1
|
Primavera R, Wang J, Buchwald P, Ganguly A, Patel S, Bettencourt L, Chetty S, Yarani R, Regmi S, Levitte S, Kevadiya B, Guindani M, Decuzzi P, Thakor AS. Controlled Nutrient Delivery to Pancreatic Islets Using Polydopamine-Coated Mesoporous Silica Nanoparticles. NANO LETTERS 2025; 25:939-950. [PMID: 39791700 DOI: 10.1021/acs.nanolett.4c03613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
In this study, we designed a nanoscale platform for sustained amino acid delivery to support transplanted pancreatic islets. The platform features mesoporous silica nanoparticles (MSNPs) loaded with glutamine (G), an essential amino acid required for islet survival and function, and coated with polydopamine (PD). We investigated various PD concentrations (0.5-2 mg/mL) and incubation times (0.5-2 h) to optimize G release, identifying that a PD concentration of 0.5 mg/mL incubated for 0.5 h yielded the best results to support islet viability and functionality ex vivo, particularly under inflammatory conditions. In syngeneic islet transplantation in STZ-diabetic mice, G alone provided only temporary benefits; however, PD-G-MSNPs significantly improved islet engraftment and function, with animals maintaining glycemic control for 30 days due to controlled G release. Our findings support the use of this nanoscale platform to provide essential nutrients like G to transplanted islets until they can establish their own blood and nutrient supply.
Collapse
Affiliation(s)
- Rosita Primavera
- Department of Radiology, Interventional Radiology Innovation at Stanford (IRIS), Stanford University School of Medicine, Palo Alto, California 94304, United States
| | - Jing Wang
- Department of Radiology, Interventional Radiology Innovation at Stanford (IRIS), Stanford University School of Medicine, Palo Alto, California 94304, United States
| | - Peter Buchwald
- Diabetes Research Institute, Miller School of Medicine, University of Miami, Miami, Florida 33136, United States
| | - Abantika Ganguly
- Department of Radiology, Interventional Radiology Innovation at Stanford (IRIS), Stanford University School of Medicine, Palo Alto, California 94304, United States
| | - Shaini Patel
- Department of Radiology, Interventional Radiology Innovation at Stanford (IRIS), Stanford University School of Medicine, Palo Alto, California 94304, United States
| | - Lili Bettencourt
- Department of Radiology, Interventional Radiology Innovation at Stanford (IRIS), Stanford University School of Medicine, Palo Alto, California 94304, United States
| | - Shashank Chetty
- Department of Radiology, Interventional Radiology Innovation at Stanford (IRIS), Stanford University School of Medicine, Palo Alto, California 94304, United States
| | - Reza Yarani
- Translational Type 1 Diabetes Research, Department of Clinical, Research, Steno Diabetes Center Copenhagen, Herlev 2730, Denmark
| | - Shobha Regmi
- Department of Radiology, Interventional Radiology Innovation at Stanford (IRIS), Stanford University School of Medicine, Palo Alto, California 94304, United States
| | - Steven Levitte
- Department of Radiology, Interventional Radiology Innovation at Stanford (IRIS), Stanford University School of Medicine, Palo Alto, California 94304, United States
| | - Bhavesh Kevadiya
- Department of Radiology, Interventional Radiology Innovation at Stanford (IRIS), Stanford University School of Medicine, Palo Alto, California 94304, United States
| | - Michele Guindani
- Department of Biostatistics, Jonathan and Karin Fielding School of Public Health, University of California Los Angeles, Los Angeles, California 90095, United States
| | - Paolo Decuzzi
- Laboratory of Nanotechnology for Precision Medicine, Fondazione Istituto Italiano di Tecnologia, Via Morego 30, Genoa 16163, Italy
| | - Avnesh S Thakor
- Department of Radiology, Interventional Radiology Innovation at Stanford (IRIS), Stanford University School of Medicine, Palo Alto, California 94304, United States
| |
Collapse
|
2
|
Wang S, Xia D, Dou W, Chen A, Xu S. Bioactive Porous Composite Implant Guides Mesenchymal Stem Cell Differentiation and Migration to Accelerate Bone Reconstruction. Int J Nanomedicine 2024; 19:12111-12127. [PMID: 39583325 PMCID: PMC11586122 DOI: 10.2147/ijn.s479893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 10/30/2024] [Indexed: 11/26/2024] Open
Abstract
Background Delayed healing and non-healing of bone defects pose significant challenges in clinical practice, with metal materials increasingly recognized for their significance in addressing these issues. Among these materials, Strontium (Sr) and Zinc (Zn) have emerged as promising agents for promoting bone repair. Building upon this insight, this research evaluates the impact of a porous Sr@Zn@SiO2 nanocomposite implant on bone regeneration, aiming to advance the field of bone repair. Methods The preparation of the Sr@Zn@SiO2 composite implant involves various techniques such as roasting, centrifugation, and washing. The material's composition is examined, and its microstructure and element distribution are analyzed using TEM and elemental scanning technology. In vitro experiments entail the isolation and characterization of BMSCs followed by safety assessments of the implant material, evaluation of cell migration capabilities, and relevant proliferation markers. Mechanistically, this study delves into key targets associated with significant changes in the osteogenic process. In vivo experiments involve establishing a rat femur bone defect model, followed by assessment of the osteogenic potential of Sr@Zn@SiO2 using Micro-CT imaging and tissue section staining. Results Through in vivo and in vitro investigations, we validate the osteogenic efficacy of the Sr@Zn@SiO2 composite implant. In vitro analyses demonstrate that porous Sr@Zn@SiO2 nanocomposite materials upregulate BMP-2 expression, leading to the activation of Smad1/5/9 phosphorylation and subsequent activation of downstream osteogenic genes, culminating in BMSCs osteogenic differentiation and bone proliferation. And the migration of BMSCs is closely related to the high expression of CXCL12/CXCR4, which will also provide the conditions for osteogenesis. In vivo, the osteogenic ability of Sr@Zn@SiO2 was also confirmed in rats. Conclusion In our research, the porous Sr@Zn@SiO2 composite implant displays prominent osteogenic effect and promotes the migration and differentiation of BMSCs to promote bone defect healing. This bioactive implant has surgical application potential in the future.
Collapse
Affiliation(s)
- Sheng Wang
- Department of Traumatic Orthopedics, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, 200434, People’s Republic of China
| | - Demeng Xia
- Department of Traumatic Orthopedics, Changhai Hospital, Naval Medical University, Shanghai, 200433, People’s Republic of China
- Department of Clinical Medicine, Hainan Health Vocational College, Haikou, 570100, People’s Republic of China
| | - Wenxue Dou
- Department of Stomatology, Shanghai East Hospital, Tongji University, Shanghai, 200120, People’s Republic of China
| | - Aimin Chen
- Department of Traumatic Orthopedics, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, 200434, People’s Republic of China
| | - Shuogui Xu
- Department of Traumatic Orthopedics, Changhai Hospital, Naval Medical University, Shanghai, 200433, People’s Republic of China
| |
Collapse
|
3
|
Zhang J, Liu Z, Zhang Z, Yang H, Wang H, Yang Z, Xu Y, Li S, Yang D. Recent Advances in Silica-Based Nanomaterials for Enhanced Tumor Imaging and Therapy. ACS APPLIED BIO MATERIALS 2024; 7:7133-7169. [PMID: 39495482 DOI: 10.1021/acsabm.4c01318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2024]
Abstract
Cancer remains a formidable challenge, inflicting profound physical, psychological, and financial burdens on patients. In this context, silica-based nanomaterials have garnered significant attention for their potential in tumor imaging and therapy owing to their exceptional properties, such as biocompatibility, customizable porosity, and versatile functionalization capabilities. This review meticulously examines the latest advancements in the application of silica-based nanomaterials for tumor imaging and therapy. It underscores their potential in enhancing various cancer imaging modalities, including fluorescence imaging, magnetic resonance imaging, computed tomography, positron emission tomography, ultrasound imaging, and multimodal imaging approaches. Moreover, the review delves into their therapeutic efficacy in chemotherapy, radiotherapy, phototherapy, immunotherapy, gas therapy, sonodynamic therapy, chemodynamic therapy, starvation therapy, and gene therapy. Critical evaluations of the biosafety profiles and degradation pathways of these nanomaterials within biological environments are also presented. By discussing the current challenges and prospects, this review aims to provide a nuanced perspective on the clinical translation of silica-based nanomaterials, thereby highlighting their promise in revolutionizing cancer diagnostics, enabling real-time monitoring of therapeutic responses, and advancing personalized medicine.
Collapse
Affiliation(s)
- Junjie Zhang
- School of Fundamental Sciences, Bengbu Medical University, Bengbu 233030, China
| | - Zilu Liu
- School of Fundamental Sciences, Bengbu Medical University, Bengbu 233030, China
| | - Zhijing Zhang
- School of Fundamental Sciences, Bengbu Medical University, Bengbu 233030, China
| | - Hui Yang
- School of Fundamental Sciences, Bengbu Medical University, Bengbu 233030, China
| | - Hui Wang
- School of Fundamental Sciences, Bengbu Medical University, Bengbu 233030, China
| | - Zhenlu Yang
- Department of Radiology, Guizhou Provincial People's Hospital, Guiyang, Guizhou 550000, China
| | - Yunjian Xu
- School of Radiology, Shandong First Medical University and Shandong Academy of Medical Sciences, Tai'an 271000, China
- Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, China
| | - Shengke Li
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China
| | - Dongliang Yang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), School of Physical and Mathematical Sciences, Nanjing Tech University (NanjingTech), Nanjing 211816, China
| |
Collapse
|
4
|
He Y, Feng Y, Qiu D, Lin M, Jin H, Hu Z, Huang X, Ma S, He Y, Lai M, Jin W, Liu J. Regulation of IFP in solid tumours through acoustic pressure to enhance infiltration of nanoparticles of various sizes. J Drug Target 2024; 32:964-976. [PMID: 38884143 DOI: 10.1080/1061186x.2024.2367579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 06/06/2024] [Accepted: 06/07/2024] [Indexed: 06/18/2024]
Abstract
Numerous nanomedicines have been developed recently that can accumulate selectively in tumours due to the enhanced permeability and retention (EPR) effect. However, the high interstitial fluid pressure (IFP) in solid tumours limits the targeted delivery of nanomedicines. We were previously able to relieve intra-tumoural IFP by low-frequency non-focused ultrasound (LFNFU) through ultrasonic targeted microbubble destruction (UTMD), improving the targeted delivery of FITC-dextran. However, the accumulation of nanoparticles of different sizes and the optimal acoustic pressure were not evaluated. In this study, we synthesised Cy5.5-conjugated mesoporous silica nanoparticles (Cy5.5-MSNs) of different sizes using a one-pot method. The Cy5.5-MSNs exhibited excellent stability and biosafety regardless of size. MCF7 tumour-bearing mice were subjected to UTMD over a range of acoustic pressures (0.5, 0.8, 1.5 and 2.0 MPa), and injected intravenously with Cy5.5-MSNs. Blood perfusion, tumour IFP and intra-tumoural accumulation of Cy5.5-MSNs were analysed. Blood perfusion and IFP initially rose, and then declined, as acoustic pressure intensified. Furthermore, UTMD significantly enhanced the accumulation of differentially sized Cy5.5-MSNs in tumour tissues compared to that of the control group, and the increase was sevenfold higher at an acoustic pressure of 1.5 MPa. Taken together, UTMD enhanced the infiltration and accumulation of Cy5.5-MSNs of different sizes in solid tumours by reducing intra-tumour IFP.
