1
|
Saadh MJ, Ahmed HH, Kareem RA, Bishoyi AK, Roopashree R, Shit D, Arya R, Joshi KK, Sameer HN, Yaseen A, Athab ZH, Adil M, Narmani A, Farhood B. Recent advances of hyaluronic acid-based materials in drug delivery systems and regenerative medicine: A review. Arch Pharm (Weinheim) 2025; 358:e2400903. [PMID: 40091562 DOI: 10.1002/ardp.202400903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/31/2025] [Accepted: 02/18/2025] [Indexed: 03/19/2025]
Abstract
Nowadays, diseases have a high rate of incidence and mortality worldwide. On the other side, the drawbacks of conventional modalities in the suppression of diseases have encountered serious problematic issues for the health of human beings. For instance, although various approaches have been applied for the treatment of cancer, it has an ever-increasing rate of incidence and mortality throughout the globe. Thus, there is a fundamental requirement for the development of breakthrough technologies in the inhibition of diseases. Hyaluronic acid (HA) is one of the most practical biopolymers in the suppression of diseases. HA has lots of potential physicochemical (like rheological, structural, molecular weight, and ionization, etc.) and biomedical properties (bioavailability, biocompatibility, CD44 targeting and signaling pathways, components of biological organs, mucoadhesion, immunomodulation, etc.), which made it a potential candidate for the development of breakthrough tools in pharmaceutical and biomedical sciences. The ease of surface modification (carboxylation, amidation, hydroxylation, and esterification), high bioavailability and synthesis routes, and various administration routes are considered as other merits of HA-based vehicles. These mucopolysaccharide HA-based materials have been considerably developed for use in drug delivery systems (DDSs), cancer therapy, wound healing, antiaging, and tissue engineering. This review summarizes the advantages of HA-based DDS and scaffolds in the treatment of diseases.
Collapse
Affiliation(s)
| | | | | | - Ashok Kumar Bishoyi
- Marwadi University Research Center, Department of Microbiology, Faculty of Science, Marwadi University, Rajkot, Gujarat, India
| | - R Roopashree
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Debasish Shit
- Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, Punjab, India
| | - Renu Arya
- Department of Pharmacy, Chandigarh Pharmacy College, Chandigarh Group of Colleges-Jhanjeri, Mohali, Punjab, India
| | - Kamal Kant Joshi
- Department of Allied Science, Graphic Era Hill University, Dehradun, Uttarakhand, India
- Graphic Era Deemed to be University, Dehradun, Uttarakhand, India
| | - Hayder Naji Sameer
- Collage of Pharmacy, National University of Science and Technology, Dhi Qar, Iraq
| | | | - Zainab H Athab
- Department of Pharmacy, Al-Zahrawi University College, Karbala, Iraq
| | - Mohaned Adil
- Pharmacy college, Al-Farahidi University, Baghdad, Iraq
| | - Asghar Narmani
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Bagher Farhood
- Department of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
2
|
Zhang L, Fu X, Li J, Xiao W, Xiong X, Lv H, Zhang Z, Ju J. Treatment of Acute Ulcerative Colitis with Zinc Hyaluronate in Mice. J Microbiol Biotechnol 2025; 35:e2408050. [PMID: 39947703 PMCID: PMC11876020 DOI: 10.4014/jmb.2408.08050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 12/06/2024] [Accepted: 12/06/2024] [Indexed: 03/06/2025]
Abstract
Ulcerative colitis (UC) is a type of inflammatory bowel disease arising from numerous factors, while UC patients face insufficient treatment options and a high incidence of adverse reactions to the current therapies. As a functional food additive, hyaluronic acid plays a certain role in intestinal repair. In this study, we constructed a mouse model of dextran sulfate sodium (DSS)-induced UC to examine the effects and underlying mechanisms of action of zinc hyaluronate (ZnHA) on the pathogenesis of UC. ZnHA effectively alleviated key clinical UC symptoms, such as weight loss, loose stools, and bloody stools. Mechanistically, ZnHA attenuated the expression of inflammatory factors, such as tumor necrosis factor-α, interleukin (IL)-6, and myeloperoxidase while upregulating the expression of IL-10. Furthermore, through intestinal flora and short-chain fatty acid analyses, ZnHA was found to promote propionic acid production by enriching beneficial bacteria. ZnHA simultaneously enhanced the expression of tight junction proteins, specifically ZO-1 and occludin, thereby restoring intestinal barrier function. Overall, our findings elucidate the therapeutic potential of ZnHA in treating acute UC by inhibiting intestinal inflammation and regulating flora, while also providing further theoretical support for development of hyaluronic acid to treat this disease.
Collapse
Affiliation(s)
- Lan Zhang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, P.R. China
- Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210023, P.R. China
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, P.R. China
| | - Xuedan Fu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, P.R. China
- Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210023, P.R. China
| | - Jiazheng Li
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, P.R. China
- Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210023, P.R. China
| | - Wan Xiao
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, P.R. China
- Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210023, P.R. China
| | - Xi Xiong
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, P.R. China
- Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210023, P.R. China
| | - Huixia Lv
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, P.R. China
| | - Zhenhai Zhang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, P.R. China
- Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210023, P.R. China
| | - Jianming Ju
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, P.R. China
- Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210023, P.R. China
| |
Collapse
|
3
|
Vasudevan A, Ghosal D, Ram Sahu S, Kumar Jha N, Vijayaraghavan P, Kumar S, Kaur S. Injectable Hydrogels for Liver: Potential for Clinical Translation. Chem Asian J 2025; 20:e202401106. [PMID: 39552124 DOI: 10.1002/asia.202401106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 11/15/2024] [Accepted: 11/15/2024] [Indexed: 11/19/2024]
Abstract
Injectable hydrogels are a sub-type of hydrogels which can be delivered into the host in a minimally invasive manner. They can act as carriers to encapsulate and deliver cells, drugs or active biomolecules across several disease conditions. Polymers, either synthetic or natural, or even a combination of the two, can be used to create injectable hydrogels. Clinically approved injectable hydrogels are being used as dressings for burn wounds, bone and cartilage reconstruction. Injectable hydrogels have recently gained tremendous attention for their delivery into the liver in pre-clinical models. However, their efficacy in clinical studies remains yet to be established. In this article, we describe principles for the design of these injectable hydrogels, delivery strategies and their potential applications in facilitating liver regeneration and ameliorating injury. We also discuss the several constraints related to translation of these hydrogels into clinical settings for liver diseases and deliberate some potential solutions to combat these challenges.
Collapse
Affiliation(s)
- Ashwini Vasudevan
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi, 110070, India
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Sector-125, Noida, 201301, Uttar Pradesh, India
| | - Doyel Ghosal
- Centre for Biomedical Engineering, Indian Institute of Technology, New Delhi, 110016, India
| | - Sita Ram Sahu
- School of Interdisciplinary Research, Indian Institute of Technology, New Delhi, 110016, India
| | - Narsing Kumar Jha
- Department of Applied Mechanics, Indian Institute of Technology, New Delhi, 110016, India
| | - Pooja Vijayaraghavan
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Sector-125, Noida, 201301, Uttar Pradesh, India
| | - Sachin Kumar
- Centre for Biomedical Engineering, Indian Institute of Technology, New Delhi, 110016, India
- Department of Biomedical Engineering, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Savneet Kaur
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi, 110070, India
| |
Collapse
|
4
|
Chen B, Zhao X, Xu M, Luo J, Bai L, Han Q, Gao Y, Guo B, Yin Z. Inflammation-Responsive Functional Core-Shell Micro-Hydrogels Promote Rotator Cuff Tendon-To-Bone Healing by Recruiting MSCs and Immuno-Modulating Macrophages in Rats. Adv Healthc Mater 2025; 14:e2404091. [PMID: 39526494 DOI: 10.1002/adhm.202404091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Indexed: 11/16/2024]
Abstract
Rotator cuff injuries often necessitate surgical intervention, but the outcomes are often unsatisfactory. The underlying reasons can be attributed to multiple factors, with the intricate inflammatory activities and insufficient presence of stem cells being particularly significant. In this study, an innovative inflammation-responsive core-shell micro-hydrogel is designed for independent release of SDF-1 and IL-4 within a single delivery system to promote tendon-to-bone healing by recruiting MSCs and modulating M2 macrophages polarization. First, a MMP-2 responsive hydrogel loaded with IL-4 (GelMA-MMP/IL-4) is synthesized by cross-linking gelatin methacrylate (GelMA) with MMP-2 substrate peptide. Then, the resulting core particles are coated with a shell of chitosan /SDF-1/hyaluronic acid (CS/HA/SDF-1) using the layer-by-layer electrostatic deposition method to form a core-shell micro-hydrogel composite. The core-shell micro-hydrogel shows sustained release of SDF-1 and MMP-2-responsive release of IL-4 associated in situ MSCs homing and smart inflammation regulation by promoting M2 macrophages polarization. Additionally, by injecting these micro-hydrogels into a rat rotator cuff tear and repair model, notable improvements of fibrocartilage layer are observed between tendon and bone. Notably, this study presents a new and potentially powerful environment-responsive drug delivery strategy that offers valuable insights for regulating the intricate micro-environment associated with tissue regeneration.
Collapse
Affiliation(s)
- Baojun Chen
- Department of Surgery of Spine and Spinal Cord, Henan Provincial People's Hospital, Henan Province Intelligent orthopedic technology innovation and transformation International Joint Laboratory, Henan Key Laboratory for intelligent precision orthopedics, People's Hospital of Zhengzhou University, Zhengzhou, 450003, China
| | - Xin Zhao
- Frontier Institute of Science and Technology, and State Key Laboratory for Mechanical Behavior of Materials, and Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Meiguang Xu
- Department of Orthopaedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Jinlong Luo
- Frontier Institute of Science and Technology, and State Key Laboratory for Mechanical Behavior of Materials, and Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Lang Bai
- Department of Orthopaedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Qian Han
- Department of Orthopaedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Yanzheng Gao
- Department of Surgery of Spine and Spinal Cord, Henan Provincial People's Hospital, Henan Province Intelligent orthopedic technology innovation and transformation International Joint Laboratory, Henan Key Laboratory for intelligent precision orthopedics, People's Hospital of Zhengzhou University, Zhengzhou, 450003, China
| | - Baolin Guo
- Frontier Institute of Science and Technology, and State Key Laboratory for Mechanical Behavior of Materials, and Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Zhanhai Yin
- Department of Orthopaedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| |
Collapse
|
5
|
Asadikorayem M, Weber P, Surman F, Puiggalí‐Jou A, Zenobi‐Wong M. Foreign Body Immune Response to Zwitterionic and Hyaluronic Acid Granular Hydrogels Made with Mechanical Fragmentation. Adv Healthc Mater 2025; 14:e2402890. [PMID: 39498680 PMCID: PMC11730820 DOI: 10.1002/adhm.202402890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 10/19/2024] [Indexed: 11/07/2024]
Abstract
Granular hydrogels have recently attracted the attention for diverse tissue engineering applications due to their versatility and modularity. Despite previous studies showing enhanced viability and metabolism of cells encapsulated in these hydrogels, the in vitro immune response and long-term fibrotic response of these scaffolds have not been well characterized. Here, bulk and granular hydrogels are studied based on synthetic zwitterionic (ZI) and natural polysaccharide hyaluronic acid (HA) made with mechanical fragmentation. In vitro, immunomodulatory studies show an increased stimulatory effect of HA granular hydrogels compared to bulk, while both bulk and granular ZI hydrogels do not induce an inflammatory response. Subcutaneous implantation in mice shows that both ZI and HA granular hydrogels resulted in less collagen capsule deposition around implants compared to bulk HA hydrogels 10 weeks after implantation. Moreover, the HA granular hydrogels are infiltrated by host cells, including macrophages and mature blood vessels, in a porosity-dependent manner. However, a large number of cells, including multinucleated giant cells as well as blood vessels, surround bulk and granular ZI hydrogels and are not able to infiltrate. Overall, this study provides new insights on the long-term stability and fibrotic response of granular hydrogels, paving the way for future studies and applications.
Collapse
Affiliation(s)
- Maryam Asadikorayem
- Tissue Engineering + Biofabrication Laboratory, Department of Health Sciences and TechnologyETH ZürichOtto‐Stern‐Weg 7Zürich8093Switzerland
| | - Patrick Weber
- Tissue Engineering + Biofabrication Laboratory, Department of Health Sciences and TechnologyETH ZürichOtto‐Stern‐Weg 7Zürich8093Switzerland
| | - František Surman
- Tissue Engineering + Biofabrication Laboratory, Department of Health Sciences and TechnologyETH ZürichOtto‐Stern‐Weg 7Zürich8093Switzerland
| | - Anna Puiggalí‐Jou
- Tissue Engineering + Biofabrication Laboratory, Department of Health Sciences and TechnologyETH ZürichOtto‐Stern‐Weg 7Zürich8093Switzerland
| | - Marcy Zenobi‐Wong
- Tissue Engineering + Biofabrication Laboratory, Department of Health Sciences and TechnologyETH ZürichOtto‐Stern‐Weg 7Zürich8093Switzerland
| |
Collapse
|
6
|
Zhou Z, Li C, Zeng Y, Huang T, Jiang X, Yu DG, Wang K. Natural polymer nanofiber dressings for effective management of chronic diabetic wounds: A comprehensive review. Int J Biol Macromol 2024; 282:136688. [PMID: 39447788 DOI: 10.1016/j.ijbiomac.2024.136688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 10/13/2024] [Accepted: 10/16/2024] [Indexed: 10/26/2024]
Abstract
Diabetic wounds present a chronic challenge in effective treatment. Natural polymer nanofiber dressings have emerged as a promising solution due to their impressive biocompatibility, biodegradability, safety, high specific surface area, and resemblance to the extracellular matrix. These qualities make them ideal materials with excellent biological properties and cost-effectiveness. Additionally, they can effectively deliver therapeutic agents, enabling diverse treatment effects. This review offers a comprehensive overview of natural polymer-based nanofibers in diabetic wound dressings. It examines the characteristics and challenges associated with diabetic wounds and the role of natural polymers in facilitating wound healing. The review highlights the preparation, mechanism, and applications of various functional dressings composed of natural polymer nanofibers. Furthermore, it addresses the main challenges and future directions in utilizing natural polymer nanofibers for diabetic wound treatment, providing valuable insights into effective wound management for diabetic patients.
