRT100 cells compared to that in parental U87MG cells. Additionally, TP73-AS1 knockdown in parental U87MG cells decreased their sensitivity to TMZ. Overall, these findings suggest that TP73-AS1 functions as a regulator of TMZ sensitivity in GBM cells.
Collapse
Affiliation(s)
- Ryo Okamoto
- Department of Biochemistry and Molecular Biology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba, Japan
| | - Koki Toya
- Department of Biochemistry and Molecular Biology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba, Japan
| | - Yoko Ogino
- Department of Biochemistry and Molecular Biology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba, Japan
| | - Akira Sato
- Department of Biochemistry and Molecular Biology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba, Japan
| |
Collapse
|
14
|
Ding W, Liao L, Liu J, Zhao J, Tang Q, Liao Y. Lower dose of metformin combined with artesunate induced autophagy-dependent apoptosis of glioblastoma by activating ROS-AMPK-mTOR axis. Exp Cell Res 2023:113691. [PMID: 37399981 DOI: 10.1016/j.yexcr.2023.113691] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 06/09/2023] [Accepted: 06/22/2023] [Indexed: 07/05/2023]
Abstract
Glioblastoma multiform (GBM), one of the most common, aggressive primary brain tumours, demonstrates resistance to radiotherapy and chemotherapy after surgical resection and treatment failure. Metformin (MET) has been shown to suppress the proliferative capacity and invasion ability of GBM cells by activating AMPK and inhibiting mTOR, but the effective dose exceeded the maximum tolerated dose. Artesunate (ART) can exert certain anti-tumour effects by activating the AMPK-mTOR axis and inducing autophagy in tumour cells. Therefore, this study investigated the effects of MET combined with ART combination therapy on autophagy and apoptosis in GBM cells. MET combined with ART treatment effectively suppressed the viability, mono-cloning ability, migration and invasion capacities, as well as metastatic ability of GBM cells. The underlying mechanism involved modulation of the ROS-AMPK-mTOR axis, which was confirmed using 3-methyladenine and rapamycin to inhibit or promote the effects of MET combined with ART, respectively. The study findings suggest that MET used in combination with ART can induce autophagy-dependent apoptosis in GBM cells by activating the ROS-AMPK-mTOR pathway, providing a potential new treatment for GBM.
Collapse
Affiliation(s)
- Wencong Ding
- Department of Neurosurgery, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang 421002, Hunan, China
| | - Lingxiao Liao
- Department of Pharmacy, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang 421002, Hunan, China
| | - Jia Liu
- Clinical Research Institute, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang 421002, Hunan, China
| | - Jiaxing Zhao
- Department of Neurosurgery, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang 421002, Hunan, China
| | - Qiongyan Tang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450052, Henan, China.
| | - Yongshi Liao
- Department of Neurosurgery, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang 421002, Hunan, China.
| |
Collapse
|
15
|
Liu DN, Liu M, Zhang SS, Shang YF, Zhang WF, Song FH, Zhang HW, Du GH, Wang YH. Chrysomycin A Regulates Proliferation and Apoptosis of Neuroglioma Cells via the Akt/GSK-3β Signaling Pathway In Vivo and In Vitro. Mar Drugs 2023; 21:329. [PMID: 37367654 DOI: 10.3390/md21060329] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/24/2023] [Accepted: 05/25/2023] [Indexed: 06/28/2023] Open
Abstract
Glioblastoma (GBM) is a major type of primary brain tumor without ideal prognosis and it is therefore necessary to develop a novel compound possessing therapeutic effects. Chrysomycin A (Chr-A) has been reported to inhibit the proliferation, migration and invasion of U251 and U87-MG cells through the Akt/GSK-3β signaling pathway, but the mechanism of Chr-A against glioblastoma in vivo and whether Chr-A modulates the apoptosis of neuroglioma cells is unclear. The present study aims to elucidate the potential of Chr-A against glioblastoma in vivo and how Chr-A modulates the apoptosis of neuroglioma cells. Briefly, the anti-glioblastoma activity was assessed in human glioma U87 xenografted hairless mice. Chr-A-related targets were identified via RNA-sequencing. Apoptotic ratio and caspase 3/7 activity of U251 and U87-MG cells were assayed via flow cytometry. Apoptosis-related proteins and possible molecular mechanisms were validated via Western blotting. The results showed that Chr-A treatment significantly inhibits glioblastoma progression in xenografted hairless mice, and enrichment analysis suggested that apoptosis, PI3K-Akt and Wnt signaling pathways were involved in the possible mechanisms. Chr-A increased the apoptotic ratio and the activity of caspase 3/7 in U251 and U87-MG cells. Western blotting revealed that Chr-A disturbed the balance between Bax and Bcl-2, activating a caspase cascade reaction and downregulating the expression of p-Akt and p-GSK-3β, suggesting that Chr-A may contribute to glioblastoma regression modulating in the Akt/GSK-3β signaling pathway to promote apoptosis of neuroglioma cells in vivo and in vitro. Therefore, Chr-A may hold therapeutic promise for glioblastoma.
Collapse
Affiliation(s)
- Dong-Ni Liu
- Beijing Key Laboratory of Drug Target Identification and New Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Man Liu
- Beijing Key Laboratory of Drug Target Identification and New Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Shan-Shan Zhang
- Beijing Key Laboratory of Drug Target Identification and New Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Yu-Fu Shang
- Beijing Key Laboratory of Drug Target Identification and New Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Wen-Fang Zhang
- Beijing Key Laboratory of Drug Target Identification and New Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Fu-Hang Song
- School of Light Industry, Beijing Technology and Business University, Beijing 100048, China
| | - Hua-Wei Zhang
- School of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China
| | - Guan-Hua Du
- Beijing Key Laboratory of Drug Target Identification and New Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Yue-Hua Wang
- Beijing Key Laboratory of Drug Target Identification and New Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
16
|
Pizzimenti C, Fiorentino V, Franchina M, Martini M, Giuffrè G, Lentini M, Silvestris N, Di Pietro M, Fadda G, Tuccari G, Ieni A. Autophagic-Related Proteins in Brain Gliomas: Role, Mechanisms, and Targeting Agents. Cancers (Basel) 2023; 15:cancers15092622. [PMID: 37174088 PMCID: PMC10177137 DOI: 10.3390/cancers15092622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/02/2023] [Accepted: 05/03/2023] [Indexed: 05/15/2023] Open
Abstract
The present review focuses on the phenomenon of autophagy, a catabolic cellular process, which allows for the recycling of damaged organelles, macromolecules, and misfolded proteins. The different steps able to activate autophagy start with the formation of the autophagosome, mainly controlled by the action of several autophagy-related proteins. It is remarkable that autophagy may exert a double role as a tumour promoter and a tumour suppressor. Herein, we analyse the molecular mechanisms as well as the regulatory pathways of autophagy, mainly addressing their involvement in human astrocytic neoplasms. Moreover, the relationships between autophagy, the tumour immune microenvironment, and glioma stem cells are discussed. Finally, an excursus concerning autophagy-targeting agents is included in the present review in order to obtain additional information for the better treatment and management of therapy-resistant patients.
Collapse
Affiliation(s)
- Cristina Pizzimenti
- Translational Molecular Medicine and Surgery, Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98125 Messina, Italy
| | - Vincenzo Fiorentino
- Department of Human Pathology in Adult and Developmental Age "Gaetano Barresi", Pathology Section, University of Messina, 98125 Messina, Italy
| | - Mariausilia Franchina
- Department of Human Pathology in Adult and Developmental Age "Gaetano Barresi", Pathology Section, University of Messina, 98125 Messina, Italy
| | - Maurizio Martini
- Department of Human Pathology in Adult and Developmental Age "Gaetano Barresi", Pathology Section, University of Messina, 98125 Messina, Italy
| | - Giuseppe Giuffrè
- Department of Human Pathology in Adult and Developmental Age "Gaetano Barresi", Pathology Section, University of Messina, 98125 Messina, Italy
| | - Maria Lentini
- Department of Human Pathology in Adult and Developmental Age "Gaetano Barresi", Pathology Section, University of Messina, 98125 Messina, Italy
| | - Nicola Silvestris
- Department of Human Pathology in Adult and Developmental Age "Gaetano Barresi", Oncology Section, University of Messina, 98125 Messina, Italy
| | - Martina Di Pietro
- Department of Human Pathology in Adult and Developmental Age "Gaetano Barresi", Oncology Section, University of Messina, 98125 Messina, Italy
| | - Guido Fadda
- Department of Human Pathology in Adult and Developmental Age "Gaetano Barresi", Pathology Section, University of Messina, 98125 Messina, Italy
| | - Giovanni Tuccari
- Department of Human Pathology in Adult and Developmental Age "Gaetano Barresi", Pathology Section, University of Messina, 98125 Messina, Italy
| | - Antonio Ieni
- Department of Human Pathology in Adult and Developmental Age "Gaetano Barresi", Pathology Section, University of Messina, 98125 Messina, Italy
| |
Collapse
|
17
|
Behrooz AB, Latifi-Navid H, Nezhadi A, Świat M, Los M, Jamalpoor Z, Ghavami S. Molecular mechanisms of microRNAs in glioblastoma pathogenesis. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119482. [PMID: 37146725 DOI: 10.1016/j.bbamcr.2023.119482] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 04/25/2023] [Accepted: 04/26/2023] [Indexed: 05/07/2023]
Abstract
Glioblastoma (GBM) is human's most prevalent and severe brain cancer. Epigenetic regulators, micro(mi)RNAs, significantly impact cellular health and disease because of their wide range of targets and functions. The "epigenetic symphony" in which miRNAs perform is responsible for orchestrating the transcription of genetic information. The discovery of regulatory miRNA activities in GBM biology has shown that various miRNAs play a vital role in disease onset and development. Here, we summarize our current understanding of the current state-of-the-art and latest findings regarding the interactions between miRNAs and molecular mechanisms commonly associated with GBM pathogenesis. Moreover, by literature review and reconstruction of the GBM gene regulatory network, we uncovered the connection between miRNAs and critical signaling pathways such as cell proliferation, invasion, and cell death, which provides promising hints for identifying potential therapeutic targets for the treatment of GBM. In addition, the role of miRNAs in GBM patient survival was investigated. The present review, which contains new analyses of the previous literature, may lead to new avenues to explore in the future for the development of multitargeted miRNA-based therapies for GBM.