Collapse
Affiliation(s)
- Yangcheng He
- Department of Ultrasound, School of Medicine, The Second Affiliated Hospital, South China University of Technology, Guangzhou, China
| | - Yuyi Feng
- Department of Ultrasound, School of Medicine, The Second Affiliated Hospital, South China University of Technology, Guangzhou, China
| | - Danxai Qiu
- Department of Ultrasound, School of Medicine, The Second Affiliated Hospital, South China University of Technology, Guangzhou, China
| | - MinHua Lin
- Department of Ultrasound, School of Medicine, The Second Affiliated Hospital, South China University of Technology, Guangzhou, China
| | - Hai Jin
- Department of Ultrasound, School of Medicine, The Second Affiliated Hospital, South China University of Technology, Guangzhou, China
| | - Zhiwen Hu
- Department of Ultrasound, School of Medicine, The Second Affiliated Hospital, South China University of Technology, Guangzhou, China
| | - Xue Huang
- Department of General Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Suihong Ma
- Department of Ultrasound, School of Medicine, The Second Affiliated Hospital, South China University of Technology, Guangzhou, China
| | - Yan He
- Department of Ultrasound, School of Medicine, The Second Affiliated Hospital, South China University of Technology, Guangzhou, China
| | - Meiqi Lai
- Department of Ultrasound, School of Medicine, The Second Affiliated Hospital, South China University of Technology, Guangzhou, China
| | - Wenhui Jin
- Department of Ultrasound, School of Medicine, The Second Affiliated Hospital, South China University of Technology, Guangzhou, China
| | - Jianhua Liu
- Department of Ultrasound, School of Medicine, The Second Affiliated Hospital, South China University of Technology, Guangzhou, China
| |
Collapse
|
5
|
Nair A, Chandrashekhar H R, Day CM, Garg S, Nayak Y, Shenoy PA, Nayak UY. Polymeric functionalization of mesoporous silica nanoparticles: Biomedical insights. Int J Pharm 2024; 660:124314. [PMID: 38862066 DOI: 10.1016/j.ijpharm.2024.124314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/25/2024] [Accepted: 06/04/2024] [Indexed: 06/13/2024]
Abstract
Mesoporous silica nanoparticles (MSNs) endowed with polymer coatings present a versatile platform, offering notable advantages such as targeted, pH-controlled, and stimuli-responsive drug delivery. Surface functionalization, particularly through amine and carboxyl modification, enhances their suitability for polymerization, thereby augmenting their versatility and applicability. This review delves into the diverse therapeutic realms benefiting from polymer-coated MSNs, including photodynamic therapy (PDT), photothermal therapy (PTT), chemotherapy, RNA delivery, wound healing, tissue engineering, food packaging, and neurodegenerative disorder treatment. The multifaceted potential of polymer-coated MSNs underscores their significance as a focal point for future research endeavors and clinical applications. A comprehensive analysis of various polymers and biopolymers, such as polydopamine, chitosan, polyethylene glycol, polycaprolactone, alginate, gelatin, albumin, and others, is conducted to elucidate their advantages, benefits, and utilization across biomedical disciplines. Furthermore, this review extends its scope beyond polymerization and biomedical applications to encompass topics such as surface functionalization, chemical modification of MSNs, recent patents in the MSN domain, and the toxicity associated with MSN polymerization. Additionally, a brief discourse on green polymers is also included in review, highlighting their potential for fostering a sustainable future.
Collapse
Affiliation(s)
- Akhil Nair
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Raghu Chandrashekhar H
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Candace M Day
- UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia
| | - Sanjay Garg
- UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia
| | - Yogendra Nayak
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Padmaja A Shenoy
- Department of Microbiology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Usha Y Nayak
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India.
| |
Collapse
|
6
|
Meng J, Wang ZG, Zhao X, Wang Y, Chen DY, Liu DL, Ji CC, Wang TF, Zhang LM, Bai HX, Li BY, Liu Y, Wang L, Yu WG, Yin ZT. Silica nanoparticle design for colorectal cancer treatment: Recent progress and clinical potential. World J Clin Oncol 2024; 15:667-673. [PMID: 38946830 PMCID: PMC11212613 DOI: 10.5306/wjco.v15.i6.667] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 03/18/2024] [Accepted: 04/24/2024] [Indexed: 06/24/2024] Open
Abstract
Colorectal cancer (CRC) is the third most common cancer worldwide and the second most common cause of cancer death. Nanotherapies are able to selectively target the delivery of cancer therapeutics, thus improving overall antitumor efficiency and reducing conventional chemotherapy side effects. Mesoporous silica nanoparticles (MSNs) have attracted the attention of many researchers due to their remarkable advantages and biosafety. We offer insights into the recent advances of MSNs in CRC treatment and their potential clinical application value.
Collapse
Affiliation(s)
- Jin Meng
- Department of Anorectal Disease, Shenyang Coloproctology Hospital, Shenyang 110000, Liaoning Province, China
| | - Zhi-Gang Wang
- Department of Anorectal Disease, Shenyang Coloproctology Hospital, Shenyang 110000, Liaoning Province, China
| | - Xiu Zhao
- Department of Anorectal Disease, Shenyang Coloproctology Hospital, Shenyang 110000, Liaoning Province, China
| | - Ying Wang
- Acupuncture and Tuina College, Liaoning University of Traditional Chinese Medicine, Shenyang 110032, Liaoning Province, China
| | - De-Yu Chen
- Department of Anorectal Disease, Shenyang Coloproctology Hospital, Shenyang 110000, Liaoning Province, China
| | - De-Long Liu
- Department of Anorectal Disease, Shenyang Coloproctology Hospital, Shenyang 110000, Liaoning Province, China
| | - Cheng-Chun Ji
- Department of Anorectal Disease, Shenyang Coloproctology Hospital, Shenyang 110000, Liaoning Province, China
| | - Tian-Fu Wang
- Department of Anorectal Disease, Shenyang Coloproctology Hospital, Shenyang 110000, Liaoning Province, China
| | - Li-Mei Zhang
- Department of Neurology, Central Hospital of Dalian University of Technology, Dalian 116001, Liaoning Province, China
| | - Hai-Xia Bai
- Department of Anorectal Disease, Shenyang Coloproctology Hospital, Shenyang 110000, Liaoning Province, China
| | - Bo-Yang Li
- Department of Anorectal Disease, Shenyang Coloproctology Hospital, Shenyang 110000, Liaoning Province, China
| | - Yuan Liu
- Department of Anorectal Disease, Shenyang Coloproctology Hospital, Shenyang 110000, Liaoning Province, China
| | - Lei Wang
- Department of Anorectal Disease, Shenyang Coloproctology Hospital, Shenyang 110000, Liaoning Province, China
| | - Wei-Gang Yu
- Department of Anorectal Disease, Shenyang Coloproctology Hospital, Shenyang 110000, Liaoning Province, China
| | - Zhi-Tao Yin
- Department of Anorectal Disease, Shenyang Coloproctology Hospital, Shenyang 110000, Liaoning Province, China
| |
Collapse
|
7
|
Yu J, Dan N, Eslami SM, Lu X. State of the Art of Silica Nanoparticles: An Overview on Biodistribution and Preclinical Toxicity Studies. AAPS J 2024; 26:35. [PMID: 38514482 DOI: 10.1208/s12248-024-00906-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 02/29/2024] [Indexed: 03/23/2024] Open
Abstract
Over the past few years, nanoparticles have drawn particular attention in designing and developing drug delivery systems due to their distinctive advantages like improved pharmacokinetics, reduced toxicity, and specificity. Along with other successful nanosystems, silica nanoparticles (SNPs) have shown promising effects for therapeutic and diagnostic purposes. These nanoparticles are of great significance owing to their modifiable surface with various ligands, tunable particle size, and large surface area. The rate and extent of degradation and clearance of SNPs depend on factors such as size, shape, porosity, and surface modification, which directly lead to varying toxic mechanisms. Despite SNPs' enormous potential for clinical and pharmaceutical applications, safety concerns have hindered their translation into the clinic. This review discusses the biodistribution, toxicity, and clearance of SNPs and the formulation-related factors that ultimately influence clinical efficacy and safety for treatment. A holistic view of SNP safety will be beneficial for developing an enabling SNP-based drug product.
Collapse
Affiliation(s)
- Joshua Yu
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut, USA
| | - Nirnoy Dan
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut, USA
| | - Seyyed Majid Eslami
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut, USA
| | - Xiuling Lu
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut, USA.
| |
Collapse
|
8
|
Shin M, Lim J, Park Y, Lee JY, Yoon J, Choi JW. Carbon-based nanocomposites for biomedical applications. RSC Adv 2024; 14:7142-7156. [PMID: 38419681 PMCID: PMC10900039 DOI: 10.1039/d3ra08946k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 02/19/2024] [Indexed: 03/02/2024] Open
Abstract
Carbon nanomaterials have attracted significant attention in the biomedical field, including for biosensing, drug delivery, and tissue engineering applications. Based on their inherent properties such as their unique structure and high conductivity, carbon nanomaterials can overcome the current limitations in biomedical research such as poor stability of biomolecules, low sensitivity and selectivity of biosensors, and difficulty in precise drug delivery. In addition, recently, several novel nanomaterials have been integrated with carbon nanomaterials to develop carbon-based nanocomposites for application in biomedical research. In this review, we discuss recent studies on carbon-based nanocomposites and their biomedical applications. First, we discuss the representative carbon nanomaterials and nanocomposites composed of carbon and other novel nanomaterials. Next, applications of carbon nanomaterials and nanocomposites in the biomedical field are discussed according to topics in the biomedical field. We have discussed the recent studies on biosensors, drug delivery, and tissue engineering. In conclusion, we believe that this review provides the potential and applicability of carbon nanomaterials and their nanocomposites and suggests future directions of the application of carbon-based nanocomposites in biomedical applications.
Collapse
Affiliation(s)
- Minkyu Shin
- Department of Chemical & Biomolecular Engineering, Sogang University 35 Baekbeom-ro, Mapo-gu Seoul 04107 Republic of Korea
| | - Joungpyo Lim
- Department of Chemical & Biomolecular Engineering, Sogang University 35 Baekbeom-ro, Mapo-gu Seoul 04107 Republic of Korea
| | - Yongseon Park
- Department of Chemical & Biomolecular Engineering, Sogang University 35 Baekbeom-ro, Mapo-gu Seoul 04107 Republic of Korea
| | - Ji-Young Lee
- Department of Chemical & Biomolecular Engineering, Sogang University 35 Baekbeom-ro, Mapo-gu Seoul 04107 Republic of Korea
| | - Jinho Yoon
- Department of Biomedical-Chemical Engineering, The Catholic University of Korea 43 Jibong-ro, Wonmi-gu Bucheon-si Gyeonggi-do 14662 Republic of Korea
| | - Jeong-Woo Choi
- Department of Chemical & Biomolecular Engineering, Sogang University 35 Baekbeom-ro, Mapo-gu Seoul 04107 Republic of Korea
| |
Collapse
|
9
|
Fortis SP, Batrinou A, Georgatzakou HT, Tsamesidis I, Alvanidis G, Papageorgiou EG, Stamoulis K, Gkiliopoulos D, Pouroutzidou GK, Theocharidou A, Kontonasaki E, Kriebardis AG. Effect of silica-based mesoporous nanomaterials on human blood cells. Chem Biol Interact 2024; 387:110784. [PMID: 37939894 DOI: 10.1016/j.cbi.2023.110784] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 10/18/2023] [Accepted: 10/25/2023] [Indexed: 11/10/2023]
Abstract
Different mesoporous nanomaterials (MSNs) are constantly being developed for a range of therapeutic purposes, but they invariably interact with blood components and may cause hazardous side effects. Therefore, when designing and developing nanoparticles for biomedical applications, hemocompatibility should be one of the primary goals to assess their toxicity at the cellular level of all blood components. The aim of this study was to evaluate the compatibility of human blood cells (erythrocytes, platelets, and leukocytes) after exposure to silica-based mesoporous nanomaterials that had been manufactured using the sol-gel method, with Ca and Ce as doping elements. The viability of lymphocytes and monocytes was unaffected by the presence of MSNs at any concentration. However, it was found that all nanomaterials, at all concentrations, reduced the viability of granulocytes. P-selectin expression of all MSNs at all concentrations was statistically significantly higher in platelet incubation on the first day of storage (day 1) compared to the control. When incubated with MSNs, preserved platelets displayed higher levels of iROS at all MSNs types and concentrations examined. Ce-containing MSNs presented a slightly better hemocompatibility, although it was also dose dependent. Further research is required to determine how the unique characteristics of MSNs may affect various blood components in order to design safe and effective MSNs for various biomedical applications.