Collapse
Affiliation(s)
- Zhengqing Zhou
- School of Materials and Chemistry, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China
| | - Chaofei Li
- Department of General Surgery, RuiJin Hospital Lu Wan Branch, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yue Zeng
- Department of Neurology, RuiJin Hospital Lu Wan Branch, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Tianyue Huang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China
| | - Xuewen Jiang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China
| | - Deng-Guang Yu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China
| | - Ke Wang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China.
| |
Collapse
|
7
|
Costa FR, Pires L, Martins RA, Costa BR, Santos GS, Lana JF. ViSCNOVAS: A Novel Classification System for Hyaluronic Acid-Based Gels in Orthobiologic Products and Regenerative Medicine. Gels 2024; 10:510. [PMID: 39195039 DOI: 10.3390/gels10080510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/29/2024] [Accepted: 07/31/2024] [Indexed: 08/29/2024] Open
Abstract
Hyaluronic acid (HA), a naturally occurring polysaccharide, holds immense potential in regenerative medicine due to its diverse biological functions and clinical applications, particularly in gel formulations. This paper presents a comprehensive exploration of HA, encompassing its origins, molecular characteristics, and therapeutic roles in gel-based interventions. Initially identified in bovine vitreous humor, HA has since been found in various tissues and fluids across vertebrate organisms and bacterial sources, exhibiting consistent physicochemical properties. The synthesis of HA by diverse cell types underscores its integral role in the extracellular matrix and its relevance to tissue homeostasis and repair. Clinical applications of HA, particularly in addressing musculoskeletal ailments such as osteoarthritis, are examined, highlighting its efficacy and safety in promoting tissue regeneration and pain relief. Building upon this foundation, a novel classification system for HA-based interventions is proposed, aiming to standardize treatment protocols and optimize patient outcomes. The ViSCNOVAS classification system refers to viscosity, storage, chain, number, origin, volume, amount, and size. This classification is specifically designed for HA-based orthobiologic products used in regenerative medicine, including orthopedics, sports medicine, aesthetics, cosmetic dermatology, and wound healing. It aims to provide clinicians with a structured framework for personalized treatment strategies. Future directions in HA research are also discussed, emphasizing the need for further validation and refinement of the proposed classification system to advance the field of regenerative medicine. Overall, this manuscript elucidates the biological functions of hyaluronic acid and its potential in clinical practice while advocating for standardization to enhance patient care in various regenerative applications.
Collapse
Affiliation(s)
- Fábio Ramos Costa
- Department of Orthopedics, FC Sports Traumatology, Salvador 40296-210, BA, Brazil
| | - Luyddy Pires
- Department of Orthopedics, Brazilian Institute of Regenerative Medicine (BIRM), Indaiatuba 13334-170, SP, Brazil
- Regenerative Medicine, Orthoregen International Course, Indaiatuba 13334-170, SP, Brazil
| | | | | | - Gabriel Silva Santos
- Department of Orthopedics, Brazilian Institute of Regenerative Medicine (BIRM), Indaiatuba 13334-170, SP, Brazil
- Regenerative Medicine, Orthoregen International Course, Indaiatuba 13334-170, SP, Brazil
| | - José Fábio Lana
- Department of Orthopedics, Brazilian Institute of Regenerative Medicine (BIRM), Indaiatuba 13334-170, SP, Brazil
- Regenerative Medicine, Orthoregen International Course, Indaiatuba 13334-170, SP, Brazil
- Clinical Research, Anna Vitória Lana Institute (IAVL), Indaiatuba 13334-170, SP, Brazil
- Medical School, Max Planck University Center (UniMAX), Indaiatuba 13343-060, SP, Brazil
- Medical School, Jaguariúna University Center (UniFAJ), Jaguariúna 13911-094, SP, Brazil
| |
Collapse
|
8
|
Du Q, Dickinson A, Nakuleswaran P, Maghami S, Alagoda S, Hook AL, Ghaemmaghami AM. Targeting Macrophage Polarization for Reinstating Homeostasis following Tissue Damage. Int J Mol Sci 2024; 25:7278. [PMID: 39000385 PMCID: PMC11242417 DOI: 10.3390/ijms25137278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 06/24/2024] [Accepted: 06/27/2024] [Indexed: 07/16/2024] Open
Abstract
Tissue regeneration and remodeling involve many complex stages. Macrophages are critical in maintaining micro-environmental homeostasis by regulating inflammation and orchestrating wound healing. They display high plasticity in response to various stimuli, showing a spectrum of functional phenotypes that vary from M1 (pro-inflammatory) to M2 (anti-inflammatory) macrophages. While transient inflammation is an essential trigger for tissue healing following an injury, sustained inflammation (e.g., in foreign body response to implants, diabetes or inflammatory diseases) can hinder tissue healing and cause tissue damage. Modulating macrophage polarization has emerged as an effective strategy for enhancing immune-mediated tissue regeneration and promoting better integration of implantable materials in the host. This article provides an overview of macrophages' functional properties followed by discussing different strategies for modulating macrophage polarization. Advances in the use of synthetic and natural biomaterials to fabricate immune-modulatory materials are highlighted. This reveals that the development and clinical application of more effective immunomodulatory systems targeting macrophage polarization under pathological conditions will be driven by a detailed understanding of the factors that regulate macrophage polarization and biological function in order to optimize existing methods and generate novel strategies to control cell phenotype.
Collapse
Affiliation(s)
- Qiran Du
- Immuno-Bioengineering Group, School of Life Sciences, University of Nottingham, Nottingham NG7 2RD, UK;
| | - Anna Dickinson
- Medical School, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham NG7 2RD, UK; (A.D.); (P.N.); (S.A.)
| | - Pruthvi Nakuleswaran
- Medical School, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham NG7 2RD, UK; (A.D.); (P.N.); (S.A.)
| | - Susan Maghami
- Hull York Medical School, University of York, York YO10 5DD, UK;
| | - Savindu Alagoda
- Medical School, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham NG7 2RD, UK; (A.D.); (P.N.); (S.A.)
| | - Andrew L. Hook
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK;
| | - Amir M. Ghaemmaghami
- Immuno-Bioengineering Group, School of Life Sciences, University of Nottingham, Nottingham NG7 2RD, UK;
| |
Collapse
|
9
|
Miescher I, Schaffner N, Rieber J, Bürgisser GM, Ongini E, Yang Y, Milionis A, Vogel V, Snedeker JG, Calcagni M, Buschmann J. Hyaluronic acid/PEO electrospun tube reduces tendon adhesion to levels comparable to native tendons - An in vitro and in vivo study. Int J Biol Macromol 2024; 273:133193. [PMID: 38885859 DOI: 10.1016/j.ijbiomac.2024.133193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 06/10/2024] [Accepted: 06/13/2024] [Indexed: 06/20/2024]
Abstract
A major problem after tendon injury is adhesion formation to the surrounding tissue leading to a limited range of motion. A viable strategy to reduce adhesion extent is the use of physical barriers that limit the contact between the tendon and the adjacent tissue. The purpose of this study was to fabricate an electrospun bilayered tube of hyaluronic acid/polyethylene oxide (HA/PEO) and biodegradable DegraPol® (DP) to improve the anti-adhesive effect of the implant in a rabbit Achilles tendon full laceration model compared to a pure DP tube. Additionally, the attachment of rabbit tenocytes on pure DP and HA/PEO containing scaffolds was tested and Scanning Electron Microscopy, Fourier-transform Infrared Spectroscopy, Differential Scanning Calorimetry, Water Contact Angle measurements, and testing of mechanical properties were used to characterize the scaffolds. In vivo assessment after three weeks showed that the implant containing a second HA/PEO layer significantly reduced adhesion extent reaching levels comparable to native tendons, compared with a pure DP implant that reduced adhesion formation only by 20 %. Tenocytes were able to attach to and migrate into every scaffold, but cell number was reduced over two weeks. Implants containing HA/PEO showed better mechanical properties than pure DP tubes and with the ability to entirely reduce adhesion extent makes this implant a promising candidate for clinical application in tendon repair.
Collapse
Affiliation(s)
- Iris Miescher
- Division of Plastic Surgery and Hand Surgery, University Hospital Zurich, Sternwartstrasse 14, 8091 Zurich, Switzerland.
| | - Nicola Schaffner
- Division of Plastic Surgery and Hand Surgery, University Hospital Zurich, Sternwartstrasse 14, 8091 Zurich, Switzerland.
| | - Julia Rieber
- Division of Plastic Surgery and Hand Surgery, University Hospital Zurich, Sternwartstrasse 14, 8091 Zurich, Switzerland.
| | - Gabriella Meier Bürgisser
- Division of Plastic Surgery and Hand Surgery, University Hospital Zurich, Sternwartstrasse 14, 8091 Zurich, Switzerland.
| | - Esteban Ongini
- University Clinic Balgrist, Orthopaedic Biomechanics, Forchstrasse 340, 8008 Zurich, Switzerland.
| | - Yao Yang
- Department of Health Sciences & Technology & Department of Materials, Schmelzbergstrasse 9, LFO, 8092 Zürich, Switzerland.
| | - Athanasios Milionis
- Laboratory of Thermodynamics in Emerging Technologies, Department of Mechanical and Process Engineering, ETH Zürich, 8092 Zürich, Switzerland.
| | - Viola Vogel
- Laboratory of Applied Mechanobiology, Institute of Translational Medicine, and Department of Health Sciences and Technology, ETH Zurich, 8093 Zurich, Switzerland.
| | - Jess G Snedeker
- University Clinic Balgrist, Orthopaedic Biomechanics, Forchstrasse 340, 8008 Zurich, Switzerland.
| | - Maurizio Calcagni
- Division of Plastic Surgery and Hand Surgery, University Hospital Zurich, Sternwartstrasse 14, 8091 Zurich, Switzerland.
| | - Johanna Buschmann
- Division of Plastic Surgery and Hand Surgery, University Hospital Zurich, Sternwartstrasse 14, 8091 Zurich, Switzerland.
| |
Collapse
|
10
|
Wang M, Xu C, Wang D, Lu J, Wang A, Zhou Q. Analysis of current trends in angiogenesis research for wound healing: A bibliometric study from 2013 to 2023. Heliyon 2024; 10:e32311. [PMID: 39183849 PMCID: PMC11341238 DOI: 10.1016/j.heliyon.2024.e32311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 05/30/2024] [Accepted: 05/31/2024] [Indexed: 08/27/2024] Open
Abstract
Background Traumatic injuries, surgery, and chronic diseases lead to soft tissue wounds. Stimulating normal wound healing (WH) is important for tissue repair and restoration of homeostasis. Lack of angiogenesis impedes wound healing and is noted in chronic wounds. The goal of this investigation was to thoroughly assess the present state and patterns of investigations on angiogenesis in WH by the use of bibliometric analysis. Methods Studies examining angiogenesis and WH were sourced from the database of the Web of Science Core Collection. Only studies that fulfilled the inclusion criteria were chosen for the purpose of investigation. To analyze the publications included in this research, bibliometric and visual analysis techniques were applied utilizing tools like VOSviewer and CiteSpace. Results For the analysis, 11,558 papers were considered. The number of publications increased annually from 2013 to 2023. China, the USA, and South Korea were the top nations in this subject, accounting for 41.1 %, 19.4 %, and 5.8 % of published articles, respectively. The author and institution with the greatest number of publications were found to be Chang J and Shanghai Jiao Tong University. PLOS One had the greatest publication count among journals, whereas Biomaterials had the greatest number of citations and was often mentioned in co-citations. Angiogenesis-related biomedical engineering and tissue engineering were the topics that received the most research attention. Recent studies have focused on vascular endothelial growth factor and carboxymethyl chitosan as emerging areas of interest. Conclusion In this investigation, we compiled the features of publications and determined the most impactful nations, organizations, writers, periodicals, popular subjects, and patterns concerning the process of angiogenesis in the context of WH.
