1
|
Xia D, Zhang L, Mei R, Wu C, Liu Y, Chen H, Chen L. Increased Expression of MST1 in Patients With Epilepsy and in a Rat Model of Epilepsy. Synapse 2025; 79:e70002. [PMID: 39729046 DOI: 10.1002/syn.70002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/07/2024] [Accepted: 11/12/2024] [Indexed: 12/28/2024]
Abstract
Mammalian sterile20-like kinase 1 (MST1), a serine/threonine kinase frequently expressed, has emerged as pivotal modulator of multiple physiological and pathological conditions such as cellular growth, programmed cell death, oxidative stress, neurodegeneration, inflammation, and synaptic plasticity in the central nervous system. Various neurological diseases are associated with the activation of MST1. Epilepsy is a severe neurological disorder characterized by abrupt abnormal electrical activity in the brain and recurring spontaneous seizures. The most common pathological discoveries in patients and animal models with epilepsy are neuronal death, inflammation, neurodegeneration, neurogenesis, and axonal regrowth. The purpose of this study was to assess the levels of MST1 in serum and cerebrospinal fluid (CSF) specimens obtained from individuals diagnosed with epilepsy. In addition, it aimed to explore the expression pattern of MST1 in brain tissues of epileptic rats. We used enzyme-linked immunosorbent assay to measure the levels of CSF and serum MST1 in 10 epilepsy patients and 9 control patients. After creation of epilepsy models with healthy male Sprague-Dawley rats using lithium and pilocarpine, the expression of MST1 in the temporal cortex and hippocampus was evaluated at different time points (6 h, 24 h, 3 days, 7 days, 14 days, and 30 days after seizures) using immunofluorescence, immunohistochemistry, and Western blotting. In patients with epilepsy, the levels of CSF-MST1 were elevated (593.90 ± 16.28 vs. 560.40 ± 19.42 pg/mL, p < 0.05) compared to the control group. Accordingly, the serum-MST1 levels were 583.40 ± 19.70 pg/mL in the epilepsy group and 555.70 ± 20.14 pg/mL in the control group, demonstrating a statistically significant distinction (p < 0.05). Levels of MST1 in CSF and serum could be of diagnostic help. Neuronal apoptosis in temporal cortex and hippocampus of epileptic rats was detected using terminal deoxynucleotidyl transferase dUTP nick end labeling staining. MST1 was expressed in the neuronal membrane and cytoplasm of the temporal cortex and hippocampus. The expression of MST1 increased after seizures, showing a relatively high level within 30 days and reaching its highest point on the seventh day after status epilepticus. The findings of this study indicate that the increased expression of MST1 protein in patients with epilepsy and epileptic rats might play a role in the development of epilepsy.
Collapse
Affiliation(s)
- Di Xia
- Department of Neurology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Linming Zhang
- Department of Neurology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
- Department of Neurology, Yunnan Provincial Clinical Research Center for Neurological, Disease, Kunming, Yunnan, China
| | - Rong Mei
- Department of Neurology, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China
| | - Chunhua Wu
- Department of Neurology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
- Department of Neurology, Yunnan Provincial Clinical Research Center for Neurological, Disease, Kunming, Yunnan, China
| | - Yan Liu
- Department of Neurology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Hongyu Chen
- Department of Neurology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Ling Chen
- Department of Neurology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
- Department of Neurology, Yunnan Provincial Clinical Research Center for Neurological, Disease, Kunming, Yunnan, China
| |
Collapse
|
2
|
Zhang W, Sun H, Zhao W, Li J, Meng H. Suppression of JNK pathway protects neurons from oxidative injury via attenuating parthanatos in glutamate-treated HT22 neurons. Sci Rep 2024; 14:25793. [PMID: 39468165 PMCID: PMC11519538 DOI: 10.1038/s41598-024-76640-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 10/15/2024] [Indexed: 10/30/2024] Open
Abstract
Oxidative stress causes diverse neurological disorders. Parthanatos is a type of programmed cell death, characterised by strong activation of poly (ADP-ribose) (PAR) polymerase-1 (PARP-1), PAR polymer accumulation, and nuclear translocation of apoptosis-inducing factor (AIF), and is involved in cellular oxidative injury. Signalling by c-Jun-N-terminal protein kinase (JNK) is activated by reactive oxygen species (ROS), and this also contributes to ROS production. However, the exact relationship between JNK signalling and parthanatos in neurological disorders triggered by oxidative stress is unclear. In this study, glutamate-treated HT22 neurons were used to investigate whether the signalling by JNK contributes a regulatory role to parthanatos in oxidative stress-related neurological disease. JNK signalling was activated in glutamate-treated HT22 neurons, demonstrated via upregulation of p-JNK levels. Pre-treatment with SP600125 markedly inhibited JNK signalling, increased cell viability, and significantly reversed PARP-1 overproduction, PAR polymer accumulation, and nuclear AIF translocation. In addition, inhibition of JNK signalling severely reduced the production of both intracellular ROS and mitochondria superoxide. This study indicated that parthanatos in glutamate-treated HT22 neurons could be suppressed by JNK signalling inhibition. JNK activation participated in parthanatos via an increase in intracellular ROS levels.
Collapse
Affiliation(s)
- Wuqiong Zhang
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, No. 1 Xinmin Street, Changchun, 130021, Jilin, China
| | - Huaiyu Sun
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, No. 1 Xinmin Street, Changchun, 130021, Jilin, China
| | - Weixuan Zhao
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, No. 1 Xinmin Street, Changchun, 130021, Jilin, China
| | - Jiaai Li
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, No. 1 Xinmin Street, Changchun, 130021, Jilin, China
| | - Hongmei Meng
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, No. 1 Xinmin Street, Changchun, 130021, Jilin, China.
| |
Collapse
|
3
|
Banaeeyeh S, Razavi BM, Hosseinzadeh H. Neuroprotective Effects of Morin Against Cadmium- and Arsenic-Induced Cell Damage in PC12 Neurons. Biol Trace Elem Res 2024:10.1007/s12011-024-04407-x. [PMID: 39436547 DOI: 10.1007/s12011-024-04407-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 10/01/2024] [Indexed: 10/23/2024]
Abstract
Arsenic and cadmium, both toxic metals and widespread environmental pollutants, can trigger apoptosis and oxidative stress in various tissues and cells. Morin, a natural flavonoid with diverse biological properties, has been found to protect neurons from oxidative stress and apoptosis-induced damage. This research aimed to examine the protective properties of morin against neurotoxicity caused by arsenic and cadmium, utilizing PC12 cells as a model for nerve cells. The cells were pre-treated with different concentrations of morin and then exposed to arsenic and cadmium, after which cell viability and reactive oxygen species (ROS) production were assessed. Additionally, western blotting was performed to evaluate the protein levels of the Bax/Bcl-2 ratio and cleaved-caspase-3. Following exposure to arsenic and cadmium, there were significant increases in ROS, Bax/Bcl-2 ratio, and cleaved-caspase-3. However, the results of the study demonstrated the beneficial effects of morin at various concentrations, as it increased cell viability and decreased ROS production. Furthermore, morin at a concentration of 10 µM was found to reduce the elevated levels of cleaved-caspase-3 induced by arsenic and diminish the increased Bax/Bcl-2 ratio after exposure to arsenic and cadmium. The findings of this study suggest that morin can effectively protect cells from arsenic and cadmium-induced neurotoxicity through its antioxidant and anti-apoptotic effects. Thus, morin should be considered a promising agent for treating arsenic and cadmium toxicity.
Collapse
Affiliation(s)
- Sara Banaeeyeh
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Bibi Marjan Razavi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Hosseinzadeh
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
4
|
Huang W, Wu D, Cai C, Yao H, Tian Z, Yang Y, Pang M, Rong L, Liu B. Inhibition of MST1 ameliorates neuronal apoptosis via GSK3β/β-TrCP/NRF2 pathway in spinal cord injury accompanied by diabetes. Redox Biol 2024; 71:103104. [PMID: 38430683 PMCID: PMC10914584 DOI: 10.1016/j.redox.2024.103104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/08/2024] [Accepted: 02/23/2024] [Indexed: 03/05/2024] Open
Abstract
AIMS Spinal cord injury (SCI) is a devastating neurological disease that often results in tremendous loss of motor function. Increasing evidence demonstrates that diabetes worsens outcomes for patients with SCI due to the higher levels of neuronal oxidative stress. Mammalian sterile 20-like kinase (MST1) is a key mediator of oxidative stress in the central nervous system; however, the mechanism of its action in SCI is still not clear. Here, we investigated the role of MST1 activation in induced neuronal oxidative stress in patients with both SCI and diabetes. METHODS Diabetes was established in mice by diet induction combined with intraperitoneal injection of streptozotocin (STZ). SCI was performed at T10 level through weight dropping. Advanced glycation end products (AGEs) were applied to mimic diabetic conditions in PC12 cell line in vitro. We employed HE, Nissl staining, footprint assessment and Basso mouse scale to evaluate functional recovery after SCI. Moreover, immunoblotting, qPCR, immunofluorescence and protein-protein docking analysis were used to detect the mechanism. RESULTS Regarding in vivo experiments, diabetes resulted in up-regulation of MST1, excessive neuronal apoptosis and weakened motor function in SCI mice. Furthermore, diabetes impeded NRF2-mediated antioxidant defense of neurons in the damaged spinal cord. Treatment with AAV-siMST1 could restore antioxidant properties of neurons to facilitate reactive oxygen species (ROS) clearance, which subsequently promoted neuronal survival to improve locomotor function recovery. In vitro model found that AGEs worsened mitochondrial dysfunction and increased cellular oxidative stress. While MST1 inhibition through the chemical inhibitor XMU-MP-1 or MST1-shRNA infection restored NRF2 nuclear accumulation and its transcription of downstream antioxidant enzymes, therefore preventing ROS generation. However, these antioxidant effects were reversed by NRF2 knockdown. Our in-depth studies showed that over-activation of MST1 in diabetes directly hindered the neuroprotective AKT1, and subsequently fostered NRF2 ubiquitination and degradation via the GSK3β/β-TrCP pathway. CONCLUSION MST1 inhibition significantly restores neurological function in SCI mice with preexisting diabetes, which is largely attributed to the activation of antioxidant properties via the GSK3β(Ser 9)/β-TrCP/NRF2 pathway. MST1 may be a promising pharmacological target for the effective treatment of spinal cord injury patients with diabetes.