Collapse
Affiliation(s)
- Sotirios P Fortis
- Laboratory of Reliability and Quality Control in Laboratory Hematology (HemQcR), Department of Biomedical Sciences, School of Health & Caring Sciences, University of West Attica (UniWA), Egaleo, Greece
| | - Anthimia Batrinou
- Department of Food Science and Technology, University of West Attica, 12243, Egaleo, Greece
| | - Hara T Georgatzakou
- Laboratory of Reliability and Quality Control in Laboratory Hematology (HemQcR), Department of Biomedical Sciences, School of Health & Caring Sciences, University of West Attica (UniWA), Egaleo, Greece
| | - Ioannis Tsamesidis
- Department of Prosthodontics, School of Dentistry, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Grigorios Alvanidis
- Laboratory of Reliability and Quality Control in Laboratory Hematology (HemQcR), Department of Biomedical Sciences, School of Health & Caring Sciences, University of West Attica (UniWA), Egaleo, Greece
| | - Effie G Papageorgiou
- Laboratory of Reliability and Quality Control in Laboratory Hematology (HemQcR), Department of Biomedical Sciences, School of Health & Caring Sciences, University of West Attica (UniWA), Egaleo, Greece
| | | | - Dimitrios Gkiliopoulos
- Laboratory of Chemical and Environmental Technology, School of Chemistry, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Georgia K Pouroutzidou
- Department of Prosthodontics, School of Dentistry, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece; School of Physics, Faculty of Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Anna Theocharidou
- Department of Prosthodontics, School of Dentistry, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Eleana Kontonasaki
- Department of Prosthodontics, School of Dentistry, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece.
| | - Anastasios G Kriebardis
- Laboratory of Reliability and Quality Control in Laboratory Hematology (HemQcR), Department of Biomedical Sciences, School of Health & Caring Sciences, University of West Attica (UniWA), Egaleo, Greece.
| |
Collapse
|
10
|
Xu B, Li S, Shi R, Liu H. Multifunctional mesoporous silica nanoparticles for biomedical applications. Signal Transduct Target Ther 2023; 8:435. [PMID: 37996406 PMCID: PMC10667354 DOI: 10.1038/s41392-023-01654-7] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 09/07/2023] [Accepted: 09/10/2023] [Indexed: 11/25/2023] Open
Abstract
Mesoporous silica nanoparticles (MSNs) are recognized as a prime example of nanotechnology applied in the biomedical field, due to their easily tunable structure and composition, diverse surface functionalization properties, and excellent biocompatibility. Over the past two decades, researchers have developed a wide variety of MSNs-based nanoplatforms through careful design and controlled preparation techniques, demonstrating their adaptability to various biomedical application scenarios. With the continuous breakthroughs of MSNs in the fields of biosensing, disease diagnosis and treatment, tissue engineering, etc., MSNs are gradually moving from basic research to clinical trials. In this review, we provide a detailed summary of MSNs in the biomedical field, beginning with a comprehensive overview of their development history. We then discuss the types of MSNs-based nanostructured architectures, as well as the classification of MSNs-based nanocomposites according to the elements existed in various inorganic functional components. Subsequently, we summarize the primary purposes of surface-functionalized modifications of MSNs. In the following, we discuss the biomedical applications of MSNs, and highlight the MSNs-based targeted therapeutic modalities currently developed. Given the importance of clinical translation, we also summarize the progress of MSNs in clinical trials. Finally, we take a perspective on the future direction and remaining challenges of MSNs in the biomedical field.
Collapse
Affiliation(s)
- Bolong Xu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Bionanomaterials & Translational Engineering Laboratory, Beijing Key Laboratory of Bioprocess, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, 100029, Beijing, China
| | - Shanshan Li
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Bionanomaterials & Translational Engineering Laboratory, Beijing Key Laboratory of Bioprocess, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, 100029, Beijing, China
| | - Rui Shi
- National Center for Orthopaedics, Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, 100035, Beijing, China.
| | - Huiyu Liu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Bionanomaterials & Translational Engineering Laboratory, Beijing Key Laboratory of Bioprocess, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, 100029, Beijing, China.
| |
Collapse
|
11
|
Lérida-Viso A, Estepa-Fernández A, García-Fernández A, Martí-Centelles V, Martínez-Máñez R. Biosafety of mesoporous silica nanoparticles; towards clinical translation. Adv Drug Deliv Rev 2023; 201:115049. [PMID: 37573951 DOI: 10.1016/j.addr.2023.115049] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 07/14/2023] [Accepted: 08/04/2023] [Indexed: 08/15/2023]
Abstract
Mesoporous silica nanoparticles (MSNs) have attracted the attention of chemists, who have developed numerous systems for the encapsulation of a plethora of molecules, allowing the use of mesoporous silica nanoparticles for biomedical applications. MSNs have been extensively studied for their use in nanomedicine, in applications such as drug delivery, diagnosis, and bioimaging, demonstrating significant in vivo efficacy in different preclinical models. Nevertheless, for the transition of MSNs into clinical trials, it is imperative to understand the characteristics that make MSNs effective and safe. The biosafety properties of MSNs in vivo are greatly influenced by their physicochemical characteristics such as particle shape, size, surface modification, and silica framework. In this review, we compile the most relevant and recent progress in the literature up to the present by analyzing the contributions on biodistribution, biodegradability, and clearance of MSNs. Furthermore, the ongoing clinical trials and the potential challenges related to the administration of silica materials for advanced therapeutics are discussed. This approach aims to provide a solid overview of the state-of-the-art in this field and to encourage the translation of MSNs to the clinic.
Collapse
Affiliation(s)
- Araceli Lérida-Viso
- Unidad Mixta de Investigación en Nanomedicina y Sensores. Universitat Politècnica de València, IIS La Fe. Av. Fernando Abril Martorell, 106 Torre A 7ª planta. 46026, Valencia, Spain; Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM) Universitat Politècnica de València, Universitat de València. Camino de Vera, s/n. 46022, Valencia, Spain; Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, Universitat Politècnica de València, Centro de Investigación Príncipe Felipe, C/ Eduardo Primo Yúfera 3. 46012, Valencia, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Spain
| | - Alejandra Estepa-Fernández
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM) Universitat Politècnica de València, Universitat de València. Camino de Vera, s/n. 46022, Valencia, Spain; Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, Universitat Politècnica de València, Centro de Investigación Príncipe Felipe, C/ Eduardo Primo Yúfera 3. 46012, Valencia, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Spain
| | - Alba García-Fernández
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM) Universitat Politècnica de València, Universitat de València. Camino de Vera, s/n. 46022, Valencia, Spain; Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, Universitat Politècnica de València, Centro de Investigación Príncipe Felipe, C/ Eduardo Primo Yúfera 3. 46012, Valencia, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Spain.
| | - Vicente Martí-Centelles
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM) Universitat Politècnica de València, Universitat de València. Camino de Vera, s/n. 46022, Valencia, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Spain
| | - Ramón Martínez-Máñez
- Unidad Mixta de Investigación en Nanomedicina y Sensores. Universitat Politècnica de València, IIS La Fe. Av. Fernando Abril Martorell, 106 Torre A 7ª planta. 46026, Valencia, Spain; Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM) Universitat Politècnica de València, Universitat de València. Camino de Vera, s/n. 46022, Valencia, Spain; Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, Universitat Politècnica de València, Centro de Investigación Príncipe Felipe, C/ Eduardo Primo Yúfera 3. 46012, Valencia, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Spain.
| |
Collapse
|
12
|
Yu W, Zhu X, Liu J, Zhou J. Biofunctionalized Decellularized Tissue-Engineered Heart Valve with Mesoporous Silica Nanoparticles for Controlled Release of VEGF and RunX2-siRNA against Calcification. Bioengineering (Basel) 2023; 10:859. [PMID: 37508886 PMCID: PMC10376836 DOI: 10.3390/bioengineering10070859] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/11/2023] [Accepted: 07/15/2023] [Indexed: 07/30/2023] Open
Abstract
The goal of tissue-engineered heart valves (TEHV) is to replace normal heart valves and overcome the shortcomings of heart valve replacement commonly used in clinical practice. However, calcification of TEHV is the major bottleneck to break for both clinical workers and researchers. Endothelialization of TEHV plays a crucial role in delaying valve calcification by reducing platelet adhesion and covering the calcified spots. In the present study, we loaded RunX2-siRNA and VEGF into mesoporous silica nanoparticles and investigated the properties of anti-calcification and endothelialization in vitro. Then, the mesoporous silica nanoparticle was immobilized on the decellularized porcine aortic valve (DPAV) by layer self-assembly and investigated the anti-calcification and endothelialization. Our results demonstrated that the mesoporous silica nanoparticles delivery vehicle demonstrated good biocompatibility, and a stable release of RunX2-siRNA and VEGF. The hybrid decellularized valve exhibited a low hemolysis rate and promoted endothelial cell proliferation and adhesion while silencing RunX2 gene expression in valve interstitial cells, and the hybrid decellularized valve showed good mechanical properties. Finally, the in vivo experiment showed that the mesoporous silica nanoparticles delivery vehicle could enhance the endothelialization of the hybrid valve. In summary, we constructed a delivery system based on mesoporous silica to biofunctionalized TEHV scaffold for endothelialization and anti-calcification.
Collapse
Affiliation(s)
- Wenpeng Yu
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Nanchang 330006, China
| | - Xiaowei Zhu
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Jichun Liu
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Nanchang 330006, China
| | - Jianliang Zhou
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Nanchang 330006, China
| |
Collapse
|
13
|
Alam Z, Ghamami S, Baghshahi S. Synthesis and characterization of hollow mesoporous silica nanocomposites containing phosphorescent pigment and doxycycline. NANO SELECT 2023. [DOI: 10.1002/nano.202200216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Affiliation(s)
- Zahra Alam
- Department of Chemistry Faculty of Science Imam Khomeini International University Qazvin Iran
| | - Shahriar Ghamami
- Department of Chemistry Faculty of Science Imam Khomeini International University Qazvin Iran
| | - Saeid Baghshahi
- Department of Chemistry Faculty of Science Imam Khomeini International University Qazvin Iran
| |
Collapse
|
14
|
Escriche‐Navarro B, Escudero A, Lucena‐Sánchez E, Sancenón F, García‐Fernández A, Martínez‐Máñez R. Mesoporous Silica Materials as an Emerging Tool for Cancer Immunotherapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2200756. [PMID: 35866466 PMCID: PMC9475525 DOI: 10.1002/advs.202200756] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 05/16/2022] [Indexed: 05/16/2023]
Abstract
Cancer immunotherapy has emerged in the past decade as a promising strategy for treating many forms of cancer by stimulating the patient's immune system. Although immunotherapy has achieved some promising results in clinics, more efforts are required to improve the limitations of current treatments related to lack of effective and targeted cancer antigens delivery to immune cells, dose-limiting toxicity, and immune-mediated adverse effects, among others. In recent years, the use of nanomaterials has proven promising to enhance cancer immunotherapy efficacy and reduce side effects. Among nanomaterials, attention has been recently paid to mesoporous silica nanoparticles (MSNs) as a potential multiplatform for enhancing cancer immunotherapy by considering their unique properties, such as high porosity, and good biocompatibility, facile surface modification, and self-adjuvanticity. This review explores the role of MSN and other nano/micro-materials as an emerging tool to enhance cancer immunotherapy, and it comprehensively summarizes the different immunotherapeutic strategies addressed to date by using MSN.