Collapse
Affiliation(s)
| | - Hamid Latifi-Navid
- Department of Molecular Medicine, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Akram Nezhadi
- Cognitive Neuroscience Research Center, Aja University of Medical Sciences, Tehran, Iran
| | - Maciej Świat
- Faculty of Medicine in Zabrze, University of Technology in Katowice, 41-800 Zabrze, Poland
| | - Marek Los
- Biotechnology Center, Silesian University of Technology, 44-100 Gliwice, Poland
| | - Zahra Jamalpoor
- Trauma Research Center, Aja University of Medical Sciences, Tehran, Iran.
| | - Saeid Ghavami
- Faculty of Medicine in Zabrze, University of Technology in Katowice, 41-800 Zabrze, Poland; Research Institute of Oncology and Hematology, Cancer Care Manitoba-University of Manitoba, Winnipeg, Manitoba, Canada; Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, Manitoba, Canada.
| |
Collapse
|
18
|
Kundu M, Das S, Das CK, Kulkarni G, Das S, Dhara D, Mandal M. Magnolol induces cytotoxic autophagy in glioma by inhibiting PI3K/AKT/mTOR signaling. Exp Cell Res 2023; 424:113488. [PMID: 36736226 DOI: 10.1016/j.yexcr.2023.113488] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 12/18/2022] [Accepted: 01/18/2023] [Indexed: 02/04/2023]
Abstract
Glioma is difficult-to-treat because of its infiltrative nature and the presence of the blood-brain barrier. Temozolomide is the only FDA-approved drug for its management. Therefore, finding a novel chemotherapeutic agent for glioma is of utmost importance. Magnolol, a neolignan, has been known for its apoptotic role in glioma. In this work, we have explored a novel anti-glioma mechanism of Magnolol associated with its role in autophagy modulation. We found increased expression levels of Beclin-1, Atg5-Atg12, and LC3-II and lower p62 expression in Magnolol-treated glioma cells. PI3K/AKT/mTOR pathway proteins were also downregulated in Magnolol-treated glioma cells. Next, we treated the glioma cells with Insulin, a stimulator of PI3K/AKT/mTOR signaling, to confirm that Magnolol induced autophagy by inhibiting this pathway. Insulin reversed the effect on Magnolol-mediated autophagy induction. We also established the same in in vivo glioma model where Magnolol showed an anti-glioma effect by inducing autophagy. To confirm the cytotoxic effect of Magnolol-induced autophagy, we used Chloroquine, a late-stage autophagy inhibitor. Chloroquine efficiently reversed the anti-glioma effects of Magnolol both in vitro and in vivo. Our study revealed the cytotoxic effect of Magnolol-induced autophagy in glioma, which was not previously reported. Additionally, Magnolol showed no toxicity in non-cancerous cell lines as well as rat organs. Thus, we concluded that Magnolol is an excellent candidate for developing new therapeutic strategies for glioma management.
Collapse
Affiliation(s)
- Moumita Kundu
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, India.
| | - Subhayan Das
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, India.
| | - Chandan Kanta Das
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, India.
| | - Gaurav Kulkarni
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, India.
| | - Soumen Das
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, India.
| | - Dibakar Dhara
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, India.
| | - Mahitosh Mandal
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, India.
| |
Collapse
|
19
|
Gallardo-Pérez JC, Trejo-Solís MC, Robledo-Cadena DX, López-Marure R, Agredano-Moreno LT, Jimenez-García LF, Sánchez-Lozada LG. Erythrose inhibits the progression to invasiveness and reverts drug resistance of cancer stem cells of glioblastoma. Med Oncol 2023; 40:104. [PMID: 36821013 DOI: 10.1007/s12032-023-01969-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 02/06/2023] [Indexed: 02/24/2023]
Abstract
Glioblastoma (GBM) is the most frequent brain cancer and more lethal than other cancers. Characteristics of this cancer are its high drug resistance, high recurrence rate and invasiveness. Invasiveness in GBM is related to overexpression of matrix metalloproteinases (MMPs) which are mediated by wnt/β-catenin and induced by the activation of signaling pathways extracellularly activated by the cytokine neuroleukin (NLK) in cancer stem cells (CSC). Therefore, in this work we evaluated the effect of the tetrose saccharide, erythrose (Ery), a NLK inhibitor of invasiveness and drug sensitization in glioblastoma stem cells (GSC). GSC were obtained from parental U373 cell line by a CSC phenotype enrichment protocol based on microenvironmental stress conditions such as hypoxia, hipoglycemia, drug exposition and serum starvation. Enriched fraction of GSC overexpressed the typical markers of brain CSC: low CD133+ and high CD44; in addition, epithelial to mesenchyme transition (EMT) markers and MMPs were increased several times in GSC vs. U373 correlating with higher invasiveness, elongated and tubular mitochondrion and temozolomide (TMZ) resistance. IC50 of Ery was found at nM concentration and at 24 h induced a severe diminution of EMT markers, MMPs and invasiveness in GSC. Furthermore, the phosphorylation pattern of NLK after Ery exposition also was affected. In addition, when Ery was administered to GSC at subIC50, it was capable of reverting TMZ resistance at concentrations innocuous to non-tumor cancer cells. Moreover, Ery added daily induced the death of all GSC. Those findings indicated that the phytodrug Ery could be used as adjuvant therapy in GBM.
Collapse
Affiliation(s)
- Juan Carlos Gallardo-Pérez
- Departamento de Fisiopatología Cardio-Renal, Instituto Nacional de Cardiología, "Ignacio Chávez", Juan Badiano No. 1. Col Sección XVI, Tlalpan, Mexico City, Mexico.
| | - María Cristina Trejo-Solís
- Laboratorio Experimental de Enfermedades Neurodegenerativas, Instituto Nacional de Neurología y Neurocirugía, Mexico City, Mexico
| | | | - Rebeca López-Marure
- Departamento de Fisiología, Instituto Nacional de Cardiología, Mexico City, Mexico
| | | | | | - Laura Gabriela Sánchez-Lozada
- Departamento de Fisiopatología Cardio-Renal, Instituto Nacional de Cardiología, "Ignacio Chávez", Juan Badiano No. 1. Col Sección XVI, Tlalpan, Mexico City, Mexico
| |
Collapse
|
20
|
Wolin IAV, Nascimento APM, Seeger R, Poluceno GG, Zanotto-Filho A, Nedel CB, Tasca CI, Correia SEG, Oliveira MV, Pinto-Junior VR, Osterne VJS, Nascimento KS, Cavada BS, Leal RB. The lectin DrfL inhibits cell migration, adhesion and triggers autophagy-dependent cell death in glioma cells. Glycoconj J 2023; 40:47-67. [PMID: 36522582 DOI: 10.1007/s10719-022-10095-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 11/18/2022] [Accepted: 11/30/2022] [Indexed: 12/23/2022]
Abstract
Glioblastoma multiforme (GBM) is the most aggressive type of glioma, displaying atypical glycosylation pattern that may modulate signaling pathways involved in tumorigenesis. Lectins are glycan binding proteins with antitumor properties. The present study was designed to evaluate the antitumor capacity of the Dioclea reflexa lectin (DrfL) on glioma cell cultures. Our results demonstrated that DrfL induced morphological changes and cytotoxic effects in glioma cell cultures of C6, U-87MG and GBM1 cell lines. The action of DrfL was dependent upon interaction with glycans, and required a carbohydrate recognition domain (CRD), and the cytotoxic effect was apparently selective for tumor cells, not altering viability and morphology of primary astrocytes. DrfL inhibited tumor cell migration, adhesion, proliferation and survival, and these effects were accompanied by activation of p38MAPK and JNK (p46/54), along with inhibition of Akt and ERK1/2. DrfL also upregulated pro-apoptotic (BNIP3 and PUMA) and autophagic proteins (Atg5 and LC3 cleavage) in GBM cells. Noteworthy, inhibition of autophagy and caspase-8 were both able to attenuate cell death in GBM cells treated with DrfL. Our results indicate that DrfL cytotoxicity against GBM involves modulation of cell pathways, including MAPKs and Akt, which are associated with autophagy and caspase-8 dependent cell death.
Collapse
Affiliation(s)
- Ingrid A V Wolin
- Departamento de Bioquímica e Programa de Pós-Graduação em Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Campus Universitário, Florianópolis, Santa Catarina, 88040-900, Brazil
| | - Ana Paula M Nascimento
- Departamento de Bioquímica e Programa de Pós-Graduação em Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Campus Universitário, Florianópolis, Santa Catarina, 88040-900, Brazil
| | - Rodrigo Seeger
- Departamento de Bioquímica e Programa de Pós-Graduação em Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Campus Universitário, Florianópolis, Santa Catarina, 88040-900, Brazil
| | - Gabriela G Poluceno
- Departamento de Bioquímica e Programa de Pós-Graduação em Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Campus Universitário, Florianópolis, Santa Catarina, 88040-900, Brazil
| | - Alfeu Zanotto-Filho
- Departamento de Farmacologia e Programa de Pós-Graduação em Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Campus Universitário, Florianópolis, Santa Catarina, 88040-900, Brazil
| | - Claudia B Nedel
- Departamento de Biologia Celular, Embriologia e Genética, Programa Pós-Graduação em Biologia Celular e do Desenvolvimento, Universidade Federal de Santa Catarina, Campus Universitário, Florianópolis, Santa Catarina, 88040-900, Brazil
| | - Carla I Tasca
- Departamento de Bioquímica e Programa de Pós-Graduação em Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Campus Universitário, Florianópolis, Santa Catarina, 88040-900, Brazil
| | - Sarah Elizabeth Gomes Correia
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, CEP, 60020-181, BioMolLab, Fortaleza, Ceará, Brazil
| | - Messias Vital Oliveira
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, CEP, 60020-181, BioMolLab, Fortaleza, Ceará, Brazil
| | - Vanir Reis Pinto-Junior
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, CEP, 60020-181, BioMolLab, Fortaleza, Ceará, Brazil
- Departamento de Física, Universidade Federal do Ceará, Fortaleza, Ceará, CEP, 60020-181, Brazil
| | - Vinicius Jose Silva Osterne
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, CEP, 60020-181, BioMolLab, Fortaleza, Ceará, Brazil
| | - Kyria Santiago Nascimento
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, CEP, 60020-181, BioMolLab, Fortaleza, Ceará, Brazil
| | - Benildo Sousa Cavada
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, CEP, 60020-181, BioMolLab, Fortaleza, Ceará, Brazil
| | - Rodrigo Bainy Leal
- Departamento de Bioquímica e Programa de Pós-Graduação em Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Campus Universitário, Florianópolis, Santa Catarina, 88040-900, Brazil.
| |
Collapse
|
21
|
Lin YP, Hseu YC, Thiyagarajan V, Vadivalagan C, Pandey S, Lin KY, Hsu YT, Liao JW, Lee CC, Yang HL. The in vitro and in vivo anticancer activities of Antrodia salmonea through inhibition of metastasis and induction of ROS-mediated apoptotic and autophagic cell death in human glioblastoma cells. Biomed Pharmacother 2023; 158:114178. [PMID: 36916401 DOI: 10.1016/j.biopha.2022.114178] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/27/2022] [Accepted: 12/28/2022] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Antrodia salmonea (AS) exhibits anticancer activities against various cancers. OBJECTIVE This study investigated the anticancer activities of AS on human glioblastoma (GBM8401 and U87MG) cells both in vitro and in vivo and explained the underlying molecular mechanism. METHODS MTT, colony formation, migration/invasion assay, immunoblotting, immunofluorescence, TUNEL, Annexin V/PI staining, AO staining, GFP-LC3 transfection, TEM, qPCR, siLC3, DCFH2-DA assay, and xenografted-nude mice were used to assess the potential of AS therapy. RESULTS AS treatment retarded growth and suppressed colony formation in glioblastoma cells. AS attenuates EMT by suppressing invasion and migration, increasing E-cadherin expression, decreasing Twist, Snail, and N-cadherin expression, and inhibiting Wnt/β-catenin pathways in GBM8401 and U87MG cells. Furthermore, AS induced apoptosis by activating caspase-3, cleaving PARP, and dysregulating Bax and Bcl-2 in both cell lines. TUNEL assay and Annexin V/PI staining indicated AS-mediated late apoptosis. Interestingly, AS induced autophagic cell death by LC3-II accumulation, AVO formation, autophagosome GFP-LC3 puncta, p62/SQSTM1 expression, and ATG4B inhibition in GBM8401 and U87MG cells. TEM data revealed that AS favored autophagosome and autolysosome formation. The autophagy inhibitors 3-MA/CQ and LC3 knockdown suppressed AS-induced apoptosis in glioblastoma cells, indicating that the inhibition of autophagy decreased AS-induced apoptosis. Notably, the antioxidant N-acetylcysteine (NAC) inhibited AS-mediated ROS production and AS-induced apoptotic and autophagic cell death. Furthermore, AS induced ROS-mediated inhibition of the PI3K/AKT/mTOR signaling pathway. AS reduced the tumor burden in GBM8401-xenografted nude mice and significantly modulated tumor xenografts by inducing anti-EMT, apoptosis, and autophagy. AS could be a potential antitumor agent in human glioblastoma treatment.