Collapse
Affiliation(s)
- Weijun Huang
- Department of Spine Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, PR China; Guangdong Provincial Center for Quality Control of Minimally Invasive Spine Surgery, Guangzhou, PR China; Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery, Guangzhou, PR China
| | - Depeng Wu
- Department of Spine Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, PR China; Guangdong Provincial Center for Quality Control of Minimally Invasive Spine Surgery, Guangzhou, PR China; Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery, Guangzhou, PR China
| | - Chaoyang Cai
- Department of Spine Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, PR China; Guangdong Provincial Center for Quality Control of Minimally Invasive Spine Surgery, Guangzhou, PR China; Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery, Guangzhou, PR China
| | - Hui Yao
- Department of Spine Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, PR China
| | - Zhenming Tian
- Department of Spine Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, PR China; Guangdong Provincial Center for Quality Control of Minimally Invasive Spine Surgery, Guangzhou, PR China; Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery, Guangzhou, PR China
| | - Yang Yang
- Department of Spine Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, PR China; Guangdong Provincial Center for Quality Control of Minimally Invasive Spine Surgery, Guangzhou, PR China; Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery, Guangzhou, PR China
| | - Mao Pang
- Department of Spine Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, PR China; Guangdong Provincial Center for Quality Control of Minimally Invasive Spine Surgery, Guangzhou, PR China; Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery, Guangzhou, PR China
| | - Limin Rong
- Department of Spine Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, PR China; Guangdong Provincial Center for Quality Control of Minimally Invasive Spine Surgery, Guangzhou, PR China; Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery, Guangzhou, PR China.
| | - Bin Liu
- Department of Spine Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, PR China; Guangdong Provincial Center for Quality Control of Minimally Invasive Spine Surgery, Guangzhou, PR China; Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery, Guangzhou, PR China.
| |
Collapse
|
5
|
Yang Z, Sheng J, Zhang Q, Xin Y, Wang L, Zhang Q, Wang B. Glucose-oxygen coupling can serve as a biomarker for neuroinflammation-related genetic variants. Cereb Cortex 2024; 34:bhad520. [PMID: 38244549 DOI: 10.1093/cercor/bhad520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/12/2023] [Accepted: 12/13/2023] [Indexed: 01/22/2024] Open
Abstract
The single-nucleotide polymorphism rs3197999 in the macrophage-stimulating protein 1 gene is a missense variant. Studies have indicated that macrophage-stimulating protein 1 mediates neuronal loss and synaptic plasticity damage, and overexpression of the macrophage-stimulating protein 1 gene leads to the excessive activation of microglial cells, thereby resulting in an elevation of cerebral glucose metabolism. Traditional diagnostic models may be disrupted by neuroinflammation, making it difficult to predict the pathological status of patients solely based on single-modal images. We hypothesize that the macrophage-stimulating protein 1 rs3197999 single-nucleotide polymorphism may lead to imbalances in glucose and oxygen metabolism, thereby influencing cognitive resilience and the progression of Alzheimer's disease. In this study, we found that among 121 patients with mild cognitive impairment, carriers of the macrophage-stimulating protein 1 rs3197999 risk allele showed a significant reduction in the coupling of glucose and oxygen metabolism in the dorsolateral prefrontal cortex region. However, the rs3197999 variant did not induce significant differences in glucose metabolism and neuronal activity signals. Furthermore, the rs3197999 risk allele correlated with a higher rate of increase in clinical dementia score, mediated by the coupling of glucose and oxygen metabolism. HIGHLIGHT
Collapse
Affiliation(s)
- Ze Yang
- College of Computer Science, Hangzhou Dianzi University, Hangzhou, Zhejiang 310018, China
- Key Laboratory of Intelligent Image Analysis for Sensory and Cognitive Health, Ministry of Industry and Information Technology of China, Hangzhou, Zhejiang 310018, China
| | - Jinhua Sheng
- College of Computer Science, Hangzhou Dianzi University, Hangzhou, Zhejiang 310018, China
- Key Laboratory of Intelligent Image Analysis for Sensory and Cognitive Health, Ministry of Industry and Information Technology of China, Hangzhou, Zhejiang 310018, China
| | - Qiao Zhang
- Beijing Hospital, Beijing 100730, China
- National Center of Gerontology, Beijing 100730, China
- Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Yu Xin
- College of Computer Science, Hangzhou Dianzi University, Hangzhou, Zhejiang 310018, China
- Key Laboratory of Intelligent Image Analysis for Sensory and Cognitive Health, Ministry of Industry and Information Technology of China, Hangzhou, Zhejiang 310018, China
| | - Luyun Wang
- College of Computer Science, Hangzhou Dianzi University, Hangzhou, Zhejiang 310018, China
- Key Laboratory of Intelligent Image Analysis for Sensory and Cognitive Health, Ministry of Industry and Information Technology of China, Hangzhou, Zhejiang 310018, China
| | - Qian Zhang
- College of Computer Science, Hangzhou Dianzi University, Hangzhou, Zhejiang 310018, China
- Key Laboratory of Intelligent Image Analysis for Sensory and Cognitive Health, Ministry of Industry and Information Technology of China, Hangzhou, Zhejiang 310018, China
| | - Binbing Wang
- College of Computer Science, Hangzhou Dianzi University, Hangzhou, Zhejiang 310018, China
- Key Laboratory of Intelligent Image Analysis for Sensory and Cognitive Health, Ministry of Industry and Information Technology of China, Hangzhou, Zhejiang 310018, China
| |
Collapse
|
6
|
Alkhatib B, Agraib LM, Al-Shami I, Al-Dalaeen A. The Novelty of using Obesity Indices as Blood Pressure Predictors. Curr Hypertens Rev 2024; 20:36-43. [PMID: 38037836 DOI: 10.2174/0115734021277171231114103758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 09/30/2023] [Accepted: 10/19/2023] [Indexed: 12/02/2023]
Abstract
AIMS To study the association between selected obesity indices, systolic blood pressure (SBP), and diastolic blood pressure (DBP). METHODS A cross-sectional study on 491 Jordanian adults (19-65 years old). The sociodemographic data, anthropometrics, and blood pressure were measured and recorded. Obesity indices (Conicity Index (CI), Abdominal volume index (AVI), Body Roundness Index (BRI), and Weight-adjusted-waist index (WWI)) were calculated using standard validated formulas. RESULTS Based on age, the SBP had a significant moderate correlation with BRI and AVI in all age groups. In the age group 20 to 34 years, SBP had a significantly moderate correlation with CI, and DBP had a significantly moderate correlation with BRI and AVI. In the age group 35 to 44 years, DBP had a significantly moderate correlation with CI, BRI, WWI, and AVI. For the age group 45 to 65 years, the SBP had a significantly moderate correlation with all the obesity indexes, opposite to DBP. Obesity indices explain 23.6% to 24.1% of the changeability in SBP, and one unit increase in them resulted in an increase in SBP range from 0.61 ± 0.14 to 19.88 ± 4.45. For DBP, obesity indices explained 15.9% to 16.3% of the variability in DBP, and raising them by one unit led to an increase in the DBP range from 0.27 ± 0.11 to 10.08 ± 4.83. CONCLUSION All the studied obesity indices impacted SBP and DBP with the highest reported effect for AVI and BRI and a lower impact for WWI. The impact of obesity indices on DBP was affected by age group.
Collapse
Affiliation(s)
- Buthaina Alkhatib
- Department of Clinical Nutrition and Dietetics, Faculty of Applied Medical Sciences, The Hashemite University, Zarqa, Jordan
| | - Lana M Agraib
- Department of Food Science and Nutrition, Faculty of Agriculture, Jerash University, Jerash, Jordan
| | - Islam Al-Shami
- Department of Clinical Nutrition and Dietetics, Faculty of Applied Medical Sciences, The Hashemite University, Zarqa, Jordan
| | - Anfal Al-Dalaeen
- Department of Clinical Nutrition and Dietetics, Faculty of Allied Medical Sciences, Applied Science Private University, Amman 11931, Jordan
| |
Collapse
|
7
|
Tunc-Ata M, Altunay ZM, Alphan A, Kucukatay V. Effect of insulin on IR and GLP1-R expressions in HT22 cells. Med Oncol 2023; 40:301. [PMID: 37712993 DOI: 10.1007/s12032-023-02172-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 08/22/2023] [Indexed: 09/16/2023]
Abstract
Insulin is a significant growth factor that specifically binds to the insulin receptor (IR) in the brain and then activates the PI3K-AKT pathway. Glucagon-like peptide 1 (GLP-1) has a variety of functions including neuroprotection, support for neurogenesis, and increasing insulin signal. This study aims to investigate the effect of insulin administered to immortalized clonal mouse hippocampal cell line (HT22) at different doses and intervals on IR, insulin receptor A (IRA), insulin receptor B (IRB), and Glucagon-like peptide 1 receptor (GLP1-R) mRNA expression and protein levels. The cells were planted in 6 well plates at a density of 3 × 105/4 × 105. Cells treated with insulin at different concentrations (5, 10, and 40 nM) were collected at 0.5, 2, 8, 16, and 24 h. RT-PCR and western blot analysis were used to measure mRNA expression and protein levels. Our results showed that insulin has short and long-term effects on IR and GLP1-R expression depending on dose and time. These findings may guide future studies targeting IR isoforms and GLP1-R in particular, as well as determining the optimal dose and duration of insulin stimulation in insulin signaling research.
Collapse
Affiliation(s)
- Melek Tunc-Ata
- Department of Physiology, Faculty of Medicine, Pamukkale University, Denizli, Turkey.
| | - Zeynep Mine Altunay
- Department of Neuroscience, School of Medicine, University of Connecticut, Farmington, CT, USA
| | - Aysel Alphan
- Department of Neuroscience, Institute of Health Sciences, Pamukkale University, Denizli, Turkey
| | - Vural Kucukatay
- Department of Physiology, Faculty of Medicine, Pamukkale University, Denizli, Turkey
| |
Collapse
|
8
|
Ye Q, Srivastava P, Al-Kuwari N, Chen X. Oncogenic BRAFV600E induces microglial proliferation through extracellular signal-regulated kinase and neuronal death through c-Jun N-terminal kinase. Neural Regen Res 2023; 18:1613-1622. [PMID: 36571370 PMCID: PMC10075110 DOI: 10.4103/1673-5374.361516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 06/13/2022] [Accepted: 10/18/2022] [Indexed: 11/19/2022] Open
Abstract
Activating V600E in v-Raf murine sarcoma viral oncogene homolog B (BRAF) is a common driver mutation in cancers of multiple tissue origins, including melanoma and glioma. BRAFV600E has also been implicated in neurodegeneration. The present study aims to characterize BRAFV600E during cell death and proliferation of three major cell types of the central nervous system: neurons, astrocytes, and microglia. Multiple primary cultures (primary cortical mixed culture) and cell lines of glial cells (BV2) and neurons (SH-SY5Y) were employed. BRAFV600E and BRAFWT expression was mediated by lentivirus or retrovirus. Blockage of downstream effectors (extracellular signal-regulated kinase 1/2 and JNK1/2) were achieved by siRNA. In astrocytes and microglia, BRAFV600E induces cell proliferation, and the proliferative effect in microglia is mediated by activated extracellular signal-regulated kinase, but not c-Jun N-terminal kinase. Conditioned medium from BRAFV600E-expressing microglia induced neuronal death. In neuronal cells, BRAFV600E directly induces neuronal death, through c-Jun N-terminal kinase but not extracellular signal-regulated kinase. We further show that BRAF-related genes are enriched in pathways in patients with Parkinson's disease. Our study identifies distinct consequences mediated by distinct downstream effectors in dividing glial cells and in neurons following the same BRAF mutational activation and a causal link between BRAF-activated microglia and neuronal cell death that does not require physical proximity. It provides insight into a possibly important role of BRAF in neurodegeneration as a result of either dysregulated BRAF in neurons or its impact on glial cells.