Collapse
Affiliation(s)
- Blanca Escriche‐Navarro
- Interuniversity Research Institute for Molecular Recognition and Technological Development (IDM) Polytechnic University of Valencia‐University of ValenciaCamino de Vera s/nValencia46022Spain
- Universitat Politècnica de ValènciaJoint Unit UPV‐CIPF of Developmental Biology and Disease Models and Nanomedicine, Polytechnic University of Valencia (UPV)‐Príncipe Felipe Research Center Foundation (CIPF)C/ Eduardo Primo Yúfera 3.Valencia46012Spain
- Joint Unit of Nanomedicine and Sensors, Polytechnic University of Valencia, IIS La FeAv. Fernando Abril Martorell, 106Valencia46026Spain
| | - Andrea Escudero
- Interuniversity Research Institute for Molecular Recognition and Technological Development (IDM) Polytechnic University of Valencia‐University of ValenciaCamino de Vera s/nValencia46022Spain
- Universitat Politècnica de ValènciaJoint Unit UPV‐CIPF of Developmental Biology and Disease Models and Nanomedicine, Polytechnic University of Valencia (UPV)‐Príncipe Felipe Research Center Foundation (CIPF)C/ Eduardo Primo Yúfera 3.Valencia46012Spain
| | - Elena Lucena‐Sánchez
- Interuniversity Research Institute for Molecular Recognition and Technological Development (IDM) Polytechnic University of Valencia‐University of ValenciaCamino de Vera s/nValencia46022Spain
- Universitat Politècnica de ValènciaJoint Unit UPV‐CIPF of Developmental Biology and Disease Models and Nanomedicine, Polytechnic University of Valencia (UPV)‐Príncipe Felipe Research Center Foundation (CIPF)C/ Eduardo Primo Yúfera 3.Valencia46012Spain
| | - Félix Sancenón
- Interuniversity Research Institute for Molecular Recognition and Technological Development (IDM) Polytechnic University of Valencia‐University of ValenciaCamino de Vera s/nValencia46022Spain
- Universitat Politècnica de ValènciaJoint Unit UPV‐CIPF of Developmental Biology and Disease Models and Nanomedicine, Polytechnic University of Valencia (UPV)‐Príncipe Felipe Research Center Foundation (CIPF)C/ Eduardo Primo Yúfera 3.Valencia46012Spain
- Joint Unit of Nanomedicine and Sensors, Polytechnic University of Valencia, IIS La FeAv. Fernando Abril Martorell, 106Valencia46026Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER‐BBN)Av. Monforte de Lemos, 3–5. Pabellón 11., Planta 0Madrid28029Spain
| | - Alba García‐Fernández
- Interuniversity Research Institute for Molecular Recognition and Technological Development (IDM) Polytechnic University of Valencia‐University of ValenciaCamino de Vera s/nValencia46022Spain
- Universitat Politècnica de ValènciaJoint Unit UPV‐CIPF of Developmental Biology and Disease Models and Nanomedicine, Polytechnic University of Valencia (UPV)‐Príncipe Felipe Research Center Foundation (CIPF)C/ Eduardo Primo Yúfera 3.Valencia46012Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER‐BBN)Av. Monforte de Lemos, 3–5. Pabellón 11., Planta 0Madrid28029Spain
| | - Ramón Martínez‐Máñez
- Interuniversity Research Institute for Molecular Recognition and Technological Development (IDM) Polytechnic University of Valencia‐University of ValenciaCamino de Vera s/nValencia46022Spain
- Universitat Politècnica de ValènciaJoint Unit UPV‐CIPF of Developmental Biology and Disease Models and Nanomedicine, Polytechnic University of Valencia (UPV)‐Príncipe Felipe Research Center Foundation (CIPF)C/ Eduardo Primo Yúfera 3.Valencia46012Spain
- Joint Unit of Nanomedicine and Sensors, Polytechnic University of Valencia, IIS La FeAv. Fernando Abril Martorell, 106Valencia46026Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER‐BBN)Av. Monforte de Lemos, 3–5. Pabellón 11., Planta 0Madrid28029Spain
| |
Collapse
|
15
|
Kumarage S, Munaweera I, Kottegoda N. Contemporary, Multidisciplinary Roles of Mesoporous Silica Nanohybrids/Nanocomposites. ChemistrySelect 2022. [DOI: 10.1002/slct.202200574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Senuri Kumarage
- Department of Chemistry Faculty of Applied Sciences University of Sri Jayewardenepura Gangodawila Nugegoda Sri Lanka
| | - Imalka Munaweera
- Department of Chemistry Faculty of Applied Sciences University of Sri Jayewardenepura Gangodawila Nugegoda Sri Lanka
| | - Nilwala Kottegoda
- Department of Chemistry Faculty of Applied Sciences University of Sri Jayewardenepura Gangodawila Nugegoda Sri Lanka
- Centre for Advanced Materials Research (CAMR) Faculty of Applied Sciences University of Sri Jayewardenepura Gangodawila Nugegoda Sri Lanka
| |
Collapse
|
16
|
Burdușel AC, Gherasim O, Andronescu E, Grumezescu AM, Ficai A. Inorganic Nanoparticles in Bone Healing Applications. Pharmaceutics 2022; 14:770. [PMID: 35456604 PMCID: PMC9027776 DOI: 10.3390/pharmaceutics14040770] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/24/2022] [Accepted: 03/28/2022] [Indexed: 12/13/2022] Open
Abstract
Modern biomedicine aims to develop integrated solutions that use medical, biotechnological, materials science, and engineering concepts to create functional alternatives for the specific, selective, and accurate management of medical conditions. In the particular case of tissue engineering, designing a model that simulates all tissue qualities and fulfills all tissue requirements is a continuous challenge in the field of bone regeneration. The therapeutic protocols used for bone healing applications are limited by the hierarchical nature and extensive vascularization of osseous tissue, especially in large bone lesions. In this regard, nanotechnology paves the way for a new era in bone treatment, repair and regeneration, by enabling the fabrication of complex nanostructures that are similar to those found in the natural bone and which exhibit multifunctional bioactivity. This review aims to lay out the tremendous outcomes of using inorganic nanoparticles in bone healing applications, including bone repair and regeneration, and modern therapeutic strategies for bone-related pathologies.
Collapse
Affiliation(s)
- Alexandra-Cristina Burdușel
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 1–7 Gheorghe Polizu Street, 011061 Bucharest, Romania; (A.-C.B.); (O.G.); (A.M.G.); (A.F.)
| | - Oana Gherasim
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 1–7 Gheorghe Polizu Street, 011061 Bucharest, Romania; (A.-C.B.); (O.G.); (A.M.G.); (A.F.)
- Lasers Department, National Institute for Lasers, Plasma and Radiation Physics, 409 Atomiștilor Street, 077125 Magurele, Romania
| | - Ecaterina Andronescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 1–7 Gheorghe Polizu Street, 011061 Bucharest, Romania; (A.-C.B.); (O.G.); (A.M.G.); (A.F.)
- Academy of Romanian Scientists, 3 Ilfov Street, 050044 Bucharest, Romania
| | - Alexandru Mihai Grumezescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 1–7 Gheorghe Polizu Street, 011061 Bucharest, Romania; (A.-C.B.); (O.G.); (A.M.G.); (A.F.)
- Academy of Romanian Scientists, 3 Ilfov Street, 050044 Bucharest, Romania
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 90–92 Panduri Road, 050657 Bucharest, Romania
| | - Anton Ficai
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 1–7 Gheorghe Polizu Street, 011061 Bucharest, Romania; (A.-C.B.); (O.G.); (A.M.G.); (A.F.)
- Academy of Romanian Scientists, 3 Ilfov Street, 050044 Bucharest, Romania
| |
Collapse
|
17
|
Viswanath DI, Liu HC, Huston DP, Chua CYX, Grattoni A. Emerging biomaterial-based strategies for personalized therapeutic in situ cancer vaccines. Biomaterials 2022; 280:121297. [PMID: 34902729 PMCID: PMC8725170 DOI: 10.1016/j.biomaterials.2021.121297] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 11/19/2021] [Accepted: 11/29/2021] [Indexed: 01/03/2023]
Abstract
Landmark successes in oncoimmunology have led to development of therapeutics boosting the host immune system to eradicate local and distant tumors with impactful tumor reduction in a subset of patients. However, current immunotherapy modalities often demonstrate limited success when involving immunologically cold tumors and solid tumors. Here, we describe the role of various biomaterials to formulate cancer vaccines as a form of cancer immunotherapy, seeking to utilize the host immune system to activate and expand tumor-specific T cells. Biomaterial-based cancer vaccines enhance the cancer-immunity cycle by harnessing cellular recruitment and activation against tumor-specific antigens. In this review, we discuss biomaterial-based vaccine strategies to induce lymphocytic responses necessary to mediate anti-tumor immunity. We focus on strategies that selectively attract dendritic cells via immunostimulatory gradients, activate them against presented tumor-specific antigens, and induce effective cross-presentation to T cells in secondary lymphoid organs, thereby generating immunity. We posit that personalized cancer vaccines are promising targets to generate long-term systemic immunity against patient- and tumor-specific antigens to ensure long-term cancer remission.
Collapse
Affiliation(s)
- Dixita Ishani Viswanath
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, USA; Texas A&M University College of Medicine, Bryan & Houston, TX, USA
| | - Hsuan-Chen Liu
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, USA
| | - David P Huston
- Texas A&M University College of Medicine, Bryan & Houston, TX, USA
| | | | - Alessandro Grattoni
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, USA; Department of Surgery, Houston Methodist Hospital, Houston, TX, USA; Department of Radiation Oncology, Houston Methodist Hospital, Houston, TX, USA.
| |
Collapse
|
18
|
Abstract
Cancer nanotheranostics aims at providing alternative approaches to traditional cancer diagnostics and therapies. In this context, plasmonic nanostructures especially gold nanostructures are intensely explored due to their tunable shape, size and surface plasmon resonance (SPR), better photothermal therapy (PTT) and photodynamic therapy (PDT) ability, effective contrast enhancing ability in Magnetic Resonance imaging (MRI) and Computed Tomography (CT) scan. Despite rapid breakthroughs in gold nanostructures based theranostics of cancer, the translation of gold nanostructures from bench side to human applications is still questionable. The major obstacles that have been facing by nanotheranostics are specific targeting, poor resolution and photoinstability during PTT etc. In this regard, various encouraging studies have been carried out recently to overcome few of these obstacles. Use of gold nanocomposites also overcomes the limitations of gold nanostructure probes and emerged as good nanotheranostic probe. Hence, the present article discusses the advances in gold nanostructures based cancer theranostics and mainly emphasizes on the importance of gold nanocomposites which have been designed to decipher the past questions and limitations of in vivo gold nanotheranostics.
Collapse
Affiliation(s)
- Bankuru Navyatha
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Allahabad, UP, India
| | - Seema Nara
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Allahabad, UP, India
| |
Collapse
|
19
|
Pérez Sayans M, Rivas Mundiña B, Chamorro Petronacci CM, García García A, Gómez García FJ, Crecente Campo J, Yañez Vilar S, Piñeiro Redondo Y, Rivas J, López Jornet P. Effect of mesoporous silica and its combination with hydroxyapatite on the regeneration of rabbit's bone defects: A pilot study. Biomed Mater Eng 2021; 32:281-294. [PMID: 33780356 DOI: 10.3233/bme-201144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Bone volume augmentation is a routine technique used in oral implantology and periodontology. Advances in the surgical techniques and the biomaterials field have allowed a greater accessibility to these treatments. Nevertheless, dehiscence and fenestrations incidence during dental implant procedures are still common in patients with bone loss. OBJECTIVE The main objective is to evaluate in a pilot experimental study the biological response to mesoporous silica (MS) hybrid scaffolds and its regenerative capacity in different formulations. METHODS Two defects per rabbit tibia were performed (one for control and other for test) and the biomaterials tested in this study have been used to fill the bone defects, prepared in two different formulations (3D hybrid scaffolds or powdered material, in 100% pure MS form, or 50% MS with 50% hydroxyapatite (HA). Euthanasia was performed 4 months after surgery for bone histopathological study and radiographic images were acquired by computerized microtomography. RESULTS Results showed that radiographically and histopathologically pure MS formulations lead to a lower biological response, e.g when formulated with HA, the osteogenic response in terms of osteoconduction was greater. CONCLUSIONS We observed tolerance and lack of toxicity of the MS and HA, without registering any type of local or systemic allergic reaction.
Collapse
Affiliation(s)
- Mario Pérez Sayans
- Unit of Oral Medicine, Faculty of Medicine and Dentistry, Universidade de Santiago de Compostela, Santiago de Compostela, Spain.,Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Berta Rivas Mundiña
- Pathology and Therapeutic Unit, Faculty of Medicine and Dentistry, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Cintia M Chamorro Petronacci
- Unit of Oral Medicine, Faculty of Medicine and Dentistry, Universidade de Santiago de Compostela, Santiago de Compostela, Spain.,Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Abel García García
- Unit of Oral Medicine, Faculty of Medicine and Dentistry, Universidade de Santiago de Compostela, Santiago de Compostela, Spain.,Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Francisco José Gómez García
- The Murcia Institute of Biomedical Research (Instituto Murciano de Investigación Biomédica, IMIB), Campus de Ciencias de la Salud, El Palmar, Murcia, Spain
| | - José Crecente Campo
- MJ ALONSO LAB, Centre for Research in Molecular Medicine and Chronic Diseases (CIMUS), Campus Vida Avenida Barcelona, Santiago de Compostela, Spain
| | - Susana Yañez Vilar
- Department of Applied Physics, Faculty of Physics, Lab of Nanotechnology and Magnetism (NANOMAG), Ceramic Institute of Galicia ICG, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Yolanda Piñeiro Redondo
- Department of Applied Physics, Faculty of Physics, Lab of Nanotechnology and Magnetism (NANOMAG), Ceramic Institute of Galicia ICG, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - José Rivas
- Department of Applied Physics, Faculty of Physics, Lab of Nanotechnology and Magnetism (NANOMAG), Ceramic Institute of Galicia ICG, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Pía López Jornet
- The Murcia Institute of Biomedical Research (Instituto Murciano de Investigación Biomédica, IMIB), Campus de Ciencias de la Salud, El Palmar, Murcia, Spain
| |
Collapse
|
20
|
Tehrani Fateh S, Moradi L, Kohan E, Hamblin MR, Shiralizadeh Dezfuli A. Comprehensive review on ultrasound-responsive theranostic nanomaterials: mechanisms, structures and medical applications. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2021; 12:808-862. [PMID: 34476167 PMCID: PMC8372309 DOI: 10.3762/bjnano.12.64] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 07/15/2021] [Indexed: 05/03/2023]
Abstract
The field of theranostics has been rapidly growing in recent years and nanotechnology has played a major role in this growth. Nanomaterials can be constructed to respond to a variety of different stimuli which can be internal (enzyme activity, redox potential, pH changes, temperature changes) or external (light, heat, magnetic fields, ultrasound). Theranostic nanomaterials can respond by producing an imaging signal and/or a therapeutic effect, which frequently involves cell death. Since ultrasound (US) is already well established as a clinical imaging modality, it is attractive to combine it with rationally designed nanoparticles for theranostics. The mechanisms of US interactions include cavitation microbubbles (MBs), acoustic droplet vaporization, acoustic radiation force, localized thermal effects, reactive oxygen species generation, sonoluminescence, and sonoporation. These effects can result in the release of encapsulated drugs or genes at the site of interest as well as cell death and considerable image enhancement. The present review discusses US-responsive theranostic nanomaterials under the following categories: MBs, micelles, liposomes (conventional and echogenic), niosomes, nanoemulsions, polymeric nanoparticles, chitosan nanocapsules, dendrimers, hydrogels, nanogels, gold nanoparticles, titania nanostructures, carbon nanostructures, mesoporous silica nanoparticles, fuel-free nano/micromotors.