Collapse
Affiliation(s)
- Yi-Pin Lin
- Institute of Nutrition, College of Health Care, China Medical University, Taichung 40402, Taiwan, ROC
| | - You-Cheng Hseu
- Department of Cosmeceutics, College of Pharmacy, China Medical University, Taichung 40402, Taiwan, ROC; Department of Health and Nutrition Biotechnology, Asia University, Taichung 41354, Taiwan, ROC; Chinese Medicine Research Center, China Medical University, Taichung 40402, Taiwan, ROC; Research Center of Chinese Herbal Medicine, China Medical University, Taichung 40402, Taiwan, ROC.
| | - Varadharajan Thiyagarajan
- Department of Cosmeceutics, College of Pharmacy, China Medical University, Taichung 40402, Taiwan, ROC
| | - Chithravel Vadivalagan
- Department of Cosmeceutics, College of Pharmacy, China Medical University, Taichung 40402, Taiwan, ROC
| | - Sudhir Pandey
- Department of Pharmacology, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand
| | - Kai-Yuan Lin
- Department of Medical Research, Chi-Mei Medical Center, Tainan 710, Taiwan, ROC; Department of Biotechnology, Chia Nan University of Pharmacy and Science, Tainan 71710, Taiwan, ROC
| | - Yuan-Tai Hsu
- Institute of Nutrition, College of Health Care, China Medical University, Taichung 40402, Taiwan, ROC
| | - Jiunn-Wang Liao
- Graduate Institute of Veterinary Pathology, National Chung-Hsing University, Taichung 402, Taiwan, ROC
| | - Chuan-Chen Lee
- Department of Health and Nutrition Biotechnology, Asia University, Taichung 41354, Taiwan, ROC
| | - Hsin-Ling Yang
- Institute of Nutrition, College of Health Care, China Medical University, Taichung 40402, Taiwan, ROC.
| |
Collapse
|
22
|
Allami P, Heidari A, Rezaei N. The role of cell membrane-coated nanoparticles as a novel treatment approach in glioblastoma. Front Mol Biosci 2023; 9:1083645. [PMID: 36660431 PMCID: PMC9846545 DOI: 10.3389/fmolb.2022.1083645] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 12/14/2022] [Indexed: 01/06/2023] Open
Abstract
Glioblastoma multiform (GBM) is the most prevalent and deadliest primary brain malignancy in adults, whose median survival rate does not exceed 15 months after diagnosis. The conventional treatment of GBM, including maximal safe surgery followed by chemotherapy and radiotherapy, usually cannot lead to notable improvements in the disease prognosis and the tumor always recurs. Many GBM characteristics make its treatment challenging. The most important ones are the impermeability of the blood-brain barrier (BBB), preventing chemotherapeutic drugs from reaching in adequate amounts to the tumor site, intratumoral heterogeneity, and roles of glioblastoma stem cells (GSCs). To overcome these barriers, the recently-developed drug-carrying approach using nanoparticles (NPs) may play a significant role. NPs are tiny particles, usually less than 100 nm showing various diagnostic and therapeutic medical applications. In this regard, cell membrane (CM)-coated NPs demonstrated several promising effects in GBM in pre-clinical studies. They benefit from fewer adverse effects due to their specific targeting of tumor cells, biocompatibility because of their CM surfaces, prolonged half-life, easy penetrating of the BBB, and escaping from the immune reaction, making them an attractive option for GBM treatment. To date, CM-coated NPs have been applied to enhance the effectiveness of major therapeutic approaches in GBM treatment, including chemotherapy, immunotherapy, gene therapy, and photo-based therapies. Despite the promising results in pre-clinical studies regarding the effectiveness of CM-coated NPs in GBM, significant barriers like high expenses, complex preparation processes, and unknown long-term effects still hinder its mass production for the clinic. In this regard, the current study aims to provide an overview of different characteristics of CM-coated NPs and comprehensively investigate their application as a novel treatment approach in GBM.
Collapse
Affiliation(s)
- Pantea Allami
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Arash Heidari
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Research Center for Immunodeficiencies, Children’s Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Students’ Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Research Center for Immunodeficiencies, Children’s Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
23
|
Pedra NS, Bona NP, de Aguiar MSS, Spohr L, Alves FL, Santos FDSD, Saraiva JT, Stefanello FM, Braganhol E, Spanevello RM. Impact of gallic acid on tumor suppression: Modulation of redox homeostasis and purinergic response in in vitro and a preclinical glioblastoma model. J Nutr Biochem 2022; 110:109156. [PMID: 36255060 DOI: 10.1016/j.jnutbio.2022.109156] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 06/10/2022] [Accepted: 08/16/2022] [Indexed: 01/13/2023]
Abstract
Glioblastoma (GBM) is the deadliest primary brain tumor in adults due to the high rate of relapse with current treatment. Therefore, the search for therapeutic alternatives is urgent. Gallic acid (GA), a potent natural antioxidant, has antitumor and modulatory actions on purinergic signaling. In this study, we investigated the cytotoxic effects of GA on the rat GBM (C6) cell line and on astrocyte culture and analyzed its role in regulating oxidative stress and purinergic enzymes involved in GBM proliferation. Cells were exposed to GA from 50 to 400 µM for 24 and/or 48 h. Next, the effect of GA was evaluated in the preclinical model of GBM. Wistar rats were treated with 50 or 100 mg/kg of GA for 15 days, and cerebral and systemic redox status and degradation of adenine nucleotides and nucleosides in circulating platelets, lymphocytes, and serum were evaluated. Our results demonstrated that GA has selective anti-glioma activity in vitro, without inducing cytotoxicity in astrocyte. Furthermore, GA prevented oxidative stress and changes in the hydrolysis of nucleotides in GBM cells. The anti-glioma effect was also observed in vivo, as GA reduced tumor volume by 90%. Interestingly, GA decreased the oxidative damage induced by a tumor in the brain, serum, and platelets, and, also prevented changes in the degradation of nucleotides and nucleosides in lymphocytes, platelets, and serum. These results indicate, for the first time, the therapeutic potential of GA in a preclinical model of GBM, whose effects may be related to its role in redox and purinergic modulation.
Collapse
Affiliation(s)
- Nathalia Stark Pedra
- Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Programa de Pós-Graduação em Bioquímica e Bioprospecção - Laboratório de Neuroquímica, Inflamação e Câncer, Universidade Federal de Pelotas, Pelotas, RS, Brazil.
| | - Natália Pontes Bona
- Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Programa de Pós-Graduação em Bioquímica e Bioprospecção - Laboratório de Biomarcadores, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Mayara Sandrielly Soares de Aguiar
- Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Programa de Pós-Graduação em Bioquímica e Bioprospecção - Laboratório de Neuroquímica, Inflamação e Câncer, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Luíza Spohr
- Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Programa de Pós-Graduação em Bioquímica e Bioprospecção - Laboratório de Neuroquímica, Inflamação e Câncer, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Fernando Lopez Alves
- Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Programa de Pós-Graduação em Bioquímica e Bioprospecção - Laboratório de Neuroquímica, Inflamação e Câncer, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Francieli da Silva Dos Santos
- Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Programa de Pós-Graduação em Bioquímica e Bioprospecção - Laboratório de Biomarcadores, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Juliane Torchelsen Saraiva
- Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Programa de Pós-Graduação em Bioquímica e Bioprospecção - Laboratório de Biomarcadores, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Francieli Moro Stefanello
- Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Programa de Pós-Graduação em Bioquímica e Bioprospecção - Laboratório de Biomarcadores, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Elizandra Braganhol
- Departamento de Ciências Básicas da Saúde, Programa de Pós-Graduação em Biociências - Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil
| | - Roselia Maria Spanevello
- Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Programa de Pós-Graduação em Bioquímica e Bioprospecção - Laboratório de Neuroquímica, Inflamação e Câncer, Universidade Federal de Pelotas, Pelotas, RS, Brazil.
| |
Collapse
|
24
|
Huang R, Dong R, Wang N, He Y, Zhu P, Wang C, Lan B, Gao Y, Sun L. Adaptive Changes Allow Targeting of Ferroptosis for Glioma Treatment. Cell Mol Neurobiol 2022; 42:2055-2074. [PMID: 33893939 PMCID: PMC11421619 DOI: 10.1007/s10571-021-01092-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Accepted: 04/16/2021] [Indexed: 12/16/2022]
Abstract
Ferroptosis is a type of regulated cell death that plays an essential role in various brain diseases, including cranial trauma, neuronal diseases, and brain tumors. It has been reported that cancer cells rely on their robust antioxidant capacity to escape ferroptosis. Therefore, ferroptosis exploitation could be an effective strategy to prevent tumor proliferation and invasion. Glioma is a common malignant craniocerebral tumor exhibiting complicated drug resistance and survival mechanisms, resulting in a high mortality rate and short survival time. Recent studies have determined that metabolic alterations in glioma offer exploitable therapeutic targets. These metabolic alterations allow targeted therapy to achieve some initial efficacy but have failed to inhibit glioma growth, invasion, and drug resistance effectively. It has been proposed that the reason for the high malignancy and drug resistance observed with glioma is that these tumors can effectively evade ferroptosis. Ferroptosis-inducing drugs were found to exert a positive effect by targeting this particular characteristic of glioma cells. Moreover, gliomas develop enhanced drug resistance through anti-ferroptosis mechanisms. In this study, we provided an overview of the mechanisms by which glioma aggressiveness and drug resistance are mediated by the evasion of ferroptosis. This information might provide new targets for glioma therapy as well as new insights and ideas for future research.