Collapse
Affiliation(s)
- Miao Wang
- Department of Anaesthesiology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Cheng Xu
- Department of Anaesthesiology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Di Wang
- Department of Anaesthesiology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jie Lu
- Department of Anaesthesiology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Aizhong Wang
- Department of Anaesthesiology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Quanhong Zhou
- Department of Critical Care Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
11
|
Treger D, Zhang L, Jia X, Hui JH, Gantumur M, Hui M, Liu L. A clinical study of the local injection of a freshly manufactured 35 kDa hyaluronan fragment for treating chronic wounds. Int Wound J 2024; 21:e14906. [PMID: 38745342 PMCID: PMC11093919 DOI: 10.1111/iwj.14906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 05/16/2024] Open
Abstract
This study manufactured a 35 kDa hyaluronan fragment (HA35) by enzymatically degrading high-molecular-weight HA using hyaluronidase PH20 derived from bovine testis. The research then examined the therapeutic efficacy of locally administered, tissue-permeable HA35 in alleviating chronic wounds and their associated neuropathic pain. For 20 patients with nonhealing wounds and associated pain lasting over three months, 100 mg of HA35 was injected daily into the healthy skin surrounding the chronic wound for 10 days. Self-assessments before and after treatment indicated that HA35 significantly enhanced wound healing. This was evidenced by the formation of fresh granulation tissue on the wounds (p < 0.0001); reduced darkness, redness, dryness, and damage in the skin surrounding the wounds (p < 0.0001), and a decrease in wound size (p < 0.001). Remarkably, HA35 injections alleviated pain associated with chronic wounds within 24 hours (p < 0.0001). It can be concluded that the low-molecular-weight hyaluronan fragment HA35 potentially enhances the immune response and angiogenesis during wound healing.
Collapse
Affiliation(s)
- Dylan Treger
- Miller School of MedicineUniversity of MiamiMiamiFloridaUSA
| | - Lujia Zhang
- Peripheral Vascular DepartmentFar East HospitalHarbinChina
| | - Xiaoxiao Jia
- Qingdao Hui Nuo De Biotechnology Co. Ltd.Hai Shi Hai Nuo GroupQingdaoChina
| | - Jessica H. Hui
- Qingdao Hui Nuo De Biotechnology Co. Ltd.Hai Shi Hai Nuo GroupQingdaoChina
| | | | - Mizhou Hui
- Qingdao Hui Nuo De Biotechnology Co. Ltd.Hai Shi Hai Nuo GroupQingdaoChina
| | - Li Liu
- Peripheral Vascular DepartmentFar East HospitalHarbinChina
| |
Collapse
|
12
|
Mahheidari N, Kamalabadi-Farahani M, Nourani MR, Atashi A, Alizadeh M, Aldaghi N, Salehi M. Biological study of skin wound treated with Alginate/Carboxymethyl cellulose/chorion membrane, diopside nanoparticles, and Botox A. NPJ Regen Med 2024; 9:9. [PMID: 38413625 PMCID: PMC10899239 DOI: 10.1038/s41536-024-00354-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 02/14/2024] [Indexed: 02/29/2024] Open
Abstract
A hydrogel-based wound dressing with desirable properties is necessary for achieving functional skin integrity post-injury. This study focuses on preparing a hydrogel using Alginate/Carboxymethyl cellulose (Alg/CMC) as a base material. To evaluate its regenerative effects on full-thickness wounds, diopside nanoparticles and Botulinum toxin A (BTX-A) were incorporated into the hydrogel along with chorion membrane. The diopside nanoparticles (DNPs) act as a proangiogenic factor, promoting proliferation and regulating inflammation, while the chorion membrane facilitates these processes. Additionally, BTX-A prevents scar formation and aids in wound closure. The nanoparticles and hydrogel were characterized using various techniques, and their cytocompatibility was assessed. In vivo studies and quantitative polymerase chain reaction analysis showed that wound area reduction was significant after two weeks of treatment with the Alg/CMC/ChNPs/DNPs/BTX-A hydrogel. Overall, this scaffold demonstrated potential for promoting tissue regeneration and new epithelization formation, making it a promising candidate for enhancing skin restoration in wound treatments.
Collapse
Affiliation(s)
- Naimeh Mahheidari
- Student Research Committee, School of Medicine, Shahroud University of Medical Sciences, Shahroud, 3614773955, Iran
| | - Mohammad Kamalabadi-Farahani
- Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, 3614773955, Iran
| | - Mohammad Reza Nourani
- Tissue Engineering and Regenerative Medicine Research Center, Baqiyatallah University of Medical Sciences, Tehran, 1435916471, Iran
- Department of Dental and Biomedical Materials Science, School of Dentistry, Nagasaki University, Nagasaki, 8528102, Japan
| | - Amir Atashi
- Tissue Engineering and stem cells research center, Shahroud University of Medical Sciences, Shahroud, 3614773955, Iran
- Department of Hematology, School of Allied Medical Sciences, Shahroud University of Medical Sciences, Shahroud, 3614773955, Iran
| | - Morteza Alizadeh
- Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, 3614773955, Iran
| | - Niloofar Aldaghi
- Student Research Committee, School of Medicine, Shahroud University of Medical Sciences, Shahroud, 3614773955, Iran
| | - Majid Salehi
- Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, 3614773955, Iran.
- Tissue Engineering and stem cells research center, Shahroud University of Medical Sciences, Shahroud, 3614773955, Iran.
- Health Technology Incubator Center, Shahroud University of Medical Sciences, Shahroud, 3614773955, Iran.
| |
Collapse
|
13
|
Syed MH, Khan MMR, Zahari MAKM, Beg MDH, Abdullah N. Current issues and potential solutions for the electrospinning of major polysaccharides and proteins: A review. Int J Biol Macromol 2023; 253:126735. [PMID: 37690643 DOI: 10.1016/j.ijbiomac.2023.126735] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 09/03/2023] [Accepted: 09/04/2023] [Indexed: 09/12/2023]
Abstract
Biopolymers, especially polysaccharides and proteins, are the promising green replacement for petroleum based polymers. Due to their innate properties, they are effectively used in biomedical applications, especially tissue engineering, wound healing, and drug delivery. The fibrous morphology of biopolymers is essentially required for the effectiveness in these biomedical applications. Electrospinning (ES) is the most advanced and robust method to fabricate nanofibers (NFs) and provides a complete solution to the conventional methods issues. However, the major issues regarding fabricating polysaccharides and protein nanofibers using ES include poor electrospinnability, lack of desired fundamental properties for a specific application by a single biopolymer, and insolubility among common solvents. The current review provides the main strategies for effective electrospinning of the major biopolymers. The key strategies include blending major biopolymers with suitable biopolymers and optimizing the solvent system. A systematic literature review was done to provide the optimized solvent system of the major biopolymers along with their best possible biopolymeric blend for ES. The review also highlights the fundamental issues with the commercialization of ES based biomedical products and provides future directions to improve the fabrication of biopolymeric nanofibers.
Collapse
Affiliation(s)
- Murtaza Haider Syed
- Faculty of Chemical and Process Engineering Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Gambang, Pahang, Malaysia
| | - Md Maksudur Rahman Khan
- Petroleum and Chemical Engineering Programme Area, Faculty of Engineering, Universiti Teknologi Brunei, Gadong BE1410, Brunei
| | - Mior Ahmad Khushairi Mohd Zahari
- Faculty of Chemical and Process Engineering Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Gambang, Pahang, Malaysia.
| | | | - Norhayati Abdullah
- Faculty of Chemical and Process Engineering Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Gambang, Pahang, Malaysia.
| |
Collapse
|
14
|
Studzińska-Sroka E, Bulicz M, Henkel M, Rosiak N, Paczkowska-Walendowska M, Szwajgier D, Baranowska-Wójcik E, Korybalska K, Cielecka-Piontek J. Pleiotropic Potential of Evernia prunastri Extracts and Their Main Compounds Evernic Acid and Atranorin: In Vitro and In Silico Studies. Molecules 2023; 29:233. [PMID: 38202817 PMCID: PMC10780513 DOI: 10.3390/molecules29010233] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 12/26/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024] Open
Abstract
Evernia prunastri is a lichen widely distributed in the Northern Hemisphere. Its biological properties still need to be discovered. Therefore, our paper focuses on studies of E. prunastri extracts, including its main metabolites evernic acid (EA) or atranorin (ATR). Phytochemical profiles using chromatographic analysis were confirmed. The antioxidant activity was evaluated using in vitro chemical tests and in vitro enzymatic cells-free tests, namely superoxide dismutase (SOD), glutathione peroxidase (GPx), glutathione reductase (GR), and catalase (CAT). The anti-inflammatory potential using cyclooxygenase-2 (COX-2) and hyaluronidase were determined. The neuroprotective potential using acetylcholinesterase, (AChE), butyrylcholinesterase (BChE), and tyrosinase (Tyr) was estimated. The hypoglycemic activity was also confirmed (α-glucosidase). Principal component analysis was performed to determine the relationship between the biological activity of extracts. The inhibitory effect of EA and ATR on COX-2 AChE, BChE, Tyr, and α-glucosidase was evaluated using molecular docking techniques and confirmed for EA and ATR (besides α-glucosidase). The penetration of EA and ATR from extracts through the blood-brain barrier was confirmed using the parallel artificial membrane permeability assay blood-brain barrier test. In conclusion, depending on chemical surroundings and the concentration, the E. prunastri extracts, EA or ATR, showed attractive pleiotropic properties, which should be further investigated.
Collapse
Affiliation(s)
- Elżbieta Studzińska-Sroka
- Department of Pharmacognosy and Biomaterials, Poznan University of Medical Sciences, Rokietnicka 3 Str., 60-806 Poznań, Poland; (M.B.); (M.H.); (N.R.); (M.P.-W.); (J.C.-P.)
| | - Magdalena Bulicz
- Department of Pharmacognosy and Biomaterials, Poznan University of Medical Sciences, Rokietnicka 3 Str., 60-806 Poznań, Poland; (M.B.); (M.H.); (N.R.); (M.P.-W.); (J.C.-P.)
| | - Marika Henkel
- Department of Pharmacognosy and Biomaterials, Poznan University of Medical Sciences, Rokietnicka 3 Str., 60-806 Poznań, Poland; (M.B.); (M.H.); (N.R.); (M.P.-W.); (J.C.-P.)
| | - Natalia Rosiak
- Department of Pharmacognosy and Biomaterials, Poznan University of Medical Sciences, Rokietnicka 3 Str., 60-806 Poznań, Poland; (M.B.); (M.H.); (N.R.); (M.P.-W.); (J.C.-P.)
| | - Magdalena Paczkowska-Walendowska
- Department of Pharmacognosy and Biomaterials, Poznan University of Medical Sciences, Rokietnicka 3 Str., 60-806 Poznań, Poland; (M.B.); (M.H.); (N.R.); (M.P.-W.); (J.C.-P.)
| | - Dominik Szwajgier
- Department of Biotechnology, Microbiology and Human Nutrition, University of Life Sciences in Lublin, Skromna 8 Str., 20-704 Lublin, Poland; (D.S.); (E.B.-W.)
| | - Ewa Baranowska-Wójcik
- Department of Biotechnology, Microbiology and Human Nutrition, University of Life Sciences in Lublin, Skromna 8 Str., 20-704 Lublin, Poland; (D.S.); (E.B.-W.)
| | - Katarzyna Korybalska
- Department of Patophysiology, Poznan University of Medical Science, Rokietnicka 8 Str., 60-806 Poznań, Poland;
| | - Judyta Cielecka-Piontek
- Department of Pharmacognosy and Biomaterials, Poznan University of Medical Sciences, Rokietnicka 3 Str., 60-806 Poznań, Poland; (M.B.); (M.H.); (N.R.); (M.P.-W.); (J.C.-P.)
| |
Collapse
|
15
|
Syed MH, Khan MMR, Zahari MAKM, Beg MDH, Abdullah N. A review on current trends and future prospectives of electrospun biopolymeric nanofibers for biomedical applications. Eur Polym J 2023; 197:112352. [DOI: 10.1016/j.eurpolymj.2023.112352] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
16
|
Pourtalebi Jahromi L, Rothammer M, Fuhrmann G. Polysaccharide hydrogel platforms as suitable carriers of liposomes and extracellular vesicles for dermal applications. Adv Drug Deliv Rev 2023; 200:115028. [PMID: 37517778 DOI: 10.1016/j.addr.2023.115028] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 06/26/2023] [Accepted: 07/27/2023] [Indexed: 08/01/2023]
Abstract
Lipid-based nanocarriers have been extensively investigated for their application in drug delivery. Particularly, liposomes are now clinically established for treating various diseases such as fungal infections. In contrast, extracellular vesicles (EVs) - small cell-derived nanoparticles involved in cellular communication - have just recently sparked interest as drug carriers but their development is still at the preclinical level. To drive this development further, the methods and technologies exploited in the context of liposome research should be applied in the domain of EVs to facilitate and accelerate their clinical translation. One of the crucial steps for EV-based therapeutics is designing them as proper dosage forms for specific applications. This review offers a comprehensive overview of state-of-the-art polysaccharide-based hydrogel platforms designed for artificial and natural vesicles with application in drug delivery to the skin. We discuss their various physicochemical and biological properties and try to create a sound basis for the optimization of EV-embedded hydrogels as versatile therapeutic avenues.