Collapse
Affiliation(s)
- Qing Ye
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
- Department of Neurology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Pranay Srivastava
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Nasser Al-Kuwari
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Xiqun Chen
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| |
Collapse
|
9
|
Wei X, Huang G, Liu J, Ge J, Zhang W, Mei Z. An update on the role of Hippo signaling pathway in ischemia-associated central nervous system diseases. Biomed Pharmacother 2023; 162:114619. [PMID: 37004330 DOI: 10.1016/j.biopha.2023.114619] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/26/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023] Open
Abstract
The most frequent reason of morbidity and mortality in the world, cerebral ischemia sets off a chain of molecular and cellular pathologies that associated with some central nervous system (CNS) disorders mainly including ischemic stroke, Alzheimer's disease (AD), Parkinson's disease (PD), epilepsy and other CNS diseases. In recent times, despite significant advancements in the treatment of the pathological processes underlying various neurological illnesses, effective therapeutic approaches that are specifically targeted to minimizing the damage of such diseases remain absent. Hippo signaling pathway, characterized by enzyme linked reactions between MSTI/2, LAST1/2, and YAP or TAZ proteins, controls cell division, survival, and differentiation, as well as being engaged in a variety of biological activities, such as the development and transformation of the nervous system. Recently, accumulating studies demonstrated that Hippo pathway takes part in the processes of ischemic stroke, AD, PD, etc., including but not limited to oxidative stress, inflammatory response, blood-brain barrier damage, mitochondrial disorders, and neural cells death. Thus, it's crucial to understand the molecular basis of the Hippo signaling pathway for determining potential new therapeutic targets against ischemia-associated CNS diseases. Here, we discuss latest advances in the deciphering of the Hippo signaling pathway and highlight the therapeutic potential of targeting the pathway in treating ischemia-associated CNS diseases.
Collapse
|
10
|
Kakoty V, Kc S, Yang CH, Dubey SK, Taliyan R. Exploring the Epigenetic Regulated Modulation of Fibroblast Growth Factor 21 Involvement in High-Fat Diet Associated Parkinson's Disease in Rats. ACS Chem Neurosci 2023; 14:725-740. [PMID: 36694924 DOI: 10.1021/acschemneuro.2c00659] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Imbalance in brain glucose metabolism and epigenetic modulation during the disease course of insulin resistance (IR) associated with Parkinson's disease (PD) risk remains a prime concern. Fibroblast growth factor 21 (FGF21), the metabolic hormone, improves insulin sensitivity and elicits anti-diabetic properties. Chronic stress during brain IR may modulate the FGF21 expression and its dynamic release via epigenetic modifications. Metformin regulates and increases the expression of FGF21 which can be modulating in obesity, diabetes, and IR. Hence, this study was designed to investigate the FGF21 expression modulation via an epigenetic mechanism in PD and whether metformin (MF), an autophagy activator, and sodium butyrate (NaB), a pan histone deacetylase inhibitor, alone and in combination, exert any therapeutic benefit in PD pathology exacerbated by high-fat diet (HFD). Our results portray that the combination treatment with MF and NaB potentially attenuated the abnormal lipid profile and increased motor performance for the rats fed with HFD for 8 weeks followed by intrastriatal 6-hydroxy dopamine administration. The enzyme-linked immunosorbent assay (ELISA) estimations of C-reactive protein, tumor necrosis factor-α, interleukin-1 beta and 6, and FGF21 exhibited extensive downregulation after treatment with the combination. Lastly, mRNA, western blot, histological, and cresyl violet staining depicted that the combination treatment can restore degenerated neuronal density and increase the protein level compared to the disease group. The findings from the study effectively conclude that the epigenetic mechanism involved in FGF21 mediated functional abnormalities in IR-linked PD pathology. Hence, combined treatment with MF and NaB may prove to be a novel combination in ameliorating IR-associated PD in rats, probably via the upregulation of FGF21 expression.
Collapse
Affiliation(s)
- Violina Kakoty
- Pharmacology Division, Department of Pharmaceutical Science, Lovely Professional University, Phagwara, Punjab 144411, India.,Neuropsychopharmacology Division, Department of Pharmacy, Birla Institute of Technology and Science, Pilani, Rajasthan 333031, India
| | - Sarathlal Kc
- Department of Non-Communicable Disease, Translational Health Science and Technology Institute, Faridabad, Haryana 121001, India.,Neuropsychopharmacology Division, Department of Pharmacy, Birla Institute of Technology and Science, Pilani, Rajasthan 333031, India
| | - Chih-Hao Yang
- Department of Pharmacology, Taipei Medical University, Taipei 110, Taiwan
| | | | - Rajeev Taliyan
- Neuropsychopharmacology Division, Department of Pharmacy, Birla Institute of Technology and Science, Pilani, Rajasthan 333031, India
| |
Collapse
|
11
|
Recent Progress in Research on Mechanisms of Action of Natural Products against Alzheimer's Disease: Dietary Plant Polyphenols. Int J Mol Sci 2022; 23:ijms232213886. [PMID: 36430365 PMCID: PMC9695301 DOI: 10.3390/ijms232213886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/05/2022] [Accepted: 11/07/2022] [Indexed: 11/16/2022] Open
Abstract
Alzheimer's disease (AD) is an incurable degenerative disease of the central nervous system and the most common type of dementia in the elderly. Despite years of extensive research efforts, our understanding of the etiology and pathogenesis of AD is still highly limited. Nevertheless, several hypotheses related to risk factors for AD have been proposed. Moreover, plant-derived dietary polyphenols were also shown to exert protective effects against neurodegenerative diseases such as AD. In this review, we summarize the regulatory effects of the most well-known plant-derived dietary polyphenols on several AD-related molecular mechanisms, such as amelioration of oxidative stress injury, inhibition of aberrant glial cell activation to alleviate neuroinflammation, inhibition of the generation and promotion of the clearance of toxic amyloid-β (Aβ) plaques, inhibition of cholinesterase enzyme activity, and increase in acetylcholine levels in the brain. We also discuss the issue of bioavailability and the potential for improvement in this regard. This review is expected to encourage further research on the role of natural dietary plant polyphenols in the treatment of AD.
Collapse
|
12
|
Sullivan M, Deng HW, Greenbaum J. Identification of genetic loci shared between Alzheimer's disease and hypertension. Mol Genet Genomics 2022; 297:1661-1670. [PMID: 36069947 DOI: 10.1007/s00438-022-01949-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 08/27/2022] [Indexed: 10/14/2022]
Abstract
Alzheimer's disease (AD) and high blood pressure (BP) are prevalent age-related diseases with significant unexplained heritability. A thorough analysis of genetic pleiotropy between AD and BP will lay a foundation for the study of the associated molecular mechanisms, leading to a better understanding of the development of each phenotype. We used the conditional false discovery rate (cFDR) method to identify novel genetic loci associated with both AD and BP. The cFDR approach improves the effective sample size for association testing by combining GWAS summary statistics for correlated phenotypes. We identified 50 pleiotropic SNPs for AD and BP, 7 of which are novel and have not previously been reported to be associated with either AD or BP. The novel SNPs located at STK3 are particularly noteworthy, as this gene may influence AD risk via the Hippo signaling network, which regulates cell death. Bayesian colocalization analysis demonstrated that although AD and BP are associated, they do not appear to share the same causal variants. We further performed two sample Mendelian randomization analysis, but could not detect a causal effect of BP on AD. Despite the inability to establish a causal link between AD and BP, our findings report some potential novel pleiotropic loci that may influence disease susceptibility. In summary, we identified 7 SNPs that annotate to 4 novel genes which have not previously been reported to be associated with AD nor with BP and discuss the possible role of one of these genes, STK3 in the Hippo signaling network.
Collapse
Affiliation(s)
- Megan Sullivan
- Tulane Center for Biomedical Informatics and Genomics, School of Medicine, Tulane University, New Orleans, LA, 70112, USA
| | - Hong-Wen Deng
- Tulane Center for Biomedical Informatics and Genomics, School of Medicine, Tulane University, New Orleans, LA, 70112, USA
| | - Jonathan Greenbaum
- Tulane Center for Biomedical Informatics and Genomics, School of Medicine, Tulane University, New Orleans, LA, 70112, USA.
| |
Collapse
|
13
|
Wang H, Shang Y, Wang E, Xu X, Zhang Q, Qian C, Yang Z, Wu S, Zhang T. MST1 mediates neuronal loss and cognitive deficits: A novel therapeutic target for Alzheimer's disease. Prog Neurobiol 2022; 214:102280. [PMID: 35525373 DOI: 10.1016/j.pneurobio.2022.102280] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 04/10/2022] [Accepted: 04/29/2022] [Indexed: 11/18/2022]
Abstract
Alzheimer's disease (AD) is the most prevalent form of dementia in the old adult and characterized by progressive cognitive decline and neuronal damage. The mammalian Ste20-like kinase1/2 (MST1/2) is a core component in Hippo signaling, which regulates neural stem cell proliferation, neuronal death and neuroinflammation. However, whether MST1/2 is involved in the occurrence and development of AD remains unknown. In this study we reported that the activity of MST1 was increased with Aβ accumulation in the hippocampus of 5xFAD mice. Overexpression of MST1 induced AD-like phenotype in normal mice and accelerated cognitive decline, synaptic plasticity damage and neuronal apoptosis in 2-month-old 5xFAD mice, but did not significantly affect Aβ levels. Mechanistically, MST1 associated with p53 and promoted neuronal apoptosis by phosphorylation and activation of p53, while p53 knockout largely reversed MST1-induced AD-like cognitive deficits. Importantly, either genetic knockdown or chemical inactivation of MST1 could significantly improve cognitive deficits and neuronal apoptosis in 7-month-old 5xFAD mice. Our results support the idea that MST1-mediated neuronal apoptosis is an essential mechanism of cognitive deficits and neuronal loss for AD, and manipulating the MST1 activity as a potential strategy will shed light on clinical treatment for AD or other diseases caused by neuronal injury.