Collapse
Affiliation(s)
- Renxuan Huang
- Department of Neurosurgery, China-Japan Union Hospital, Jilin University, Changchun, Jilin, China
| | - Rui Dong
- Department of Neurology, China-Japan Union Hospital, Jilin University, Changchun, Jilin, China
| | - Nan Wang
- Department of Neurosurgery, China-Japan Union Hospital, Jilin University, Changchun, Jilin, China
| | - Yichun He
- Department of Neurosurgery, China-Japan Union Hospital, Jilin University, Changchun, Jilin, China
| | - Peining Zhu
- Department of Neurosurgery, China-Japan Union Hospital, Jilin University, Changchun, Jilin, China
| | - Chong Wang
- Department of Neurosurgery, China-Japan Union Hospital, Jilin University, Changchun, Jilin, China
| | - Beiwu Lan
- Department of Neurosurgery, China-Japan Union Hospital, Jilin University, Changchun, Jilin, China
| | - Yufei Gao
- Department of Neurosurgery, China-Japan Union Hospital, Jilin University, Changchun, Jilin, China.
| | - Liankun Sun
- Key Laboratory of Pathobiology, Ministry of Education, Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China.
| |
Collapse
|
25
|
Inflammation: Roles in Skeletal Muscle Atrophy. Antioxidants (Basel) 2022; 11:antiox11091686. [PMID: 36139760 PMCID: PMC9495679 DOI: 10.3390/antiox11091686] [Citation(s) in RCA: 93] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/25/2022] [Accepted: 08/26/2022] [Indexed: 12/03/2022] Open
Abstract
Various diseases can cause skeletal muscle atrophy, usually accompanied by inflammation, mitochondrial dysfunction, apoptosis, decreased protein synthesis, and enhanced proteolysis. The underlying mechanism of inflammation in skeletal muscle atrophy is extremely complex and has not been fully elucidated, thus hindering the development of effective therapeutic drugs and preventive measures for skeletal muscle atrophy. In this review, we elaborate on protein degradation pathways, including the ubiquitin-proteasome system (UPS), the autophagy-lysosome pathway (ALP), the calpain and caspase pathways, the insulin growth factor 1/Akt protein synthesis pathway, myostatin, and muscle satellite cells, in the process of muscle atrophy. Under an inflammatory environment, various pro-inflammatory cytokines directly act on nuclear factor-κB, p38MAPK, and JAK/STAT pathways through the corresponding receptors, and then are involved in muscle atrophy. Inflammation can also indirectly trigger skeletal muscle atrophy by changing the metabolic state of other tissues or cells. This paper explores the changes in the hypothalamic-pituitary-adrenal axis and fat metabolism under inflammatory conditions as well as their effects on skeletal muscle. Moreover, this paper also reviews various signaling pathways related to muscle atrophy under inflammatory conditions, such as cachexia, sepsis, type 2 diabetes mellitus, obesity, chronic obstructive pulmonary disease, chronic kidney disease, and nerve injury. Finally, this paper summarizes anti-amyotrophic drugs and their therapeutic targets for inflammation in recent years. Overall, inflammation is a key factor causing skeletal muscle atrophy, and anti-inflammation might be an effective strategy for the treatment of skeletal muscle atrophy. Various inflammatory factors and their downstream pathways are considered promising targets for the treatment and prevention of skeletal muscle atrophy.
Collapse
|
26
|
Chen G, Qin X, Wang Y, Gao B, Ling M, Yin W, Li Y, Pan B. Expression status and prognostic value of autophagy-related lncRNAs in prostate cancer. Cell Cycle 2022; 21:1684-1696. [PMID: 35414328 PMCID: PMC9302510 DOI: 10.1080/15384101.2022.2065149] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND LncRNAs involve in the autophagy to regulate Prostate cancer (PCa) initiation and progression. Therefore, it urges to explore more significant AR-lncRNAs in PCa. METHODS mRNA data and clinical information of PCa were achieved from TCGA database, and ARGs were obtained from the HADb. AR-lncRNAs were identified by correlation analysis of DE ARGs and lncRNAs. Univariate Cox regression, LASSO regression, and multivariate Cox regression were used to identify the prognostic AR-lncRNA signature and constructed a risk model. GESA was used to biological function analysis between high- and low-risk score group. A nomogram was constructed and used to predicate the survival of PCa patients. A calibration curve was used to determines accuracy of the predication model. AR-related ceRNA network was constructed by correlation analysis. Expression of six AR-related lncRNAs were detected by qRT-PCR. RESULTS 222 ARGs and 385 AR-lncRNAs were screened from PCa and normal tissues, and 17 AR-lncRNAs were identified as prognostic signature for PCa. Based on the expression of prognostic signature, a risk score was calculated, and PCa samples were distributed into high- and low-risk score groups. The biological function and predicated value of the prognostic signature were also examined. Finally, based on the correlation between each ARG and its prognostic signature, three modules of AR-lncRNA-miRNA-mRNA regulatory networks were constructed based on 6 AR-lncRNAs, 17 miRNAs, and 12 ARGs. And we found that AC012085.2, UBXN10-AS1, LINC00261 downregulated, whereas AP004608.1, AC104667.2, AC008610.1 upregulated in PCa compared with BPH tissues. CONCLUSION Our finding supplied the potential AR-lncRNAs prognostic signature for PCa.
Collapse
Affiliation(s)
- Guo Chen
- Department of Urology. The First Affiliated Hospital of Jinan University, 510630, Guangzhou, Guangdong, China
| | - Xiaoping Qin
- Department of Urology. The First Affiliated Hospital of Jinan University, 510630, Guangzhou, Guangdong, China
| | - Yu Wang
- Department of Endocrinology. The First Affiliated Hospital of Jinan University, 510630 Guangzhou, Guangdong, China
| | - Biyun Gao
- Department of Urology. The First Affiliated Hospital of Jinan University, 510630, Guangzhou, Guangdong, China
| | - Muan Ling
- Department of Urology. The First Affiliated Hospital of Jinan University, 510630, Guangzhou, Guangdong, China
| | - Wenjun Yin
- Department of Urology. The First Affiliated Hospital of Jinan University, 510630, Guangzhou, Guangdong, China
| | - Yutong Li
- Department of Urology. The First Affiliated Hospital of Jinan University, 510630, Guangzhou, Guangdong, China
| | - Bin Pan
- Department of Urology. The First Affiliated Hospital of Jinan University, 510630, Guangzhou, Guangdong, China
| |
Collapse
|
27
|
The Hallmarks of Glioblastoma: Heterogeneity, Intercellular Crosstalk and Molecular Signature of Invasiveness and Progression. Biomedicines 2022; 10:biomedicines10040806. [PMID: 35453557 PMCID: PMC9031586 DOI: 10.3390/biomedicines10040806] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 03/26/2022] [Accepted: 03/29/2022] [Indexed: 02/07/2023] Open
Abstract
In 2021 the World Health Organization published the fifth and latest version of the Central Nervous System tumors classification, which incorporates and summarizes a long list of updates from the Consortium to Inform Molecular and Practical Approaches to CNS Tumor Taxonomy work. Among the adult-type diffuse gliomas, glioblastoma represents most primary brain tumors in the neuro-oncology practice of adults. Despite massive efforts in the field of neuro-oncology diagnostics to ensure a proper taxonomy, the identification of glioblastoma-tumor subtypes is not accompanied by personalized therapies, and no improvements in terms of overall survival have been achieved so far, confirming the existence of open and unresolved issues. The aim of this review is to illustrate and elucidate the state of art regarding the foremost biological and molecular mechanisms that guide the beginning and the progression of this cancer, showing the salient features of tumor hallmarks in glioblastoma. Pathophysiology processes are discussed on molecular and cellular levels, highlighting the critical overlaps that are involved into the creation of a complex tumor microenvironment. The description of glioblastoma hallmarks shows how tumoral processes can be linked together, finding their involvement within distinct areas that are engaged for cancer-malignancy establishment and maintenance. The evidence presented provides the promising view that glioblastoma represents interconnected hallmarks that may led to a better understanding of tumor pathophysiology, therefore driving the development of new therapeutic strategies and approaches.
Collapse
|
28
|
Deoxyelephantopin and Its Isomer Isodeoxyelephantopin: Anti-Cancer Natural Products with Multiple Modes of Action. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27072086. [PMID: 35408483 PMCID: PMC9000713 DOI: 10.3390/molecules27072086] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/18/2022] [Accepted: 03/22/2022] [Indexed: 01/05/2023]
Abstract
Cancer is a leading cause of morbidity and mortality worldwide. The development of cancer involves aberrations in multiple pathways, representing promising targets for anti-cancer drug discovery. Natural products are regarded as a rich source for developing anti-cancer therapies due to their unique structures and favorable pharmacology and toxicology profiles. Deoxyelephantopin and isodeoxyelephantopin, sesquiterpene lactone compounds, are major components of Elephantopus scaber and Elephantopus carolinianus, which have long been used as traditional medicines to treat multiple ailments, including liver diseases, diabetes, bronchitis, fever, diarrhea, dysentery, cancer, renal disorders, and inflammation-associated diseases. Recently, deoxyelephantopin and isodeoxyelephantopin have been extensively explored for their anti-cancer activities. This review summarizes and discusses the anti-cancer activities of deoxyelephantopin and isodeoxyelephantopin, with an emphasis on their modes of action and molecular targets. Both compounds disrupt several processes involved in cancer progression by targeting multiple signaling pathways deregulated in cancers, including cell cycle and proliferation, cell survival, autophagy, and invasion pathways. Future directions of research on these two compounds towards anti-cancer drug development are discussed.
Collapse
|
29
|
Ghaemi S, Fekrirad Z, Zamani N, Rahmani R, Arefian E. Non-coding RNAs Enhance the Apoptosis Efficacy of Therapeutic Agents Used for the Treatment of Glioblastoma Multiform. J Drug Target 2022; 30:589-602. [DOI: 10.1080/1061186x.2022.2047191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Shokoofeh Ghaemi
- Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Zahra Fekrirad
- Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Nina Zamani
- Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Rana Rahmani
- Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Ehsan Arefian
- Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, Iran
- Pediatric Cell Therapy Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
30
|
Celastrol with a Knockdown of miR-9-2, miR-17 and miR-19 Causes Cell Cycle Changes and Induces Apoptosis and Autophagy in Glioblastoma Multiforme Cells. Processes (Basel) 2022. [DOI: 10.3390/pr10030441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Glioblastoma multiforme (GBM) is a cancer with extremely high aggressiveness, malignancy and mortality. Because of all of the poor prognosis features of GBM, new methods should be sought that will effectively cure it. We examined the efficacy of a combination of celastrol and a knockdown of the miR-9-2, miR-17 and miR-19 genes in the human glioblastoma U251MG cell line. U251MG cells were transfected with specific siRNA and exposed to celastrol. The effect of the knockdown of the miRs genes in combination with exposure to celastrol on the cell cycle (flow cytometry) and the expression of selected genes related to its regulation (RT-qPCR) and the regulation of apoptosis and autophagy was investigated. We found a significant reduction in cell viability and proliferation, an accumulation of the subG1-phase cells and a decreased population of cells in the S and G2/M phases, as well as the induction of apoptosis and autophagy. The observed changes were not identical in the case of the silencing of each of the tested miRNAs, which indicates a different mechanism of action of miR9-2, miR-17, miR-19 silencing on GBM cells in combination with celastrol. The multidirectional effects of the silencing of the genes encoding miR-9-2, miR-17 and miR-19 in combination with exposure to celastrol is possible. The studied strategy of silencing the miR overexpressed in GBM could be important in developing more effective treatments for glioblastoma. Additional studies are necessary in order to obtain a more detailed interpretation of the obtained results. The siRNA-induced miR-9-2, miR-17 and miR-19 mRNA knockdowns in combination with celastrol could offer a novel therapeutic strategy to more effectively control the growth of human GBM cells.
Collapse
|
31
|
Wang YP, Pan F, Wang YD, Khan A, Liu YP, Yang ML, Cao JX, Zhao TR, Cheng GG. Anti-leukemic effect and molecular mechanism of 11-methoxytabersonine from Melodinus cochinchinensis via network pharmacology, ROS-mediated mitochondrial dysfunction and PI3K/Akt signaling pathway. Bioorg Chem 2022; 120:105607. [PMID: 35033818 DOI: 10.1016/j.bioorg.2022.105607] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/31/2021] [Accepted: 01/07/2022] [Indexed: 12/20/2022]
Abstract
Melodinus cochinchinensis (Lour.) Merr. is a Yunnan endemic folk medicine. Our previous study showed that 11-methoxytabersonine (11-MT) isolated from M. cochinchinensis has strong cytotoxicity on human T-ALL cells, but its molecular mechanism has not been studied. In current study, the cytotoxicity and possible mechanism of 11-MT on T-cell acute lymphoblastic leukemia was explored using network pharmacology and molecular biology techniques. 11-MT significantly inhibited the cell proliferations on different four human T-ALL cells (MOLT-4, Jurkat, CCRF-CEM, and CEM/C1 cells). 11-MT triggered ROS accumulation, calcium concentration and cell apoptosis, and decreased the mitochondrial membrane potential (MMP) in human T-ALL cells, especially MOLT-4 cells. Western blot analysis showed that it can induce MOLT-4 cell apoptosis by up-regulating PI3K/Akt signaling pathway. Therefore, 11-MT induces human T-ALL cells apoptosis via up-regulation of ROS-mediated mitochondrial dysfunction and down-regulation of PI3K/Akt/mTOR signaling pathway.