Collapse
Affiliation(s)
- Sepand Tehrani Fateh
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Lida Moradi
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Elmira Kohan
- Department of Science, University of Kurdistan, Kurdistan, Sanandaj, Iran
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa
| | | |
Collapse
|
21
|
Estepa‐Fernández A, Alfonso M, Morellá‐Aucejo Á, García‐Fernández A, Lérida‐Viso A, Lozano‐Torres B, Galiana I, Soriano‐Teruel PM, Sancenón F, Orzáez M, Martínez‐Máñez R. Senolysis Reduces Senescence in Veins and Cancer Cell Migration. ADVANCED THERAPEUTICS 2021. [DOI: 10.1002/adtp.202100149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Alejandra Estepa‐Fernández
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM) Universitat Politècnica de València Camino de Vera, s/n Valencia 46022 Spain
- Unidad Mixta UPV‐CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina Universitat Politècnica de València Centro de Investigación Príncipe Felipe C/ Eduardo Primo Yúfera 3 Valencia 46012 Spain
| | - María Alfonso
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM) Universitat Politècnica de València Camino de Vera, s/n Valencia 46022 Spain
| | - Ángela Morellá‐Aucejo
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM) Universitat Politècnica de València Camino de Vera, s/n Valencia 46022 Spain
- Unidad Mixta UPV‐CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina Universitat Politècnica de València Centro de Investigación Príncipe Felipe C/ Eduardo Primo Yúfera 3 Valencia 46012 Spain
- CIBER de Bioingeniería Biomateriales y Nanomedicina (CIBER‐BBN) Av. Monforte de Lemos, 3‐5. Pabellón 11. Planta 0 Madrid 28029 Spain
| | - Alba García‐Fernández
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM) Universitat Politècnica de València Camino de Vera, s/n Valencia 46022 Spain
- Unidad Mixta UPV‐CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina Universitat Politècnica de València Centro de Investigación Príncipe Felipe C/ Eduardo Primo Yúfera 3 Valencia 46012 Spain
- CIBER de Bioingeniería Biomateriales y Nanomedicina (CIBER‐BBN) Av. Monforte de Lemos, 3‐5. Pabellón 11. Planta 0 Madrid 28029 Spain
| | - Araceli Lérida‐Viso
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM) Universitat Politècnica de València Camino de Vera, s/n Valencia 46022 Spain
- Unidad Mixta UPV‐CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina Universitat Politècnica de València Centro de Investigación Príncipe Felipe C/ Eduardo Primo Yúfera 3 Valencia 46012 Spain
- Unidad Mixta de Investigación en Nanomedicina y Sensores Universitat Politècnica de València IIS La Fe. Av. Fernando Abril Martorell, 106 Torre A 7ª planta Valencia 46026 Spain
| | - Beatriz Lozano‐Torres
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM) Universitat Politècnica de València Camino de Vera, s/n Valencia 46022 Spain
- Unidad Mixta UPV‐CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina Universitat Politècnica de València Centro de Investigación Príncipe Felipe C/ Eduardo Primo Yúfera 3 Valencia 46012 Spain
- CIBER de Bioingeniería Biomateriales y Nanomedicina (CIBER‐BBN) Av. Monforte de Lemos, 3‐5. Pabellón 11. Planta 0 Madrid 28029 Spain
| | - Irene Galiana
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM) Universitat Politècnica de València Camino de Vera, s/n Valencia 46022 Spain
- Unidad Mixta UPV‐CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina Universitat Politècnica de València Centro de Investigación Príncipe Felipe C/ Eduardo Primo Yúfera 3 Valencia 46012 Spain
| | | | - Félix Sancenón
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM) Universitat Politècnica de València Camino de Vera, s/n Valencia 46022 Spain
- Unidad Mixta UPV‐CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina Universitat Politècnica de València Centro de Investigación Príncipe Felipe C/ Eduardo Primo Yúfera 3 Valencia 46012 Spain
- CIBER de Bioingeniería Biomateriales y Nanomedicina (CIBER‐BBN) Av. Monforte de Lemos, 3‐5. Pabellón 11. Planta 0 Madrid 28029 Spain
- Unidad Mixta de Investigación en Nanomedicina y Sensores Universitat Politècnica de València IIS La Fe. Av. Fernando Abril Martorell, 106 Torre A 7ª planta Valencia 46026 Spain
| | - Mar Orzáez
- Unidad Mixta UPV‐CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina Universitat Politècnica de València Centro de Investigación Príncipe Felipe C/ Eduardo Primo Yúfera 3 Valencia 46012 Spain
- Centro de Investigación Príncipe Felipe C/ Eduardo Primo Yúfera 3 Valencia 46012 Spain
| | - Ramón Martínez‐Máñez
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM) Universitat Politècnica de València Camino de Vera, s/n Valencia 46022 Spain
- Unidad Mixta UPV‐CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina Universitat Politècnica de València Centro de Investigación Príncipe Felipe C/ Eduardo Primo Yúfera 3 Valencia 46012 Spain
- CIBER de Bioingeniería Biomateriales y Nanomedicina (CIBER‐BBN) Av. Monforte de Lemos, 3‐5. Pabellón 11. Planta 0 Madrid 28029 Spain
- Unidad Mixta de Investigación en Nanomedicina y Sensores Universitat Politècnica de València IIS La Fe. Av. Fernando Abril Martorell, 106 Torre A 7ª planta Valencia 46026 Spain
| |
Collapse
|
22
|
García-Fernández A, Sancho M, Bisbal V, Amorós P, Marcos MD, Orzáez M, Sancenón F, Martínez-Máñez R. Targeted-lung delivery of dexamethasone using gated mesoporous silica nanoparticles. A new therapeutic approach for acute lung injury treatment. J Control Release 2021; 337:14-26. [PMID: 34265332 DOI: 10.1016/j.jconrel.2021.07.010] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/29/2021] [Accepted: 07/10/2021] [Indexed: 12/11/2022]
Abstract
Acute lung injury (ALI) is a critical inflammatory syndrome, characterized by increased diffuse inflammation and severe lung damage, which represents a clinical concern due to the high morbidity and mortality in critical patients. In last years, there has been a need to develop more effective treatments for ALI, and targeted drug delivery to inflamed lungs has become an attractive research field. Here, we present a nanodevice based on mesoporous silica nanoparticles loaded with dexamethasone (a glucocorticoid extensively used for ALI treatment) and capped with a peptide that targets the TNFR1 receptor expressed in pro-inflammatory macrophages (TNFR-Dex-MSNs) and avoids cargo leakage. TNFR-Dex-MSNs nanoparticles are preferentially internalized by pro-inflammatory macrophages, which overexpressed the TNFR1 receptor, with the subsequent cargo release upon the enzymatic hydrolysis of the capping peptide in lysosomes. Moreover, TNFR-Dex-MSNs are able to reduce the levels of TNF-α and IL-1β cytokines in activated pro-inflammatory M1 macrophages. The anti-inflammatory effect of TNFR-Dex-MSNs is also tested in an in vivo ALI mice model. The administered nanodevice (intravenously by tail vein injection) accumulated in the injured lungs and the controlled dexamethasone release reduces markedly the inflammatory response (TNF-α IL-6 and IL-1β levels). The attenuation in lung damage, after treatment with TNFR-Dex-MSNs, is also confirmed by histopathological studies. Besides, the targeted-lung dexamethasone delivery results in a decrease of dexamethasone derived side-effects, suggesting that targeted nanoparticles can be used for therapy in ALI and could help to overcome the clinical limitations of current treatments.
Collapse
Affiliation(s)
- Alba García-Fernández
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain; Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, Valencia, Universitat Politècnica de València, Centro de Investigación Príncipe Felipe, València, Spain
| | - Mónica Sancho
- Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, Valencia, Universitat Politècnica de València, Centro de Investigación Príncipe Felipe, València, Spain; Centro de Investigación Príncipe Felipe, Eduardo Primo Yúfera, 3, Valencia 46012, Spain
| | - Viviana Bisbal
- Centro de Investigación Príncipe Felipe, Eduardo Primo Yúfera, 3, Valencia 46012, Spain
| | - Pedro Amorós
- Instituto Universitario de Ciencia de los Materiales (ICMUV), Universitat de València, Catedrático José Beltrán 2, 46980 Paterna, Valencia, Spain
| | - María D Marcos
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Spain; Departamento de Química, Universitat Politècnica de València, Camino de Vera s/n, Valencia 46022, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain; Unidad Mixta de Investigación en Nanomedicina y Sensores, Universitat Politècnica de València, IIS La Fe, Valencia, Spain; Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, Valencia, Universitat Politècnica de València, Centro de Investigación Príncipe Felipe, València, Spain
| | - Mar Orzáez
- Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, Valencia, Universitat Politècnica de València, Centro de Investigación Príncipe Felipe, València, Spain; Centro de Investigación Príncipe Felipe, Eduardo Primo Yúfera, 3, Valencia 46012, Spain
| | - Félix Sancenón
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Spain; Departamento de Química, Universitat Politècnica de València, Camino de Vera s/n, Valencia 46022, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain; Unidad Mixta de Investigación en Nanomedicina y Sensores, Universitat Politècnica de València, IIS La Fe, Valencia, Spain; Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, Valencia, Universitat Politècnica de València, Centro de Investigación Príncipe Felipe, València, Spain
| | - Ramón Martínez-Máñez
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Spain; Departamento de Química, Universitat Politècnica de València, Camino de Vera s/n, Valencia 46022, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain; Unidad Mixta de Investigación en Nanomedicina y Sensores, Universitat Politècnica de València, IIS La Fe, Valencia, Spain; Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, Valencia, Universitat Politècnica de València, Centro de Investigación Príncipe Felipe, València, Spain.
| |
Collapse
|
23
|
Castillo RR, Vallet-Regí M. Recent Advances Toward the Use of Mesoporous Silica Nanoparticles for the Treatment of Bacterial Infections. Int J Nanomedicine 2021; 16:4409-4430. [PMID: 34234434 PMCID: PMC8256096 DOI: 10.2147/ijn.s273064] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 06/07/2021] [Indexed: 12/19/2022] Open
Abstract
It is a fact that the use of antibiotics is inducing a growing resistance on bacteria. This situation is not only the consequence of a drugs’ misuse, but a direct consequence of a widespread and continuous use. Current studies suggest that this effect could be reversed by using abandoned antibiotics to which bacteria have lost their resistance, but this is only a temporary solution that in near future would lead to new resistance problems. Fortunately, current nanotechnology offers a new life for old and new antibiotics, which could have significantly different pharmacokinetics when properly delivered; enabling new routes able to bypass acquired resistances. In this contribution, we will focus on the use of porous silica nanoparticles as functional carriers for the delivery of antibiotics and biocides in combination with additional features like membrane sensitizing and heavy metal-driven metabolic-disrupting therapies as two of the most interesting combination therapies.
