1
|
Toprakcioglu Z, Jayaram AK, Knowles TPJ. Ganglioside lipids inhibit the aggregation of the Alzheimer's amyloid-β peptide. RSC Chem Biol 2025:d4cb00189c. [PMID: 40109301 PMCID: PMC11915136 DOI: 10.1039/d4cb00189c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 02/12/2025] [Indexed: 03/22/2025] Open
Abstract
The aggregation of the amyloid-β (Aβ) peptides (Aβ42/Aβ40) into amyloid fibrils and plaques is one of the molecular hallmarks in dementia and Alzheimer's disease (AD). While the molecular mechanisms behind this aggregation process are not fully known, it has been shown that some biomolecules can accelerate this process whereas others can inhibit amyloid formation. Lipids, which are ubiquitously found in cell membranes, play a pivotal role in protein aggregation. Here, we investigate how ganglioside lipids, which are abundant in the brain and in neurons, can influence the aggregation kinetics of both Aβ42 and Aβ40. We employ a variety of biophysical assays to characterise the effect ganglioside lipids have on the aggregation of Aβ. Through kinetic analysis, we show that the primary nucleation rate is greatly affected by the addition of gangliosides and that these lipids impair Aβ42 aggregation, while completely inhibiting Aβ40 aggregation. Furthermore, we find that an Aβ-ganglioside complex is formed, which potentially disrupts the aggregation pathway and results in delayed kinetics. Taken together, our results provide a quantitative description of how lipid molecules such as gangliosides can inhibit the aggregation of Aβ and shed light on the key factors that control these processes. In view of the fact that declining levels of gangliosides in neurons have been associated with ageing, our findings could be instrumental towards establishing new approaches in the prevention of amyloid-β aggregation.
Collapse
Affiliation(s)
- Zenon Toprakcioglu
- Yusuf Hamied Department of Chemistry, University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - Akhila K Jayaram
- Yusuf Hamied Department of Chemistry, University of Cambridge Lensfield Road Cambridge CB2 1EW UK
- Cavendish Laboratory, Department of Physics, University of Cambridge J J Thomson Avenue Cambridge CB3 0HE UK
| | - Tuomas P J Knowles
- Yusuf Hamied Department of Chemistry, University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| |
Collapse
|
2
|
Zhu S, Zhang Y, Li C, Deng Z, Yin Y, Dong Z, Kuang L, Li C, Hu X, Yin T, Wang Y. Multiple synergistic anti-aging effects of vascular cell adhesion molecule 1 functionalized nanoplatform to improve age-related neurodegenerative diseases. J Control Release 2025; 379:363-376. [PMID: 39798706 DOI: 10.1016/j.jconrel.2025.01.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 12/29/2024] [Accepted: 01/08/2025] [Indexed: 01/15/2025]
Abstract
Aging is a critical factor in the onset and progression of neurodegenerative diseases and cognitive decline, with aging-related neuroinflammation and cellular senescence being major contributors. In the aging brain, the cerebral vascular endothelium overexpresses vascular cell adhesion molecule 1 (VCAM1), activating microglia and leading to neuroinflammation and cognitive impairment. Quercetin, a natural neuroprotective agent widely used for treating neurodegenerative diseases, their therapeutic efficacy, however, is limited by its poor water solubility and inability to penetrate the blood-brain barrier (BBB). To address these challenges, we developed a multifunctional micellar platform (Anti-VCAM1-GM1@Q) to improve age-related neurodegenerative diseases. The micelles incorporate anti-VCAM1 antibodies to target cerebral vascular endothelial cells and block VCAM1. Additionally, monosialoganglioside (GM1) was utilized to deliver quercetin due to its biparental properties, high BBB permeability, and neuroprotective effects. Anti-VCAM1-GM1@Q micelles demonstrated strong anti-aging properties. They improved quercetin's bioavailability, effectively penetrated the BBB, targeted cerebral vascular endothelial cells, and reduced neuroinflammation. In animal models, these micelles provided effective neuroprotection, improved memory function and age-related cognitive impairment, and mitigated age-related neurodegeneration. Notably, this system exhibited remarkable treatment efficacy and high safety, indicating substantial potential for clinical translational applications.
Collapse
Affiliation(s)
- Siqing Zhu
- School of Medicine, Chongqing University, 131 Yubei Street, Shapingba District, Chongqing 400044, China
| | - Yu Zhang
- School of Medicine, Chongqing University, 131 Yubei Street, Shapingba District, Chongqing 400044, China
| | - Chang Li
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400044, China; Medical Imaging Department, Chongqing University Central Hospital, Chongqing Emergency Medical Center, No. 1, Jiankang Road, Chongqing, China
| | - Zhiqing Deng
- School of Medicine, Chongqing University, 131 Yubei Street, Shapingba District, Chongqing 400044, China
| | - Ying Yin
- School of Medicine, Chongqing University, 131 Yubei Street, Shapingba District, Chongqing 400044, China
| | - Zhufeng Dong
- School of Medicine, Chongqing University, 131 Yubei Street, Shapingba District, Chongqing 400044, China
| | - Lei Kuang
- School of Medicine, Chongqing University, 131 Yubei Street, Shapingba District, Chongqing 400044, China
| | - Chuanming Li
- Medical Imaging Department, Chongqing University Central Hospital, Chongqing Emergency Medical Center, No. 1, Jiankang Road, Chongqing, China
| | - Xiaoye Hu
- School of Medicine, Chongqing University, 131 Yubei Street, Shapingba District, Chongqing 400044, China
| | - Tieying Yin
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400044, China.
| | - Yazhou Wang
- School of Medicine, Chongqing University, 131 Yubei Street, Shapingba District, Chongqing 400044, China.
| |
Collapse
|
3
|
Almasi F, Abbasloo F, Soltani N, Dehbozorgi M, Moghadam Fard A, Kiani A, Ghasemzadeh N, Mesgari H, Zadeh Hosseingholi E, Payandeh Z, Rahmanpour P. Biology, Pathology, and Targeted Therapy of Exosomal Cargoes in Parkinson's Disease: Advances and Challenges. Mol Neurobiol 2025:10.1007/s12035-025-04788-7. [PMID: 39998798 DOI: 10.1007/s12035-025-04788-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Accepted: 02/14/2025] [Indexed: 02/27/2025]
Abstract
Parkinson's disease (PD) involves the loss of dopamine neurons and accumulation of alpha-synuclein (α-syn), leading to Lewy bodies. While α-syn-targeting immunotherapies show promise, clinical application is challenging. Emerging strategies include nano-platforms for targeted delivery and imaging, and cell-based therapies with patient-specific dopaminergic neurons, aiming to enhance treatment effectiveness despite challenges. Exosome-based methodologies are emerging as a promising area of research in PD due to their role in the spread of α-syn pathology. Exosomes are small extracellular vesicles that can carry misfolded α-syn and transfer it between cells, contributing to the progression of PD. They can be isolated from biological fluids such as blood and cerebrospinal fluid, making them valuable biomarkers for the disease. Additionally, engineering exosomes to deliver therapeutic agents, including small molecules, RNA, or proteins, offers a novel approach for targeted therapy, capitalizing on their natural ability to cross the blood-brain barrier (BBB). Ongoing studies are evaluating the safety and efficacy of these engineered exosomes in clinical settings. This review explores the role of exosomes in PD, focusing on their potential for diagnosis, treatment, and understanding of pathology. It highlights advancements and future directions in using exosomes as biomarkers and therapeutic tools.