Collapse
Affiliation(s)
- Yong-Peng Wang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Fei Pan
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, China
| | - Yu-Dan Wang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, Yunnan Minzu University, Kunming 650500, China
| | - Afsar Khan
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan
| | - Ya-Ping Liu
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Mei-Lian Yang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Jian-Xin Cao
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Tian-Rui Zhao
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China.
| | - Gui-Guang Cheng
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China.
| |
Collapse
|
32
|
Deng Y, Zhang F, Sun ZG, Wang S. Development and Validation of a Prognostic Signature Associated With Tumor Microenvironment Based on Autophagy-Related lncRNA Analysis in Hepatocellular Carcinoma. Front Med (Lausanne) 2022; 8:762570. [PMID: 34970559 PMCID: PMC8712323 DOI: 10.3389/fmed.2021.762570] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 11/15/2021] [Indexed: 12/11/2022] Open
Abstract
Objective: The present study aimed to establish a prognostic signature based on the autophagy-related long non-coding RNAs (lncRNAs) analysis in patients with hepatocellular carcinoma (HCC). Methods: Patients with HCC from The Cancer Genome Atlas (TCGA) were taken as the training cohort, and patients from the International Cancer Genome Consortium (ICGC) were treated as the validation cohort. Autophagy-related lncRNAs were obtained via a co-expression network analysis. According to univariate and multivariate analyses, a multigene prognostic signature was constructed in the training cohort. The predictive power of the signature was confirmed in both cohorts. The detailed functions were investigated using functional analysis. The single-sample gene set enrichment analysis (ssGSEA) score was used to evaluate the tumor microenvironment. The expression levels of immunotherapy and targeted therapy targets between the two risk groups were compared. Finally, a nomogram was constructed by integrating clinicopathological parameters with independently predictive value and the risk score. Results: Four autophagy-related lncRNAs were identified to establish a prognostic signature, which separated patients into high- and low-risk groups. Survival analysis showed that patients in the high-risk group had a shorter survival time in both cohorts. A time-independent receiver-operating characteristic (ROC) curve and principal component analysis (PCA) confirmed that the prognostic signature had a robust predictive power and reliability in both cohorts. Functional analysis indicated that the expressed genes in the high-risk group are mainly enriched in autophagy- and cancer-related pathways. ssGSEA revealed that the different risk groups were associated with the tumor microenvironment. Moreover, the different risk groups had positive correlations with the expressions of specific mutant genes. Multivariate analysis showed that the risk score also exhibited excellent predictive power irrespective of clinicopathological characteristics in both cohorts. A nomogram was established. The nomogram showed good discrimination, with Harrell's concordance index (C-index) of 0.739 and good calibration. Conclusion: The four autophagy-related lncRNAs could be used as biological biomarkers and therapeutic targets. The prognostic signature and nomogram might aid clinicians in individual treatment optimization and clinical decision-making for patients with HCC.
Collapse
Affiliation(s)
- Yan Deng
- Department of Hepatobiliary Surgery, Jing Zhou Central Hospital, The Second Clinical Medical College, Yangtze University, Jing Zhou, China
| | - Feng Zhang
- Department of Ophthalmology, Jing Zhou Central Hospital, The Second Clinical Medical College, Yangtze University, Jing Zhou, China
| | - Zhen-Gang Sun
- Department of Hepatobiliary Surgery, Jing Zhou Central Hospital, The Second Clinical Medical College, Yangtze University, Jing Zhou, China
| | - Shuai Wang
- Department of Hepatobiliary Surgery, Jing Zhou Central Hospital, The Second Clinical Medical College, Yangtze University, Jing Zhou, China
| |
Collapse
|
33
|
Yuan F, Cai X, Zhu J, Yuan L, Wang Y, Tang C, Cong Z, Ma C. A Novel Immune Classification for Predicting Immunotherapy Responsiveness in Patients With Adamantinomatous Craniopharyngioma. Front Neurol 2021; 12:704130. [PMID: 34966342 PMCID: PMC8710480 DOI: 10.3389/fneur.2021.704130] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 11/12/2021] [Indexed: 01/21/2023] Open
Abstract
Adamantinomatous craniopharyngioma (ACP) is the most common tumor of the sellar region in children. The aggressive behavior of ACP challenges the treatment for it. However, immunotherapy is rarely studied in ACP. In this research, we performed unsupervised cluster analysis on the 725 immune-related genes and arrays of 39 patients with ACP patients in GSE60815 and GSE94349 databases. Two novel immune subtypes were identified, namely immune resistance (IR) subtype and immunogenic (IG) subtype. Interestingly, we found that the ACPs with IG subtype (34.78%, 8/23) were more likely to respond to immunotherapy than the ACPs with IR subtype (6.25%, 1/16) via tumor immune dysfunction and exclusion (TIDE) method. Simultaneously, the enrichment analysis indicated that the differentially expressed genes (DEGs) (p < 0.01, FDR < 0.01) of the IG subtype were chiefly involved in inflammatory and immune responses. However, the DEGs of the IR subtype were mainly involved in RNA processing. Next, immune infiltration analysis revealed a higher proportion of M2 macrophage in the IG subtype than that in the IR subtype. Compared with the IR subtype, the expression levels of immune checkpoint molecules (PD1, PDL1, PDL2, TIM3, CTLA4, Galectin9, LAG3, and CD86) were significantly upregulated in the IG subtype. The ssGSEA results demonstrated that the biofunction of carcinogenesis in the IG subtype was significantly enriched, such as lymphocyte infiltration, mesenchymal phenotype, stemness maintenance, and tumorigenic cytokines, compared with the IR subtype. Finally, a WDR89 (the DEG between IG and IR subtype)-based nomogram model was constructed to predict the immune classification of ACPs with excellent performance. This predictive model provided a reliable classification assessment tool for clinicians and aids treatment decision-making in the clinic.
Collapse
Affiliation(s)
- Feng Yuan
- Department of Neurosurgery, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Xiangming Cai
- School of Medicine, Southeast University, Nanjing, China
| | - Junhao Zhu
- Department of Neurosurgery, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Lei Yuan
- Department of Anesthesiology, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yingshuai Wang
- Department of Internal Medicine III, University Hospital Munich, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Chao Tang
- Department of Neurosurgery, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Zixiang Cong
- Department of Neurosurgery, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Chiyuan Ma
- Department of Neurosurgery, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China.,School of Medicine, Southeast University, Nanjing, China.,Jinling Hospital of Southern Medical University, Nanjing, China.,School of Medicine, Nanjing Medical University, Nanjing, China
| |
Collapse
|
34
|
BACH1 as a potential target for immunotherapy in glioblastomas. Int Immunopharmacol 2021; 103:108451. [PMID: 34923423 DOI: 10.1016/j.intimp.2021.108451] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 11/06/2021] [Accepted: 12/07/2021] [Indexed: 01/21/2023]
Abstract
Glioblastoma (GBM, WHO grade 4) is a highly heterogeneous and aggressive primary malignant brain tumor. BTB domain and CNC homology 1 (BACH1) is a transcription factor, and it plays an essential role in regulating tumor metastasis, tumor metabolism, and tumor stem cell self-renewal. However, its role in glioma is still unclear. In this research, we confirmed that BACH1 as an independent prognostic indicator was enriched in GBMs. BACH1 was strongly correlated with immune responses in GBMs, especially the M0 and M2 tumor-associated macrophage (TAM) mediated immune responses. GBMs with high expression of BACH1 express high levels of immune checkpoints (ICs), glioma cell-derived TAM chemokines, and M2 TAM markers. Interestingly, single cell RNA-seq analysis showed that the expression level of BACH1 in TAMs was higher than that in the other cell types in GBM. Transcriptome analysis of U87-MG cells showed that compared with the BACH1-vector U87-MG group, glioma cell-derived TAM chemokines (including monocyte chemotactic protein-1 (MCP-1), granulocyte-macrophage colony-stimulating factor (GM-CSF), and EGF) and ICs (including CD276, TIM-3, LAG3, TIGIT and LGALS9) were enriched in the BACH1-overexpressing U87-MG group. In addition, we constructed a polygenic risk scoring model and compound nomogram model based on BACH1, which might provide a reliable prognosis assessment tool for clinicians and aid in treatment decision-making in the clinic. In conclusion, this research identified that BACH1 might be a potential molecular signature for survival and immunotherapy response. GBMs with high expression of BACH1 have a stronger immunosuppressive tumor microenvironment (TME). Overexpression of BACH1 can upregulate the expression of glioma cell-derived TAM chemokines and ICs in vitro. Moreover, the risk model and nomogram model based on BACH1 can provide a reliable prognosis assessment tool. Therefore, BACH1 is a promising therapeutic target for GBMs.
Collapse
|
35
|
Exploring the Antiglioma Mechanisms of Luteolin Based on Network Pharmacology and Experimental Verification. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:7765658. [PMID: 34873410 PMCID: PMC8643232 DOI: 10.1155/2021/7765658] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/27/2021] [Accepted: 10/30/2021] [Indexed: 11/17/2022]
Abstract
Luteolin, a natural flavone compound, exists in a variety of fruits and vegetables, and its anticancer effect has been shown in many studies. However, its use in glioma treatment is hampered due to the fact that the underlying mechanism of action has not been fully explored. Therefore, we elucidated the potential antiglioma targets and pathways of luteolin systematically with the help of network pharmacology and molecular docking technology. The druggability of luteolin, including absorption, excretion, distribution, and metabolism, was assessed via the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP). The potential targets of luteolin and glioma were extracted from public databases, and the intersecting targets between luteolin and glioma were integrated and visualized by a Venn diagram. In addition, GO and KEGG pathway analysis was engaged in Metascape. The network of the luteolin-target-pathway was visualized by Cytoscape. Ultimately, the interactions between luteolin and predicted key targets were confirmed by Discovery studio software. According to the ADME results, luteolin shows great potential for development into a drug. 4860 glioma-associated targets and 280 targets of luteolin were identified, of which 205 were intersection targets. 6 core targets of luteolin against glioma, including AKT1, JUN, ALB, MAPK3, MAPK1, and TNF, were identified via PPI network analysis of which AKT1, JUN, ALB, MAPK1, and TNF harbor diagnostic value. The biological processes of luteolin are mainly involved in the response to inorganic substances, response to oxidative stress, and apoptotic signaling pathway. The essential pathways of luteolin against glioma involve pathways in cancer, the PI3K-Akt signaling pathway, the TNF signaling pathway, and more. Meanwhile, luteolin's interaction with six core targets was verified by molecular docking simulation and its antiglioma effect was verified by in vitro experiments. This study suggests that luteolin has a promising potential for development into a drug and, moreover, it displays preventive effects against glioma by targeting various genes and pathways.