Collapse
Affiliation(s)
- Hui Wang
- College of Life Sciences, Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, 300071 Tianjin, PR China.
| | - Yingchun Shang
- College of Life Sciences, Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, 300071 Tianjin, PR China.
| | - Enlin Wang
- College of Life Sciences, Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, 300071 Tianjin, PR China.
| | - Xinxin Xu
- College of Life Sciences, Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, 300071 Tianjin, PR China.
| | - Qiyue Zhang
- College of Life Sciences, Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, 300071 Tianjin, PR China.
| | - Chenxi Qian
- College of Life Sciences, Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, 300071 Tianjin, PR China.
| | - Zhuo Yang
- School of Medicine, State Key Laboratory of Medicinal Chemical Biology, Nankai University, 300071 Tianjin, PR China.
| | - Shian Wu
- College of Life Sciences, Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, 300071 Tianjin, PR China.
| | - Tao Zhang
- College of Life Sciences, Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, 300071 Tianjin, PR China.
| |
Collapse
|
14
|
Kakoty V, K C S, Dubey SK, Yang CH, Marathe SA, Taliyan R. Epigenetic regulation and autophagy modulation debilitates insulin resistance associated Alzheimer's disease condition in rats. Metab Brain Dis 2022; 37:927-944. [PMID: 35064868 DOI: 10.1007/s11011-021-00846-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 09/23/2021] [Indexed: 11/26/2022]
Abstract
Insulin resistance (IR) and accumulation of amyloid beta (Aβ) oligomers are potential causative factor for Alzheimer's Disease (AD). Simultaneously, enhanced clearance level of these oligomers through autophagy activation bring novel insights into their therapeutic paradigm. Autophagy activation is negatively correlated with mammalian target of rapamycin (mTOR) and dysregulated mTOR level due to epigenetic alterations can further culminate towards AD pathogenesis. Therefore, in the current study we explored the neuroprotective efficacy of rapamycin (rapa) and vorinostat (vori) in-vitro and in-vivo. Aβ1-42 treated SH-SY5Y cells were exposed to rapa (20 μM) and vori (4 μM) to analyse mRNA expression of amyloid precursor protein (APP), brain derived neurotrophic factor (BDNF), glial cell derived neurotrophic factor (GDNF), neuronal growth factor (NGF), beclin-1, microtubule-associated protein 1A/1B-light chain 3-phosphatidylethanolamine conjugate (LC3), lysosome-associated membrane protein 2 (LAMP2) and microtubule associated protein 2 (MAP2). In order to develop IR condition, rats were fed a high fat diet (HFD) for 8 weeks and then subjected to intracerebroventricular Aβ1-42 administration. Subsequently, their treatment was initiated with rapa (1 mg/kg, i.p.) and vori (50 mg/kg, i.p.) once daily for 28 days. Morris water maze was performed to govern cognitive impairment followed by sacrification for subsequent mRNA, biochemical, western blot and histological estimations. For all the measured parameters, a significant improvement was observed amongst the combination treatment group in contrast to that of the HFD + Aβ1-42 group and that of the groups treated with the drugs alone. Outcomes of the present study thus suggest that combination therapy with rapa and vori provide a prospective therapeutic approach to ameliorate AD symptoms exacerbated by IR.
Collapse
Affiliation(s)
- Violina Kakoty
- Neuropsychopharmacology Division, Department of Pharmacy, Birla Institute of Technology and Science, Pilani, Pilani Campus, Rajasthan, 333031, India
| | - Sarathlal K C
- Neuropsychopharmacology Division, Department of Pharmacy, Birla Institute of Technology and Science, Pilani, Pilani Campus, Rajasthan, 333031, India
| | - Sunil Kumar Dubey
- Neuropsychopharmacology Division, Department of Pharmacy, Birla Institute of Technology and Science, Pilani, Pilani Campus, Rajasthan, 333031, India
- R&D Healthcare Division, Emami Ltd., Kolkatta, 700107, India
| | - Chih-Hao Yang
- Department of Pharmacology, Taipei Medical University, Taipei, 110, Taiwan
| | - Sandhya Amol Marathe
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani, Pilani Campus, Rajasthan, 333031, India
| | - Rajeev Taliyan
- Neuropsychopharmacology Division, Department of Pharmacy, Birla Institute of Technology and Science, Pilani, Pilani Campus, Rajasthan, 333031, India.
| |
Collapse
|
15
|
Park JY, Park SH, Oh SW, Kwon K, Yu E, Choi S, Yang S, Han SB, Jung K, Song M, Cho JY, Lee J. Yellow Chaste Weed and Its Components, Apigenin and Galangin, Affect Proliferation and Oxidative Stress in Blue Light-Irradiated HaCaT Cells. Nutrients 2022; 14:nu14061217. [PMID: 35334874 PMCID: PMC8953766 DOI: 10.3390/nu14061217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/22/2022] [Accepted: 03/10/2022] [Indexed: 11/16/2022] Open
Abstract
While harmful effects of blue light on skin cells have been recently reported, there are few studies regarding natural products that alleviate its negative effects. Therefore, we investigated ameliorating effects of yellow chaste weed (YCW) (Helichrysum arenarium) extract and its components, apigenin and galangin, on blue light-irradiated HaCaT cells. In this study, we found that YCW extract improved the reduced proliferation of HaCaT cells induced by blue light-irradiation and reduced blue light-induced production of reactive oxygen species (ROS) levels. We also found that apigenin and galangin, the main components of YCW extract, showed the same activities as YCW extract. In experiments examining molecular mechanisms of YCW extract and its components such as apigenin and galangin, they all reduced expression of transient receptor potential vanilloid member 1 (TRPV1), its phosphorylation, and calcium ion (Ca2+) influx induced by blue light irradiation. In addition, apigenin and galangin regulated phosphorylation of mitogen-activated protein kinases (MAPKs). They also reduced phosphorylation of mammalian sterile 20-like kinase-1/2 (MST-1/2), inducing phosphorylation of Akt (protein kinase B), one downstream molecule of MST-1/2. Moreover, apigenin and galangin promoted translocation of Forkhead box O3 (FoxO3a) from the nucleus to the cytosol by phosphorylating FoxO3a. Besides, apigenin and galangin interrupted blue light influences on expression of nuclear and secretory clusterin. Namely, they attenuated both upregulation of nuclear clusterin and downregulation of secretory clusterin induced by blue light irradiation. We also found that they downregulated apoptotic protein Bcl-2 associated X protein (Bax) and conversely upregulated anti-apoptotic protein B-cell lymphoma 2 (Bcl-2). Collectively, these findings indicate that YCW extract and its components, apigenin and galangin, antagonize the blue light-induced damage to the keratinocytes by regulating TRPV1/clusterin/FoxO3a and MAPK signaling.
Collapse
Affiliation(s)
- Jung Yoen Park
- Molecular Dermatology Laboratory, Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon City 16419, Korea; (J.Y.P.); (S.W.O.); (K.K.); (E.Y.); (S.C.); (S.Y.); (S.B.H.)
| | - See-Hyoung Park
- Department of Bio and Chemical Engineering, Hongik University, Sejong City 30016, Korea;
| | - Sae Woong Oh
- Molecular Dermatology Laboratory, Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon City 16419, Korea; (J.Y.P.); (S.W.O.); (K.K.); (E.Y.); (S.C.); (S.Y.); (S.B.H.)
| | - Kitae Kwon
- Molecular Dermatology Laboratory, Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon City 16419, Korea; (J.Y.P.); (S.W.O.); (K.K.); (E.Y.); (S.C.); (S.Y.); (S.B.H.)
| | - Eunbi Yu
- Molecular Dermatology Laboratory, Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon City 16419, Korea; (J.Y.P.); (S.W.O.); (K.K.); (E.Y.); (S.C.); (S.Y.); (S.B.H.)
| | - Seoyoung Choi
- Molecular Dermatology Laboratory, Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon City 16419, Korea; (J.Y.P.); (S.W.O.); (K.K.); (E.Y.); (S.C.); (S.Y.); (S.B.H.)
| | - Seoyoun Yang
- Molecular Dermatology Laboratory, Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon City 16419, Korea; (J.Y.P.); (S.W.O.); (K.K.); (E.Y.); (S.C.); (S.Y.); (S.B.H.)
| | - Su Bin Han
- Molecular Dermatology Laboratory, Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon City 16419, Korea; (J.Y.P.); (S.W.O.); (K.K.); (E.Y.); (S.C.); (S.Y.); (S.B.H.)
| | - Kwangsun Jung
- Biocosmetics Laboratory, TOUN28 Inc., Seongnam 13449, Korea;
| | - Minkyung Song
- Integrative Research of T Cells Laboratory, Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon City 16419, Korea
- Correspondence: (M.S.); (J.Y.C.); (J.L.); Tel.: +82-31-290-7861 (J.L.)
| | - Jae Youl Cho
- Molecular Immunology Laboratory, Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon City 16419, Korea
- Correspondence: (M.S.); (J.Y.C.); (J.L.); Tel.: +82-31-290-7861 (J.L.)
| | - Jongsung Lee
- Molecular Dermatology Laboratory, Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon City 16419, Korea; (J.Y.P.); (S.W.O.); (K.K.); (E.Y.); (S.C.); (S.Y.); (S.B.H.)