Collapse
Affiliation(s)
- Faezeh Almasi
- Zanjan Pharmaceutical Nanotechnology Research Center (ZPNRC), Department of Pharmaceutical Nanotechnology, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, 45139-56184, Iran.
| | - Faeze Abbasloo
- Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Narges Soltani
- Center for Gene Regulation in Health and Disease, Department of Biological Sciences, Cleveland State University, Cleveland, OH, 44115, USA
| | - Masoud Dehbozorgi
- Faculty of Medicine, Rheinisch-Westfälische Technische Hochschule Aachen (RWTH Aachen), Aachen City, Germany
| | | | - Arash Kiani
- Yasuj University of Medical Sciences, Yasuj, Iran
| | - Nasim Ghasemzadeh
- School of Natural Sciences and Mathematics, University of Dallas, Richardson, TX, USA
| | - Hassan Mesgari
- Oral and Maxillofacial Surgery Department, Faculty of Dentistry, Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Elaheh Zadeh Hosseingholi
- Department of Biology, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, Tabriz, Iran.
| | - Zahra Payandeh
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, 41346, Gothenburg, Sweden.
| | | |
Collapse
|
4
|
Wang W, Myers SJ, Ollen-Bittle N, Whitehead SN. Elevation of ganglioside degradation pathway drives GM2 and GM3 within amyloid plaques in a transgenic mouse model of Alzheimer's disease. Neurobiol Dis 2025; 205:106798. [PMID: 39793768 DOI: 10.1016/j.nbd.2025.106798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 12/05/2024] [Accepted: 01/07/2025] [Indexed: 01/13/2025] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease that accounts for two-thirds of all dementia cases, and age is the strongest risk factor. In addition to the amyloid hypothesis, lipid dysregulation is now recognized as a core component of AD pathology. Gangliosides are a class of membrane lipids of the glycosphingolipid family and are enriched in the central nervous system (CNS). Ganglioside dysregulation has been implicated in various neurodegenerative diseases, including AD, but the spatial distribution of ganglioside dysregulation with respect to amyloid-beta (Aβ) deposition is not well understood. To address this gap, matrix-assisted laser desorption/ionization (MALDI) mass spectrometry imaging (MSI) was employed to investigate the age-dependent expression profiles of the A-series ganglioside species GD1a, GM1, GM2, and GM3 in the APP/PS1 transgenic mouse model of AD in which age-dependent amyloid-beta (Aβ) plaques develop. This study utilized a dual-resolution approach in combination with whole-brain imaging for comprehensive detection of ganglioside expression across neuroanatomical regions via high-resolution imaging of the cerebral cortex and hippocampus to investigate plaque-associated ganglioside alterations. The results revealed age-dependent changes in the complex gangliosides GM1 and GD1a across white and gray matter regions in both wildtype and APP/PS1 mice. Significantly greater levels of simple gangliosides GM2 and GM3 were observed in the cortex and dentate gyrus of the hippocampus in transgenic mice at 12 and 18 m than in age-matched controls. The accumulation of GM3 colocalized with Aβ plaques in aged APP/PS1 mice and correlated with Hexa gene expression, suggesting that ganglioside degradation is a mechanism for the accumulation of GM3. This work is the first to demonstrate that age-related ganglioside dysregulation is spatiotemporally associated with Aβ plaques using sophisticated MSI and reveals novel mechanistic insights into lipid regulation in AD.
Collapse
Affiliation(s)
- Wenxuan Wang
- Vulnerable Brain Lab, Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, Western University, London, Ontario N6A 5C1, Canada
| | - Sarah J Myers
- Vulnerable Brain Lab, Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, Western University, London, Ontario N6A 5C1, Canada
| | - Nikita Ollen-Bittle
- Vulnerable Brain Lab, Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, Western University, London, Ontario N6A 5C1, Canada
| | - Shawn N Whitehead
- Vulnerable Brain Lab, Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, Western University, London, Ontario N6A 5C1, Canada.
| |
Collapse
|
5
|
Chen YK, Tian HY, Zhu QY, Zhang R, Liang DX, Wang JQ, Feng RY, Qin C, Ma MM, Jiang H, Tang BS, Ding XB, Wang XJ. Potential Disease-Modifying Effects of Ganglioside GM1 Pulse Treatment on Spinocerebellar Ataxia Type 3, a Parallel-Group, Double-Blind, Randomized, Controlled Trial. Mov Disord 2025; 40:57-66. [PMID: 39508583 DOI: 10.1002/mds.30050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 09/30/2024] [Accepted: 10/14/2024] [Indexed: 11/15/2024] Open
Abstract
BACKGROUND Spinocerebellar ataxia type 3 (SCA3) is an autosomal dominant inherited neurodegenerative disorder for which there is currently no cure, nor effective treatment strategy. OBJECTIVE Our aim was to investigate the safety and efficacy of high-dose ganglioside GM1 (ganglioside-monosialic acid) pulse treatment in patients with SCA3. METHODS Patients were randomly allocated to receive either high-dose GM1 (400 mg on the first day followed by 200 mg/day), low-dose GM1 (40 mg/day), or placebo (normal saline) for 4 weeks. The primary outcome, assessed by measuring the change in the Scale for the Assessment and Rating of Ataxia (SARA) scores from baseline to 12 weeks post-treatment, is central to evaluating treatment efficacy. Secondary outcomes included changes in the International Cooperative Ataxia Rating Scale (ICARS) score, Barthel Index of Activities of Daily Living (ADL), and plasma and cerebrospinal fluid (CSF) GABA levels. Safety was assessed in all treated patients. RESULTS A total of 48 patients with SCA3 were enrolled in this study. After 12 weeks, data from 43 patients were included in the efficacy analysis (intention-to-treat analysis). The least-squares mean change in the SARA score from baseline to 12 weeks post-treatment was -3.80 (standard error [SE], 0.39; 95% confidence interval [CI], -4.58 to -3.02) in the high-dose GM1 group, 0.34 (SE, 0.40; 95% CI, -0.46 to 1.13) in the low-dose GM1 group, and 0.73 (SE, 0.40; 95% CI, -0.07 to 1.52) in the placebo group, respectively. Secondary outcomes showed improvements in the ICARS score, Barthel Index of ADL, and plasma and CSF GABA levels in the high-dose GM1 group compared to the low-dose GM1 and placebo groups. All treatments were well-tolerated and safe. CONCLUSIONS High-dose GM1 treatment significantly ameliorated ataxic symptoms in patients with SCA3. © 2024 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Yong-Kang Chen
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Chronic Disease Prevention and Therapy & Intelligent Health Management, Zhengzhou, China