Collapse
Affiliation(s)
- Leila Pourtalebi Jahromi
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Department of Biology, Pharmaceutical Biology, Staudtstr. 5, 91058 Erlangen, Germany
| | - Markus Rothammer
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Department of Biology, Pharmaceutical Biology, Staudtstr. 5, 91058 Erlangen, Germany
| | - Gregor Fuhrmann
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Department of Biology, Pharmaceutical Biology, Staudtstr. 5, 91058 Erlangen, Germany; FAU NeW, Nikolaus-Fiebiger-Str. 10, 91058 Erlangen, Germany.
| |
Collapse
|
17
|
Bezpalko L, Filipskiy A. Clinical and Ultrasound Evaluation of Skin Quality After Subdermal Injection of Two Non-Crosslinked Hyaluronic Acid-Based Fillers. Clin Cosmet Investig Dermatol 2023; 16:2175-2183. [PMID: 37583485 PMCID: PMC10424680 DOI: 10.2147/ccid.s402409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 07/18/2023] [Indexed: 08/17/2023]
Abstract
Introduction Nowadays patients want to get an immediate result from skin rejuvenation techniques without sign of injections and consequent limitations in social life. Therefore, the least traumatic, more effective, and longer lasting treatment approach for skin quality improvement should be favored. Purpose Assess skin quality outcomes by clinical examination and self-reporting in patients treated with two non-crosslinked hyaluronic acid (HA) products, injected by cannula. Investigate the skin thickness and the longevity of dermal fillers in soft tissues by ultrasound examination. Patients and Methods Fifteen female patients (mean age 41 years) were selected for injection with two non-crosslinked HA products (one for each hemiface and hemi neck). Subdermal injections were performed bilaterally and the retrograde linear fanning technique with a 25G 50 mm cannula from three entry points was used. An ultrasound examination of the skin layers thickness was carried out before the procedure and every 6-7 days up to three weeks, when patients skin quality improvement was assessed by GAIS (Global Aesthetic Improvement Scale) and patients asked about their satisfaction level. Results On the right hemiface, the use of the non-crosslinked HA-product with lidocaine was not associated with pain in the sites of injection. On both face sides, the signs of bruising or edema were minor and not associated with downtime or social life limitation after the procedure. After three weeks, despite both injected products could not be detected by ultrasound technique, signs of skin stimulation and skin layers hydration were still observed: The dermis became thicker on both hemifaces while the epidermis became thinner but showed more pronounced radiance and densification effect on the right hemiface. Conclusion Subdermal injections of non-crosslinked HA "skin boosters" could be a good option for minimal traumatic and effective 3-week lasting skin quality improvement.
Collapse
Affiliation(s)
- Lyudmyla Bezpalko
- Plastic and Aesthetic Surgery Department, Clinical Hospital of Lviv Railway, Lviv, Ukraine
| | - Andriy Filipskiy
- Radiology Department, Postgraduate Faculty, Danylo Halytsky Lviv National Medical University, Revive Aesthetic Medicine Clinic, Lviv, Ukraine
| |
Collapse
|
18
|
Chu D, Chen J, Liu X, Liao A, Song X, Li Y, Yang L, Chen Z, Yu Z, Guo J. A tetramethylpyrazine-loaded hyaluronic acid-based hydrogel modulates macrophage polarization for promoting wound recovery in diabetic mice. Int J Biol Macromol 2023; 245:125495. [PMID: 37353128 DOI: 10.1016/j.ijbiomac.2023.125495] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 05/15/2023] [Accepted: 06/18/2023] [Indexed: 06/25/2023]
Abstract
The failure of wound healing often causes lower limb disability and amputation of diabetic patients. Current strategies for diabetic wound management often fail to achieve the expected outcomes, and emerging alternatives are urgently needed. Recent advances in the identification of active compounds from traditional herbal medicines provide promising therapeutics for tissue repair and regeneration. In this study, the pro-healing effects of tetramethylpyrazine (TMP, a natural alkaloid found in Ligusticum chuanxiong Hort) for diabetic wounds were for the first time demonstrated. The cutaneous healing was mainly achieved by TMP-mediated macrophage polarization from pro-inflammatory to pro-healing phenotype. In addition, the topical administration of TMP was facilitated by the hyaluronic acid (HA) hydrogel for promoting the full-thickness wounds in the experimental diabetic mice. Consequently, TMP-loaded HA hydrogel (TMP-HA) profoundly accelerated the wound closure in comparison with TMP-loaded INTRASITE Gel (it is a commercial hydrogel), which was evident with the inflammation mitigation, the angiogenesis enhancement, and the collagen deposition. Our work reveals the macrophage-modulatory function of TMP for diabetic wound healing and demonstrates great potential of TMP-HA for clinical application.
Collapse
Affiliation(s)
- Di Chu
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Junjun Chen
- Department of Pharmacy, The Second Hospital of Jilin University, Changchun 130041, China
| | - Xingmei Liu
- Department of Pharmacy, The Second Hospital of Jilin University, Changchun 130041, China
| | - Anqi Liao
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Xiaohuan Song
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Yutong Li
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Leilei Yang
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Zheng Chen
- Key Laboratory of High-Performance Plastics, Ministry of Education, National & Local Joint Engineering Laboratory for Synthesis Technology of High-Performance Polymer, College of Chemistry, Jilin University, Changchun 130012, China
| | - Zhuo Yu
- Department of Hepatopathy, Shuguang Hospital, Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jianfeng Guo
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China.
| |
Collapse
|
19
|
Sukmana BI, Margiana R, Almajidi YQ, Almalki SG, Hjazi A, Shahab S, Romero-Parra RM, Alazbjee AAA, Alkhayyat A, John V. Supporting wound healing by mesenchymal stem cells (MSCs) therapy in combination with scaffold, hydrogel, and matrix; State of the art. Pathol Res Pract 2023; 248:154575. [PMID: 37285734 DOI: 10.1016/j.prp.2023.154575] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/24/2023] [Accepted: 05/25/2023] [Indexed: 06/09/2023]
Abstract
Non-healing wounds impose a huge annual cost on the survival of different countries and large populations in the world. Wound healing is a complex and multi-step process, the speed and quality of which can be changed by various factors. To promote wound healing, compounds such as platelet-rich plasma, growth factors, platelet lysate, scaffolds, matrix, hydrogel, and cell therapy, in particular, with mesenchymal stem cells (MSCs) are suggested. Nowadays, the use of MSCs has attracted a lot of attention. These cells can induce their effect by direct effect and secretion of exosomes. On the other hand, scaffolds, matrix, and hydrogels provide suitable conditions for wound healing and the growth, proliferation, differentiation, and secretion of cells. In addition to generating suitable conditions for wound healing, the combination of biomaterials and MSCs increases the function of these cells at the site of injury by favoring their survival, proliferation, differentiation, and paracrine activity. In addition, other compounds such as glycol, sodium alginate/collagen hydrogel, chitosan, peptide, timolol, and poly(vinyl) alcohol can be used along with these treatments to increase the effectiveness of treatments in wound healing. In this review article, we take a glimpse into the merging scaffolds, hydrogels, and matrix application with MSCs therapy to favor wound healing.
Collapse
Affiliation(s)
- Bayu Indra Sukmana
- Oral Biology Department, Lambung Mangkurat University, Banjarmasin, Indonesia
| | - Ria Margiana
- Department of Anatomy, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia; Master's Programme Biomedical Sciences, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia; Dr. Soetomo General Academic Hospital, Surabaya, Indonesia.
| | - Yasir Qasim Almajidi
- Department of Pharmacy (Pharmaceutics), Baghdad College of Medical Sciences, Baghdad, Iraq
| | - Sami G Almalki
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah 11952, Saudi Arabia
| | - Ahmed Hjazi
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Sana Shahab
- Department of Business Administration, College of Business Administration, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | | | | | - Afa Alkhayyat
- College of Pharmacy, the Islamic University, 54001 Najaf, Iraq
| | - Vivek John
- Uttaranchal Institute of Technology, Uttaranchal University, Dehradun 248007, India
| |
Collapse
|
20
|
Jabbari F, Babaeipour V, Saharkhiz S. Comprehensive review on biosynthesis of hyaluronic acid with different molecular weights and its biomedical applications. Int J Biol Macromol 2023; 240:124484. [PMID: 37068534 DOI: 10.1016/j.ijbiomac.2023.124484] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 04/11/2023] [Accepted: 04/12/2023] [Indexed: 04/19/2023]
Abstract
Hyaluronic acid (HA), an anionic and nonsulfated glycosaminoglycan, is the main structural component of various tissues and plays an important role in various biological processes. Given the promising properties of HA, such as high cellular compatibility, moisture retention, antiaging, proper interaction with cells, and CD44 targeting, HA can be widely used extensively in drug delivery, tissue engineering, wound healing, and cancer therapy. HA can obtain from animal tissues and microbial fermentation, but its applications depend on its molecular weight. Microbial fermentation is a common method for HA production on an industrial scale and S. zooepidemicus is the most frequently used strain in HA production. Culture conditions including pH, temperature, agitation rate, aeration speed, shear stress, dissolved oxygen, and bioreactor type significantly affect HA biosynthesis properties. In this review all the HA production methods and purification techniques to improve its physicochemical and biological properties for various biomedical applications are discussed in details. In addition, we showed that how HA molecular weight can significantly affect its properties and applications.
Collapse
Affiliation(s)
- Farzaneh Jabbari
- Nanotechnology and Advanced Materials Department, Materials and Energy Research Center, Tehran, Iran
| | - Valiollah Babaeipour
- Faculty of Chemistry and Chemical Engineering, Malek Ashtar University of Technology, Iran.
| | - Saeed Saharkhiz
- Faculty of Chemistry and Chemical Engineering, Malek Ashtar University of Technology, Iran
| |
Collapse
|
21
|
Recent progress in polymeric biomaterials and their potential applications in skin regeneration and wound care management. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
22
|
Structural Analysis and Classification of Low-Molecular-Weight Hyaluronic Acid by Near-Infrared Spectroscopy: A Comparison between Traditional Machine Learning and Deep Learning. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020809. [PMID: 36677867 PMCID: PMC9862636 DOI: 10.3390/molecules28020809] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/06/2023] [Accepted: 01/10/2023] [Indexed: 01/15/2023]
Abstract
Confusing low-molecular-weight hyaluronic acid (LMWHA) from acid degradation and enzymatic hydrolysis (named LMWHA-A and LMWHA-E, respectively) will lead to health hazards and commercial risks. The purpose of this work is to analyze the structural differences between LMWHA-A and LMWHA-E, and then achieve a fast and accurate classification based on near-infrared (NIR) spectroscopy and machine learning. First, we combined nuclear magnetic resonance (NMR), Fourier transform infrared (FTIR) spectroscopy, two-dimensional correlated NIR spectroscopy (2DCOS), and aquaphotomics to analyze the structural differences between LMWHA-A and LMWHA-E. Second, we compared the dimensionality reduction methods including principal component analysis (PCA), kernel PCA (KPCA), and t-distributed stochastic neighbor embedding (t-SNE). Finally, the differences in classification effect of traditional machine learning methods including partial least squares-discriminant analysis (PLS-DA), support vector classification (SVC), and random forest (RF) as well as deep learning methods including one-dimensional convolutional neural network (1D-CNN) and long short-term memory (LSTM) were compared. The results showed that genetic algorithm (GA)-SVC and RF were the best performers in traditional machine learning, but their highest accuracy in the test dataset was 90%, while the accuracy of 1D-CNN and LSTM models in the training dataset and test dataset classification was 100%. The results of this study show that compared with traditional machine learning, the deep learning models were better for the classification of LMWHA-A and LMWHA-E. Our research provides a new methodological reference for the rapid and accurate classification of biological macromolecules.
Collapse
|
23
|
Juhaščik M, Kováčik A, Huerta-Ángeles G. Recent Advances of Hyaluronan for Skin Delivery: From Structure to Fabrication Strategies and Applications. Polymers (Basel) 2022; 14:4833. [PMID: 36432961 PMCID: PMC9694326 DOI: 10.3390/polym14224833] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/04/2022] [Accepted: 11/08/2022] [Indexed: 11/12/2022] Open
Abstract
Hyaluronan (HA) plays a fundamental role in maintaining the homeostasis on skin health. Furthermore, the effect of HA in skin inflammatory diseases is worth studying in the next future. HA and its conjugates change the solubility of active pharmaceutical ingredients, improve emulsion properties, prolong stability, reduce immunogenicity, and provide targeting. HA penetrates to deeper layers of the skin via several mechanisms, which depend on the macromolecular structure and composition of the formulation. The cellular and molecular mechanisms involved in epidermal dysfunction and skin aging are not well understood. Nevertheless, HA is known to selectively activate CD44-mediated keratinocyte signaling that regulates its proliferation, migration, and differentiation. The molecular size of HA is critical for molecular mechanisms and interactions with receptors. High molecular weight HA is used in emulsions and low molecular weight is used to form nanostructured lipid carriers, polymeric micelles, bioconjugates, and nanoparticles. In the fabrication of microneedles, HA is combined with other polymers to enhance mechanical properties for piercing the skin. Hence, this review aims to provide an overview of the current state of the art and last reported ways of processing, and applications in skin drug delivery, which will advocate for their broadened use in the future.