- Correspondence: (M.S.); (J.Y.C.); (J.L.); Tel.: +82-31-290-7861 (J.L.)
| |
Collapse
|
16
|
Jaganjac M, Milkovic L, Zarkovic N, Zarkovic K. Oxidative stress and regeneration. Free Radic Biol Med 2022; 181:154-165. [PMID: 35149216 DOI: 10.1016/j.freeradbiomed.2022.02.004] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 02/06/2022] [Indexed: 12/19/2022]
Abstract
Regeneration is the process of replacing/restoring a damaged cell/tissue/organ to its full function and is limited respecting complexity of specific organ structures and the level of differentiation of the cells. Unlike physiological cell turnover, this tissue replacement form is activated upon pathological stimuli such as injury and/or disease that usually involves inflammatory response. To which extent will tissue repair itself depends on many factors and involves different mechanisms. Oxidative stress is one of them, either acute, as in case of traumatic brin injury or chronic, as in case of neurodegeneration, oxidative stress within brain involves lipid peroxidation, which generates reactive aldehydes, such as 4-hydroxynonenal (4-HNE). While 4-HNE is certainly neurotoxic and causes disruption of the blood brain barrier in case of severe injuries, it is also physiologically produced by glial cells, especially astrocytes, but its physiological roles within CNS are not understood. Because 4-HNE can regulate the response of the other cells in the body to stress, enhance their antioxidant capacities, proliferation and differentiation, we could assume that it may also have some beneficial role for neuroregeneration. Therefore, future studies on the relevance of 4-HNE for the interaction between neuronal cells, notably stem cells and reactive astrocytes might reveal novel options to better monitor and treat consequences or brain injuries, neurodegeneration and regeneration.
Collapse
Affiliation(s)
- Morana Jaganjac
- Rudjer Boskovic Institute, Laboratory for Oxidative Stress (LabOS), Div. Molecular Medicine, Bijenicka 54, Zagreb, Croatia
| | - Lidija Milkovic
- Rudjer Boskovic Institute, Laboratory for Oxidative Stress (LabOS), Div. Molecular Medicine, Bijenicka 54, Zagreb, Croatia
| | - Neven Zarkovic
- Rudjer Boskovic Institute, Laboratory for Oxidative Stress (LabOS), Div. Molecular Medicine, Bijenicka 54, Zagreb, Croatia.
| | - Kamelija Zarkovic
- University of Zagreb, School of Medicine, Div. of Pathology, Neuropathology Unit, University Hospital Centre Zagreb, Kispaticeva 12, Zagreb, Croatia
| |
Collapse
|
17
|
Lim JM, Lee R, Kim Y, Lee IY, Kim E, Choi EJ. MST1 mediates the N-methyl-D-aspartate-induced excitotoxicity in mouse cortical neurons. Cell Mol Life Sci 2021; 79:15. [PMID: 34967918 PMCID: PMC11071856 DOI: 10.1007/s00018-021-04103-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 12/13/2021] [Accepted: 12/17/2021] [Indexed: 10/19/2022]
Abstract
Excessive activation of the ionotropic N-methyl-D-aspartate (NMDA) receptor has been shown to cause abnormally high levels of Ca2+ influx, thereby leading to excitotoxic neuronal death. In this study, exposure of mouse primary cortical neurons to NMDA resulted in the cleavage and activation of mammalian sterile 20-like kinase-1 (MST1), both of which were mediated by calpain 1. In vitro cleavage assay data indicated that calpain 1 cleaves out the autoinhibitory domain of MST1 to generate an active form of the kinase. Furthermore, calpain 1 mediated the cleavage and activation of wild-type MST1, but not of MST1 (G339A). Intriguingly, NMDA/calpain-induced MST1 activation promoted the nuclear translocation of the kinase and the phosphorylation of histone H2B in mouse cortical neurons, leading to excitotoxicity. Thus, we propose a previously unrecognized mechanism of MST1 activation associated with NMDA-induced excitotoxic neuronal death.
Collapse
Affiliation(s)
- Jane Melissa Lim
- Department of Life Sciences, Korea University, Seoul, 02841, South Korea
| | - Rumi Lee
- Department of Life Sciences, Korea University, Seoul, 02841, South Korea
| | - Yeonsil Kim
- Department of Life Sciences, Korea University, Seoul, 02841, South Korea
| | - In Young Lee
- Department of Life Sciences, Korea University, Seoul, 02841, South Korea
| | - Eunju Kim
- Department of Life Sciences, Korea University, Seoul, 02841, South Korea
| | - Eui-Ju Choi
- Department of Life Sciences, Korea University, Seoul, 02841, South Korea.
| |
Collapse
|
18
|
Gupta R, Ambasta RK, Pravir Kumar. Autophagy and apoptosis cascade: which is more prominent in neuronal death? Cell Mol Life Sci 2021; 78:8001-8047. [PMID: 34741624 PMCID: PMC11072037 DOI: 10.1007/s00018-021-04004-4] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 10/16/2021] [Accepted: 10/20/2021] [Indexed: 02/06/2023]
Abstract
Autophagy and apoptosis are two crucial self-destructive processes that maintain cellular homeostasis, which are characterized by their morphology and regulated through signal transduction mechanisms. These pathways determine the fate of cellular organelle and protein involved in human health and disease such as neurodegeneration, cancer, and cardiovascular disease. Cell death pathways share common molecular mechanisms, such as mitochondrial dysfunction, oxidative stress, calcium ion concentration, reactive oxygen species, and endoplasmic reticulum stress. Some key signaling molecules such as p53 and VEGF mediated angiogenic pathway exhibit cellular and molecular responses resulting in the triggering of apoptotic and autophagic pathways. Herein, based on previous studies, we describe the intricate relation between cell death pathways through their common genes and the role of various stress-causing agents. Further, extensive research on autophagy and apoptotic machinery excavates the implementation of selective biomarkers, for instance, mTOR, Bcl-2, BH3 family members, caspases, AMPK, PI3K/Akt/GSK3β, and p38/JNK/MAPK, in the pathogenesis and progression of neurodegenerative diseases. This molecular phenomenon will lead to the discovery of possible therapeutic biomolecules as a pharmacological intervention that are involved in the modulation of apoptosis and autophagy pathways. Moreover, we describe the potential role of micro-RNAs, long non-coding RNAs, and biomolecules as therapeutic agents that regulate cell death machinery to treat neurodegenerative diseases. Mounting evidence demonstrated that under stress conditions, such as calcium efflux, endoplasmic reticulum stress, the ubiquitin-proteasome system, and oxidative stress intermediate molecules, namely p53 and VEGF, activate and cause cell death. Further, activation of p53 and VEGF cause alteration in gene expression and dysregulated signaling pathways through the involvement of signaling molecules, namely mTOR, Bcl-2, BH3, AMPK, MAPK, JNK, and PI3K/Akt, and caspases. Alteration in gene expression and signaling cascades cause neurotoxicity and misfolded protein aggregates, which are characteristics features of neurodegenerative diseases. Excessive neurotoxicity and misfolded protein aggregates lead to neuronal cell death by activating death pathways like autophagy and apoptosis. However, autophagy has a dual role in the apoptosis pathways, i.e., activation and inhibition of the apoptosis signaling. Further, micro-RNAs and LncRNAs act as pharmacological regulators of autophagy and apoptosis cascade, whereas, natural compounds and chemical compounds act as pharmacological inhibitors that rescue neuronal cell death through inhibition of apoptosis and autophagic cell death.
Collapse
Affiliation(s)
- Rohan Gupta
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Mechanical Engineering Building, Delhi Technological University (Formerly Delhi College of Engineering), Room# FW4TF3, Shahbad Daulatpur, Bawana Road, Delhi, 110042, India
| | - Rashmi K Ambasta
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Mechanical Engineering Building, Delhi Technological University (Formerly Delhi College of Engineering), Room# FW4TF3, Shahbad Daulatpur, Bawana Road, Delhi, 110042, India
| | - Pravir Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Mechanical Engineering Building, Delhi Technological University (Formerly Delhi College of Engineering), Room# FW4TF3, Shahbad Daulatpur, Bawana Road, Delhi, 110042, India.
- , Delhi, India.
| |
Collapse
|
19
|
Chen D, Yu W, Aitken L, Gunn-Moore F. Willin/FRMD6: A Multi-Functional Neuronal Protein Associated with Alzheimer's Disease. Cells 2021; 10:cells10113024. [PMID: 34831245 PMCID: PMC8616527 DOI: 10.3390/cells10113024] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/24/2021] [Accepted: 10/25/2021] [Indexed: 12/18/2022] Open
Abstract
The FERM domain-containing protein 6 (FRMD6), also known as Willin, is an upstream regulator of Hippo signaling that has recently been shown to modulate actin cytoskeleton dynamics and mechanical phenotype of neuronal cells through ERK signaling. Physiological functions of Willin/FRMD6 in the nervous system include neuronal differentiation, myelination, nerve injury repair, and vesicle exocytosis. The newly established neuronal role of Willin/FRMD6 is of particular interest given the mounting evidence suggesting a role for Willin/FRMD6 in Alzheimer's disease (AD), including a series of genome wide association studies that position Willin/FRMD6 as a novel AD risk gene. Here we describe recent findings regarding the role of Willin/FRMD6 in the nervous system and its actions in cellular perturbations related to the pathogenesis of AD.
Collapse
|
20
|
Wang T, Hu W, Niu Y, Liu S, Fu L. Exercise improves lipid metabolism disorders induced by high-fat diet in a SESN2/JNK-independent manner. Appl Physiol Nutr Metab 2021; 46:1322-1330. [PMID: 34038646 DOI: 10.1139/apnm-2021-0241] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
SESN2 and JNK are emerging powerful stress-inducible proteins in regulating lipid metabolism. The aim of this study was to determine the underlying mechanism of SESN2/JNK signaling in exercise to improve lipid disorder induced by high-fat diet (HFD). Our data showed that HFD and SESN2 knockout resulted in abnormalities including elevated body weight, increased fat mass, serum total cholesterol, lipid biosynthesis related proteins, and a concomitant increase of pJNK-Thr183/Tyr185. The above changes were reversed by exercise training. SESN2 silencing or JNK inhibition in palmitate-treated C2C12 further confirmed that SESN2 and JNK play a vital role in lipid biosynthesis. Rescue experiment further demonstrated that SESN2 reduced lipid biosynthesis through inhibition of JNK. SESN2/JNK signaling axis regulates lipid biosynthesis in both animal and cell models with abnormalities of lipid metabolism induced by HFD or palmitate treatment. This study provided evidence that exercise ameliorated lipid metabolic disorder induced by HFD feeding or by SESN2 knockout. SESN2 may improve lipid metabolism through inhibition JNK expression in skeletal muscle cells, providing a molecular mechanism that may represent an attractive target for the treatment of lipid disorder. Novelty: Exercise improved lipid disorder induced by HFD feeding and SESN2 knockout. SESN2 and JNK play a vital role in lipid biosynthesis in vivo and in vitro. SESN2 suppressed JNK to improve lipid metabolism in skeletal muscle cells.