| | - Hai-Yan Tian
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Qing-Yong Zhu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Rui Zhang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Chronic Disease Prevention and Therapy & Intelligent Health Management, Zhengzhou, China
| | - Dong-Xiao Liang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Chronic Disease Prevention and Therapy & Intelligent Health Management, Zhengzhou, China
| | - Jiu-Qi Wang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Chronic Disease Prevention and Therapy & Intelligent Health Management, Zhengzhou, China
- Academy of Medical Sciences of Zhengzhou University, Zhengzhou, China
| | - Ren-Yi Feng
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Chi Qin
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ming-Ming Ma
- Department of Neurology, Affiliated People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, China
| | - Hong Jiang
- The Third Xiangya Hospital of Central South University, Central South University, Changsha, China
| | - Bei-Sha Tang
- Department of Neurology, Multi-Omics Research Center for Brain Disorders, The First Affiliated Hospital, University of South China, Hengyang, China
- Clinical Research Center for Immune-Related Encephalopathy of Hunan Province, Hengyang, China
| | - Xue-Bing Ding
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Chronic Disease Prevention and Therapy & Intelligent Health Management, Zhengzhou, China
| | - Xue-Jing Wang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Chronic Disease Prevention and Therapy & Intelligent Health Management, Zhengzhou, China
- Department of Neurology, Multi-Omics Research Center for Brain Disorders, The First Affiliated Hospital, University of South China, Hengyang, China
- Clinical Research Center for Immune-Related Encephalopathy of Hunan Province, Hengyang, China
| |
Collapse
|
6
|
Zhao W, Gu N, Liu X, Qing N, Sheng J, Lin X, Huang H. D-Mannose-Mediated metabolic pathways sustain the molecular signatures of sperm function and fertilization. J Adv Res 2024:S2090-1232(24)00614-3. [PMID: 39733858 DOI: 10.1016/j.jare.2024.12.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 12/20/2024] [Accepted: 12/21/2024] [Indexed: 12/31/2024] Open
Abstract
INTRODUCTION Mammalian sperm within a single ejaculate exhibit significant heterogeneity, with only a subset possessing the molecular characteristics required for successful fertilization. Identifying the defining traits of these high-fertility sperm remains an open question. OBJECTIVES To elucidate the molecular markers and mechanisms underlying the fertilization potential of sperm in both mice and humans, with a focus on the role of D-mannose. METHODS Sperm morphology and functionality were analyzed using flow cytometry, biochemical assays, and immunofluorescence. Multi-omics analyses, including proteomics, metabolomics, and lipidomics, were conducted to identify distinct molecular signatures. Pharmacological interventions were employed to validate the role of key pathways, particularly Akt/mTOR signaling. RESULTS Sperm with longer flagella demonstrated enhanced motility, mitochondrial activity, and fertilization potential in both mice and humans. Multi-omics analyses revealed distinct molecular profiles in high-fertility sperm, characterized by specific proteins, lipids, and metabolites. Notably, D-mannose supplementation enhanced sperm motility and fertilization capacity, even in asthenozoospermic sperm, by activating the Akt/mTOR pathway. This effect was not replicated by D-glucose or ATP supplementation. Mechanistically, D-mannose bypassed glycolytic rate-limiting steps, increasing ATP production and promoting mitochondrial and acrosomal integrity. CONCLUSION This study identifies key molecular signatures of fertilization-competent sperm and highlights D-mannose as a novel modulator of sperm quality and function. These findings provide valuable insights into sperm biology and propose innovative therapeutic strategies for treating male infertility and optimizing assisted reproduction technologies.
Collapse
Affiliation(s)
- Wenlong Zhao
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 310008, China; Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ, USA
| | - Nihao Gu
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 310008, China
| | - Xueyuan Liu
- Hangzhou Women's Hospital, Hangzhou, Zhejiang 310008, China
| | - Ningxin Qing
- Department of Assisted Reproductive Medicine, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 201306, China
| | - Jianzhong Sheng
- The Fourth Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310008, China
| | - Xianhua Lin
- Hangzhou Women's Hospital, Hangzhou, Zhejiang 310008, China.
| | - Hefeng Huang
- Women's hospital, Ministry education key laboratory, School of Medicine, Zhejiang University, 310006 China.
| |
Collapse
|
7
|
Fazzari M, Lunghi G, Carsana EV, Valsecchi M, Spiombi E, Breccia M, Casati SR, Pedretti S, Mitro N, Mauri L, Ciampa MG, Sonnino S, Landsberger N, Frasca A, Chiricozzi E. GM1 Oligosaccharide Ameliorates Rett Syndrome Phenotypes In Vitro and In Vivo via Trk Receptor Activation. Int J Mol Sci 2024; 25:11555. [PMID: 39519108 PMCID: PMC11547101 DOI: 10.3390/ijms252111555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/24/2024] [Accepted: 10/26/2024] [Indexed: 11/16/2024] Open
Abstract
Rett syndrome (RTT) is a severe neurodevelopmental disorder primarily caused by mutations in the methyl-CpG binding protein 2 (MECP2) gene. Despite advancements in research, no cure exists due to an incomplete understanding of the molecular effects of MeCP2 deficiency. Previous studies have identified impaired tropomyosin receptor kinase (Trk) neurotrophin (NTP) signaling and mitochondrial redox imbalances as key drivers of the pathology. Moreover, altered glycosphingolipid metabolism has been reported in RTT. GM1 ganglioside is a known regulator of the nervous system, and growing evidence indicates its importance in maintaining neuronal homeostasis via its oligosaccharide chain, coded as GM1-OS. GM1-OS directly interacts with the Trk receptors on the cell surface, triggering neurotrophic and neuroprotective pathways in neurons. In this study, we demonstrate that GM1-OS ameliorates RTT deficits in the Mecp2-null model. GM1-OS restored synaptogenesis and reduced mitochondrial oxidative stress of Mecp2-knock-out (ko) cortical neurons. When administered in vivo, GM1-OS mitigated RTT-like symptoms. Our findings indicate that GM1-OS effects were mediated by Trk receptor activation on the neuron's plasma membrane. Overall, our results highlight GM1-OS as a promising candidate for RTT treatment.