Collapse
Affiliation(s)
- Martin Juhaščik
- Contipro a.s., Dolní Dobrouč 401, 561 02 Dolnί Dobrouč, Czech Republic
- Skin Barrier Research Group, Faculty of Pharmacy in Hradec Králové, Heyrovského 1203, 500 05 Hradec Králové, Czech Republic
| | - Andrej Kováčik
- Skin Barrier Research Group, Faculty of Pharmacy in Hradec Králové, Heyrovského 1203, 500 05 Hradec Králové, Czech Republic
| | - Gloria Huerta-Ángeles
- Contipro a.s., Dolní Dobrouč 401, 561 02 Dolnί Dobrouč, Czech Republic
- Institute of Macromolecular Chemistry of the Czech Academy of Sciences, Heyrovského Nám. 2, 162 06 Prague, Czech Republic
| |
Collapse
|
24
|
Sudhakar K, Ji SM, Kummara MR, Han SS. Recent Progress on Hyaluronan-Based Products for Wound Healing Applications. Pharmaceutics 2022; 14:2235. [PMID: 36297670 PMCID: PMC9609759 DOI: 10.3390/pharmaceutics14102235] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/15/2022] [Accepted: 10/18/2022] [Indexed: 12/03/2022] Open
Abstract
Hyaluronic acid (HA) based nanocomposites are considered excellent for improving wound healing. HA is biocompatible, biodegradable, non-toxic, biologically active, has hemostatic ability, and resists bacterial adhesion. HA-based nanocomposites promote wound healing in four different sequential phases hemostasis, inflammation, proliferation, and maturation. The unique biological characteristics of HA enable it to serve as a drug, an antibacterial agent, and a growth factor, which combine to accelerate the healing process. In this review, we focus on the use of HA-based nanocomposites for wound healing applications and we describe the importance of HA for the wound healing process in each sequential phase, such as hemostasis, inflammation, proliferation, and maturation. Metal nanoparticles (MNPs) or metal oxide nanoparticles (MO-NPs) loaded with HA nanocomposite are used for wound healing applications. Insights into important antibacterial mechanisms are described in HA nanocomposites. Furthermore, we explain antibiotics loaded with HA nanocomposite and its combination with the MNPs/MO-NPs used for wound healing applications. In addition, HA derivatives are discussed and used in combination with the other polymers of the composite for the wound healing process, as is the role of the polymer in wound healing applications. Finally, HA-based nanocomposites used for clinical trials in animal models are presented for wound healing applications.
Collapse
Affiliation(s)
- Kuncham Sudhakar
- Correspondence: (K.S.); (S.S.H.); Tel.: +8253-810-2773 (S.S.H.); Fax: +8253-810-4686 (S.S.H.)
| | | | | | - Sung Soo Han
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Gyeongbuk, Korea
| |
Collapse
|
25
|
Hou X, Zhong D, Chen H, Gu Z, Gong Q, Ma X, Zhang H, Zhu H, Luo K. Recent advances in hyaluronic acid-based nanomedicines: Preparation and application in cancer therapy. Carbohydr Polym 2022; 292:119662. [PMID: 35725165 DOI: 10.1016/j.carbpol.2022.119662] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/06/2022] [Accepted: 05/23/2022] [Indexed: 12/11/2022]
|
26
|
Buckley C, Murphy EJ, Montgomery TR, Major I. Hyaluronic Acid: A Review of the Drug Delivery Capabilities of This Naturally Occurring Polysaccharide. Polymers (Basel) 2022; 14:polym14173442. [PMID: 36080515 PMCID: PMC9460006 DOI: 10.3390/polym14173442] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/18/2022] [Accepted: 08/19/2022] [Indexed: 11/16/2022] Open
Abstract
The inclusion of physiologically active molecules into a naturally occurring polymer matrix can improve the degradation, absorption, and release profile of the drug, thus boosting the therapeutic impact and potentially even reducing the frequency of administration. The human body produces significant amounts of polysaccharide hyaluronic acid, which boasts exceptional biocompatibility, biodegradability, and one-of-a-kind physicochemical features. In this review, we will examine the clinical trials currently utilizing hyaluronic acid and address the bright future of this versatile polymer, as well as summarize the numerous applications of hyaluronic acid in drug delivery and immunomodulation.
Collapse
Affiliation(s)
- Ciara Buckley
- PRISM Research Institute, Technological University of the Shannon, N37 HD68 Athlone, Ireland
- Biosciences Research Institute, Technological University of the Shannon, V94 EC5T Limerick, Ireland
| | - Emma J. Murphy
- PRISM Research Institute, Technological University of the Shannon, N37 HD68 Athlone, Ireland
- LIFE Research Institute, Technological University of the Shannon, V94 EC5T Limerick, Ireland
| | - Therese R. Montgomery
- School of Science and Computing, Atlantic Technological University, H91 T8NW Galway, Ireland
| | - Ian Major
- PRISM Research Institute, Technological University of the Shannon, N37 HD68 Athlone, Ireland
- Correspondence:
| |
Collapse
|
27
|
Amorim S, Reis RL, Pires RA. Hyaluronan‐Based Hydrogels as Modulators of Cellular Behavior. MULTIFUNCTIONAL HYDROGELS FOR BIOMEDICAL APPLICATIONS 2022:217-232. [DOI: 10.1002/9783527825820.ch10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
28
|
Abstract
Vascular transplantation is an effective and common treatment for cardiovascular disease (CVD). However, the low biocompatibility of implants is a major problem that hinders its clinical application. Surface modification of implants with extracellular matrix (ECM) coatings is an effective approach to improve the biocompatibility of cardiovascular materials. The complete ECM seems to have better biocompatibility, which may give cardiovascular biomaterials a more functional surface. The use of one or several ECM proteins to construct a surface allows customization of coating composition and structure, possibly resulting in some unique functions. ECM is a complex three-dimensional structure composed of a variety of functional biological macromolecules, and changes in the composition will directly affect the function of the coating. Therefore, understanding the chemical composition of the ECM and its interaction with cells is beneficial to provide new approaches for coating surface modification. This article reviews novel ECM coatings, including coatings composed of intact ECM and biomimetic coatings tailored from several ECM proteins, and introduces new advances in coating fabrication. These ECM coatings are effective in improving the biocompatibility of vascular grafts.
Collapse
|
29
|
Wang L, Xia K, Han L, Zhang M, Fan J, Song L, Liao A, Wang W, Guo J. Local Administration of Ginkgolide B Using a Hyaluronan-Based Hydrogel Improves Wound Healing in Diabetic Mice. Front Bioeng Biotechnol 2022; 10:898231. [PMID: 35694224 PMCID: PMC9174682 DOI: 10.3389/fbioe.2022.898231] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 04/21/2022] [Indexed: 11/30/2022] Open
Abstract
The delayed and incomplete healing of diabetic wounds remains a major concern of global healthcare. The complex biological processes within the diabetic wound, such as chronic inflammation, impaired blood vessel growth and immature collagen remodeling, dramatically cause the failure of current treatments. Thus, emerging therapeutic strategies are highly desirable. Ginkgolide B (GB, a natural product extracted from the leaves of Ginkgo biloba L.) has been applied in the treatment of cerebrovascular and cardiovascular disorders, which is mainly due to the anti-oxidative, anti-inflammatory and proliferative effects. In this study, the role of GB in facilitating the anti-inflammatory and pro-healing effects on diabetic wounds was for the first time confirmed using in vitro, ex vivo and in vivo experimental methods. As a consequence, GB was able to significantly achieve the activities of anti-inflammation, re-epithelialization, and pro-angiogenesis. Previously, a hydrogel has been developed using the high molecular weight hyaluronan (hyaluronic acid, HA) in our laboratory. In this study, this hydrogel was utilized in vivo for local administration of GB to the full-thickness wounds of diabetic mice. The resultant hydrogel formulation (HA-GB) resulted in the reduction of inflammation, the enhancement of re-epithelialization and angiogenesis, and the modulation of collagens from type III to type I, significantly promoting the healing outcome as compared with a commercially available wound dressing product (INTRASITE Gel). This study confirms a great therapeutic promise of HA-GB for the chronic wounds of diabetic patients.
Collapse
Affiliation(s)
- Limei Wang
- Department of Pharmacy, Jilin Province FAW General Hospital, Changchun, China
| | - Kedi Xia
- Department of Pharmacy, Jilin Province FAW General Hospital, Changchun, China
| | - Lu Han
- Department of Medical Administration, Jilin Province FAW General Hospital, Changchun, China
| | - Min Zhang
- Department of Ophthalmology and Otorhinolaryngology, Jilin Province FAW General Hospital, Changchun, China
| | - Jihuan Fan
- Department of Education and Science Services, Jilin Province FAW General Hospital, Changchun, China
| | - Liu Song
- School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - Anqi Liao
- School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - Wenyu Wang
- Department of Thoracic Surgery, Jilin Province FAW General Hospital, Changchun, China,*Correspondence: Wenyu Wang, ; Jianfeng Guo,
| | - Jianfeng Guo
- School of Pharmaceutical Sciences, Jilin University, Changchun, China,*Correspondence: Wenyu Wang, ; Jianfeng Guo,
| |
Collapse
|
30
|
Luan X, Cong Z, Anastassiades TP, Gao Y. N-Butyrylated Hyaluronic Acid Achieves Anti-Inflammatory Effects In Vitro and in Adjuvant-Induced Immune Activation in Rats. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27103267. [PMID: 35630747 PMCID: PMC9145605 DOI: 10.3390/molecules27103267] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/13/2022] [Accepted: 05/18/2022] [Indexed: 12/20/2022]
Abstract
Previously synthesized N-butyrylated hyaluronic acid (BHA) provides anti-inflammatory effects in rat models of acute gouty arthritis and hyperuricemia. However, the mechanism of action remains to be elucidated. Herein, the anti-inflammatory and antioxidative activities of BHA and the targeted signaling pathways were explored with LPS-induced RAW264.7 and an adjuvant-induced inflammation in a rat model. Results indicated that BHA inhibited the generation of pro-inflammatory cytokines TNFα, IL-1β and IL-6, reduced ROS production and down-regulated JAK1-STAT1/3 signaling pathways in LPS-induced RAW264.7. In vivo, BHA alleviated paw and joint swelling, decreased inflammatory cell infiltration in paw tissues, suppressed gene expressions of p38 and p65, down-regulated the NF-κB and MAPK signaling pathways and reduced protein levels of TNFα, IL-1β and IL-6 in joint tissues of arthritis rats. This study demonstrated the pivotal role of BHA in anti-inflammation and anti-oxidation, suggesting the potential clinical value of BHA in the prevention of inflammatory arthritis and is worthy for development as a new pharmacological treatment.
Collapse
Affiliation(s)
- Xue Luan
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China; (X.L.); (Z.C.)
| | - Zhongcheng Cong
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China; (X.L.); (Z.C.)
| | - Tassos P. Anastassiades
- Division of Rheumatology, Department of Medicine, Queen’s University, Kingston, ON K7L 4B4, Canada;
| | - Yin Gao
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China; (X.L.); (Z.C.)
- Correspondence: ; Fax: +86-431-85168175
| |
Collapse
|
31
|
Kaul A, Singampalli KL, Parikh UM, Yu L, Keswani SG, Wang X. Hyaluronan, a double-edged sword in kidney diseases. Pediatr Nephrol 2022; 37:735-744. [PMID: 34009465 PMCID: PMC8960635 DOI: 10.1007/s00467-021-05113-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 03/31/2021] [Accepted: 04/30/2021] [Indexed: 12/20/2022]
Abstract
Over the years, hyaluronic acid (HA) has emerged as an important molecule in nephrological and urological studies involving extracellular matrix (ECM) organization, inflammation, tissue regeneration, and viral sensing. During this time, many have noted the perplexing double-edged nature of the molecule, at times promoting pro-fibrotic events and at other times promoting anti-fibrotic events. Different molecular weights of HA can be attributed to these disparities, though most studies have yet to focus on this subtlety. With regard to the kidney, HA is induced in the initial response phase of injury and is subsequently decreased during disease progression of AKI, CKD, and diabetic nephropathy. These and other kidney diseases force patients, particularly pediatric patients, to face dialysis, surgical procedures, and ultimately, transplant. To summarize the current literature for researchers and pediatric nephrologists, this review aims to expound HA and elucidate its paradoxical effects in multiple kidney diseases using studies that emphasize HA molecular weight when available.
Collapse
Affiliation(s)
- Aditya Kaul
- Laboratory for Regenerative Tissue Repair, Division of Pediatric Surgery, Department of Surgery, Texas Children's Hospital/Baylor College of Medicine, Houston, TX, 77030, USA
| | - Kavya L Singampalli
- Laboratory for Regenerative Tissue Repair, Division of Pediatric Surgery, Department of Surgery, Texas Children's Hospital/Baylor College of Medicine, Houston, TX, 77030, USA
- Medical Scientist Training Program, Baylor College of Medicine, Houston, 77030, TX, USA
- Department of Bioengineering, Rice University, Houston, 77030, TX, USA
| | - Umang M Parikh
- Laboratory for Regenerative Tissue Repair, Division of Pediatric Surgery, Department of Surgery, Texas Children's Hospital/Baylor College of Medicine, Houston, TX, 77030, USA
| | - Ling Yu
- Laboratory for Regenerative Tissue Repair, Division of Pediatric Surgery, Department of Surgery, Texas Children's Hospital/Baylor College of Medicine, Houston, TX, 77030, USA
| | - Sundeep G Keswani
- Laboratory for Regenerative Tissue Repair, Division of Pediatric Surgery, Department of Surgery, Texas Children's Hospital/Baylor College of Medicine, Houston, TX, 77030, USA
| | - Xinyi Wang
- Laboratory for Regenerative Tissue Repair, Division of Pediatric Surgery, Department of Surgery, Texas Children's Hospital/Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
32
|
A chlorogenic acid-loaded hyaluronic acid-based hydrogel facilitates anti-inflammatory and pro-healing effects for diabetic wounds. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
33
|
Valachová K, El Meligy MA, Šoltés L. Hyaluronic acid and chitosan-based electrospun wound dressings: Problems and solutions. Int J Biol Macromol 2022; 206:74-91. [PMID: 35218807 DOI: 10.1016/j.ijbiomac.2022.02.117] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 02/16/2022] [Accepted: 02/18/2022] [Indexed: 11/05/2022]
Abstract
To date, available review papers related to the electrospinning of biopolymers including polysaccharides for wound healing were focused on summarizing the process conditions for two candidates, namely chitosan and hyaluronic acid. However, most reviews lack the discussion of problems of hyaluronan and chitosan electrospun nanofibers for wound dressing applications. For this reason, it is required to update information by providing a comprehensive overview of all factors which may play a role in the electrospinning of hyaluronic acid and chitosan for applications of wound dressings. This review summarizes the fabricated chitosan and hyaluronic acid electrospun nanofibers as wound dressings in the last years, including methods of preparations of nanofibers and challenges for the electrospinning of both pure chitosan and hyaluronic acid and strategies how to overcome the existing difficulties. Moreover, in this review the biological roles and mechanisms of chitosan and hyaluronic acid in the wound healing process are explained including the advantages of nanofibers for ideal wound management using the common solvents, copolymers enhancing spinning process, and the most biologically active incorporated substances thereby providing drug delivery in wound healing.