Collapse
Affiliation(s)
- Tianyi Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Science, Tianjin Medical University, Tianjin 300070, China
| | - Wenqing Hu
- Department of Rehabilitation, School of Medical Technology, Tianjin Medical University, Tianjin 300070, China
| | - Yanmei Niu
- Department of Rehabilitation, School of Medical Technology, Tianjin Medical University, Tianjin 300070, China
| | - Sujuan Liu
- Department of Anatomy and Histology, School of Basic Medical Science, Tianjin Medical University, Tianjin 300070, China
| | - Li Fu
- Department of Physiology and Pathophysiology, School of Basic Medical Science, Tianjin Medical University, Tianjin 300070, China
- Department of Rehabilitation, School of Medical Technology, Tianjin Medical University, Tianjin 300070, China
| |
Collapse
|
21
|
Chi Q, Hu X, Liu Z, Han Y, Tao D, Xu S, Li S. H 2S exposure induces cell death in the broiler thymus via the ROS-initiated JNK/MST1/FOXO1 pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 222:112488. [PMID: 34246945 DOI: 10.1016/j.ecoenv.2021.112488] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 06/28/2021] [Accepted: 07/01/2021] [Indexed: 06/13/2023]
Abstract
Hydrogen sulfide (H2S) is a common toxic gas in chicken houses that endangers the health of poultry. Harbin has a cold climate in winter, and the conflict between heat preservation and ventilation in poultry houses is obvious. In this study, we investigated the H2S content in chicken houses during winter in Harbin and found that the H2S concentration exceeded the national standard in individual chicken houses. Then, a model of H2S exposure was established in an environmental simulation chamber. We also developed a NaHS exposure model of chicken peripheral blood lymphocytes in vitro. Proteomics analysis was used to reveal the toxicology of thymus injury in broilers, the FOXO signaling pathway was determined to be significantly enriched, ROS bursts and JNK/MST1/FOXO1 pathway activation induced by H2S exposure were detected, and ROS played an important switch role in the JNK/MST1/FOXO1 pathway. In addition, H2S exposure-induced thymus cell death involved immune dysregulation. Overall, the present study adds data for H2S contents in chicken houses, provides new findings for the mechanism of H2S poisoning and reveals a new regulatory pathway in immune injury.
Collapse
Affiliation(s)
- Qianru Chi
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Xueyuan Hu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Zhaoyi Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Yanfei Han
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Dayong Tao
- College of Animal Science, Tarim University, Alar, Xinjiang Uygur Autonomous Region 843300, China
| | - Shiwen Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; College of Animal Science, Tarim University, Alar, Xinjiang Uygur Autonomous Region 843300, China
| | - Shu Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| |
Collapse
|
22
|
Hong S, Nagayach A, Lu Y, Peng H, Duong QVA, Pham NB, Vuong CA, Bazan NG. A high fat, sugar, and salt Western diet induces motor-muscular and sensory dysfunctions and neurodegeneration in mice during aging: Ameliorative action of metformin. CNS Neurosci Ther 2021; 27:1458-1471. [PMID: 34510763 PMCID: PMC8611779 DOI: 10.1111/cns.13726] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 08/17/2021] [Accepted: 08/18/2021] [Indexed: 01/18/2023] Open
Abstract
Aims To explore the novel linkage between a Western diet combining high saturated fat, sugar, and salt (HFSS) and neurological dysfunctions during aging as well as Metformin intervention, we assessed cerebral cortex abnormalities associated with sensory and motor dysfunctions and cellular and molecular insights in brains using HFSS‐fed mice during aging. We also explored the effect of Metformin treatment on these mice. Methods C57BL/6 mice were fed with HFSS and treated with metformin from 20 to 22 months of age, resembling human aging from 56 to 68 years of age (an entry phase of the aged portion of lifespan). Results The motor and sensory cortexes in mice during aging after HFSS diet showed: (A) decreased motor‐muscular and sensory functions; (B) reduced inflammation‐resolving Arg‐1+ microglia; (C) increased inflammatory iNOs+ microglia and TNFα levels; (D) enhanced abundance of amyloid‐β peptide and of phosphorylated Tau. Metformin attenuated these changes. Conclusion A HFSS‐combined diet caused motor‐muscular and sensory dysfunctions, neuroinflammation, and neurodegeneration, whereas metformin counteracted these effects. Our findings show neuroinflammatory consequences of a HFSS diet in aging. Metformin curbs the HFSS‐related neuroinflammation eliciting neuroprotection.
Collapse
Affiliation(s)
- Song Hong
- Neuroscience Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA.,Department of Ophthalmology, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
| | - Aarti Nagayach
- Neuroscience Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
| | - Yan Lu
- Neuroscience Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
| | - Hongying Peng
- Biostatistics, Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Quoc-Viet A Duong
- Neuroscience Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
| | - Nicholas B Pham
- Neuroscience Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
| | - Christopher A Vuong
- Neuroscience Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
| | - Nicolas G Bazan
- Neuroscience Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA.,Department of Ophthalmology, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
| |
Collapse
|
23
|
Down-regulation of MST1 in hippocampus protects against stress-induced depression-like behaviours and synaptic plasticity impairments. Brain Behav Immun 2021; 94:196-209. [PMID: 33607238 DOI: 10.1016/j.bbi.2021.02.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 01/26/2021] [Accepted: 02/05/2021] [Indexed: 12/15/2022] Open
Abstract
Depression is a common mental disorder, and its main environmental risk factor is chronic stress. The activation of mammalian STE20-like kinase 1 (MST1), a key factor involved in the underlying pathophysiology of stress, can trigger synaptic plasticity impairment, neuronal dysfunction and neuroinflammation. However, it is unclear whether down-regulation of MST1 in the hippocampus protects against stress-induced behavioural dysfunctions. In this study, three mouse models were used to assess the role of MST1 in stress. Various behavioural tests, in vivo electrophysiological recordings, Western blotting, Golgi staining and immunofluorescence assay were used. The data showed that the level of phospho-MST1 (T183) was significantly increased in the hippocampus of mice subjected to chronic unpredictable mild stress (CUMS) and that mice with MST1 overexpression showed depression-like behaviours. Importantly, the impairment of cognitive functions and the hippocampal synaptic plasticity induced by CUMS were significantly improved by MST1 knockdown, suggesting that MST1 down-regulation effectively protected against stress-induced behavioural dysfunctions. Moreover, MST1 knockdown suppressed CUMS-induced microglial activation, reduced the abnormal expression of inflammatory cytokines and impeded the activation of p38, implying that the antidepressant-like effects of MST1 knockdown were associated with inhibiting the p38 pathway. These findings suggest that hippocampal MST1 is an essential regulator of stress, which can be an ideal target for the development of antidepressants in the future.
Collapse
|
24
|
Gao A, Tang H, Zhang Q, Liu R, Wang L, Liu Y, Qi Z, Shen Y. Mst1/2-ALK promotes NLRP3 inflammasome activation and cell apoptosis during Listeria monocytogenes infection. J Microbiol 2021; 59:681-692. [PMID: 33877580 DOI: 10.1007/s12275-021-0638-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 02/15/2021] [Accepted: 03/05/2021] [Indexed: 10/21/2022]
Abstract
Listeria monocytogenes (L. monocytogenes) is a Gram-positive intracellular foodborne pathogen that causes severe diseases, such as meningitis and sepsis. The NLR family pyrin domain-containing 3 (NLRP3) inflammasome has been reported to participate in host defense against pathogen infection. However, the exact molecular mechanisms underlying NLRP3 inflammasome activation remain to be fully elucidated. In the present study, the roles of mammalian Ste20-like kinases 1/2 (Mst1/2) and Anaplastic Lymphoma Kinase (ALK) in the activation of the NLRP3 inflammasome induced by L. monocytogenes infection were investigated. The expression levels of Mst1/2, phospho (p)-ALK, p-JNK, Nek7, and NLRP3 downstream molecules including activated cas-pase-1 (p20) and mature interleukin (IL)-1β (p17), were up-regulated in L. monocytogenes-infected macrophages. The ALK inhibitor significantly decreased the expression of p-JNK, Nek7, and NLRP3 downstream molecules in macrophages infected with L. monocytogenes. Furthermore, the Mst1/2 inhibitor markedly inhibited the L. monocytogenes-induced activation of ALK, subsequently downregulating the expression of p-JNK, Nek7, and NLRP3 downstream molecules. Therefore, our study demonstrated that Mst1/2-ALK mediated the activation of the NLRP3 inflammasome by promoting the interaction between Nek7 and NLRP3 via JNK during L. monocytogenes infection, which subsequently increased the maturation and release of proinflammatory cytokine to resist pathogen infection. Moreover, Listeriolysin O played a key role in the process. In addition, we also found that the L. monocytogenes-induced apoptosis of J774A.1 cells was reduced by the Mst1/2 or ALK inhibitor. The present study reported, for the first time, that the Mst1/2-ALK-JNK-NLRP3 signaling pathway plays a vital proinflammatory role during L. monocytogenes infection.
Collapse
Affiliation(s)
- Aijiao Gao
- School of Medical Laboratory, Tianjin Medical University, Tianjin, 300203, P. R. China
| | - Huixin Tang
- School of Medical Laboratory, Tianjin Medical University, Tianjin, 300203, P. R. China
| | - Qian Zhang
- Department of Histology and Embryology, School of Medicine, Nankai University, Tianjin, 300071, P. R. China
| | - Ruiqing Liu
- School of Medical Laboratory, Tianjin Medical University, Tianjin, 300203, P. R. China
| | - Lin Wang
- School of Medical Laboratory, Tianjin Medical University, Tianjin, 300203, P. R. China
| | - Yashan Liu
- School of Medical Laboratory, Tianjin Medical University, Tianjin, 300203, P. R. China
| | - Zhi Qi
- Department of Histology and Embryology, School of Medicine, Nankai University, Tianjin, 300071, P. R. China.
| | - Yanna Shen
- School of Medical Laboratory, Tianjin Medical University, Tianjin, 300203, P. R. China.
| |
Collapse
|
25
|
Quinpirole-Mediated Regulation of Dopamine D2 Receptors Inhibits Glial Cell-Induced Neuroinflammation in Cortex and Striatum after Brain Injury. Biomedicines 2021; 9:biomedicines9010047. [PMID: 33430188 PMCID: PMC7825629 DOI: 10.3390/biomedicines9010047] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/29/2020] [Accepted: 01/04/2021] [Indexed: 12/13/2022] Open
Abstract
Brain injury is a significant risk factor for chronic gliosis and neurodegenerative diseases. Currently, no treatment is available for neuroinflammation caused by the action of glial cells following brain injury. In this study, we investigated the quinpirole-mediated activation of dopamine D2 receptors (D2R) in a mouse model of traumatic brain injury (TBI). We also investigated the neuroprotective effects of quinpirole (a D2R agonist) against glial cell-induced neuroinflammation secondary to TBI in adult mice. After the brain injury, we injected quinpirole into the TBI mice at a dose of 1 mg/kg daily intraperitoneally for 7 days. Our results showed suppression of D2R expression and deregulation of downstream signaling molecules in ipsilateral cortex and striatum after TBI on day 7. Quinpirole administration regulated D2R expression and significantly reduced glial cell-induced neuroinflammation via the D2R/Akt/glycogen synthase kinase 3 beta (GSK3-β) signaling pathway after TBI. Quinpirole treatment concomitantly attenuated increase in glial cells, neuronal apoptosis, synaptic dysfunction, and regulated proteins associated with the blood–brain barrier, together with the recovery of lesion volume in the TBI mouse model. Additionally, our in vitro results confirmed that quinpirole reversed the microglial condition media complex-mediated deleterious effects and regulated D2R levels in HT22 cells. This study showed that quinpirole administration after TBI reduced secondary brain injury-induced glial cell activation and neuroinflammation via regulation of the D2R/Akt/GSK3-β signaling pathways. Our study suggests that quinpirole may be a safe therapeutic agent against TBI-induced neurodegeneration.