Collapse
Affiliation(s)
- Maria Fazzari
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, 20054 Segrate, Italy; (G.L.); (E.V.C.); (M.V.); (E.S.); (M.B.); (S.R.C.); (L.M.); (M.G.C.); (S.S.); (N.L.); (A.F.)
| | - Giulia Lunghi
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, 20054 Segrate, Italy; (G.L.); (E.V.C.); (M.V.); (E.S.); (M.B.); (S.R.C.); (L.M.); (M.G.C.); (S.S.); (N.L.); (A.F.)
| | - Emma Veronica Carsana
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, 20054 Segrate, Italy; (G.L.); (E.V.C.); (M.V.); (E.S.); (M.B.); (S.R.C.); (L.M.); (M.G.C.); (S.S.); (N.L.); (A.F.)
| | - Manuela Valsecchi
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, 20054 Segrate, Italy; (G.L.); (E.V.C.); (M.V.); (E.S.); (M.B.); (S.R.C.); (L.M.); (M.G.C.); (S.S.); (N.L.); (A.F.)
| | - Eleonora Spiombi
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, 20054 Segrate, Italy; (G.L.); (E.V.C.); (M.V.); (E.S.); (M.B.); (S.R.C.); (L.M.); (M.G.C.); (S.S.); (N.L.); (A.F.)
| | - Martina Breccia
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, 20054 Segrate, Italy; (G.L.); (E.V.C.); (M.V.); (E.S.); (M.B.); (S.R.C.); (L.M.); (M.G.C.); (S.S.); (N.L.); (A.F.)
| | - Silvia Rosanna Casati
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, 20054 Segrate, Italy; (G.L.); (E.V.C.); (M.V.); (E.S.); (M.B.); (S.R.C.); (L.M.); (M.G.C.); (S.S.); (N.L.); (A.F.)
| | - Silvia Pedretti
- Department of Pharmacological and Biomolecular Sciences “Rodolfo Paoletti”, Università degli Studi di Milano, 20133 Milan, Italy; (S.P.); (N.M.)
| | - Nico Mitro
- Department of Pharmacological and Biomolecular Sciences “Rodolfo Paoletti”, Università degli Studi di Milano, 20133 Milan, Italy; (S.P.); (N.M.)
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, 20139 Milan, Italy
| | - Laura Mauri
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, 20054 Segrate, Italy; (G.L.); (E.V.C.); (M.V.); (E.S.); (M.B.); (S.R.C.); (L.M.); (M.G.C.); (S.S.); (N.L.); (A.F.)
| | - Maria Grazia Ciampa
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, 20054 Segrate, Italy; (G.L.); (E.V.C.); (M.V.); (E.S.); (M.B.); (S.R.C.); (L.M.); (M.G.C.); (S.S.); (N.L.); (A.F.)
| | - Sandro Sonnino
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, 20054 Segrate, Italy; (G.L.); (E.V.C.); (M.V.); (E.S.); (M.B.); (S.R.C.); (L.M.); (M.G.C.); (S.S.); (N.L.); (A.F.)
| | - Nicoletta Landsberger
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, 20054 Segrate, Italy; (G.L.); (E.V.C.); (M.V.); (E.S.); (M.B.); (S.R.C.); (L.M.); (M.G.C.); (S.S.); (N.L.); (A.F.)
| | - Angelisa Frasca
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, 20054 Segrate, Italy; (G.L.); (E.V.C.); (M.V.); (E.S.); (M.B.); (S.R.C.); (L.M.); (M.G.C.); (S.S.); (N.L.); (A.F.)
| | - Elena Chiricozzi
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, 20054 Segrate, Italy; (G.L.); (E.V.C.); (M.V.); (E.S.); (M.B.); (S.R.C.); (L.M.); (M.G.C.); (S.S.); (N.L.); (A.F.)
| |
Collapse
|
8
|
Tot OK, Mrđenović S, Ivić V, Rončević R, Milić J, Viljetić B, Heffer M. Age-Related Effects of Inhalational Anesthetics in B4galnt1-Null and Cuprizone-Treated Mice: Clinically Relevant Insights into Demyelinating Diseases. Curr Issues Mol Biol 2024; 46:8376-8394. [PMID: 39194711 DOI: 10.3390/cimb46080494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/19/2024] [Accepted: 07/29/2024] [Indexed: 08/29/2024] Open
Abstract
Anesthetics are essential agents that are frequently used in clinical practice to induce a reversible loss of consciousness and sensation by depressing the central nervous system. The inhalational anesthetics isoflurane and sevoflurane are preferred due to their rapid induction and recovery times and ease of administration. Despite their widespread use, the exact molecular mechanisms by which these anesthetics induce anesthesia are not yet fully understood. In this study, the age-dependent effects of inhalational anesthetics on two demyelination models were investigated: congenital (B4galnt1-null) and chemically induced (cuprizone). Various motor and cognitive tests were used to determine sensitivity to isoflurane and sevoflurane anesthesia. B4galnt1-null mice, which exhibit severe motor deficits due to defects in ganglioside synthesis, showed significant impairments in motor coordination and balance in all motor tests, which were exacerbated by both anesthetics. Cuprizone-treated mice, which mimic the demyelination in B4galnt1-null mice, also showed altered, age-dependent sensitivity to anesthesia. The study showed that older mice exhibited more pronounced deficits, with B4galnt1-null mice showing the greatest susceptibility to sevoflurane. These differential responses to anesthetics suggest that age and underlying myelin pathology significantly influence anesthetic effects.
Collapse
Affiliation(s)
- Ozana Katarina Tot
- Department of Anesthesiology, Resuscitation and Intensive Care, University Hospital Center Osijek, 31000 Osijek, Croatia
- Department of Anesthesiology, Resuscitation, Intensive Care Medicine and Pain Management, Faculty of Medicine Osijek, Josip Juraj Strossmayer University, 31000 Osijek, Croatia
| | - Stefan Mrđenović
- Department of Hematology, Internal Medicine Clinic, University Hospital Center Osijek, 31000 Osijek, Croatia
- Department of Internal Medicine and History of Medicine, Faculty of Medicine Osijek, Josip Juraj Strossmayer University, 31000 Osijek, Croatia
| | - Vedrana Ivić
- Department of Medical Biology and Genetics, Faculty of Medicine Osijek, Josip Juraj Strossmayer University, 31000 Osijek, Croatia
| | - Robert Rončević
- Department of Diagnostic and Interventional Radiology, University Hospital Center Osijek, 31000 Osijek, Croatia
| | - Jakov Milić
- Department of Medical Biology and Genetics, Faculty of Medicine Osijek, Josip Juraj Strossmayer University, 31000 Osijek, Croatia
| | - Barbara Viljetić
- Department of Medical Chemistry, Biochemistry and Clinical Chemistry, Faculty of Medicine Osijek, Josip Juraj Strossmayer University, 31000 Osijek, Croatia
| | - Marija Heffer
- Department of Medical Biology and Genetics, Faculty of Medicine Osijek, Josip Juraj Strossmayer University, 31000 Osijek, Croatia
| |
Collapse
|
9
|
Weesner JA, Annunziata I, van de Vlekkert D, Robinson CG, Campos Y, Mishra A, Fremuth LE, Gomero E, Hu H, d'Azzo A. Altered GM1 catabolism affects NMDAR-mediated Ca 2+ signaling at ER-PM junctions and increases synaptic spine formation in a GM1-gangliosidosis model. Cell Rep 2024; 43:114117. [PMID: 38630590 PMCID: PMC11244331 DOI: 10.1016/j.celrep.2024.114117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 01/31/2024] [Accepted: 03/29/2024] [Indexed: 04/19/2024] Open
Abstract
Endoplasmic reticulum-plasma membrane (ER-PM) junctions mediate Ca2+ flux across neuronal membranes. The properties of these membrane contact sites are defined by their lipid content, but little attention has been given to glycosphingolipids (GSLs). Here, we show that GM1-ganglioside, an abundant GSL in neuronal membranes, is integral to ER-PM junctions; it interacts with synaptic proteins/receptors and regulates Ca2+ signaling. In a model of the neurodegenerative lysosomal storage disease, GM1-gangliosidosis, pathogenic accumulation of GM1 at ER-PM junctions due to β-galactosidase deficiency drastically alters neuronal Ca2+ homeostasis. Mechanistically, we show that GM1 interacts with the phosphorylated N-methyl D-aspartate receptor (NMDAR) Ca2+ channel, thereby increasing Ca2+ flux, activating extracellular signal-regulated kinase (ERK) signaling, and increasing the number of synaptic spines without increasing synaptic connectivity. Thus, GM1 clustering at ER-PM junctions alters synaptic plasticity and worsens the generalized neuronal cell death characteristic of GM1-gangliosidosis.