Collapse
Affiliation(s)
- Katarína Valachová
- Centre of Experimental Medicine of Slovak Academy of Sciences, Dúbravská cesta 9, 84104 Bratislava, Slovakia.
| | - Mahmoud Atya El Meligy
- Department of Chemistry, Polymer Research Group, Faculty of Science, University of Tanta, Tanta 31527, Egypt
| | - Ladislav Šoltés
- Centre of Experimental Medicine of Slovak Academy of Sciences, Dúbravská cesta 9, 84104 Bratislava, Slovakia
| |
Collapse
|
34
|
Firlar I, Altunbek M, McCarthy C, Ramalingam M, Camci-Unal G. Functional Hydrogels for Treatment of Chronic Wounds. Gels 2022; 8:127. [PMID: 35200508 PMCID: PMC8871490 DOI: 10.3390/gels8020127] [Citation(s) in RCA: 102] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 02/11/2022] [Accepted: 02/14/2022] [Indexed: 02/04/2023] Open
Abstract
Chronic wounds severely affect 1-2% of the population in developed countries. It has been reported that nearly 6.5 million people in the United States suffer from at least one chronic wound in their lifetime. The treatment of chronic wounds is critical for maintaining the physical and mental well-being of patients and improving their quality of life. There are a host of methods for the treatment of chronic wounds, including debridement, hyperbaric oxygen therapy, ultrasound, and electromagnetic therapies, negative pressure wound therapy, skin grafts, and hydrogel dressings. Among these, hydrogel dressings represent a promising and viable choice because their tunable functional properties, such as biodegradability, adhesivity, and antimicrobial, anti-inflammatory, and pre-angiogenic bioactivities, can accelerate the healing of chronic wounds. This review summarizes the types of chronic wounds, phases of the healing process, and key therapeutic approaches. Hydrogel-based dressings are reviewed for their multifunctional properties and their advantages for the treatment of chronic wounds. Examples of commercially available hydrogel dressings are also provided to demonstrate their effectiveness over other types of wound dressings for chronic wound healing.
Collapse
Affiliation(s)
- Ilayda Firlar
- Biomedical Engineering and Biotechnology Program, University of Massachusetts Lowell, Lowell, MA 01854, USA;
- Department of Chemical Engineering, University of Massachusetts Lowell, Lowell, MA 01854, USA; (M.A.); (C.M.)
| | - Mine Altunbek
- Department of Chemical Engineering, University of Massachusetts Lowell, Lowell, MA 01854, USA; (M.A.); (C.M.)
| | - Colleen McCarthy
- Department of Chemical Engineering, University of Massachusetts Lowell, Lowell, MA 01854, USA; (M.A.); (C.M.)
| | - Murugan Ramalingam
- School of Basic Medical Sciences, Chengdu University, Chengdu 610106, China;
- Institute of Tissue Regeneration Engineering, Dankook University, Cheonan 31116, Korea
| | - Gulden Camci-Unal
- Department of Chemical Engineering, University of Massachusetts Lowell, Lowell, MA 01854, USA; (M.A.); (C.M.)
- Department of Surgery, University of Massachusetts Medical School, Worcester, MA 01605, USA
| |
Collapse
|
35
|
Salabi F, Jafari H. New insights about scorpion venom hyaluronidase; isoforms, expression and phylogeny. TOXIN REV 2022. [DOI: 10.1080/15569543.2021.2018613] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Fatemeh Salabi
- Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Ahvaz, Iran
| | - Hedieh Jafari
- Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Ahvaz, Iran
| |
Collapse
|
36
|
Smith MJ, Dempsey SG, Veale RWF, Duston-Fursman CG, Rayner CAF, Javanapong C, Gerneke D, Dowling SG, Bosque BA, Karnik T, Jerram MJ, Nagarajan A, Rajam R, Jowsey A, Cutajar S, Mason I, Stanley RG, Campbell A, Malmstrom J, Miller CH, May BCH. Further structural characterization of ovine forestomach matrix and multi-layered extracellular matrix composites for soft tissue repair. J Biomater Appl 2022; 36:996-1010. [PMID: 34747247 PMCID: PMC8721687 DOI: 10.1177/08853282211045770] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Decellularized extracellular matrix (dECM)-based biomaterials are of great clinical utility in soft tissue repair applications due to their regenerative properties. Multi-layered dECM devices have been developed for clinical indications where additional thickness and biomechanical performance are required. However, traditional approaches to the fabrication of multi-layered dECM devices introduce additional laminating materials or chemical modifications of the dECM that may impair the biological functionality of the material. Using an established dECM biomaterial, ovine forestomach matrix, a novel method for the fabrication of multi-layered dECM constructs has been developed, where layers are bonded via a physical interlocking process without the need for additional bonding materials or detrimental chemical modification of the dECM. The versatility of the interlocking process has been demonstrated by incorporating a layer of hyaluronic acid to create a composite material with additional biological functionality. Interlocked composite devices including hyaluronic acid showed improved in vitro bioactivity and moisture retention properties.
Collapse
Affiliation(s)
- Matthew J Smith
- Department of Research and Clinical Development, Aroa Biosurgery Limited, Auckland, New Zealand
| | - Sandi G Dempsey
- Department of Research and Clinical Development, Aroa Biosurgery Limited, Auckland, New Zealand
| | - Robert WF Veale
- Department of Research and Clinical Development, Aroa Biosurgery Limited, Auckland, New Zealand
| | | | - Chloe A F Rayner
- Department of Research and Clinical Development, Aroa Biosurgery Limited, Auckland, New Zealand
| | - Chettha Javanapong
- Department of Research and Clinical Development, Aroa Biosurgery Limited, Auckland, New Zealand
| | - Dane Gerneke
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
| | - Shane G Dowling
- Department of Research and Clinical Development, Aroa Biosurgery Limited, Auckland, New Zealand
| | - Brandon A Bosque
- Department of Research and Clinical Development, Aroa Biosurgery Limited, Auckland, New Zealand
| | - Tanvi Karnik
- Department of Research and Clinical Development, Aroa Biosurgery Limited, Auckland, New Zealand
| | - Michael J Jerram
- Department of Research and Clinical Development, Aroa Biosurgery Limited, Auckland, New Zealand
| | - Arun Nagarajan
- Department of Research and Clinical Development, Aroa Biosurgery Limited, Auckland, New Zealand
| | - Ravinder Rajam
- Department of Research and Clinical Development, Aroa Biosurgery Limited, Auckland, New Zealand
| | - Alister Jowsey
- Department of Research and Clinical Development, Aroa Biosurgery Limited, Auckland, New Zealand
| | - Samuel Cutajar
- Department of Research and Clinical Development, Aroa Biosurgery Limited, Auckland, New Zealand
| | - Isaac Mason
- Department of Research and Clinical Development, Aroa Biosurgery Limited, Auckland, New Zealand
| | - Roderick G Stanley
- Department of Research and Clinical Development, Aroa Biosurgery Limited, Auckland, New Zealand
| | - Andrew Campbell
- Department of Research and Clinical Development, Aroa Biosurgery Limited, Auckland, New Zealand
| | - Jenny Malmstrom
- Department of Chemical and Materials Engineering, The University of Auckland, Auckland, New Zealand
| | - Chris H Miller
- Department of Research and Clinical Development, Aroa Biosurgery Limited, Auckland, New Zealand
| | - Barnaby C H May
- Department of Research and Clinical Development, Aroa Biosurgery Limited, Auckland, New Zealand
| |
Collapse
|
37
|
Marunaka K, Shu S, Kobayashi M, Goto M, Katsuta Y, Yoshino Y, Ikari A. Elevation of Hyaluronan Synthase by Magnesium Supplementation Mediated through the Activation of GSK3 and CREB in Human Keratinocyte-Derived HaCaT Cells. Int J Mol Sci 2021; 23:ijms23010071. [PMID: 35008494 PMCID: PMC8744730 DOI: 10.3390/ijms23010071] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 12/20/2021] [Accepted: 12/20/2021] [Indexed: 01/10/2023] Open
Abstract
Skin barrier damage is present in the patients with hereditary disorders of the magnesium channel, but the molecular mechanism has not been fully understood. We found that the expressions of hyaluronan synthase (HAS), HAS2 and HAS3 are influenced by MgCl2 concentration in human keratinocyte-derived HaCaT cells. The exposure of cells to a high concentration (5.8 mM) of MgCl2 induced the elevation of HAS2/3 expression, which was inhibited by mRNA knockdown of nonimprinted in Prader-Willi/Angelman syndrome-like domain containing 4 (NIPAL4). Similarly, the content of hyaluronic acid (HA) was changed according to MgCl2 concentration and the expression of NIPAL4. The MgCl2 supplementation increased the reporter activities of HAS2/3, which were inhibited by NIPAL4 knockdown, indicating that the expressions of HAS2/3 are up-regulated at the transcriptional level. The reporter activities and mRNA levels of HAS2/3, and the production of HA were inhibited by CHIR-99021, a glycogen synthase kinase-3 (GSK3) inhibitor, and naphthol AS-E, a cyclic AMP-response element binding protein (CREB) inhibitor. Furthermore, the mutation in putative CREB-binding sites of promoter region in HAS2/3 genes inhibited the MgCl2 supplementation-induced elevation of promoter activity. Our results indicate that the expressions of HAS2/3 are up-regulated by MgCl2 supplementation in HaCaT cells mediated through the activation of GSK3 and CREB. Magnesium may play a pivotal role in maintaining the skin barrier function and magnesium supplementation may be useful to enhance moisturization and wound repair in the skin.
Collapse
Affiliation(s)
- Kana Marunaka
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu 501-1196, Japan; (K.M.); (S.S.); (M.K.); (Y.Y.)
| | - Shokoku Shu
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu 501-1196, Japan; (K.M.); (S.S.); (M.K.); (Y.Y.)
| | - Mao Kobayashi
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu 501-1196, Japan; (K.M.); (S.S.); (M.K.); (Y.Y.)
| | - Makiko Goto
- MIRAI Technology Institute, Shiseido Co. Ltd., Kanagawa 220-0011, Japan; (M.G.); (Y.K.)
| | - Yuji Katsuta
- MIRAI Technology Institute, Shiseido Co. Ltd., Kanagawa 220-0011, Japan; (M.G.); (Y.K.)
| | - Yuta Yoshino
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu 501-1196, Japan; (K.M.); (S.S.); (M.K.); (Y.Y.)
| | - Akira Ikari
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu 501-1196, Japan; (K.M.); (S.S.); (M.K.); (Y.Y.)
- Correspondence: ; Tel./Fax: +81-58-230-8124
| |
Collapse
|
38
|
Villarreal-Leal RA, Healey GD, Corradetti B. Biomimetic immunomodulation strategies for effective tissue repair and restoration. Adv Drug Deliv Rev 2021; 179:113913. [PMID: 34371087 DOI: 10.1016/j.addr.2021.113913] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 07/21/2021] [Accepted: 07/30/2021] [Indexed: 12/12/2022]
Abstract
Inflammation plays a central role in wound healing following injury or disease and is mediated by a precise cascade of cellular and molecular events. Unresolved inflammatory processes lead to chronic inflammation and fibrosis, which can result in prolonged wound healing lasting months or years that hampers tissue function. Therapeutic interventions mediated by immunomodulatory drugs, cells, or biomaterials, are therefore most effective during the inflammatory phase of wound healing when a pro-regenerative environment is essential. In this review, we discuss the advantages of exploiting knowledge of the native tissue microenvironment to develop therapeutics capable of modulating the immune response and promoting functional tissue repair. In particular, we provide examples of the most recent biomimetic platforms proposed to accomplish this goal, with an emphasis on those able to induce macrophage polarization towards a pro-regenerative phenotype.