Collapse
Affiliation(s)
- Rafael R Castillo
- Dpto. Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, 28040, Spain
| | - María Vallet-Regí
- Dpto. Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, 28040, Spain.,Centro de Investigación Biomédica en Red-CIBER, Madrid, 28029, Spain.,Instituto de Investigación Sanitaria Hospital 12 de Octubre-imas12, Madrid, 28041, Spain
| |
Collapse
|
24
|
Kong XP, Zhang BH, Wang J. Multiple Roles of Mesoporous Silica in Safe Pesticide Application by Nanotechnology: A Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:6735-6754. [PMID: 34110151 DOI: 10.1021/acs.jafc.1c01091] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Pollution related to pesticides has become a global problem due to their low utilization and non-targeting application, and nanotechnology has shown great potential in promoting sustainable agriculture. Nowadays, mesoporous silica-based nanomaterials have garnered immense attention for improving the efficacy and safety of pesticides due to their distinctive advantages of low toxicity, high thermal and chemical stability, and particularly size tunability and versatile functionality. Based on the introduction of the structure and synthesis of different types of mesoporous silica nanoparticles (MSNs), the multiple roles of mesoporous silica in safe pesticide application using nanotechnology are discussed in this Review: (i) as nanocarrier for sustained/controlled delivery of pesticides, (ii) as adsorbent for enrichment or removal of pesticides in aqueous media, (iii) as support of catalysts for degradation of pesticide contaminants, and (iv) as support of sensors for detection of pesticides. Several scientific issues, strategies, and mechanisms regarding the application of MSNs in the pesticide field are presented, with their future directions discussed in terms of their environmental risk assessment, in-depth mechanism exploration, and cost-benefit consideration for their continuous development. This Review will provide critical information to related researchers and may open up their minds to develop new advances in pesticide application.
Collapse
Affiliation(s)
- Xiang-Ping Kong
- College of Chemistry and Pharmacy, Qingdao Agricultural University, Qingdao 266109, Shandong, P. R. China
| | - Bao-Hua Zhang
- College of Chemistry and Pharmacy, Qingdao Agricultural University, Qingdao 266109, Shandong, P. R. China
| | - Juan Wang
- College of Chemistry and Pharmacy, Qingdao Agricultural University, Qingdao 266109, Shandong, P. R. China
| |
Collapse
|
25
|
Mini-Review: Potential of Diatom-Derived Silica for Biomedical Applications. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11104533] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Diatoms are unicellular eukaryotic microalgae widely distributed in aquatic environments, possessing a porous silica cell wall known as frustule. Diatom frustules are considered as a sustainable source for several industrial applications because of their high biocompatibility and the easiness of surface functionalisation, which make frustules suitable for regenerative medicine and as drug carriers. Frustules are made of hydrated silica, and can be extracted and purified both from living and fossil diatoms using acid treatments or high temperatures. Biosilica frustules have proved to be suitable for biomedical applications, but, unfortunately, they are not officially recognised as safe by governmental food and medical agencies yet. In the present review, we highlight the frustule formation process, the most common purification techniques, as well as advantages and bottlenecks related to the employment of diatom-derived silica for medical purposes, suggesting possible solutions for a large-scale biosilica production.
Collapse
|
26
|
Abstract
Calcium phosphate nanoparticles have a high biocompatibility and biodegradability due to their chemical similarity to human hard tissue, for example, bone and teeth. They can be used as efficient carriers for different kinds of biomolecules such as nucleic acids, proteins, peptides, antibodies, or drugs, which alone are not able to enter cells where their biological effect is required. They can be loaded with cargo molecules by incorporating them, unlike solid nanoparticles, and also by surface functionalization. This offers protection, for example, against nucleases, and the possibility for cell targeting. If such nanoparticles are functionalized with fluorescing dyes, they can be applied for imaging in vitro and in vivo. Synthesis, functionalization and cell uptake mechanisms of calcium phosphate nanoparticles are discussed together with applications in transfection, gene silencing, imaging, immunization, and bone substitution. Biodistribution data of calcium phosphate nanoparticles in vivo are reviewed.
Collapse
Affiliation(s)
- Viktoriya Sokolova
- Inorganic chemistryUniversity of Duisburg-EssenUniversitaetsstr. 5–745117EssenGermany
| | - Matthias Epple
- Inorganic chemistryUniversity of Duisburg-EssenUniversitaetsstr. 5–745117EssenGermany
| |
Collapse
|
27
|
Pla L, Martínez-Bisbal MC, Aznar E, Sancenón F, Martínez-Máñez R, Santiago-Felipe S. A fluorogenic capped mesoporous aptasensor for gluten detection. Anal Chim Acta 2021; 1147:178-186. [PMID: 33485577 DOI: 10.1016/j.aca.2020.12.060] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 12/21/2020] [Accepted: 12/27/2020] [Indexed: 10/22/2022]
Abstract
Celiac disease is a complex and autoimmune disorder caused by the ingestion of gluten affecting almost 1% of global population. Nowadays an effective treatment does not exist, and the only way to manage the disease is the removal of gluten from the diet. Owing the key role played by gluten, clear and regulated labelling of foodstuff and smart methods for gluten detection are needed to fight frauds on food industry and to avoid the involuntary ingestion of this protein by celiac patients. On that scope, the development of a novel detection system of gluten is here presented. The sensor consists of nanoporous anodic alumina films loaded with a fluorescent dye and capped with an aptamer that recognizes gliadin (gluten's soluble proteins). In the presence of gliadin, aptamer sequences displace from the surface of anodic alumina resulting in pore opening and dye delivery. The dispositive shows a limit of detection (LOD) of 100 μg kg-1 of gliadin, good selectivity and a detection time of approximately 60 min. Moreover, the sensor is validated in real food samples. This novel probe allows fast gluten detection through a simple signalling process with potential use for food control.
Collapse
Affiliation(s)
- Luis Pla
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN) Av, Monforte de Lemos, 3-5. Pabellón 11, Planta 0 28029 Madrid, Spain; Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico, Universitat Politècnica de València, Universitat de València, Camino de Vera s/n, 46022, Valencia, Spain; Unidad Mixta de Investigación en Nanomedicina y Sensores. Universitat Politècnica de València, Instituto de Investigación Sanitaria La Fe, Av. Fernando Abril Martorell 106, Torre A, planta 6, 46026, Valencia, Spain.
| | - M Carmen Martínez-Bisbal
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN) Av, Monforte de Lemos, 3-5. Pabellón 11, Planta 0 28029 Madrid, Spain; Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico, Universitat Politècnica de València, Universitat de València, Camino de Vera s/n, 46022, Valencia, Spain; Unidad Mixta de Investigación en Nanomedicina y Sensores. Universitat Politècnica de València, Instituto de Investigación Sanitaria La Fe, Av. Fernando Abril Martorell 106, Torre A, planta 6, 46026, Valencia, Spain; Departamento de Químiíca Física, Universitat de València, C/ Doctor Moliner, 50, 46100, Burjassot, Valencia, Spain; Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina. Universitat Politècnica de València, Centro de Investigación Príncipe Felipe, C/ Eduardo Primo Yúfera 3, 46012, Valencia, Spain.
| | - Elena Aznar
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN) Av, Monforte de Lemos, 3-5. Pabellón 11, Planta 0 28029 Madrid, Spain; Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico, Universitat Politècnica de València, Universitat de València, Camino de Vera s/n, 46022, Valencia, Spain; Unidad Mixta de Investigación en Nanomedicina y Sensores. Universitat Politècnica de València, Instituto de Investigación Sanitaria La Fe, Av. Fernando Abril Martorell 106, Torre A, planta 6, 46026, Valencia, Spain.
| | - Félix Sancenón
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN) Av, Monforte de Lemos, 3-5. Pabellón 11, Planta 0 28029 Madrid, Spain; Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico, Universitat Politècnica de València, Universitat de València, Camino de Vera s/n, 46022, Valencia, Spain; Unidad Mixta de Investigación en Nanomedicina y Sensores. Universitat Politècnica de València, Instituto de Investigación Sanitaria La Fe, Av. Fernando Abril Martorell 106, Torre A, planta 6, 46026, Valencia, Spain; Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina. Universitat Politècnica de València, Centro de Investigación Príncipe Felipe, C/ Eduardo Primo Yúfera 3, 46012, Valencia, Spain; Departamento de Química, Universitat Politècnica de València, Camino de Vera S/n, 46022, Valencia, Spain.
| | - Ramón Martínez-Máñez
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN) Av, Monforte de Lemos, 3-5. Pabellón 11, Planta 0 28029 Madrid, Spain; Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico, Universitat Politècnica de València, Universitat de València, Camino de Vera s/n, 46022, Valencia, Spain; Unidad Mixta de Investigación en Nanomedicina y Sensores. Universitat Politècnica de València, Instituto de Investigación Sanitaria La Fe, Av. Fernando Abril Martorell 106, Torre A, planta 6, 46026, Valencia, Spain; Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina. Universitat Politècnica de València, Centro de Investigación Príncipe Felipe, C/ Eduardo Primo Yúfera 3, 46012, Valencia, Spain; Departamento de Química, Universitat Politècnica de València, Camino de Vera S/n, 46022, Valencia, Spain.
| | - Sara Santiago-Felipe
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN) Av, Monforte de Lemos, 3-5. Pabellón 11, Planta 0 28029 Madrid, Spain; Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico, Universitat Politècnica de València, Universitat de València, Camino de Vera s/n, 46022, Valencia, Spain; Unidad Mixta de Investigación en Nanomedicina y Sensores. Universitat Politècnica de València, Instituto de Investigación Sanitaria La Fe, Av. Fernando Abril Martorell 106, Torre A, planta 6, 46026, Valencia, Spain.
| |
Collapse
|
28
|
Bakr EA, El-Nahass MN, Hamada WM, Fayed TA. Facile synthesis of superparamagnetic Fe 3O 4@noble metal core-shell nanoparticles by thermal decomposition and hydrothermal methods: comparative study and catalytic applications. RSC Adv 2020; 11:781-797. [PMID: 35746920 PMCID: PMC9134218 DOI: 10.1039/d0ra08230a] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 11/24/2020] [Indexed: 12/14/2022] Open
Abstract
Herein, we report on developing a facile synthetic route for reusable nanocatalysts based on a combination of the supermagnetic properties of magnetite with the unique optical and catalytic properties of noble metal hybrid nanomaterials. We compare two different synthetic methods, to find out which is best from synthetic and application points of view, for the synthesis of Fe3O4 and Fe3O4@M (M = Ag or Au) core-shell hybrid nanostructures. The two different single-step synthetic methods are: thermal decomposition and hydrothermal. The structural, morphological and magnetic properties of the obtained Fe3O4 and Fe3O4@M nanoparticles were characterized by various techniques. XRD of the Fe3O4 nanoparticles exhibited sharp and strong diffraction peaks, confirming the highly crystalline structure of the Fe3O4 particles synthesized by the hydrothermal method, while broad and weak peaks were observed on using the thermal decomposition method. Both Fe3O4@Ag and Fe3O4@Au core-shells obtained by the hydrothermal method showed the reflection planes of Fe3O4 and additional planes of Ag or Au. But on the formation of Fe3O4@Ag/Au by the thermal decomposition method the peak for Fe3O4 disappeared and only the diffraction peaks of Ag or Au appeared. According to TEM analysis there was a broad particle-size distribution, random near-spherical shapes and slight particle agglomeration for Fe3O4 synthesized by the thermal decomposition method. However, there was a moderate size distribution, spherical shapes and well-dispersed particles without large aggregations for the hydrothermal method. TEM images of the synthesized nanoparticles by the two methods used showed a pronounced difference in both size and morphological shape. The catalytic performance of the synthesized nanoparticles was examined for the reduction of Congo red dye in the presence of NaBH4. The Fe3O4 nanocatalyst maintained its catalytic activity for only one cycle. In the cases of Fe3O4@Au and Fe3O4@Ag, the catalytic activity was conserved for four and ten successive cycles, respectively. Based on the obtained results, it was concluded that the hydrothermal synthesis of Fe3O4, Fe3O4@Ag and Fe3O4@Au nanostructures is highly recommended due to their selectivity and merits.