Collapse
|
36
|
ERK inhibition in glioblastoma is associated with autophagy activation and tumorigenesis suppression. J Neurooncol 2021; 156:123-137. [PMID: 34797524 DOI: 10.1007/s11060-021-03896-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 11/04/2021] [Indexed: 10/19/2022]
Abstract
PURPOSE Autophagy-dependent tumorigenic growth is one of the most commonly reported molecular mechanisms in glioblastoma (GBM) progression. However, the mechanistic correlation between autophagy and GBM is still largely unexplored, especially the roles of autophagy-related genes involved in GBM oncogenesis. In this study, we aimed to explore the genetic alterations that interact with both autophagic activity and GBM tumorigenesis, and to investigate the molecular mechanisms of autophagy involved in GBM cell death and survival. METHOD For this purpose, we systematically explored the alterations of autophagic molecules at the genome level in human GBM samples through deep RNA sequencing. The effect of genetic and pharmacologic inhibition of ERK on GBM growth in vitro and in vivo was researched. An image-based tracking analysis of LC3 using mCherry-eGFP-LC3 plasmid, and transmission electron microscopy were utilized to monitor autophagic flux. Immunoblot analysis was used to measure the related proteins. RESULTS MAPK ERK expression was identified as one of the most probable autophagy-related transcriptional responses during GBM growth. The genetic and pharmacologic inhibition of ERK in vivo and in vitro led to cell death, demonstrating its critical role for GBM proliferation and survival. To our surprise, autophagic activities were excessively activated and resulted in cytodestructive effects on GBM cells upon ERK inhibitor treatment. Furthermore, based on the observation of downregulation of mTOR signaling, we speculated the ERK inhibitor-induced GBM cells death might depend on mTOR-mediated pathway, leading to autophagy dysregulation. Accordingly, the in vivo and in vitro experiments revealed that the mTOR inhibitor rapamycin further increased cell mortality and exhibited enhanced antitumor effect on GBM cells when co-treated with the ERK inhibitor. CONCLUSION Our data creatively demonstrated that the autophagy-related regulator ERK maintains autophagic activity during GBM tumorigenesis via mTOR signaling pathway. The pharmacologic inhibition of both mTOR and ERK signaling exhibited synergistic therapeutic effect on GBM growth in vivo and in vitro, which has certain novelty and may provide a potential therapeutic approach for GBM treatment in the future.
Collapse
|
37
|
Anti-Cancer Properties of Coix Seed Oil against HT-29 Colon Cells through Regulation of the PI3K/AKT Signaling Pathway. Foods 2021; 10:foods10112833. [PMID: 34829119 PMCID: PMC8621869 DOI: 10.3390/foods10112833] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/14/2021] [Accepted: 11/15/2021] [Indexed: 01/22/2023] Open
Abstract
This study aims to observe the effects of coix seed oil (CSO) on HT-29 cells and investigate its possible regulation mechanism of the PI3K/Akt signaling pathway. Fatty acid analysis showed that coix seed oil mainly contains oleic acid (50.54%), linoleic acid (33.76%), palmitic acid (11.74%), and stearic acid (2.45%). Fourier transform infrared results found that the fatty acid functional groups present in the oil matched well with the vegetable oil band. The results from CCK-8 assays showed that CSO dose-dependently and time-dependently inhibited the viability of HT-29 cells in vitro. CSO inhibited cell viability, with IC50 values of 5.30 mg/mL for HT-29 obtained after 24 h treatment. Morphological changes were observed by apoptotic body/cell nucleus DNA (Hoechst 33258) staining using inverted and fluorescence microscopy. Moreover, flow cytometry analysis was used to evaluate the cell cycle and cell apoptosis. It showed that CSO induced cell apoptosis and cycle arrest in the G2 phase. Quantitative real-time PCR and Western blotting revealed that CSO induced cell apoptosis by downregulating the PI3K/AKT signaling pathway. Additionally, CSO can cause apoptosis in cancer cells by activating caspase-3, up-regulating Bax, and down-regulating Bcl-2. In conclusion, the results revealed that CSO induced G2 arrest and apoptosis of HT-29 cells by regulating the PI3K/AKT signaling pathway.
Collapse
|
38
|
Lin T, Cheng H, Liu D, Wen L, Kang J, Xu L, Shan C, Chen Z, Li H, Lai M, Zhou Z, Hong W, Hu Q, Li S, Zhou C, Geng J, Jin X. A Novel Six Autophagy-Related Genes Signature Associated With Outcomes and Immune Microenvironment in Lower-Grade Glioma. Front Genet 2021; 12:698284. [PMID: 34721517 PMCID: PMC8548643 DOI: 10.3389/fgene.2021.698284] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 09/22/2021] [Indexed: 11/13/2022] Open
Abstract
Since autophagy and the immune microenvironment are deeply involved in the tumor development and progression of Lower-grade gliomas (LGG), our study aimed to construct an autophagy-related risk model for prognosis prediction and investigate the relationship between the immune microenvironment and risk signature in LGG. Therefore, we identified six autophagy-related genes (BAG1, PTK6, EEF2, PEA15, ITGA6, and MAP1LC3C) to build in the training cohort (n = 305 patients) and verify the prognostic model in the validation cohort (n = 128) and the whole cohort (n = 433), based on the data from The Cancer Genome Atlas (TCGA). The six-gene risk signature could divide LGG patients into high- and low-risk groups with distinct overall survival in multiple cohorts (all p < 0.001). The prognostic effect was assessed by area under the time-dependent ROC (t-ROC) analysis in the training, validation, and whole cohorts, in which the AUC value at the survival time of 5 years was 0.837, 0.755, and 0.803, respectively. Cox regression analysis demonstrated that the risk model was an independent risk predictor of OS (HR > 1, p < 0.05). A nomogram including the traditional clinical parameters and risk signature was constructed, and t-ROC, C-index, and calibration curves confirmed its robust predictive capacity. KM analysis revealed a significant difference in the subgroup analyses' survival. Functional enrichment analysis revealed that these autophagy-related signatures were mainly involved in the phagosome and immune-related pathways. Besides, we also found significant differences in immune cell infiltration and immunotherapy targets between risk groups. In conclusion, we built a powerful predictive signature and explored immune components (including immune cells and emerging immunotherapy targets) in LGG.
Collapse
Affiliation(s)
- Tao Lin
- Department of Neurosurgery, Guangdong Sanjiu Brain Hospital, Guangzhou, China
| | - Hao Cheng
- Department of Nasopharyngeal Carcinoma, The First People's Hospital of Chenzhou, Southern Medical University, Chenzhou, China
| | - Da Liu
- Department of Neurosurgery, Guangdong Sanjiu Brain Hospital, Guangzhou, China
| | - Lei Wen
- Department of Oncology, Guangdong Sanjiu Brain Hospital, Guangzhou, China
| | - Junlin Kang
- Department of Neurosurgery, Lanzhou University First Hospital, Lanzhou, China
| | - Longwen Xu
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Changguo Shan
- Department of Oncology, Guangdong Sanjiu Brain Hospital, Guangzhou, China
| | - Zhijie Chen
- Department of Neurosurgery, Guangdong Sanjiu Brain Hospital, Guangzhou, China
| | - Hainan Li
- Department of Pathology, Guangdong Sanjiu Brain Hospital, Guangzhou, China
| | - Mingyao Lai
- Department of Oncology, Guangdong Sanjiu Brain Hospital, Guangzhou, China
| | - Zhaoming Zhou
- Department of Oncology, Guangdong Sanjiu Brain Hospital, Guangzhou, China
| | - Weiping Hong
- Department of Oncology, Guangdong Sanjiu Brain Hospital, Guangzhou, China
| | - Qingjun Hu
- Department of Oncology, Guangdong Sanjiu Brain Hospital, Guangzhou, China
| | - Shaoqun Li
- Department of Oncology, Guangdong Sanjiu Brain Hospital, Guangzhou, China
| | - Cheng Zhou
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jiwu Geng
- Guangdong Key Laboratory of Occupational Disease Prevention and Treatment/Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou, China
| | - Xin Jin
- Department of Neurosurgery, Guangdong Sanjiu Brain Hospital, Guangzhou, China
| |
Collapse
|
39
|
Abstract
Around three out of one hundred thousand people are diagnosed with glioblastoma multiforme, simply called glioblastoma, which is the most common primary brain tumor in adults. With a dismal prognosis of a little over a year, receiving a glioblastoma diagnosis is oftentimes fatal. A major advancement in its treatment was made almost two decades ago when the alkylating chemotherapeutic agent temozolomide (TMZ) was combined with radiotherapy (RT). Little progress has been made since then. Therapies that focus on the modulation of autophagy, a key process that regulates cellular homeostasis, have been developed to curb the progression of glioblastoma. The dual role of autophagy (cell survival or cell death) in glioblastoma has led to the development of autophagy inhibitors and promoters that either work as monotherapies or as part of a combination therapy to induce cell death, cellular senescence, and counteract the ability of glioblastoma stem cells (GSCs) for initiating tumor recurrence. The myriad of cellular pathways that act upon the modulation of autophagy have created contention between two groups: those who use autophagy inhibition versus those who use promotion of autophagy to control glioblastoma growth. We discuss rationale for using current major therapeutics, their molecular mechanisms for modulation of autophagy in glioblastoma and GSCs, their potentials for making strides in combating glioblastoma progression, and their possible shortcomings. These shortcomings may fuel the innovation of novel delivery systems and therapies involving TMZ in conjunction with another agent to pave the way towards a new gold standard of glioblastoma treatment.
Collapse
Affiliation(s)
- Amanda J Manea
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, 6439 Garners Ferry Road, Columbia, SC, 29209, USA
| | - Swapan K Ray
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, 6439 Garners Ferry Road, Columbia, SC, 29209, USA.
| |
Collapse
|
40
|
Foresight regarding drug candidates acting on the succinate-GPR91 signalling pathway for non-alcoholic steatohepatitis (NASH) treatment. Biomed Pharmacother 2021; 144:112298. [PMID: 34649219 DOI: 10.1016/j.biopha.2021.112298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/29/2021] [Accepted: 10/05/2021] [Indexed: 11/24/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver disease, and it is a liver manifestation of metabolic syndrome, with a histological spectrum from simple steatosis to non-alcoholic steatohepatitis (NASH). NASH can evolve into progressive liver fibrosis and eventually lead to liver cirrhosis. The pathological mechanism of NASH is multifactorial, involving a series of metabolic disorders and changes that trigger low-level inflammation in the liver and other organs. In the pathogenesis of NASH, the signal transduction pathway involving succinate and the succinate receptor (G-protein-coupled receptor 91, GPR91) regulates inflammatory cell activation and liver fibrosis. This review describes the mechanism of the succinate-GPR91 signalling pathway in NASH and summarizes the drugs that act on this pathway, with the aim of providing a new approach to NASH treatment.