Collapse
Affiliation(s)
- Jason A Weesner
- St. Jude Children's Research Hospital, Department of Genetics, Memphis, TN 38105, USA
| | - Ida Annunziata
- St. Jude Children's Research Hospital, Department of Genetics, Memphis, TN 38105, USA; St. Jude Children's Research Hospital, Compliance Office, Memphis, TN 38105, USA
| | | | - Camenzind G Robinson
- St. Jude Children's Research Hospital, Cellular Imaging Shared Resource, Memphis, TN 38105, USA
| | - Yvan Campos
- St. Jude Children's Research Hospital, Department of Genetics, Memphis, TN 38105, USA
| | - Ashutosh Mishra
- St. Jude Children's Research Hospital, Center for Proteomics and Metabolomics, Memphis, TN 38105, USA
| | - Leigh E Fremuth
- St. Jude Children's Research Hospital, Department of Genetics, Memphis, TN 38105, USA
| | - Elida Gomero
- St. Jude Children's Research Hospital, Department of Genetics, Memphis, TN 38105, USA
| | - Huimin Hu
- St. Jude Children's Research Hospital, Department of Genetics, Memphis, TN 38105, USA
| | - Alessandra d'Azzo
- St. Jude Children's Research Hospital, Department of Genetics, Memphis, TN 38105, USA; University of Tennessee Health Science Center, Department of Anatomy and Physiology, Memphis, TN 38163, USA.
| |
Collapse
|
10
|
Zhang DY, Wang J, Huang G, Langberg S, Ding F, Dokholyan NV. APOE regulates the transport of GM1. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.02.587789. [PMID: 38617316 PMCID: PMC11014540 DOI: 10.1101/2024.04.02.587789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Apolipoprotein E (APOE) is responsible for lipid transport, including cholesterol transport and clearance. While the ε4 allele of APOE (APOE4) is associated with a significant genetic risk factor for late-onset Alzheimer's disease (AD), no mechanistic understanding of its contribution to AD etiology has been established yet. In addition to cholesterol, monosialotetrahexosylganglioside (GM1) is a crucial lipid component in cell membranes and has been implicated in promoting the aggregation of amyloid beta protein (Aβ), a key protein associated with AD. Here, we ask whether there are direct interactions between APOE and GM1 that further impact AD pathology. We find that both APOE3 and APOE4 exhibit superior binding affinity to GM1 compared to cholesterol and have an enhanced cellular uptake to GM1 lipid structures than cholesterol lipid structures. APOE regulates the transport process of GM1 depending on the cell type, which is influenced by the expression of APOE receptors in different cell lines and alters GM1 contents in cell membranes. We also find that the presence of GM1 alters the secondary structure of APOE3 and APOE4 and enhances the binding affinity between APOE and its receptor low-density lipoprotein receptor (LDLR), consequently promoting the cellular uptake of lipid structures in the presence of APOE. To understand the enhanced cellular uptake observed in lipid structures containing 20% GM1, we determined the distribution of GM1 on the membrane and found that GM1 clustering in lipid rafts, thereby supporting the physiological interaction between APOE and GM1. Overall, we find that APOE plays a regulatory role in GM1 transport, and the presence of GM1 on the lipid structures influences this transport process. Our studies introduce a plausible direct link between APOE and AD etiology, wherein APOE regulates GM1, which, in turn, promotes Aβ oligomerization and aggregation.
Collapse
|
11
|
Yeh TY, Chu WJ, Huang YS. GM1 ganglioside protects against LPS-induced neuroinflammatory and oxidative responses by inhibiting the activation of Akt, TAK1 and NADPH oxidase in MG6 microglial cells. Glycobiology 2024; 34:cwad087. [PMID: 37935390 DOI: 10.1093/glycob/cwad087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 10/13/2023] [Accepted: 10/14/2023] [Indexed: 11/09/2023] Open
Abstract
GM1 is a major brain ganglioside that exerts neurotrophic, neuroprotective and antineuroinflammatory effects. The aim of this study was to obtain insights into the antineuroinflammatory mechanisms of exogenous GM1 in lipopolysaccharide (LPS)-stimulated MG6 mouse transformed microglial cell line. First, we found that GM1 prevented the LPS-induced transformation of microglia into an amoeboid-like shape. GM1 treatment inhibited LPS-induced expression of inducible nitric oxide synthase, cyclooxygenase-2 (COX-2), and proinflammatory cytokines such as TNF-α, IL-1β and IL-6 in MG6 cells. In LPS-treated mice, GM1 also reduced striatal microglia activation and attenuated COX-2 expression. Subsequent mechanistic studies showed that GM1 suppressed LPS-induced nuclear translocation of nuclear factor κB (NF-κB) and activator protein-1 (AP-1), two critical transcription factors responsible for the production of proinflammatory mediators. GM1 exhibited antineuroinflammatory properties by suppressing Akt/NF-κB signaling and the activation of mitogen-activated protein kinases (MAPKs), including p38 MAPK, extracellular signal-regulated kinase 1/2 (ERK1/2) and c-Jun N-terminal kinase (JNK). Furthermore, GM1 suppressed LPS-induced activation of transforming growth factor-β-activated kinase 1 (TAK1) and NADPH oxidase 2 (NOX2), upstream regulators of the IκBα/NF-κB and MAPK/AP-1 signaling pathways. GM1 also inhibited NOX-mediated reactive oxygen species (ROS) production and protected against LPS-induced MG6 cell death, suggesting an antioxidant role of GM1. In conclusion, GM1 exerts both antineuroinflammatory and antioxidative effects by inhibiting Akt, TAK1 and NOX2 activation.