Collapse
|
39
|
Bhojani-Lynch T, Deckers A, Ohanes O, Poupard K, Maffert P. A Prospective, Observational Registry Study to Evaluate Effectiveness and Safety of Hyaluronic Acid-Based Dermal Fillers in Routine Practice: Interim Analysis Results with One Year of Subject Follow-Up. Clin Cosmet Investig Dermatol 2021; 14:1685-1695. [PMID: 34815685 PMCID: PMC8605794 DOI: 10.2147/ccid.s329415] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 10/26/2021] [Indexed: 01/09/2023]
Abstract
Background Monitoring the effectiveness, safety and emerging uses of hyaluronic acid (HA) fillers in their wide range of indications requires a holistic approach. Purpose To propose an observational study design aiming to gather real-world evidence (RWE) and continuously evaluate the performance and safety of marketed devices in routine practice. Materials and Methods A prospective, observational registry was initiated at six European sites. Investigators enrolled any subject receiving at least one injection with a target study device (TEOSYAL Deep Lines [HADL] and/or Global Action [HAGA]). They followed their routine practice regarding injection technique, volume, and subject follow-up. Effectiveness was evaluated at 3 months using the global aesthetic improvement scale (GAIS). Safety was assessed based on common treatment reactions (CTR) and adverse events (AE). Results High quantity of RWE was collected following the initiation of this registry. In the first 158 subjects enrolled, 1220 injections were performed in more than 25 indications, including 679 with the target devices and 271 with devices of the same filler line. The primary objective was achieved, with 93.9% of treatments providing improvement at Month 3 according to the PI and subject. Post-injection CTR were mild to moderate and short-lived, and there was no clinically significant AE. More than 76% of treatments still provided some visible effect at month 12. Conclusion Based on RWE, HADL and HAGL are effective and safe in their respective indications mostly distributed in the midface, perioral region, and lower face. Observational registries are a valuable asset in the context of post-market clinical follow-up.
Collapse
Affiliation(s)
| | - Anne Deckers
- Centre Médical Esthétique Eureka, Dalhem, Belgium
| | - Ohan Ohanes
- Swiss Care Cosmetic & Laser Clinic, London, UK
| | - Kevin Poupard
- Clinical Development Department, Teoxane S.A., Geneva, Switzerland
| | - Pauline Maffert
- Clinical Development Department, Teoxane S.A., Geneva, Switzerland
| |
Collapse
|
40
|
Marinho A, Nunes C, Reis S. Hyaluronic Acid: A Key Ingredient in the Therapy of Inflammation. Biomolecules 2021; 11:1518. [PMID: 34680150 PMCID: PMC8533685 DOI: 10.3390/biom11101518] [Citation(s) in RCA: 156] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/06/2021] [Accepted: 10/07/2021] [Indexed: 02/08/2023] Open
Abstract
Hyaluronic acid (HA) is a natural polymer, produced endogenously by the human body, which has unique physicochemical and biological properties, exhibiting desirable biocompatibility and biodegradability. Therefore, it has been widely studied for possible applications in the area of inflammatory diseases. Although exogenous HA has been described as unable to restore or replace the properties and activities of endogenous HA, it can still provide satisfactory pain relief. This review aims to discuss the advances that have been achieved in the treatment of inflammatory diseases using hyaluronic acid as a key ingredient, essentially focusing on studies carried out between the years 2017 and 2021.
Collapse
Affiliation(s)
| | - Cláudia Nunes
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia da Universidade do Porto, 4050-313 Porto, Portugal; (A.M.); (S.R.)
| | | |
Collapse
|
41
|
Yang H, Song L, Sun B, Chu D, Yang L, Li M, Li H, Dai Y, Yu Z, Guo J. Modulation of macrophages by a paeoniflorin-loaded hyaluronic acid-based hydrogel promotes diabetic wound healing. Mater Today Bio 2021; 12:100139. [PMID: 34632363 PMCID: PMC8488309 DOI: 10.1016/j.mtbio.2021.100139] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/28/2021] [Accepted: 09/05/2021] [Indexed: 02/05/2023] Open
Abstract
The impaired wound healing in diabetes is a central concern of healthcare worldwide. However, current treatments often fail due to the complexity of diabetic wounds, and thus, emerging therapeutic approaches are needed. Macrophages, a prominent immune cell in the wound, play key roles in tissue repair and regeneration. Recent evidence has demonstrated that macrophages in diabetic wounds maintain a persistent proinflammatory phenotype that causes the failure of healing. Therefore, modulation of macrophages provides great promise for wound healing in diabetic patients. In this study, the potential of paeoniflorin (PF, a chemical compound derived from the herb Paeonia lactiflora) for the transition of macrophages from M1 (proinflammatory phenotype) to M2 (anti-inflammatory/prohealing phenotype) was confirmed using ex vivo and in vivo experimental approaches. A hydrogel based on high molecular weight hyaluronic acid (HA) was developed for local administration of PF in experimental diabetic mice with a full-thickness wound. The resultant formulation (HA-PF) was able to significantly promote cutaneous healing as compared to INTRASITE Gel (a commercial hydrogel wound dressing). This outcome was accompanied by the amelioration of inflammation, the improvement of angiogenesis, and re-epithelialization, and the deposition of collagen. Our study indicates the significant potential of HA-PF for clinical translation in diabetic wound healing.
Collapse
Key Words
- Adipic acid dihydrazide, ADH
- Angiogenesis
- Anti-inflammation
- Hydrogel
- Macrophage polarization
- N-(3-Dimethylaminopropyl)-N′-ethylcarbodiimide hydrochloride, EDC.HCl
- Regenerative medicine
- arginase 1, Arg-1
- bone marrow-derived macrophages, BMDMs
- dimethyl sulfoxide, DMSO
- fetal bovine serum, FBS
- human umbilical vein endothelial cells, HUVECs
- hyaluronic acid, HA
- inducible nitric oxide synthase, iNOS
- integrated optical density, IOD
- interferon-γ, IFN-γ
- interleukin-10, IL-10
- interleukin-1β, IL-1β
- lipopolysaccharide, LPS
- macrophage colony-stimulating factor, M-CSF
- paeoniflorin, PF
- penicillin-streptomycin, P/S
- phosphate-buffered saline, PBS
- polyvinylidene difluoride, PVDF
- scanning electron microscopy, SEM
- signal transducer and activator of transcription, STAT
- streptozocin, STZ
- swelling ratio, SR
- transforming growth factor-β, TGF-β
- tumor necrosis factor-α, TNF-α
- α-smooth muscle actin, α-SMA
Collapse
Affiliation(s)
- Hao Yang
- School of Pharmaceutical Sciences, Jilin University, Changchun, 130021, China
| | - Liu Song
- School of Pharmaceutical Sciences, Jilin University, Changchun, 130021, China
| | - Bingxue Sun
- School of Pharmaceutical Sciences, Jilin University, Changchun, 130021, China
| | - Di Chu
- School of Pharmaceutical Sciences, Jilin University, Changchun, 130021, China
| | - Leilei Yang
- School of Pharmaceutical Sciences, Jilin University, Changchun, 130021, China
| | - Meng Li
- School of Pharmaceutical Sciences, Jilin University, Changchun, 130021, China
| | - Huan Li
- School of Pharmaceutical Sciences, Jilin University, Changchun, 130021, China
| | - Yun Dai
- Laboratory of Cancer Precision Medicine, The First Hospital of Jilin University, Changchun, 130021, China
| | - Zhuo Yu
- Department of Hepatopathy, Shuguang Hospital, Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Jianfeng Guo
- School of Pharmaceutical Sciences, Jilin University, Changchun, 130021, China
| |
Collapse
|
42
|
Xia L, Wang S, Jiang Z, Chi J, Yu S, Li H, Zhang Y, Li L, Zhou C, Liu W, Han B. Hemostatic performance of chitosan-based hydrogel and its study on biodistribution and biodegradability in rats. Carbohydr Polym 2021; 264:117965. [PMID: 33910708 DOI: 10.1016/j.carbpol.2021.117965] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 03/14/2021] [Accepted: 03/16/2021] [Indexed: 12/14/2022]
Abstract
Hemostasis is of great significance regardless of the smooth operation or postoperative recovery. Therefore, it is urgent to develop a hemostatic material with excellent biodegradability and biocompatibility. It is well known that both carboxymethyl chitosan and hyaluronic acid with biodegradability and biocompatibility have wound healing promoting property. Here, a degradable chitosan-based hydrogel was prepared based on carboxymethyl chitosan and cross-linked by oxidized hyaluronic acid. The hemostatic performance of the hydrogel in rat liver resection injury was evaluated which results showed that the hydrogel exhibited comparable hemostatic properties compared with Fibrin Sealant. In addition, the hydrogel proved to be rapidly absorbed by the body without significant accumulation in vivo, demonstrating good biodegradability and biocompatibility. The overall results suggested the hydrogel will be a promising hemostatic hydrogel for controlling bleeding.
Collapse
Affiliation(s)
- Lixin Xia
- Laboratory of Biochemistry and Biomedical Materials, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, PR China
| | - Shuo Wang
- Laboratory of Biochemistry and Biomedical Materials, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, PR China
| | - Zhiwen Jiang
- Laboratory of Biochemistry and Biomedical Materials, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, PR China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, PR China
| | - Jinhua Chi
- Laboratory of Biochemistry and Biomedical Materials, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, PR China
| | - Shuqin Yu
- Laboratory of Biochemistry and Biomedical Materials, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, PR China
| | - Hongjian Li
- Laboratory of Biochemistry and Biomedical Materials, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, PR China
| | - Yijie Zhang
- Laboratory of Biochemistry and Biomedical Materials, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, PR China
| | - Lihua Li
- Department of Materials Science and Engineering, Jinan University, Guangzhou, 510632, PR China
| | - Changren Zhou
- Department of Materials Science and Engineering, Jinan University, Guangzhou, 510632, PR China
| | - Wanshun Liu
- Laboratory of Biochemistry and Biomedical Materials, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, PR China
| | - Baoqin Han
- Laboratory of Biochemistry and Biomedical Materials, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, PR China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, PR China.
| |
Collapse
|
43
|
Effects of a Catechol-Functionalized Hyaluronic Acid Patch Combined with Human Adipose-Derived Stem Cells in Diabetic Wound Healing. Int J Mol Sci 2021; 22:ijms22052632. [PMID: 33807864 PMCID: PMC7961484 DOI: 10.3390/ijms22052632] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 02/25/2021] [Accepted: 02/28/2021] [Indexed: 12/29/2022] Open
Abstract
Introduction: Chronic inflammation and impaired neovascularization play critical roles in delayed wound healing in diabetic patients. To overcome the limitations of current diabetic wound (DBW) management interventions, we investigated the effects of a catechol-functionalized hyaluronic acid (HA-CA) patch combined with adipose-derived mesenchymal stem cells (ADSCs) in DBW mouse models. Methods: Diabetes in mice (C57BL/6, male) was induced by streptozotocin (50 mg/kg, >250 mg/dL). Mice were divided into four groups: control (DBW) group, ADSCs group, HA-CA group, and HA-CA + ADSCs group (n = 10 per group). Fluorescently labeled ADSCs (5 × 105 cells/100 µL) were transplanted into healthy tissues at the wound boundary or deposited at the HA-CA patch at the wound site. The wound area was visually examined. Collagen content, granulation tissue thickness and vascularity, cell apoptosis, and re-epithelialization were assessed. Angiogenesis was evaluated by immunohistochemistry, quantitative real-time polymerase chain reaction, and Western blot. Results: DBW size was significantly smaller in the HA-CA + ADSCs group (8% ± 2%) compared with the control (16% ± 5%, p < 0.01) and ADSCs (24% ± 17%, p < 0.05) groups. In mice treated with HA-CA + ADSCs, the epidermis was regenerated, and skin thickness was restored. CD31 and von Willebrand factor-positive vessels were detected in mice treated with HA-CA + ADSCs. The mRNA and protein levels of VEGF, IGF-1, FGF-2, ANG-1, PIK, and AKT in the HA-CA + ADSCs group were the highest among all groups, although the Spred1 and ERK expression levels remained unchanged. Conclusions: The combination of HA-CA and ADSCs provided synergistic wound healing effects by maximizing paracrine signaling and angiogenesis via the PI3K/AKT pathway. Therefore, ADSC-loaded HA-CA might represent a novel strategy for the treatment of DBW.
Collapse
|
44
|
Yang H, Song L, Zou Y, Sun D, Wang L, Yu Z, Guo J. Role of Hyaluronic Acids and Potential as Regenerative Biomaterials in Wound Healing. ACS APPLIED BIO MATERIALS 2021; 4:311-324. [PMID: 35014286 DOI: 10.1021/acsabm.0c01364] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The skin can protect the body from external harm, sense environmental changes, and maintain physiological homeostasis. Cutaneous repair and regeneration associated with surgical wounds, acute traumas, and chronic diseases are a central concern of healthcare. Patients may experience the failure of current treatments due to the complexity of the healing process; therefore, emerging strategies are needed. Hyaluronic acids (HAs, also known as hyaluronan), a glycosaminoglycan (GAG) of the extracellular matrix (ECM), play key roles in cell differentiation, proliferation, and migration throughout tissue development and regeneration. Recently, HA derivatives have been developed as regenerative biomaterials for treating skin damage and injury. In this review, the healing process, namely, hemostasis, inflammation, proliferation, and maturation, is described and the role of HAs in the healing process is discussed. This review also provides recent examples in the development of HA derivatives for wound healing.