Collapse
Affiliation(s)
- Eman A Bakr
- Department of Chemistry, Faculty of Science, Tanta University 31527 Tanta Egypt +20-403350804 +20-403344352
| | - Marwa N El-Nahass
- Department of Chemistry, Faculty of Science, Tanta University 31527 Tanta Egypt +20-403350804 +20-403344352
| | - Wafaa M Hamada
- Department of Chemistry, Faculty of Science, Tanta University 31527 Tanta Egypt +20-403350804 +20-403344352
| | - Tarek A Fayed
- Department of Chemistry, Faculty of Science, Tanta University 31527 Tanta Egypt +20-403350804 +20-403344352
| |
Collapse
|
29
|
Douloudi M, Nikoli E, Katsika T, Vardavoulias M, Arkas M. Dendritic Polymers as Promising Additives for the Manufacturing of Hybrid Organoceramic Nanocomposites with Ameliorated Properties Suitable for an Extensive Diversity of Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 11:E19. [PMID: 33374206 PMCID: PMC7823723 DOI: 10.3390/nano11010019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/19/2020] [Accepted: 12/20/2020] [Indexed: 12/12/2022]
Abstract
As the field of nanoscience is rapidly evolving, interest in novel, upgraded nanomaterials with combinatory features is also inevitably increasing. Hybrid composites, offer simple, budget-conscious and environmental-friendly solutions that can cater multiple needs at the same time and be applicable in many nanotechnology-related and interdisciplinary studies. The physicochemical idiocrasies of dendritic polymers have inspired their implementation as sorbents, active ingredient carriers and templates for complex composites. Ceramics are distinguished for their mechanical superiority and absorption potential that render them ideal substrates for separation and catalysis technologies. The integration of dendritic compounds to these inorganic hosts can be achieved through chemical attachment of the organic moiety onto functionalized surfaces, impregnation and absorption inside the pores, conventional sol-gel reactions or via biomimetic mediation of dendritic matrices, inducing the formation of usually spherical hybrid nanoparticles. Alternatively, dendritic polymers can propagate from ceramic scaffolds. All these variants are covered in detail. Optimization techniques as well as established and prospected applications are also presented.
Collapse
Affiliation(s)
- Marilina Douloudi
- Institute of Nanoscience Nanotechnology, NCSR “Demokritos”, Patriarchou Gregoriou Street, 15310 Athens, Greece; (E.N.); (T.K.)
| | - Eleni Nikoli
- Institute of Nanoscience Nanotechnology, NCSR “Demokritos”, Patriarchou Gregoriou Street, 15310 Athens, Greece; (E.N.); (T.K.)
| | - Theodora Katsika
- Institute of Nanoscience Nanotechnology, NCSR “Demokritos”, Patriarchou Gregoriou Street, 15310 Athens, Greece; (E.N.); (T.K.)
| | | | - Michael Arkas
- Institute of Nanoscience Nanotechnology, NCSR “Demokritos”, Patriarchou Gregoriou Street, 15310 Athens, Greece; (E.N.); (T.K.)
| |
Collapse
|
30
|
Castillo RR, Vallet-Regí M. Emerging Strategies in Anticancer Combination Therapy Employing Silica-Based Nanosystems. Biotechnol J 2020; 16:e1900438. [PMID: 33079451 DOI: 10.1002/biot.201900438] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 09/30/2020] [Indexed: 12/22/2022]
Abstract
Combination therapy has emerged as one of the most promising approaches for cancer treatment. However, beyond remotely-triggered therapies that require advanced infrastructures and optimization, new combination therapies based on internally triggered cell-killing effects have also demonstrated promising therapeutic profiles. In this revision, the focus is on self-triggered strategies able to improve the therapeutic effect of drug delivery nanosystems. As reviewed, ferroptosis, hypoxia, and immunotherapy show potency enough to treat satisfactorily tumors in vivo. However, the interest of combining those with chemotherapeutics, especially with carriers based on mesoporous silica, has provided a new generation of therapeutic nanomedicines with potential enough to achieve complete tumor remission in murine models.
Collapse
Affiliation(s)
- Rafael R Castillo
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza Ramón y Cajal s/n, Madrid, 28040, Spain.,Centro de Investigación Biomédica en Red-CIBER, Madrid, 28029, Spain.,Instituto de Investigación Sanitaria Hospital 12 de Octubre-imas12, Madrid, 28041, Spain
| | - Maria Vallet-Regí
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza Ramón y Cajal s/n, Madrid, 28040, Spain.,Centro de Investigación Biomédica en Red-CIBER, Madrid, 28029, Spain.,Instituto de Investigación Sanitaria Hospital 12 de Octubre-imas12, Madrid, 28041, Spain
| |
Collapse
|
31
|
Production of MCM-41 Nanoparticles with Control of Particle Size and Structural Properties: Optimizing Operational Conditions during Scale-Up. Int J Mol Sci 2020; 21:ijms21217899. [PMID: 33114330 PMCID: PMC7662541 DOI: 10.3390/ijms21217899] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/19/2020] [Accepted: 10/22/2020] [Indexed: 12/20/2022] Open
Abstract
The synthesis of Mobil Composition of Matter 41 (MCM-41) mesoporous silica nanoparticles (MSNs) of controlled sizes and porous structure has been performed at laboratory and pilot plant scales. Firstly, the effects of the main operating conditions (TEOS –Tetraethyl ortosilicate– addition rate, nanoparticle maturation time, temperature, and CTAB –Cetrimonium bromide– concentration) on the synthesis at laboratory scale (1 L round-bottom flask) were studied via a Taguchi experimental design. Subsequently, a profound one-by-one study of operating conditions was permitted to upscale the process without significant particle enlargement and pore deformation. To achieve this, the temperature was set to 60 °C and the CTAB to TEOS molar ratio to 8. The final runs were performed at pilot plant scale (5 L cylindrical reactor with temperature and stirring speed control) to analyze stirring speed, type of impeller, TEOS addition rate, and nanoparticle maturation time effects, confirming results at laboratory scale. Despite slight variations on the morphology of the nanoparticles, this methodology provided MSNs with adequate sizes and porosities for biomedical applications, regardless of the reactor/scale. The process was shown to be robust and reproducible using mild synthesis conditions (2 mL⋅min−1 TEOS addition rate, 400 rpm stirred by a Rushton turbine, 60 min maturation time, 60 °C, 2 g⋅L−1 CTAB, molar ratio TEOS/CTAB = 8), providing ca. 13 g of prismatic short mesoporous 100–200 nm nanorods with non-connected 3 nm parallel mesopores.
Collapse
|
32
|
Prieto-Montero R, Katsumiti A, Cajaraville MP, López-Arbeloa I, Martínez-Martínez V. Functionalized Fluorescent Silica Nanoparticles for Bioimaging of Cancer Cells. SENSORS (BASEL, SWITZERLAND) 2020; 20:E5590. [PMID: 33003513 PMCID: PMC7582890 DOI: 10.3390/s20195590] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 09/16/2020] [Accepted: 09/26/2020] [Indexed: 12/12/2022]
Abstract
Functionalized fluorescent silica nanoparticles were designed and synthesized to selectively target cancer cells for bioimaging analysis. The synthesis method and characterization of functionalized fluorescent silica nanoparticles (50-60 nm), as well as internalization and subcellular localization in HeLa cells is reported here. The dye, rhodamine 101 (R101) was physically embedded during the sol-gel synthesis. The dye loading was optimized by varying the synthesis conditions (temperature and dye concentration added to the gel) and by the use of different organotriethoxysilanes as a second silica precursor. Additionally, R101, was also covalently bound to the functionalized external surface of the silica nanoparticles. The quantum yields of the dye-doped silica nanoparticles range from 0.25 to 0.50 and demonstrated an enhanced brightness of 230-260 fold respect to the free dye in solution. The shell of the nanoparticles was further decorated with PEG of 2000 Da and folic acid (FA) to ensure good stability in water and to enhance selectivity to cancer cells, respectively. In vitro assays with HeLa cells showed that fluorescent nanoparticles were internalized by cells accumulating exclusively into lysosomes. Quantitative analysis showed a significantly higher accumulation of FA functionalized fluorescent silica nanoparticles compared to nanoparticles without FA, proving that the former may represent good candidates for targeting cancer cells.
Collapse
Affiliation(s)
- Ruth Prieto-Montero
- Departamento de Química Física, Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), 48080 Bilbao, Spain; (R.P.-M.); (I.L.-A.)
| | - Alberto Katsumiti
- Departamento de Zoología y Biología Celular Animal, Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), 48080 Bilbao, Spain; (A.K.); (M.P.C.)
| | - Miren Pilare Cajaraville
- Departamento de Zoología y Biología Celular Animal, Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), 48080 Bilbao, Spain; (A.K.); (M.P.C.)
| | - Iñigo López-Arbeloa
- Departamento de Química Física, Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), 48080 Bilbao, Spain; (R.P.-M.); (I.L.-A.)
| | - Virginia Martínez-Martínez
- Departamento de Química Física, Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), 48080 Bilbao, Spain; (R.P.-M.); (I.L.-A.)
| |
Collapse
|
33
|
Alyassin Y, Sayed EG, Mehta P, Ruparelia K, Arshad MS, Rasekh M, Shepherd J, Kucuk I, Wilson PB, Singh N, Chang MW, Fatouros DG, Ahmad Z. Application of mesoporous silica nanoparticles as drug delivery carriers for chemotherapeutic agents. Drug Discov Today 2020; 25:1513-1520. [DOI: 10.1016/j.drudis.2020.06.006] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 05/14/2020] [Accepted: 06/08/2020] [Indexed: 12/15/2022]
|
34
|
Joubert AI, Geppert M, Johnson L, Mills-Goodlet R, Michelini S, Korotchenko E, Duschl A, Weiss R, Horejs-Höck J, Himly M. Mechanisms of Particles in Sensitization, Effector Function and Therapy of Allergic Disease. Front Immunol 2020; 11:1334. [PMID: 32714326 PMCID: PMC7344151 DOI: 10.3389/fimmu.2020.01334] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 05/26/2020] [Indexed: 12/15/2022] Open
Abstract
Humans have always been in contact with natural airborne particles from many sources including biologic particulate matter (PM) which can exhibit allergenic properties. With industrialization, anthropogenic and combustion-derived particles have become a major fraction. Currently, an ever-growing number of diverse and innovative materials containing engineered nanoparticles (NPs) are being developed with great expectations in technology and medicine. Nanomaterials have entered everyday products including cosmetics, textiles, electronics, sports equipment, as well as food, and food packaging. As part of natural evolution humans have adapted to the exposure to particulate matter, aiming to protect the individual's integrity and health. At the respiratory barrier, complications can arise, when allergic sensitization and pulmonary diseases occur in response to particle exposure. Particulate matter in the form of plant pollen, dust mites feces, animal dander, but also aerosols arising from industrial processes in occupational settings including diverse mixtures thereof can exert such effects. This review article gives an overview of the allergic immune response and addresses specifically the mechanisms of particulates in the context of allergic sensitization, effector function and therapy. In regard of the first theme (i), an overview on exposure to particulates and the functionalities of the relevant immune cells involved in allergic sensitization as well as their interactions in innate and adaptive responses are described. As relevant for human disease, we aim to outline (ii) the potential effector mechanisms that lead to the aggravation of an ongoing immune deviation (such as asthma, chronic obstructive pulmonary disease, etc.) by inhaled particulates, including NPs. Even though adverse effects can be exerted by (nano)particles, leading to allergic sensitization, and the exacerbation of allergic symptoms, promising potential has been shown for their use in (iii) therapeutic approaches of allergic disease, for example as adjuvants. Hence, allergen-specific immunotherapy (AIT) is introduced and the role of adjuvants such as alum as well as the current understanding of their mechanisms of action is reviewed. Finally, future prospects of nanomedicines in allergy treatment are described, which involve modern platform technologies combining immunomodulatory effects at several (immuno-)functional levels.
Collapse
Affiliation(s)
- Anna I Joubert
- Division of Allergy and Immunology, Department of Biosciences, University of Salzburg, Salzburg, Austria
| | - Mark Geppert
- Division of Allergy and Immunology, Department of Biosciences, University of Salzburg, Salzburg, Austria
| | - Litty Johnson
- Division of Allergy and Immunology, Department of Biosciences, University of Salzburg, Salzburg, Austria
| | - Robert Mills-Goodlet
- Division of Allergy and Immunology, Department of Biosciences, University of Salzburg, Salzburg, Austria
| | - Sara Michelini
- Division of Allergy and Immunology, Department of Biosciences, University of Salzburg, Salzburg, Austria
| | - Evgeniia Korotchenko
- Division of Allergy and Immunology, Department of Biosciences, University of Salzburg, Salzburg, Austria
| | - Albert Duschl
- Division of Allergy and Immunology, Department of Biosciences, University of Salzburg, Salzburg, Austria
| | - Richard Weiss
- Division of Allergy and Immunology, Department of Biosciences, University of Salzburg, Salzburg, Austria
| | - Jutta Horejs-Höck
- Division of Allergy and Immunology, Department of Biosciences, University of Salzburg, Salzburg, Austria
| | - Martin Himly
- Division of Allergy and Immunology, Department of Biosciences, University of Salzburg, Salzburg, Austria
| |
Collapse
|
35
|
Castillo RR, Lozano D, Vallet-Regí M. Mesoporous Silica Nanoparticles as Carriers for Therapeutic Biomolecules. Pharmaceutics 2020; 12:E432. [PMID: 32392811 PMCID: PMC7284475 DOI: 10.3390/pharmaceutics12050432] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 04/30/2020] [Accepted: 05/01/2020] [Indexed: 02/07/2023] Open
Abstract
The enormous versatility of mesoporous silica nanoparticles permits the creation of a large number of nanotherapeutic systems for the treatment of cancer and many other pathologies. In addition to the controlled release of small drugs, these materials allow a broad number of molecules of a very different nature and sizes. In this review, we focus on biogenic species with therapeutic abilities (proteins, peptides, nucleic acids, and glycans), as well as how nanotechnology, in particular silica-based materials, can help in establishing new and more efficient routes for their administration. Indeed, since the applicability of those combinations of mesoporous silica with bio(macro)molecules goes beyond cancer treatment, we address a classification based on the type of therapeutic action. Likewise, as illustrative content, we highlight the most typical issues and problems found in the preparation of those hybrid nanotherapeutic materials.