Collapse
Affiliation(s)
- Ting-Yin Yeh
- Graduate Institute of Life Sciences, National Defense Medical Center, No. 161, Sec. 6, Minquan E. Rd., Neihu Dist, Taipei City 11490, Taiwan
| | - Wen-Jui Chu
- Department of Biology and Anatomy, National Defense Medical Center, No. 161, Sec. 6, Minquan E. Rd., Neihu Dist, Taipei City 11490, Taiwan
| | - Yuahn-Sieh Huang
- Graduate Institute of Life Sciences, National Defense Medical Center, No. 161, Sec. 6, Minquan E. Rd., Neihu Dist, Taipei City 11490, Taiwan
- Department of Biology and Anatomy, National Defense Medical Center, No. 161, Sec. 6, Minquan E. Rd., Neihu Dist, Taipei City 11490, Taiwan
| |
Collapse
|
12
|
Kumar R, Chowdhury S, Ledeen R. Alpha-Synuclein and GM1 Ganglioside Co-Localize in Neuronal Cytosol Leading to Inverse Interaction-Relevance to Parkinson's Disease. Int J Mol Sci 2024; 25:3323. [PMID: 38542297 PMCID: PMC10970170 DOI: 10.3390/ijms25063323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/08/2024] [Accepted: 03/09/2024] [Indexed: 04/04/2024] Open
Abstract
Research on GM1 ganglioside and its neuroprotective role in Parkinson's disease (PD), particularly in mitigating the aggregation of α-Synuclein (aSyn), is well established across various model organisms. This essential molecule, GM1, is intimately linked to preventing aSyn aggregation, and its deficiency is believed to play a key role in the initiation of PD. In our current study, we attempted to shed light on the cytosolic interactions between GM1 and aSyn based on previous reports demonstrating gangliosides and monomeric aSyn to be present in neuronal cytosol. Native-PAGE and Western blot analysis of neuronal cytosol from mouse brains demonstrated the presence of both GM1 and monomeric aSyn in the neuronal cytosol of normal mouse brain. To demonstrate that an adequate level of GM1 prevents the aggregation of aSyn, we used NG108-15 and SH-SY5Y cells with and without treatment of 1-phenyl-2-palmitoyl-3-morpholino-1-propanol (PPMP), which inhibits the synthesis/expression of GM1. Cells treated with PPMP to reduce GM1 expression showed a significant increase in the formation of aggregated aSyn compared to untreated cells. We thus demonstrated that sufficient GM1 prevents the aggregation of aSyn. For this to occur, aSyn and GM1 must show proximity within the neuron. The present study provides evidence for such co-localization in neuronal cytosol, which also facilitates the inverse interaction revealed in studies with the two cell types above. This adds to the explanation of how GM1 prevents the aggregation of aSyn and onset of Parkinson's disease.
Collapse
Affiliation(s)
| | | | - Robert Ledeen
- Department of Pharmacology Physiology & Neuroscience, Rutgers, The State University of New Jersey, Newark, NJ 07103, USA; (R.K.); (S.C.)
| |
Collapse
|
13
|
Santos N, Segura L, Lewis A, Pham T, Cheng KH. Multiscale Modeling of Macromolecular Interactions between Tau-Amylin Oligomers and Asymmetric Lipid Nanodomains That Link Alzheimer's and Diabetic Diseases. Molecules 2024; 29:740. [PMID: 38338484 PMCID: PMC10856442 DOI: 10.3390/molecules29030740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 01/17/2024] [Accepted: 02/03/2024] [Indexed: 02/12/2024] Open
Abstract
The molecular events of protein misfolding and self-aggregation of tau and amylin are associated with the progression of Alzheimer's and diabetes, respectively. Recent studies suggest that tau and amylin can form hetero-tau-amylin oligomers. Those hetero-oligomers are more neurotoxic than homo-tau oligomers. So far, the detailed interactions between the hetero-oligomers and the neuronal membrane are unknown. Using multiscale MD simulations, the lipid binding and protein folding behaviors of hetero-oligomers on asymmetric lipid nanodomains or raft membranes were examined. Our raft membranes contain phase-separated phosphatidylcholine (PC), cholesterol, and anionic phosphatidylserine (PS) or ganglioside (GM1) in one leaflet of the lipid bilayer. The hetero-oligomers bound more strongly to the PS and GM1 than other lipids via the hydrophobic and hydrophilic interactions, respectively, in the raft membranes. The hetero-tetramer disrupted the acyl chain orders of both PC and PS in the PS-containing raft membrane, but only the GM1 in the GM1-containing raft membrane as effectively as the homo-tau-tetramer. We discovered that the alpha-helical content in the heterodimer was greater than the sum of alpha-helical contents from isolated tau and amylin monomers on both raft membranes, indicative of a synergetic effect of tau-amylin interactions in surface-induced protein folding. Our results provide new molecular insights into understanding the cross-talk between Alzheimer's and diabetes.
Collapse
Affiliation(s)
- Natalia Santos
- Neuroscience Department, Trinity University, San Antonio, TX 78212, USA; (N.S.); (L.S.); (A.L.)
| | - Luthary Segura
- Neuroscience Department, Trinity University, San Antonio, TX 78212, USA; (N.S.); (L.S.); (A.L.)
| | - Amber Lewis
- Neuroscience Department, Trinity University, San Antonio, TX 78212, USA; (N.S.); (L.S.); (A.L.)
| | - Thuong Pham
- Physics Department, Trinity University, San Antonio, TX 78212, USA;
| | - Kwan H. Cheng
- Neuroscience Department, Trinity University, San Antonio, TX 78212, USA; (N.S.); (L.S.); (A.L.)
- Physics Department, Trinity University, San Antonio, TX 78212, USA;
| |
Collapse
|
14
|
Biricioiu MR, Sarbu M, Ica R, Vukelić Ž, Kalanj-Bognar S, Zamfir AD. Advances in Mass Spectrometry of Gangliosides Expressed in Brain Cancers. Int J Mol Sci 2024; 25:1335. [PMID: 38279335 PMCID: PMC10816113 DOI: 10.3390/ijms25021335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/15/2024] [Accepted: 01/17/2024] [Indexed: 01/28/2024] Open
Abstract
Gangliosides are highly abundant in the human brain where they are involved in major biological events. In brain cancers, alterations of ganglioside pattern occur, some of which being correlated with neoplastic transformation, while others with tumor proliferation. Of all techniques, mass spectrometry (MS) has proven to be one of the most effective in gangliosidomics, due to its ability to characterize heterogeneous mixtures and discover species with biomarker value. This review highlights the most significant achievements of MS in the analysis of gangliosides in human brain cancers. The first part presents the latest state of MS development in the discovery of ganglioside markers in primary brain tumors, with a particular emphasis on the ion mobility separation (IMS) MS and its contribution to the elucidation of the gangliosidome associated with aggressive tumors. The second part is focused on MS of gangliosides in brain metastases, highlighting the ability of matrix-assisted laser desorption/ionization (MALDI)-MS, microfluidics-MS and tandem MS to decipher and structurally characterize species involved in the metastatic process. In the end, several conclusions and perspectives are presented, among which the need for development of reliable software and a user-friendly structural database as a search platform in brain tumor diagnostics.
Collapse
Affiliation(s)
- Maria Roxana Biricioiu
- National Institute for Research and Development in Electrochemistry and Condensed Matter, 300224 Timisoara, Romania; (M.R.B.); (M.S.); (R.I.)
- Faculty of Physics, West University of Timisoara, 300223 Timisoara, Romania
| | - Mirela Sarbu
- National Institute for Research and Development in Electrochemistry and Condensed Matter, 300224 Timisoara, Romania; (M.R.B.); (M.S.); (R.I.)
| | - Raluca Ica
- National Institute for Research and Development in Electrochemistry and Condensed Matter, 300224 Timisoara, Romania; (M.R.B.); (M.S.); (R.I.)
| | - Željka Vukelić
- Department of Chemistry and Biochemistry, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia;
| | - Svjetlana Kalanj-Bognar
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia;
| | - Alina D. Zamfir
- National Institute for Research and Development in Electrochemistry and Condensed Matter, 300224 Timisoara, Romania; (M.R.B.); (M.S.); (R.I.)