Collapse
|
26
|
Ullah R, Jo MH, Riaz M, Alam SI, Saeed K, Ali W, Rehman IU, Ikram M, Kim MO. Glycine, the smallest amino acid, confers neuroprotection against D-galactose-induced neurodegeneration and memory impairment by regulating c-Jun N-terminal kinase in the mouse brain. J Neuroinflammation 2020; 17:303. [PMID: 33059700 PMCID: PMC7566050 DOI: 10.1186/s12974-020-01989-w] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 10/07/2020] [Indexed: 12/13/2022] Open
Abstract
Background Glycine is the smallest nonessential amino acid and has previously unrecognized neurotherapeutic effects. In this study, we examined the mechanism underlying the neuroprotective effect of glycine (Gly) against neuroapoptosis, neuroinflammation, synaptic dysfunction, and memory impairment resulting from d-galactose-induced elevation of reactive oxygen species (ROS) during the onset of neurodegeneration in the brains of C57BL/6N mice. Methods After in vivo administration of d-galactose (d-gal; 100 mg/kg/day; intraperitoneally (i/p); for 60 days) alone or in combination with glycine (1 g/kg/day in saline solution; subcutaneously; for 60 days), all of the mice were sacrificed for further biochemical (ROS/lipid peroxidation (LPO) assay, Western blotting, and immunohistochemistry) after behavioral analyses. An in vitro study, in which mouse hippocampal neuronal HT22 cells were treated with or without a JNK-specific inhibitor (SP600125), and molecular docking analysis were used to confirm the underlying molecular mechanism and explore the related signaling pathway prior to molecular and histological analyses. Results Our findings indicated that glycine (an amino acid) inhibited d-gal-induced oxidative stress and significantly upregulated the expression and immunoreactivity of antioxidant proteins (Nrf2 and HO-1) that had been suppressed in the mouse brain. Both the in vitro and in vivo results indicated that d-gal induced oxidative stress-mediated neurodegeneration primarily by upregulating phospho-c-Jun N-terminal kinase (p-JNK) levels. However, d-gal + Gly cotreatment reversed the neurotoxic effects of d-gal by downregulating p-JNK levels, which had been elevated by d-gal. We also found that Gly reversed d-gal-induced neuroapoptosis by significantly reducing the protein expression levels of proapoptotic markers (Bax, cytochrome c, cleaved caspase-3, and cleaved PARP-1) and increasing the protein expression level of the antiapoptotic protein Bcl-2. Both the molecular docking approach and the in vitro study (in which the neuronal HT22 cells were treated with or without a p-JNK-specific inhibitor (SP600125)) further verified our in vivo findings that Gly bound to the p-JNK protein and inhibited its function and the JNK-mediated apoptotic pathway in the mouse brain and HT22 cells. Moreover, the addition of Gly alleviated d-gal-mediated neuroinflammation by inhibiting gliosis via attenuation of astrocytosis (GFAP) and microgliosis (Iba-1) in addition to reducing the protein expression levels of various inflammatory cytokines (IL-1βeta and TNFα). Finally, the addition of Gly reversed d-gal-induced synaptic dysfunction by upregulating the expression of memory-related presynaptic protein markers (synaptophysin (SYP), syntaxin (Syn), and a postsynaptic density protein (PSD95)) and markedly improved behavioral measures of cognitive deficits in d-gal-treated mice. Conclusion Our findings demonstrate that Gly-mediated deactivation of the JNK signaling pathway underlies the neuroprotective effect of Gly, which reverses d-gal-induced oxidative stress, apoptotic neurodegeneration, neuroinflammation, synaptic dysfunction, and memory impairment. Therefore, we suggest that Gly (an amino acid) is a safe and promising neurotherapeutic candidate that might be used for age-related neurodegenerative diseases.
Collapse
Affiliation(s)
- Rahat Ullah
- Division of Life Sciences and Applied Life Science (BK 21plus), College of Natural Science, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Myeung Hoon Jo
- Division of Life Sciences and Applied Life Science (BK 21plus), College of Natural Science, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Muhammad Riaz
- Department of Biochemistry, Abdul Wali Khan University Mardan, Mardan, Khyber Pakhtunkhwa, 23200, Pakistan
| | - Sayed Ibrar Alam
- Division of Life Sciences and Applied Life Science (BK 21plus), College of Natural Science, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Kamran Saeed
- Division of Life Sciences and Applied Life Science (BK 21plus), College of Natural Science, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Waqar Ali
- Division of Life Sciences and Applied Life Science (BK 21plus), College of Natural Science, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Inayat Ur Rehman
- Division of Life Sciences and Applied Life Science (BK 21plus), College of Natural Science, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Muhammad Ikram
- Division of Life Sciences and Applied Life Science (BK 21plus), College of Natural Science, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Myeong Ok Kim
- Division of Life Sciences and Applied Life Science (BK 21plus), College of Natural Science, Gyeongsang National University, Jinju, 52828, Republic of Korea.
| |
Collapse
|
27
|
Netrin1 deficiency activates MST1 via UNC5B receptor, promoting dopaminergic apoptosis in Parkinson's disease. Proc Natl Acad Sci U S A 2020; 117:24503-24513. [PMID: 32929029 DOI: 10.1073/pnas.2004087117] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The Hippo (MST1/2) pathway plays a critical role in restricting tissue growth in adults and modulating cell proliferation, differentiation, and migration in developing organs. Netrin1, a secreted laminin-related protein, is essential for nervous system development. However, the mechanisms underlying MST1 regulation by the extrinsic signals remain unclear. Here, we demonstrate that Netrin1 reduction in Parkinson's disease (PD) activates MST1, which selectively binds and phosphorylates netrin receptor UNC5B on T428 residue, promoting its apoptotic activation and dopaminergic neuronal loss. Netrin1 deprivation stimulates MST1 activation and interaction with UNC5B, diminishing YAP levels and escalating cell deaths. Knockout of UNC5B abolishes netrin depletion-induced dopaminergic loss, whereas blockade of MST1 phosphorylating UNC5B suppresses neuronal apoptosis. Remarkably, Netrin1 is reduced in PD patient brains, associated with MST1 activation and UNC5B T428 phosphorylation, which is accompanied by YAP reduction and apoptotic activation. Hence, Netrin1 regulates Hippo (MST1) pathway in dopaminergic neuronal loss in PD via UNC5B receptor.
Collapse
|
28
|
Chen X, Bao G, Liu F. Inhibition of USP15 Prevent Glutamate-Induced Oxidative Damage by Activating Nrf2/HO-1 Signaling Pathway in HT22 Cells. Cell Mol Neurobiol 2020; 40:999-1010. [PMID: 31933062 PMCID: PMC11448803 DOI: 10.1007/s10571-020-00789-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 01/07/2020] [Indexed: 02/07/2023]
Abstract
Oxidative stress has been identified as the significant mediator in epilepsy, which is a chronic disorder in central nervous system. About 30% of epilepsy patients are refractory to antiepileptic drug treatment. However, the underlying mechanism of oxidative damage in epilepsy needs further investigation. In our study, we first find that ubiquitin-specific peptidase 15 (USP15) expression was upregulated in a pentylenetetrazole (PTZ) kindled rat model of epilepsy. Silencing USP15 protected against glutamate-mediated neuronal cell death, and inhibited the high expression levels of cleaved caspase-3. Knockout of USP15 significantly reduced intracellular reactive oxygen species (ROS) levels and enhanced superoxide dismutase (SOD) activity in HT22 cells under the exposure to glutamate treatment. Furthermore, USP15 inhibition induced nuclear factor erythroid-derived 2-related factor2 (Nrf2) nuclear translocation and promoted protein expression level of heme oxygenase (HO-1). Taken together, our findings first reveal a role of USP15 in the pathogenesis of epilepsy, and silencing USP15 in vitro protects against glutamate-mediated cytotoxicity in HT22 cells. Pharmacological inhibition of USP15 may alleviate epileptic seizures via fighting against oxidative damage, providing a novel antiepileptic target.
Collapse
Affiliation(s)
- Xiaojie Chen
- Department of Neurology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 201999, China
| | - Guanshui Bao
- Department of Neurology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 201999, China.
| | - Fangfang Liu
- Department of Neurology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 201999, China
| |
Collapse
|
29
|
Hahm JR, Jo MH, Ullah R, Kim MW, Kim MO. Metabolic Stress Alters Antioxidant Systems, Suppresses the Adiponectin Receptor 1 and Induces Alzheimer's Like Pathology in Mice Brain. Cells 2020; 9:cells9010249. [PMID: 31963819 PMCID: PMC7016950 DOI: 10.3390/cells9010249] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 01/09/2020] [Accepted: 01/15/2020] [Indexed: 01/02/2023] Open
Abstract
Oxidative stress and insulin resistance play major roles in numerous neurodegenerative diseases, including Alzheimer’s disease (AD). A high-fat diet induces obesity-associated oxidative stress, neuronal insulin resistance, microglial activation, and neuroinflammation, which are considered important risk factors for neurodegeneration. Obesity-related metabolic dysfunction is a risk factor for cognitive decline. The present study aimed to elucidate whether chronic consumption of a high-fat diet (HFD; 24 weeks) can induce insulin resistance, neuroinflammation, and amyloid beta (Aβ) deposition in mouse brains. Male C57BL/6N mice were used for a high-fat diet (HFD)-induced pre-clinical model of obesity. The protein expression levels were examined via Western blot, immunofluorescence, and the behavior analysis was performed using the Morris water maze test. To obtain metabolic parameters, insulin sensitivity and glucose tolerance tests were performed. We found that metabolic perturbations from the chronic consumption of HFD elevated neuronal oxidative stress and insulin resistance through adiponectin receptor (AdipoR1) suppression in HFD-fed mice. Similarly, our in vitro results also indicated that knockdown of AdipoR1 in the embryonic mouse hippocampal cell line mHippoE-14 leads to increased oxidative stress in neurons. In addition, HFD markedly increased neuroinflammatory markers’ glial activation in the cortex and hippocampus regions of HFD mouse brains. More importantly, we observed that AdipoR1 suppression increased the amyloidogenic pathway both in vivo and in vitro. Furthermore, deregulated synaptic proteins and behavioral deficits were observed in the HFD mouse brains. Taken together, our findings suggest that excessive consumption of an HFD has a profound impact on brain function, which involves the acceleration of cognitive impairment due to increased obesity-associated oxidative stress, insulin resistance, and neuroinflammation, which ultimately may cause early onset of Alzheimer’s pathology via the suppression of AdipoR1 signaling in the brain.