Collapse
|
41
|
Koustas E, Trifylli EM, Sarantis P, Papavassiliou AG, Karamouzis MV. Role of autophagy in cholangiocarcinoma: An autophagy-based treatment strategy. World J Gastrointest Oncol 2021; 13:1229-1243. [PMID: 34721764 PMCID: PMC8529918 DOI: 10.4251/wjgo.v13.i10.1229] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 04/28/2021] [Accepted: 08/03/2021] [Indexed: 02/06/2023] Open
Abstract
Cholangiocarcinomas (CCAs) are diverse biliary epithelial tumours involving the intrahepatic, perihilar and distal parts of the biliary tree. The three entirely variable entities have distinct epidemiology, molecular characteristics, prognosis and strategy for clinical management. However, many cholangiocarcinoma tumor-cells appear to be resistant to current chemotherapeutic agents. The role of autophagy and the therapeutic value of autophagy-based therapy are largely unknown in CCA. The multistep nature of autophagy offers a plethora of regulation points, which are prone to be deregulated and cause different human diseases, including cancer. However, it offers multiple targetable points for designing novel therapeutic strategies. Tumor cells have evolved to use autophagy as an adaptive mechanism for survival under stressful conditions such as energy imbalance and hypoxic region of tumors within the tumor microenvironment, but also to increase invasiveness and resistance to chemotherapy. The purpose of this review is to summarize the current knowledge regarding the interplay between autophagy and cholangiocarcinogenesis, together with some preclinical studies with agents that modulate autophagy in order to induce tumor cell death. Altogether, a combinatorial strategy, which comprises the current anti-cancer agents and autophagy modulators, would represent a positive CCA patient approach.
Collapse
Affiliation(s)
- Evangelos Koustas
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens 11527, Greece
| | - Eleni-Myrto Trifylli
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens 11527, Greece
| | - Panagiotis Sarantis
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens 11527, Greece
| | - Athanasios G Papavassiliou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens 11527, Greece
| | - Michalis V Karamouzis
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens 11527, Greece
| |
Collapse
|
42
|
Rationally designed drug delivery systems for the local treatment of resected glioblastoma. Adv Drug Deliv Rev 2021; 177:113951. [PMID: 34461201 DOI: 10.1016/j.addr.2021.113951] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/26/2021] [Accepted: 08/24/2021] [Indexed: 02/08/2023]
Abstract
Glioblastoma (GBM) is a particularly aggressive brain cancer associated with high recurrence and poor prognosis. The standard of care, surgical resection followed by concomitant radio- and chemotherapy, leads to low survival rates. The local delivery of active agents within the tumor resection cavity has emerged as an attractive means to initiate oncological treatment immediately post-surgery. This complementary approach bypasses the blood-brain barrier, increases the local concentration at the tumor site while reducing or avoiding systemic side effects. This review will provide a global overview on the local treatment for GBM with an emphasis on the lessons learned from past clinical trials. The main parameters to be considered to rationally design fit-of-purpose biomaterials and develop drug delivery systems for local administration in the GBM resection cavity to prevent the tumor recurrence will be described. The intracavitary local treatment of GBM should i) use materials that facilitate translation to the clinic; ii) be characterized by easy GMP effective scaling up and easy-handling application by the neurosurgeons; iii) be adaptable to fill the tumor-resected niche, mold to the resection cavity or adhere to the exposed brain parenchyma; iv) be biocompatible and possess mechanical properties compatible with the brain; v) deliver a therapeutic dose of rationally-designed or repurposed drug compound(s) into the GBM infiltrative margin. Proof of concept with high translational potential will be provided. Finally, future perspectives to facilitate the clinical translation of the local perisurgical treatment of GBM will be discussed.
Collapse
|
43
|
Trejo-Solis C, Escamilla-Ramirez A, Jimenez-Farfan D, Castillo-Rodriguez RA, Flores-Najera A, Cruz-Salgado A. Crosstalk of the Wnt/β-Catenin Signaling Pathway in the Induction of Apoptosis on Cancer Cells. Pharmaceuticals (Basel) 2021; 14:ph14090871. [PMID: 34577571 PMCID: PMC8465904 DOI: 10.3390/ph14090871] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/22/2021] [Accepted: 08/24/2021] [Indexed: 12/13/2022] Open
Abstract
The Wnt/β-catenin signaling pathway plays a major role in cell survival and proliferation, as well as in angiogenesis, migration, invasion, metastasis, and stem cell renewal in various cancer types. However, the modulation (either up- or downregulation) of this pathway can inhibit cell proliferation and apoptosis both through β-catenin-dependent and independent mechanisms, and by crosstalk with other signaling pathways in a wide range of malignant tumors. Existing studies have reported conflicting results, indicating that the Wnt signaling can have both oncogenic and tumor-suppressing roles, depending on the cellular context. This review summarizes the available information on the role of the Wnt/β-catenin pathway and its crosstalk with other signaling pathways in apoptosis induction in cancer cells and presents a modified dual-signal model for the function of β-catenin. Understanding the proapoptotic mechanisms induced by the Wnt/β-catenin pathway could open new therapeutic opportunities.
Collapse
Affiliation(s)
- Cristina Trejo-Solis
- Laboratorio Experimental de Enfermedades Neurodegenerativas, Instituto Nacional de Neurología y Neurocirugía, Ciudad de Mexico 14269, Mexico; (A.E.-R.); (A.C.-S.)
- Correspondence:
| | - Angel Escamilla-Ramirez
- Laboratorio Experimental de Enfermedades Neurodegenerativas, Instituto Nacional de Neurología y Neurocirugía, Ciudad de Mexico 14269, Mexico; (A.E.-R.); (A.C.-S.)
| | - Dolores Jimenez-Farfan
- Laboratorio de Inmunología, División de Estudios de Posgrado e Investigación, Facultad de Odontología, Universidad Nacional Autónoma de México, Ciudad de Mexico 04510, Mexico;
| | | | - Athenea Flores-Najera
- Centro Médico Nacional 20 de Noviembre, Departamento de Cirugía General, Ciudad de Mexico 03229, Mexico;
| | - Arturo Cruz-Salgado
- Laboratorio Experimental de Enfermedades Neurodegenerativas, Instituto Nacional de Neurología y Neurocirugía, Ciudad de Mexico 14269, Mexico; (A.E.-R.); (A.C.-S.)
| |
Collapse
|
44
|
Singh A, Tandon S, Nandi SP, Kaur T, Tandon C. Downregulation of inflammatory mediators by ethanolic extract of Bergenia ligulata (Wall.) in oxalate injured renal epithelial cells. JOURNAL OF ETHNOPHARMACOLOGY 2021; 275:114104. [PMID: 33836258 DOI: 10.1016/j.jep.2021.114104] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 03/05/2021] [Accepted: 04/03/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE In the Indian traditional system of medicine, Bergenia ligulata (Wall.) Engl. has been used for treatment of urolithiasis. Its efficacious nature has led to its incorporation in various commercial herbal formulations such as Cystone and Neeri which are prescribed for kidney related ailments. AIM OF THE STUDY To assess whether ethanolic extract of B. ligulata can mitigate the cascade of inflammatory responses that cause oxidative stress and ultimately cell death in renal epithelial cells exposed to hyperoxaluric conditions. MATERIAL AND METHODS Bioactivity guided fractionation using solvents of varying polarities was employed to evaluate the potential of the extracts of B. ligulata to inhibit the crystallization process. Modulation of crystal morphology was visualized through Scanning electron microscopy (SEM) analysis. Cell death was assessed using flow cytometry based assays. Alteration in the inflammatory mediators was evaluated using real time PCR and immunocytochemistry. Phytochemical characterization of the ethanolic extract was carried out using FTIR, LC-MS and GC-MS. RESULTS Bioactivity guided fractionation for the assessment of antilithiatic activity revealed dose dependent inhibition of nucleation and aggregation process of calcium oxalate crystals in the presence of various extracts, however ethanolic extract showed maximum inhibition and was chosen for further experiments. Studies on renal epithelial NRK-52E cells showed, cytoprotective efficacy of B. ligulata extract against oxalate injury. SEM anaysis further revealed the potential of the extract to modulate the crystal structure and adhesion to renal cell surface. Exposure of the renal cells to the extract led to conversion of the calcium oxalate monohydrate (COM) crystals to the less injurious calcium oxalate dihydrate (COD) form. Expression analysis for oxidative stress and inflammatory biomarkers in NRK-52E cells revealed up-regulation of Mitogen activated protein kinase (MAPK), Osteopontin (OPN) and Nuclear factor- ĸB (NF-ĸB), in response to calcium oxalate insult; which was drastically reduced in the presence of B. ligulata extract. Flow cytometric evaluation pointed to caspase 3 mediated apoptotic cell death in oxalate injured cells, which was attenuated by B. ligulata extract. CONCLUSION Considering the complex multifactorial etiology of urolithiasis, ethanolic extract from B. ligulata can be a promising option for the management of kidney stones, as it has the potential to limit inflammation and the subsequent cell death.
Collapse
Affiliation(s)
- Anubha Singh
- Amity Institute of Biotechnology, Amity University, Noida, India
| | - Simran Tandon
- Amity Institute of Molecular Medicine and Stem Cell Research, Amity University, Noida, India
| | - Shoma Paul Nandi
- Amity Institute of Biotechnology, Amity University, Noida, India
| | - Tanzeer Kaur
- Department of Biophysics, Panjab University, Chandigarh, India
| | | |
Collapse
|
45
|
KYP-2047, an Inhibitor of Prolyl-Oligopeptidase, Reduces GlioBlastoma Proliferation through Angiogenesis and Apoptosis Modulation. Cancers (Basel) 2021; 13:cancers13143444. [PMID: 34298658 PMCID: PMC8306782 DOI: 10.3390/cancers13143444] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/06/2021] [Accepted: 07/07/2021] [Indexed: 12/02/2022] Open
Abstract
Simple Summary Glioblastoma (GB) is the most aggressive brain tumor characterized by necrosis, excessive proliferation, and invasiveness. Despite relevant progress in conventional treatments, the survival rate for patients with GB remains low. The present study investigated the potential effect of KYP-2047, an inhibitor of the prolyl-oligopeptidase (POP or PREP), in an in vivo U87-xenograft model and in an in vitro study on human GB cells. This study demonstrated the abilities of KYP-2047 to counteract and reduce GB progression through angiogenesis and apoptosis modulation. Abstract Glioblastoma (GB) is the most aggressive tumor of the central nervous system (CNS), characterized by excessive proliferation, necrosis and invasiveness. The survival rate for patients with GB still remains low. Angiogenesis and apoptosis play a key role in the development of GB. Thus, the modulation of angiogenesis and apoptosis processes represent a possible strategy to counteract GB progression. This study aimed to investigate the potential effect of KYP-2047, an inhibitor of the prolyl-oligopeptidase (POP), known to modulate angiogenesis, in an in vivo U87-xenograft model and in an in vitro study on human GB cells. Our results showed that KYP-2047 at doses of 2.5 mg/kg and 5 mg/kg was able to reduce tumor burden in the xenograft-model. Moreover, KYP-2047 significantly reduced vascular endothelial-growth-factor (VEGF), angiopoietins (Ang) and endothelial-nitric-oxide synthase (eNOS) expression. In vitro study revealed that KYP-2047 at different concentrations reduced GB cells’ viability. Additionally, KYP-2047 at the concentrations of 50 µM and 100 µM was able to increase the pro-apoptotic protein Bax, p53 and caspase-3 expression whereas Bcl-2 expression was reduced. Thus, KYP-2047 could represent a potential therapeutic treatment to counteract or reduce GB progression, thanks its abilities to modulate angiogenesis and apoptosis pathways.