- Department of Technical and Natural Sciences, “Aurel Vlaicu” University of Arad, 310330 Arad, Romania
| |
Collapse
|
15
|
Jin X, Cheng H, Chen X, Cao X, Xiao C, Ding F, Qu H, Wang PG, Feng Y, Yang GY. A modular chemoenzymatic cascade strategy for the structure-customized assembly of ganglioside analogs. Commun Chem 2024; 7:17. [PMID: 38238524 PMCID: PMC10796935 DOI: 10.1038/s42004-024-01102-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 01/08/2024] [Indexed: 01/22/2024] Open
Abstract
Gangliosides play vital biological regulatory roles and are associated with neurological system diseases, malignancies, and immune deficiencies. They have received extensive attention in developing targeted drugs and diagnostic markers. However, it is difficult to obtain enough structurally defined gangliosides and analogs especially at an industrial-relevant scale, which prevent exploring structure-activity relationships and identifying drug ingredients. Here, we report a highly modular chemoenzymatic cascade assembly (MOCECA) strategy for customized and large-scale synthesis of ganglioside analogs with various glycan and ceramide epitopes. We typically accessed five gangliosides with therapeutic promising and systematically prepared ten GM1 analogs with diverse ceramides. Through further process amplification, we achieved industrial production of ganglioside GM1 in the form of modular assembly at hectogram scale. Using MOCECA-synthesized GM1 analogs, we found unique ceramide modifications on GM1 could enhance the ability to promote neurite outgrowth. By comparing the structures with synthetic analogs, we further resolved the problem of contradicting descriptions for GM1 components in different pharmaceutical documents by reinterpreting the exact two-component structures of commercialized GM1 drugs. Because of its applicability and stability, the MOCECA strategy can be extended to prepare other glycosphingolipid structures, which may pave the way for developing new glycolipid drugs.
Collapse
Affiliation(s)
- Xuefeng Jin
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- Department of Clinical Pharmaceutics, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Hanchao Cheng
- School of Food and Drug, Shenzhen Polytechnic University, Shenzhen, China
- Department of Pharmacology, Key University Laboratory of Metabolism and Health of Guangdong, School of Medicine, Southern University of Science and Technology, Guangdong, China
| | - Xiaohui Chen
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Xuefeng Cao
- Glycogene LLC, 10th Floor, Building 3, Wuhan Precision Medicine Industrial Base, East Lake New Technology Development Zone, Wuhan, China
| | - Cong Xiao
- Glycogene LLC, 10th Floor, Building 3, Wuhan Precision Medicine Industrial Base, East Lake New Technology Development Zone, Wuhan, China
| | - Fengling Ding
- Glycogene LLC, 10th Floor, Building 3, Wuhan Precision Medicine Industrial Base, East Lake New Technology Development Zone, Wuhan, China
| | - Huirong Qu
- Glycogene LLC, 10th Floor, Building 3, Wuhan Precision Medicine Industrial Base, East Lake New Technology Development Zone, Wuhan, China
| | - Peng George Wang
- Department of Pharmacology, Key University Laboratory of Metabolism and Health of Guangdong, School of Medicine, Southern University of Science and Technology, Guangdong, China
| | - Yan Feng
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Guang-Yu Yang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
16
|
Fukuyama Y, Kubo M, Harada K. Neurotrophic Natural Products. PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS 2024; 123:1-473. [PMID: 38340248 DOI: 10.1007/978-3-031-42422-9_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2024]
Abstract
Neurotrophins (NGF, BDNF, NT3, NT4) can decrease cell death, induce differentiation, as well as sustain the structure and function of neurons, which make them promising therapeutic agents for the treatment of neurodegenerative disorders. However, neurotrophins have not been very effective in clinical trials mostly because they cannot pass through the blood-brain barrier owing to being high-molecular-weight proteins. Thus, neurotrophin-mimic small molecules, which stimulate the synthesis of endogenous neurotrophins or enhance neurotrophic actions, may serve as promising alternatives to neurotrophins. Small-molecular-weight natural products, which have been used in dietary functional foods or in traditional medicines over the course of human history, have a great potential for the development of new therapeutic agents against neurodegenerative diseases such as Alzheimer's disease. In this contribution, a variety of natural products possessing neurotrophic properties such as neurogenesis, neurite outgrowth promotion (neuritogenesis), and neuroprotection are described, and a focus is made on the chemistry and biology of several neurotrophic natural products.
Collapse
Affiliation(s)
- Yoshiyasu Fukuyama
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, 770-8514, Japan.
| | - Miwa Kubo
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, 770-8514, Japan
| | - Kenichi Harada
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, 770-8514, Japan
| |
Collapse
|
17
|
Seyyedin S, Ezzatabadipour M, Nematollahi-Mahani SN. The Role of Various Factors in Neural Differentiation of Human Umbilical Cord Mesenchymal Stem Cells with a Special Focus on the Physical Stimulants. Curr Stem Cell Res Ther 2024; 19:166-177. [PMID: 36734908 DOI: 10.2174/1574888x18666230124151311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 10/05/2022] [Accepted: 11/25/2022] [Indexed: 02/04/2023]
Abstract
Human umbilical cord matrix-derived mesenchymal stem cells (hUCMs) are considered as ideal tools for cell therapy procedures and regenerative medicine. The capacity of these cells to differentiate into neural lineage cells make them potentially important in the treatment of various neurodegenerative diseases. An electronic search was performed in Web of Science, PubMed/MEDLINE, Scopus and Google Scholar databases for articles published from January 1990 to March 2022. This review discusses the current knowledge on the effect of various factors, including physical, chemical and biological stimuli which play a key role in the differentiation of hUCMs into neural and glial cells. Moreover, the currently understood molecular mechanisms involved in the neural differentiation of hUCMs under various environmental stimuli are reviewed. Various stimuli, especially physical stimuli and specifically different light sources, have revealed effects on neural differentiation of mesenchymal stem cells, including hUCMs; however, due to the lack of information about the exact mechanisms, there is still a need to find optimal conditions to promote the differentiation capacity of these cells which in turn can lead to significant progress in the clinical application of hUCMs for the treatment of neurological disorders.