Collapse
Affiliation(s)
- Jong Ryeal Hahm
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Gyeongsang National University Hospital and Institute of Health Sciences and Department of Internal Medicine, College of Medicine, Gyeongsang National University, Jinju 52828, Korea;
| | - Myeung Hoon Jo
- Division of Life Sciences and Applied Life Science (BK 21plus), College of Natural Science, Gyeongsang National University, Jinju 52828, Korea; (M.H.J.); (R.U.); (M.W.K.)
| | - Rahat Ullah
- Division of Life Sciences and Applied Life Science (BK 21plus), College of Natural Science, Gyeongsang National University, Jinju 52828, Korea; (M.H.J.); (R.U.); (M.W.K.)
| | - Min Woo Kim
- Division of Life Sciences and Applied Life Science (BK 21plus), College of Natural Science, Gyeongsang National University, Jinju 52828, Korea; (M.H.J.); (R.U.); (M.W.K.)
| | - Myeong Ok Kim
- Division of Life Sciences and Applied Life Science (BK 21plus), College of Natural Science, Gyeongsang National University, Jinju 52828, Korea; (M.H.J.); (R.U.); (M.W.K.)
- Correspondence: ; Tel.: +82-55-772-1345; Fax: +82-55-772-2656
| |
Collapse
|
30
|
Imam Aliagan A, Madungwe NB, Tombo N, Feng Y, Bopassa JC. Chronic GPER1 Activation Protects Against Oxidative Stress-Induced Cardiomyoblast Death via Preservation of Mitochondrial Integrity and Deactivation of Mammalian Sterile-20-Like Kinase/Yes-Associated Protein Pathway. Front Endocrinol (Lausanne) 2020; 11:579161. [PMID: 33193095 PMCID: PMC7604496 DOI: 10.3389/fendo.2020.579161] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 09/07/2020] [Indexed: 12/18/2022] Open
Abstract
Introduction: Estrogen (17β-estradiol, E2) is well-known to induce cardioprotective effects against ischemia/reperfusion (I/R) injury. We recently reported that acute application of E2 at the onset of reperfusion in vivo induces cardioprotective effects against I/R injury via activation of its non-steroidal receptor, G protein-coupled estrogen receptor 1 (GPER1). Here, we investigated the impact and mechanism underlying chronic GPER1 activation in cultured H9c2 rat cardiomyoblasts. Methods: H9c2 rat cardiomyoblasts were cultured and pretreated with the cytotoxic agent H2O2 for 24 h and incubated in the presence of vehicle (control), GPER1 agonists E2 and G1, or GPER1 agonists supplemented with G15 (GPER1 antagonist) for 48 or 96 h. After treatment, cells were collected to measure the rate of cell death and viability using flow cytometry and Calcein AM assay or MTT assay, respectively. The resistance to opening of the mitochondrial permeability transition pore (mPTP), the mitochondrial membrane potential, and ATP production was assessed using fluorescence microscopy, and the mitochondrial structural integrity was observed with electron microscopy. The levels of the phosphorylation of mammalian sterile-20-like kinase (MST1) and yes-associated protein (YAP) were assessed by Western blot analysis in whole-cell lysate, while the expression levels of mitochondrial biogenesis genes, YAP target genes, and proapoptotic genes were measured by qRT-PCR. Results: We found that after H2O2 treatment, chronic E2/G1 treatment decreased cell death effect was associated with the prevention of the S phase of the cell cycle arrest compared to control. In the mitochondria, chronic E2/G1 activation treatment preserved the cristae morphology, and increased resistance to opening of mPTP, but with little change to mitochondrial fusion/fission. Additionally, chronic E2/G1 treatment predominantly reduced phosphorylation of MST1 and YAP, as well as increased MST1 and YAP protein levels. E2 treatment also upregulated the expression levels of TGF-β and PGC-1α mRNAs and downregulated PUMA and Bim mRNAs. Except for ATP production, all the E2 or G1 effects were prevented by the cotreatment with the GPER1 antagonist, G15. Conclusion: Together, these results indicate that chronic GPER1 activation with its agonists E2 or G1 treatment protects H9c2 cardiomyoblasts against oxidative stress-induced cell death and increases cell viability by preserving mitochondrial structure and function as well as delaying the opening of mPTP. These chronic GPER1 effects are associated with the deactivation of the non-canonical MST1/YAP mechanism that leads to genetic upregulation of cell growth genes (CTGF, CYR61, PGC-1α, and ANKRD1), and downregulation of proapoptotic genes (PUMA and Bim).
Collapse
Affiliation(s)
- Abdulhafiz Imam Aliagan
- Department of Cellular and Integrative Physiology, School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Ngonidzashe B. Madungwe
- Department of Cellular and Integrative Physiology, School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
- Department of Biomedical Engineering, University of Texas at San Antonio, San Antonio, TX, United States
| | - Nathalie Tombo
- Department of Cellular and Integrative Physiology, School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Yansheng Feng
- Department of Cellular and Integrative Physiology, School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Jean C. Bopassa
- Department of Cellular and Integrative Physiology, School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
- *Correspondence: Jean C. Bopassa
| |
Collapse
|
31
|
Khan M, Ullah R, Rehman SU, Shah SA, Saeed K, Muhammad T, Park HY, Jo MH, Choe K, Rutten BPF, Kim MO. 17β-Estradiol Modulates SIRT1 and Halts Oxidative Stress-Mediated Cognitive Impairment in a Male Aging Mouse Model. Cells 2019; 8:cells8080928. [PMID: 31430865 PMCID: PMC6721687 DOI: 10.3390/cells8080928] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 08/08/2019] [Accepted: 08/14/2019] [Indexed: 12/15/2022] Open
Abstract
Oxidative stress has been considered the main mediator in neurodegenerative disease and in normal aging processes. Several studies have reported that the accumulation of reactive oxygen species (ROS), elevated oxidative stress, and neuroinflammation result in cellular malfunction. These conditions lead to neuronal cell death in aging-related neurodegenerative disorders such as Alzheimer’s disease (AD) and Parkinson’s disease. Chronic administration of d-galactose (d-gal) for a period of 10 weeks causes ROS generation and neuroinflammation, ultimately leading to cognitive impairment. In this study, we evaluated the estrogen receptor α (ERα)/silent mating type information regulation 2 homolog 1 (SIRT1)-dependent antioxidant efficacy of 17β-estradiol against d-gal-induced oxidative damage-mediated cognitive dysfunction in a male mouse model. The results indicate that 17β-estradiol, by stimulating ERα/SIRT1, halts d-gal-induced oxidative stress–mediated JNK/NF-ҡB overexpression, neuroinflammation and neuronal apoptosis. Moreover, 17β-estradiol ameliorated d-gal-induced AD-like pathophysiology, synaptic dysfunction and memory impairment in adult mouse brains. Interestingly, inhibition of SIRT1 with Ex527 (a potent and selective SIRT1 inhibitor) further enhanced d-gal-induced toxicity and abolished the beneficial effect of 17β-estradiol. Most importantly, for the first time, our molecular docking study reveals that 17β-estradiol allosterically increases the expression of SIRT1 and abolishes the inhibitory potential of d-ga. In summary, we can conclude that 17β-estradiol, in an ERα/SIRT1-dependent manner, abrogates d-gal-induced oxidative stress–mediated memory impairment, neuroinflammation, and neurodegeneration in adult mice.
Collapse
Affiliation(s)
- Mehtab Khan
- Division of Life sciences and Applied Life Science (BK 21plus), College of Natural Science, Gyeongsang National University, Jinju 52828, Korea
| | - Rahat Ullah
- Division of Life sciences and Applied Life Science (BK 21plus), College of Natural Science, Gyeongsang National University, Jinju 52828, Korea
| | - Shafiq Ur Rehman
- Division of Life sciences and Applied Life Science (BK 21plus), College of Natural Science, Gyeongsang National University, Jinju 52828, Korea
| | - Shahid Ali Shah
- Division of Life sciences and Applied Life Science (BK 21plus), College of Natural Science, Gyeongsang National University, Jinju 52828, Korea
| | - Kamran Saeed
- Division of Life sciences and Applied Life Science (BK 21plus), College of Natural Science, Gyeongsang National University, Jinju 52828, Korea
| | - Tahir Muhammad
- Division of Life sciences and Applied Life Science (BK 21plus), College of Natural Science, Gyeongsang National University, Jinju 52828, Korea
| | - Hyun Young Park
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNS), Medical Center (MUMC+), Faculty of Health, Medicine and Life Sciences, Maastricht University, European Graduate School of Neuroscience (EURON), 6229ER Maastricht, The Netherlands
| | - Myeung Hoon Jo
- Division of Life sciences and Applied Life Science (BK 21plus), College of Natural Science, Gyeongsang National University, Jinju 52828, Korea
| | - Kyonghwan Choe
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNS), Medical Center (MUMC+), Faculty of Health, Medicine and Life Sciences, Maastricht University, European Graduate School of Neuroscience (EURON), 6229ER Maastricht, The Netherlands
| | - Bart P F Rutten
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNS), Medical Center (MUMC+), Faculty of Health, Medicine and Life Sciences, Maastricht University, European Graduate School of Neuroscience (EURON), 6229ER Maastricht, The Netherlands
| | - Myeong Ok Kim
- Division of Life sciences and Applied Life Science (BK 21plus), College of Natural Science, Gyeongsang National University, Jinju 52828, Korea.
| |
Collapse
|