Collapse
Affiliation(s)
- Hao Yang
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Liu Song
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Yifang Zou
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Dandan Sun
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Limei Wang
- Department of Pharmacy, The General Hospital of FAW, Changchun 130011, China
| | - Zhuo Yu
- Department of Hepatopathy, Shuguang Hospital, Affiliated with Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jianfeng Guo
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| |
Collapse
|
45
|
Zhang Y, Zhang P, Gao X, Chang L, Chen Z, Mei X. Preparation of exosomes encapsulated nanohydrogel for accelerating wound healing of diabetic rats by promoting angiogenesis. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 120:111671. [DOI: 10.1016/j.msec.2020.111671] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 10/09/2020] [Accepted: 10/20/2020] [Indexed: 12/15/2022]
|
46
|
Taskan MM, Balci Yuce H, Karatas O, Gevrek F, Isiker Kara G, Celt M, Sirma Taskan E. Hyaluronic acid with antioxidants improve wound healing in rats. Biotech Histochem 2020; 96:536-545. [PMID: 33047988 DOI: 10.1080/10520295.2020.1832255] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Hyaluronic acid (HA) is found in connective tissue and participates in wound healing. We investigated the efficacy of a HA gel (2% hyaluronic acid; 1% antioxidants, coenzyme Q10 and vitamin E; and 5% benzocaine) on healing of palatal wounds in rats. We established two groups of rats: a control group treated with vehicle and an HA group treated with HA gel. The control group was divided into five subgroups and the HA group was divided into four subgroups according to the day on which animals were sacrificed. Wounds were created by elevating 5 mm diameter full thickness flaps. Healed and unhealed wound areas were measured using photographs. Transforming growth factor (TGF)-β, insulin-like growth factor (IGF), and collagen I and III expressions were determined using immunohistochemistry. The number of fibroblasts increased and inflammatory cells decreased from day 0 to 21 in both groups. The HA group exhibited more fibroblasts by day 7 compared to controls; (TGF)-β and IGF levels were similar between HA and control groups. HA groups exhibited fewer inflammatory cells than controls on days 3 and 7. We found significant differences in TGF-β and IGF levels among HA groups between days 3 and 21, and among control groups between days 0 and 21. Collagen I and III levels were greater for the day 3 HA group compared to controls. We observed improved wound healing in HA treated rats within 7 days.
Collapse
Affiliation(s)
- Mehmet Murat Taskan
- Department of Periodontology, Faculty of Dentistry, Tokat Gaziosmanpaşa University, Tokat, Turkey
| | - Hatice Balci Yuce
- Department of Periodontology, Faculty of Dentistry, Tokat Gaziosmanpaşa University, Tokat, Turkey
| | - Ozkan Karatas
- Department of Periodontology, Faculty of Dentistry, Tokat Gaziosmanpaşa University, Tokat, Turkey
| | - Fikret Gevrek
- Department of Histology and Embryology, Faculty of Medicine, Tokat Gaziosmanpaşa University, Tokat, Turkey
| | - Gozde Isiker Kara
- Department of Periodontology, Faculty of Dentistry, Tokat Gaziosmanpaşa University, Tokat, Turkey
| | - Melike Celt
- Department of Periodontology, Faculty of Dentistry, Tokat Gaziosmanpaşa University, Tokat, Turkey
| | | |
Collapse
|
47
|
Shin SS, Yoon M. Regulation of Obesity by Antiangiogenic Herbal Medicines. Molecules 2020; 25:molecules25194549. [PMID: 33020443 PMCID: PMC7582783 DOI: 10.3390/molecules25194549] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 09/30/2020] [Accepted: 10/02/2020] [Indexed: 12/11/2022] Open
Abstract
Obesity is the result of an energy imbalance caused by an increased ratio of caloric intake to energy expenditure. In conjunction with obesity, related metabolic disorders, such as dyslipidemia, atherosclerosis, and type 2 diabetes, have become global health problems. Obesity progression is thought to be associated with angiogenesis and extracellular matrix (ECM) remodeling. Angiogenesis occurs in growing adult adipose tissues, which are similar to neoplastic tissues. Adipose tissue is highly vascularized, and each adipocyte is nourished by an extensive capillary network. Adipocytes produce proangiogenic factors, such as vascular endothelial growth factor A and fibroblast growth factor 2, which promote neovascularization within the adipose tissue. Furthermore, matrix metalloproteinases (MMPs), including MMP-2 and MMP-9, play important roles in adipose tissue development and microvessel maturation by modifying the ECM. Thus, modulation of angiogenesis and MMP activity provides a promising therapeutic approach for controlling human obesity and its related disorders. Over the past decade, there has been a great increase in the use of alternative treatments, such as herbal remedies, for these diseases. This review will focus on the role of angiogenesis in adipose tissue growth and the regulation of obesity by antiangiogenic herbal medicines.
Collapse
Affiliation(s)
- Soon Shik Shin
- Department of Formula Sciences, College of Oriental Medicine, Dongeui University, Busan 47340, Korea;
| | - Michung Yoon
- Department of Biomedical Engineering, Mokwon University, Daejeon 35349, Korea;
- Correspondence: ; Tel.: +8242-829-7581; Fax: 8242-829-7580
| |
Collapse
|
48
|
Mittal AK, Bhardwaj R, Arora R, Singh A, Mukherjee M, Rajput SK. Acceleration of Wound Healing in Diabetic Rats through Poly Dimethylaminoethyl Acrylate-Hyaluronic Acid Polymeric Hydrogel Impregnated with a Didymocarpus pedicellatus Plant Extract. ACS OMEGA 2020; 5:24239-24246. [PMID: 33015440 PMCID: PMC7528192 DOI: 10.1021/acsomega.0c02040] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 08/31/2020] [Indexed: 05/08/2023]
Abstract
Wound is the major health problem associated with skin damages and arises because of various types of topical injuries. Furthermore, wounds in patients with diabetes take a relatively long time to heal. Currently, herbal medicines have been extensively used for wound care and management. Here, we engineered polymeric hybrid hydrogel of dimethylaminoethyl acrylate and hyaluronic acid (pDMAEMA-HA), which was impregnated with a herbal extract of Didymocarpus pedicellatus. The developed polymeric hybrid hydrogel system can be used for effective therapy of incurable wounds. Therefore, the development of D. pedicellatus-impregnated pDMAEMA-HA (pDPi-DMAEMA-HA) hybrid hydrogel was accomplished by the synthesis of pDMAEMA-HA hydrogel via the optimization of various reaction parameters followed by impregnation of herbal drugs D. pedicellatus. The developed hydrogel composite was well characterized via various techniques, and swelling kinetics was performed to analyze the water uptake property. The swelling ratio was found to be 1600% in both types of hydrogels. To evaluate the wound healing of these polymeric hydrogels, the Wistar rats full-thickness excision wound model was utilized. The healing strength of hydrogels was determined using measurement of wound contraction and histopathological study. The results of wound healing by these polymeric hydrogels revealed that animals treated with the pDPi-DMAEMA-HA hybrid hydrogel group were found to have a higher level of wound closure as compared to marketed formulation as well as polymeric hybrid hydrogel. The histopathologic examinations implied that pDPi-DMAEMA-HA hybrid hydrogel and polymeric hybrid hydrogel-treated groups exhibited enhanced cutaneous wound repair as well as high level of cellular repair and maintenance compared to the standard group because of hyaluronic acid roles in various stages of wound repair.
Collapse
Affiliation(s)
- Amit K. Mittal
- Amity
Institute of Pharmacy (AIP), Amity University-Uttar
Pradesh, Sector-125, Noida, Uttar Pradesh 201301, India
- Amity
Institute of Indian System of Medicine (AIISM), Amity University-Uttar Pradesh, Sector-125, Noida, Uttar
Pradesh 201301, India
| | - Rohit Bhardwaj
- Amity
Institute of Pharmacy (AIP), Amity University-Uttar
Pradesh, Sector-125, Noida, Uttar Pradesh 201301, India
| | - Riya Arora
- Amity
Institute of Pharmacy (AIP), Amity University-Uttar
Pradesh, Sector-125, Noida, Uttar Pradesh 201301, India
| | - Aarti Singh
- Amity
Amity Institute of Click Chemistry Research and Studies (AICCRS), Amity University-Uttar Pradesh, Sector-125, Noida, Uttar Pradesh 201301, India
| | - Monalisa Mukherjee
- Amity
Amity Institute of Click Chemistry Research and Studies (AICCRS), Amity University-Uttar Pradesh, Sector-125, Noida, Uttar Pradesh 201301, India
| | - Satyendra K. Rajput
- Amity
Institute of Pharmacy (AIP), Amity University-Uttar
Pradesh, Sector-125, Noida, Uttar Pradesh 201301, India
- Amity
Institute of Indian System of Medicine (AIISM), Amity University-Uttar Pradesh, Sector-125, Noida, Uttar
Pradesh 201301, India
- . Phone: 0120-4735655
| |
Collapse
|
49
|
Marchesini A, De Francesco F, Mattioli-Belmonte M, Zingaretti N, Riccio V, Orlando F, Zavan B, Riccio M. A New Animal Model for Pathological Subcutaneous Fibrosis: Surgical Technique and in vitro Analysis. Front Cell Dev Biol 2020; 8:542. [PMID: 32850775 PMCID: PMC7409519 DOI: 10.3389/fcell.2020.00542] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 06/09/2020] [Indexed: 12/02/2022] Open
Abstract
Fibrosis is a condition that affects the connective tissue in an organ or tissue in the restorative or responsive phase as a result of injury. The consequences of excessive fibrotic tissue growth may lead to various physiological complications of deformity and impairment due to hypertrophic scars, keloids, and tendon adhesion without understating the psychological impact on the patient. However, no method accurately quantifies the rate and pattern of subcutaneous induced hypertrophic fibrosis. We, therefore, devised a rodent excisional model to evaluate the extent of fibrosis with talc. Tissue specimens were set on formalin, and paraffin sections for histological, immunohistochemical, and molecular analysis talc was used to induce the fibroproliferative mechanism typical of hypertrophic scars. This pathway is relevant to the activation of inflammatory and fibrotic agents to stimulate human hypertrophic scarring. This model reproduces morpho-functional features of human hypertrophic scars to investigate scar formation and assess potential anti-scarring therapies.
Collapse
Affiliation(s)
- Andrea Marchesini
- Department of Reconstructive Surgery and Hand Surgery, AOU "Ospedali Riuniti", Ancona, Italy
| | - Francesco De Francesco
- Department of Reconstructive Surgery and Hand Surgery, AOU "Ospedali Riuniti", Ancona, Italy
| | - Monica Mattioli-Belmonte
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy
| | - Nicola Zingaretti
- Clinic of Plastic and Reconstructive Surgery, Department of Medical Area (DAME), Academic Hospital of Udine, University of Udine, Udine, Italy
| | - Valentina Riccio
- Veterinary Medical School, University of Camerino, Camerino, Italy
| | - Fiorenza Orlando
- Experimental Animal Models for Aging Unit, Scientific Technological Area, IRCCS INRNCA, Ancona, Italy
| | - Barbara Zavan
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Michele Riccio
- Department of Reconstructive Surgery and Hand Surgery, AOU "Ospedali Riuniti", Ancona, Italy
| |
Collapse
|
50
|
Abatangelo G, Vindigni V, Avruscio G, Pandis L, Brun P. Hyaluronic Acid: Redefining Its Role. Cells 2020; 9:E1743. [PMID: 32708202 PMCID: PMC7409253 DOI: 10.3390/cells9071743] [Citation(s) in RCA: 253] [Impact Index Per Article: 50.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/17/2020] [Accepted: 07/19/2020] [Indexed: 12/26/2022] Open
Abstract
The discovery of several unexpected complex biological roles of hyaluronic acid (HA) has promoted new research impetus for biologists and, the clinical interest in several fields of medicine, such as ophthalmology, articular pathologies, cutaneous repair, skin remodeling, vascular prosthesis, adipose tissue engineering, nerve reconstruction and cancer therapy. In addition, the great potential of HA in medicine has stimulated the interest of pharmaceutical companies which, by means of new technologies can produce HA and several new derivatives in order to increase both the residence time in a variety of human tissues and the anti-inflammatory properties. Minor chemical modifications of the molecule, such as the esterification with benzyl alcohol (Hyaff-11® biomaterials), have made possible the production of water-insoluble polymers that have been manufactured in various forms: membranes, gauzes, nonwoven meshes, gels, tubes. All these biomaterials are used as wound-covering, anti-adhesive devices and as scaffolds for tissue engineering, such as epidermis, dermis, micro-vascularized skin, cartilage and bone. In this review, the essential biological functions of HA and the applications of its derivatives for pharmaceutical and tissue regeneration purposes are reviewed.
Collapse
Affiliation(s)
- G. Abatangelo
- Faculty of Medicine, University of Padova, 35121 Padova, Italy
| | - V. Vindigni
- Clinic of Plastic and Reconstructive Surgery, University of Padova, 35128 Padova, Italy; (V.V.); (L.P.)
| | - G. Avruscio
- Department of Cardiac, Thoracic and Vascular Sciences, Angiology Unit, University of Padova, 35128 Padova, Italy;
| | - L. Pandis
- Clinic of Plastic and Reconstructive Surgery, University of Padova, 35128 Padova, Italy; (V.V.); (L.P.)
| | - P. Brun
- Department of Molecular Medicine, Histology unit, University of Padova, 35121 Padova, Italy;
| |
Collapse
|