Collapse
Affiliation(s)
- Rafael R. Castillo
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain; (R.R.C.); (D.L.)
- Centro de Investigación Biomédica en Red—CIBER, 28029 Madrid, Spain
- Instituto de Investigación Sanitaria Hospital 12 de Octubre—imas12, 28041 Madrid, Spain
| | - Daniel Lozano
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain; (R.R.C.); (D.L.)
- Centro de Investigación Biomédica en Red—CIBER, 28029 Madrid, Spain
- Instituto de Investigación Sanitaria Hospital 12 de Octubre—imas12, 28041 Madrid, Spain
| | - María Vallet-Regí
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain; (R.R.C.); (D.L.)
- Centro de Investigación Biomédica en Red—CIBER, 28029 Madrid, Spain
- Instituto de Investigación Sanitaria Hospital 12 de Octubre—imas12, 28041 Madrid, Spain
| |
Collapse
|
36
|
Tao Y, Wang J, Xu X. Emerging and Innovative Theranostic Approaches for Mesoporous Silica Nanoparticles in Hepatocellular Carcinoma: Current Status and Advances. Front Bioeng Biotechnol 2020; 8:184. [PMID: 32211399 PMCID: PMC7075945 DOI: 10.3389/fbioe.2020.00184] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 02/25/2020] [Indexed: 12/23/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most prevalent and lethal solid cancers globally. To improve diagnosis sensitivities and treatment efficacies, the development of new theranostic nanoplatforms for efficient HCC management is urgently needed. In the past decade, mesoporous silica nanoparticles (MSNs) with tailored structure, large surface area, high agents loading volume, abundant chemistry functionality, acceptable biocompatibility have received more and more attention in HCC theranostic. This review outlines the recent advances in MSNs-based systems for HCC therapy and diagnosis. The multifunctional hybrid nanostructures that have both of therapy and diagnosis abilities are highlighted. And the precision delivery strategies of MSNs in HCC are also discussed. Final, we conclude with our personal perspectives on the future development and challenges of MSNs.
Collapse
Affiliation(s)
- Yaoye Tao
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- National Health Commission (NHC) Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, China
- Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Chinese Academy of Medical Sciences (CAMS), Hangzhou, China
- Key Laboratory of Organ Transplantation, Hangzhou, China
| | - Jianguo Wang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- National Health Commission (NHC) Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, China
- Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Chinese Academy of Medical Sciences (CAMS), Hangzhou, China
- Key Laboratory of Organ Transplantation, Hangzhou, China
| | - Xiao Xu
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- National Health Commission (NHC) Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, China
- Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Chinese Academy of Medical Sciences (CAMS), Hangzhou, China
- Key Laboratory of Organ Transplantation, Hangzhou, China
| |
Collapse
|
37
|
Yang Y, Wang L, Wan B, Gu Y, Li X. Optically Active Nanomaterials for Bioimaging and Targeted Therapy. Front Bioeng Biotechnol 2019; 7:320. [PMID: 31803728 PMCID: PMC6873787 DOI: 10.3389/fbioe.2019.00320] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 10/25/2019] [Indexed: 12/23/2022] Open
Abstract
Non-invasive tracking for monitoring the selective delivery and transplantation of biotargeted agents in vivo has been employed as one of the most effective tools in the field of nanomedicine. Different nanoprobes have been developed and applied to bioimaging tissues and the treatment of diseases ranging from inflammatory and cardiovascular diseases to cancer. Herein, we will review the recent advances in the development of optics-responsive nanomaterials, including organic and inorganic nanoparticles, for multimodal bioimaging and targeted therapy. The main focus is placed on nanoprobe fabrication, mechanistic illustrations, and diagnostic, or therapeutical applications. These nanomedicine strategies have promoted a better understanding of the biological events underlying diverse disease etiologies, thereby facilitating diagnosis, illness evaluation, therapeutic effect, and drug discovery.
Collapse
Affiliation(s)
- Yu Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Li Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Bin Wan
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Yuxin Gu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Xinxin Li
- Rural Energy and Environment Agency, Ministry of Agriculture, Beijing, China
| |
Collapse
|
38
|
Ferrauto G, Carniato F, Di Gregorio E, Botta M, Tei L. Photoacoustic ratiometric assessment of mitoxantrone release from theranostic ICG-conjugated mesoporous silica nanoparticles. NANOSCALE 2019; 11:18031-18036. [PMID: 31570915 DOI: 10.1039/c9nr06524e] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
A theranostic nanosystem based on indocyanine green (ICG) covalently conjugated to mesoporous silica nanoparticles (MSNs) loaded with the anticancer drug mitoxantrone (MTX) is proposed as an innovative photoacoustic probe. Taking advantage of the characteristic PA signal displayed by both ICG and MTX, a PA-ratiometric approach was applied to assess the drug release profile from the MSNs. After complete in vitro characterization of the nanoprobe, a proof-of-concept study has been carried out in tumour-bearing mice to evaluate in vivo its effectiveness for cancer imaging and chemotherapeutic agent delivery.
Collapse
Affiliation(s)
- Giuseppe Ferrauto
- Department of Molecular Biotechnology and Health Science, University of Turin, Via Nizza 52, 10126 Torino, Italy.
| | | | | | | | | |
Collapse
|
39
|
Sanchez LM, Alvarez VA. Advances in Magnetic Noble Metal/Iron-Based Oxide Hybrid Nanoparticles as Biomedical Devices. Bioengineering (Basel) 2019; 6:bioengineering6030075. [PMID: 31466238 PMCID: PMC6784020 DOI: 10.3390/bioengineering6030075] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 08/22/2019] [Accepted: 08/26/2019] [Indexed: 12/17/2022] Open
Abstract
The study of the noble metal magnetic hybrid nanoparticles is a really promising topic from both the scientific and the technological points of views, with applications in several fields. Iron oxide materials which are hybridized with noble metal nanoparticles (NPs) have attracted increasing interest among researchers because of their cooperative effects on combined magnetic, electronic, photonic, and catalytic activities. This review article contains a summary of magnetic noble metal/iron oxide nanoparticle systems potentially useful in practical biomedical applications. Among the applications, engineered devices for both medical diagnosis and treatments were considered. The preparation to produce different structures, as blends or core-shell structures, of several nanometric systems was also considered. Several characterization techniques available to describe the structure, morphology and different kinds of properties of hybrid nanoparticles are also included in this review.
Collapse
Affiliation(s)
- Laura M Sanchez
- Materiales Compuestos Termoplásticos (CoMP), Instituto de Investigaciones en Ciencia y Tecnología de Materiales (INTEMA), CONICET-Universidad Nacional de Mar del Plata (UNMdP). Av. Colón 10850, Mar del Plata 7600, Argentina.
| | - Vera A Alvarez
- Materiales Compuestos Termoplásticos (CoMP), Instituto de Investigaciones en Ciencia y Tecnología de Materiales (INTEMA), CONICET-Universidad Nacional de Mar del Plata (UNMdP). Av. Colón 10850, Mar del Plata 7600, Argentina
| |
Collapse
|
40
|
Giussani L, Tabacchi G, Coluccia S, Fois E. Confining a Protein-Containing Water Nanodroplet inside Silica Nanochannels. Int J Mol Sci 2019; 20:E2965. [PMID: 31216631 PMCID: PMC6627703 DOI: 10.3390/ijms20122965] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 06/10/2019] [Accepted: 06/14/2019] [Indexed: 02/01/2023] Open
Abstract
Incorporation of biological systems in water nanodroplets has recently emerged as a new frontier to investigate structural changes of biomolecules, with perspective applications in ultra-fast drug delivery. We report on the molecular dynamics of the digestive protein Pepsin subjected to a double confinement. The double confinement stemmed from embedding the protein inside a water nanodroplet, which in turn was caged in a nanochannel mimicking the mesoporous silica SBA-15. The nano-bio-droplet, whose size fits with the pore diameter, behaved differently depending on the protonation state of the pore surface silanols. Neutral channel sections allowed for the droplet to flow, while deprotonated sections acted as anchoring piers for the droplet. Inside the droplet, the protein, not directly bonded to the surface, showed a behavior similar to that reported for bulk water solutions, indicating that double confinement should not alter its catalytic activity. Our results suggest that nanobiodroplets, recently fabricated in volatile environments, can be encapsulated and stored in mesoporous silicas.
Collapse
Affiliation(s)
- Lara Giussani
- Dipartimento di Scienza e Alta Tecnologia and INSTM udr Como, Insubria University, Via Valleggio 9, I-22100 Como, Italy.
| | - Gloria Tabacchi
- Dipartimento di Scienza e Alta Tecnologia and INSTM udr Como, Insubria University, Via Valleggio 9, I-22100 Como, Italy.
| | - Salvatore Coluccia
- Dipartimento di Chimica, Turin University, Via P. Giuria 7, I-10125 Turin, Italy.
| | - Ettore Fois
- Dipartimento di Scienza e Alta Tecnologia and INSTM udr Como, Insubria University, Via Valleggio 9, I-22100 Como, Italy.
| |
Collapse
|
41
|
Castillo RR, Lozano D, González B, Manzano M, Izquierdo-Barba I, Vallet-Regí M. Advances in mesoporous silica nanoparticles for targeted stimuli-responsive drug delivery: an update. Expert Opin Drug Deliv 2019; 16:415-439. [PMID: 30897978 PMCID: PMC6667337 DOI: 10.1080/17425247.2019.1598375] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 03/19/2019] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Mesoporous silica nanoparticles (MSNs) are outstanding nanoplatforms for drug delivery. Herein, the most recent advances to turn MSN-based carriers into minimal side effect drug delivery agents are covered. AREAS COVERED This review summarizes the scientific advances dealing with MSNs for targeted and stimuli-responsive drug delivery since 2015. Delivery aspects to diseased tissues together with approaches to obtain smart MSNs able to respond to internal or external stimuli and their applications are here described. Special emphasis is done on the combination of two or more stimuli on the same nanoplatform and on combined drug therapy. EXPERT OPINION The use of MSNs in nanomedicine is a promising research field because they are outstanding platforms for treating different pathologies. This is possible thanks to their structural, chemical, physical and biological properties. However, there are certain issues that should be overcome to improve the suitability of MSNs for clinical applications. All materials must be properly characterized prior to their in vivo evaluation; furthermore, preclinical in vivo studies need to be standardized to demonstrate the MSNs clinical translation potential.
Collapse
Affiliation(s)
- Rafael R. Castillo
- Departamento de Química en Ciencias Farmacéuticas, Unidad de Química Inorgánica y Bionorgánica, Universidad Complutense de Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12)
- Centro de Investigación Biomédica en Red: Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN)
| | - Daniel Lozano
- Departamento de Química en Ciencias Farmacéuticas, Unidad de Química Inorgánica y Bionorgánica, Universidad Complutense de Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12)
- Centro de Investigación Biomédica en Red: Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN)
| | - Blanca González
- Departamento de Química en Ciencias Farmacéuticas, Unidad de Química Inorgánica y Bionorgánica, Universidad Complutense de Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12)
- Centro de Investigación Biomédica en Red: Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN)
| | - Miguel Manzano
- Departamento de Química en Ciencias Farmacéuticas, Unidad de Química Inorgánica y Bionorgánica, Universidad Complutense de Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12)
- Centro de Investigación Biomédica en Red: Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN)
| | - Isabel Izquierdo-Barba
- Departamento de Química en Ciencias Farmacéuticas, Unidad de Química Inorgánica y Bionorgánica, Universidad Complutense de Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12)
- Centro de Investigación Biomédica en Red: Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN)
| | - María Vallet-Regí
- Departamento de Química en Ciencias Farmacéuticas, Unidad de Química Inorgánica y Bionorgánica, Universidad Complutense de Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12)
- Centro de Investigación Biomédica en Red: Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN)
| |
Collapse
|