Collapse
|
46
|
Bo S, Lai J, Lin H, Luo X, Zeng Y, Du T. Purpurin, a anthraquinone induces ROS-mediated A549 lung cancer cell apoptosis via inhibition of PI3K/AKT and proliferation. J Pharm Pharmacol 2021; 73:1101-1108. [PMID: 33877317 DOI: 10.1093/jpp/rgab056] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 03/13/2021] [Indexed: 12/20/2022]
Abstract
OBJECTIVES In this study, we sought to evaluate purpurin, a natural biomedicine and a potential inhibitor in decreasing the growth rate of lung cancer cells by modulating the role of PI3K/AKT signalling-associated proliferation and apoptosis. METHODS A549 cells were treated with purpurin (30 μM) for 24 and 48 h incubation, respectively, and it has been analysed for cytotoxicity, ROS-mediated apoptotic staining. Moreover, purpurin-mediated lipid peroxidation and GSH were measured by biochemical estimation. Furthermore, PI3K/AKT signalling-mediated cell proliferation and apoptotic gene expression done were by western blot. KEY FINDINGS In this study, we observed that purpurin could effectively kill A549 cancer cell lines and leads to cell death, thus conforming increased cytotoxicity, production of ROS-mediated enhancement of lipid peroxidation, nuclear fragmentation and apoptosis. Moreover, the GSH content of A549 cell lines was also diminished after treatment with purpurin. This study demonstrates that purpurin inhibits the phosphorylated PI3K/AKT molecules mediated cyclin-D1 and PCNA, thereby inducing apoptosis by observing increased proapoptotic mediators Bax, cleaved PARP, cytochrome-c, caspase-9 and caspase-3; and decreased Bcl-2 expression in the lung cancer cell lines. CONCLUSION This result concluded that purpurin eliminates the A549 lung cancer cells by blocking the PI3K/AKT pathway thereby inducing apoptosis.
Collapse
Affiliation(s)
- Su Bo
- Department of Cardiothoracic Surgery, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, Hubei 441000, China
| | - Jing Lai
- Nursing Department, The First People's Hospital of Longquanyi District, Chengdu, Sichuan 610100, China
| | - Honyu Lin
- The Third Affiliated Teaching Hospital of Xinjiang Medical University (Affiliated Cancer Hospital), Urumqi, Xinjiang 830011, China
| | - Xue Luo
- Nursing Department, The First People's Hospital of Longquanyi District, Chengdu, Sichuan 610100, China
| | - Yiqiong Zeng
- Nursing Department, The First People's Hospital of Longquanyi District, Chengdu, Sichuan 610100, China
| | - Tianying Du
- Department of Thoracic Oncology, Jilin Cancer Hospital, Jilin, Changchun 130000, China
| |
Collapse
|
47
|
Li C, Li Z, Song L, Meng L, Xu G, Zhang H, Hu J, Li F, Liu C. GEFT Inhibits Autophagy and Apoptosis in Rhabdomyosarcoma via Activation of the Rac1/Cdc42-mTOR Signaling Pathway. Front Oncol 2021; 11:656608. [PMID: 34221974 PMCID: PMC8252888 DOI: 10.3389/fonc.2021.656608] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 05/20/2021] [Indexed: 12/12/2022] Open
Abstract
Autophagy and apoptosis are dynamic processes that determine the fate of cells, and regulating these processes can treat cancer. GEFT is highly expressed in rhabdomyosarcoma (RMS), which accelerates the tumorigenicity and metastasis of RMS by activating Rac1/Cdc42 signaling, but the regulatory mechanisms of autophagy and apoptosis are unclear. In our study, we found that the RMS tissues had high Rac1, Cdc42, mTOR, and Bcl-2 expression levels and low Beclin1, LC3, and Bax expression levels compared with the normal striated muscle tissues (P < 0.05). In addition, multivariate analysis has proven that Rac1 is an independent prognostic factor (P < 0.05), and the high expression level of the Beclin1 protein was closely associated with the tumor diameter of the RMS patients (P = 0.044), whereas the high expression level of the LC3 protein was associated with the clinical stage of the RMS patients (P = 0.027). Furthermore, GEFT overexpression could inhibit autophagy and apoptosis in RMS. A Rac1/Cdc42 inhibitor was added, and the inhibition of autophagy and apoptosis decreased. Rac1 and Cdc42 could regulate mTOR to inhibit autophagy and apoptosis in RMS. Overall, these studies demonstrated that the GEFT–Rac1/Cdc42–mTOR pathway can inhibit autophagy and apoptosis in RMS and provide evidence for innovative treatments.
Collapse
Affiliation(s)
- Chunsen Li
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, China
| | - Zhenzhen Li
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, China
| | - Lingxie Song
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, China.,Department of Pathology and Medical Research Center, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Lian Meng
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, China
| | - Guixuan Xu
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, China
| | - Haijun Zhang
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, China
| | - Jianming Hu
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, China
| | - Feng Li
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, China.,Department of Pathology and Medical Research Center, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Chunxia Liu
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, China.,Department of Pathology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
48
|
Ni H, Zhi R, Zuo J, Liu W, Xie P, Zhi Z. Pseudogene ANXA2P2 knockdown shows tumor-suppressive function by inhibition of the PI3K/PKB pathway in glioblastoma cells. J Biochem Mol Toxicol 2021; 35:e22824. [PMID: 34047431 DOI: 10.1002/jbt.22824] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 02/04/2021] [Accepted: 05/18/2021] [Indexed: 01/15/2023]
Abstract
The pseudogene annexin A2 pseudogene 2 (ANXA2P2) is highly expressed in glioblastoma (GBM). However, its role and mechanism involved in the progression of GBM remain poorly understood. ANXA2P2 messenger RNA expression was measured by quantitative reverse transcription-polymerase chain reaction. The protein levels were detected by Western blot. Cell viability was evaluated by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and lactate dehydrogenase (LDH) release assays. Cell invasive ability was investigated by the transwell assay and by epithelial-mesenchymal transition (EMT). Cell apoptosis was examined by flow cytometry. The results showed that ANXA2P2 expression was increased in GBM tissues and cells. Silencing of ANXA2P2 inhibited the activation of the phosphoinositide 3-kinase (PI3K)/protein kinase B (PKB) pathway in GBM cells. Knockdown of ANXA2P2 decreased cell viability, promoted LDH release, suppressed cell invasive ability, and EMT, and induced cell apoptosis in GBM cells. The addition of the PI3K/PKB activator 740Y-P abrogated the effects of ANXA2P2 knockdown on cell viability, LDH release, invasive ability, and apoptosis. In conclusion, knockdown of ANXA2P2 inhibited cell viability and invasion but promoted the apoptotic rate by suppressing the PI3K/PKB pathway in GBM cells. ANXA2P2 may represent a new target for the treatment of GBM.
Collapse
Affiliation(s)
- Hongzao Ni
- Department of Neurosurgery, The Second People's Hospital of Huai'an, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, China
| | - Rongrong Zhi
- Department of Gastroenterology, Lianshui County People's Hospital Affiliated to Kangda College of Nanjing Medical University, Huai'an, China
| | - Jiandong Zuo
- Department of Neurosurgery, The Second People's Hospital of Huai'an, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, China
| | - Wenguang Liu
- Department of Neurosurgery, The Second People's Hospital of Huai'an, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, China
| | - Peng Xie
- Department of Neurosurgery, The Second People's Hospital of Huai'an, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, China
| | - Zhongwen Zhi
- Department of Neurosurgery, The Second People's Hospital of Huai'an, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, China
| |
Collapse
|
49
|
Harrath AH, Jalouli M, Oueslati MH, Farah MA, Feriani A, Aldahmash W, Aldawood N, Al-Anazi K, Falodah F, Swelum A, Alwasel S. The flavonoid, kaempferol-3-O-apiofuranosyl-7-O-rhamnopyranosyl, as a potential therapeutic agent for breast cancer with a promoting effect on ovarian function. Phytother Res 2021; 35:6170-6180. [PMID: 33908658 DOI: 10.1002/ptr.7067] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 01/06/2021] [Accepted: 02/12/2021] [Indexed: 12/24/2022]
Abstract
It is widely known that breast cancer cells eventually develop resistance to hormonal drugs and chemotherapies, which often compromise fertility. This study aimed to investigate the effect of the flavonoid, kaempferol-3-O-apiofuranosyl-7-O-rhamnopyranosyl (KARP), on 1) the viability of MCF-7 breast cancer cells and 2) ovarian function in rats. A dose-dependent decrease in MCF-7 cell survival was observed, and the IC50 value was found to be 48 μg/ml. Cells in the control group or those exposed to increasing concentrations of KARP experienced a similar generation of reactive oxygen species and induction of apoptosis. For the rats, estradiol levels correlated negatively to KARP dosages, although a recovery was obtained at administration of 30 mg/kg per day. Noteworthily, when compared against the control, this dosage led to significant increases in mRNA levels for CYP19, CYP17a, CCND2, GDF9, and INSL3 among the treatment groups, and ER1 and ER2 mRNA levels decreased in a dose-dependent manner. KARP shows great promise as an ideal therapy for breast cancer patients since it induced apoptosis and autophagy in cancerous cells without harming fertility in our animal model. Future investigations on humans are necessary to substantiate these findings and determine its efficacy as a general line of treatment.
Collapse
Affiliation(s)
- Abdel Halim Harrath
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Maroua Jalouli
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | | | - Mohammad Abul Farah
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Anouar Feriani
- Research Unit of Macromolecular Biochemistry and Genetics, Faculty of Sciences, University of Gafsa, Tunisia
| | - Waleed Aldahmash
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Nouf Aldawood
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Khalid Al-Anazi
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Fawaz Falodah
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Ayman Swelum
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Saleh Alwasel
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
50
|
Luo X, Tu T, Zhong Y, Xu S, Chen X, Chen L, Yang F. ceRNA Network Analysis Shows That lncRNA CRNDE Promotes Progression of Glioblastoma Through Sponge mir-9-5p. Front Genet 2021; 12:617350. [PMID: 33767729 PMCID: PMC7985093 DOI: 10.3389/fgene.2021.617350] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 02/08/2021] [Indexed: 12/20/2022] Open
Abstract
Glioblastoma accounts for 45.2% of central nervous system tumors. Despite the availability of multiple treatments (e.g., surgery, radiotherapy, chemotherapy, biological therapy, immunotherapy, and electric field therapy), glioblastoma has a poor prognosis, with a 5-year survival rate of approximately 5%. The pathogenesis and prognostic markers of this cancer are currently unclear. To this end, this study aimed to explore the pathogenesis of glioblastoma and identify potential prognostic markers. We used data from the GEO and TCGA databases and identified five genes (ITGA5, MMP9, PTPRN, PTX3, and STX1A) that could affect the survival rate of glioblastoma patients and that were differentially expressed between glioblastoma patients and non-tumors groups. Based on a variety of bioinformatics tools for reverse prediction of target genes associated with the prognosis of GBM, a ceRNA network of messenger RNA (STX1A, PTX3, MMP9)-microRNA (miR-9-5p)-long non-coding RNA (CRNDE) was constructed. Finally, we identified five potential therapeutic drugs (bacitracin, hecogenin, clemizole, chrysin, and gibberellic acid) that may be effective treatments for glioblastoma.
Collapse
Affiliation(s)
- Xiaobin Luo
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Tianqi Tu
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yali Zhong
- Graduate School of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Shangyi Xu
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Xiangzhou Chen
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Ligang Chen
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Sichuan Clinical Research Center for Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Academician (Expert) Workstation of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Laboratory of Neurological Diseases and Brain Function, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Fubing Yang
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Sichuan Clinical Research Center for Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Academician (Expert) Workstation of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|