Collapse
Affiliation(s)
- Sajad Seyyedin
- Department of Anatomical Sciences, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Massood Ezzatabadipour
- Department of Anatomical Sciences, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
- Physiology Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Seyed Noureddin Nematollahi-Mahani
- Department of Anatomical Sciences, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
- Neuroscience Research Center, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
18
|
Lunghi G, Di Biase E, Carsana EV, Henriques A, Callizot N, Mauri L, Ciampa MG, Mari L, Loberto N, Aureli M, Sonnino S, Spedding M, Chiricozzi E, Fazzari M. GM1 ganglioside exerts protective effects against glutamate-excitotoxicity via its oligosaccharide in wild-type and amyotrophic lateral sclerosis motor neurons. FEBS Open Bio 2023; 13:2324-2341. [PMID: 37885330 PMCID: PMC10699117 DOI: 10.1002/2211-5463.13727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/14/2023] [Accepted: 10/25/2023] [Indexed: 10/28/2023] Open
Abstract
Alterations in glycosphingolipid metabolism have been linked to the pathophysiological mechanisms of amyotrophic lateral sclerosis (ALS), a neurodegenerative disease affecting motor neurons. Accordingly, administration of GM1, a sialic acid-containing glycosphingolipid, is protective against neuronal damage and supports neuronal homeostasis, with these effects mediated by its bioactive component, the oligosaccharide head (GM1-OS). Here, we add new evidence to the therapeutic efficacy of GM1 in ALS: Its administration to WT and SOD1G93A motor neurons affected by glutamate-induced excitotoxicity significantly increased neuronal survival and preserved neurite networks, counteracting intracellular protein accumulation and mitochondria impairment. Importantly, the GM1-OS faithfully replicates GM1 activity, emphasizing that even in ALS the protective function of GM1 strictly depends on its pentasaccharide.
Collapse
Affiliation(s)
- Giulia Lunghi
- Department of Medical Biotechnology and Translational MedicineUniversity of MilanoSegrateItaly
| | - Erika Di Biase
- Department of Medical Biotechnology and Translational MedicineUniversity of MilanoSegrateItaly
| | - Emma Veronica Carsana
- Department of Medical Biotechnology and Translational MedicineUniversity of MilanoSegrateItaly
| | | | | | - Laura Mauri
- Department of Medical Biotechnology and Translational MedicineUniversity of MilanoSegrateItaly
| | - Maria Grazia Ciampa
- Department of Medical Biotechnology and Translational MedicineUniversity of MilanoSegrateItaly
| | - Luigi Mari
- Department of ImmunologySt. Jude Children's Research HospitalMemphisTNUSA
| | - Nicoletta Loberto
- Department of Medical Biotechnology and Translational MedicineUniversity of MilanoSegrateItaly
| | - Massimo Aureli
- Department of Medical Biotechnology and Translational MedicineUniversity of MilanoSegrateItaly
| | - Sandro Sonnino
- Department of Medical Biotechnology and Translational MedicineUniversity of MilanoSegrateItaly
| | | | - Elena Chiricozzi
- Department of Medical Biotechnology and Translational MedicineUniversity of MilanoSegrateItaly
| | - Maria Fazzari
- Department of Medical Biotechnology and Translational MedicineUniversity of MilanoSegrateItaly
| |
Collapse
|
19
|
Smith RA, Zhang Q. Region-specific mouse brain ganglioside distribution revealed by an improved isobaric aminoxyTMT labeling strategy with automated data processing. Anal Bioanal Chem 2023; 415:7269-7279. [PMID: 37857739 PMCID: PMC10841993 DOI: 10.1007/s00216-023-04995-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/11/2023] [Accepted: 10/10/2023] [Indexed: 10/21/2023]
Abstract
Gangliosides are specialized glycosphingolipids most abundant in the central nervous system. Their complex amphiphilic structure is essential to the formation of membrane lipid rafts and for molecular recognition. Dysfunction of lipid rafts and ganglioside metabolism has been linked to cancer, metabolic disorders, and neurodegenerative disorders. Changes in ganglioside concentration and diversity during the progression of disease have made them potential biomarkers for early detection and shed light on disease mechanisms. Chemical derivatization facilitates whole ion analysis of gangliosides while improving ionization, providing rich fragmentation spectra, and enabling multiplexed analysis schemes such as stable isotope labeling. In this work, we report improvement to our previously reported isobaric labeling methodology for ganglioside analysis by increasing buffer concentration and removing solid-phase extraction desalting for a more complete and quantitative reaction. Identification and quantification of gangliosides are automated through MS-DIAL with an in-house ganglioside derivatives library. We have applied the updated methodology to relative quantification of gangliosides in six mouse brain regions (cerebellum, pons/medulla, midbrain, thalamus/hypothalamus, cortex, and basal ganglia) with 2 mg tissue per sample, and region-specific distributions of 88 ganglioside molecular species are described with ceramide isomers resolved. This method is promising for application to comparative analysis of gangliosides in biological samples.
Collapse
Affiliation(s)
- Ryan A Smith
- Department of Chemistry & Biochemistry, University of North Carolina at Greensboro, Greensboro, NC, 27402, USA
- Center for Translational Biomedical Research, University of North Carolina at Greensboro, North Carolina Research Campus, Kannapolis, NC, 28081, USA
| | - Qibin Zhang
- Department of Chemistry & Biochemistry, University of North Carolina at Greensboro, Greensboro, NC, 27402, USA.
- Center for Translational Biomedical Research, University of North Carolina at Greensboro, North Carolina Research Campus, Kannapolis, NC, 28081, USA.
| |
Collapse
|
20
|
Troncoso MF, Elola MT, Blidner AG, Sarrias L, Espelt MV, Rabinovich GA. The universe of galectin-binding partners and their functions in health and disease. J Biol Chem 2023; 299:105400. [PMID: 37898403 PMCID: PMC10696404 DOI: 10.1016/j.jbc.2023.105400] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 10/11/2023] [Accepted: 10/13/2023] [Indexed: 10/30/2023] Open
Abstract
Galectins, a family of evolutionarily conserved glycan-binding proteins, play key roles in diverse biological processes including tissue repair, adipogenesis, immune cell homeostasis, angiogenesis, and pathogen recognition. Dysregulation of galectins and their ligands has been observed in a wide range of pathologic conditions including cancer, autoimmune inflammation, infection, fibrosis, and metabolic disorders. Through protein-glycan or protein-protein interactions, these endogenous lectins can shape the initiation, perpetuation, and resolution of these processes, suggesting their potential roles in disease monitoring and treatment. However, despite considerable progress, a full understanding of the biology and therapeutic potential of galectins has not been reached due to their diversity, multiplicity of cell targets, and receptor promiscuity. In this article, we discuss the multiple galectin-binding partners present in different cell types, focusing on their contributions to selected physiologic and pathologic settings. Understanding the molecular bases of galectin-ligand interactions, particularly their glycan-dependency, the biochemical nature of selected receptors, and underlying signaling events, might contribute to designing rational therapeutic strategies to control a broad range of pathologic conditions.
Collapse
Affiliation(s)
- María F Troncoso
- Departamento de Química Biológica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina; Instituto de Química y Fisicoquímica Biológicas (IQUIFIB) Prof Alejandro C. Paladini, CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - María T Elola
- Departamento de Química Biológica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina; Instituto de Química y Fisicoquímica Biológicas (IQUIFIB) Prof Alejandro C. Paladini, CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Ada G Blidner
- Laboratorio de Glicomedicina, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina
| | - Luciana Sarrias
- Departamento de Química Biológica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina; Instituto de Química y Fisicoquímica Biológicas (IQUIFIB) Prof Alejandro C. Paladini, CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - María V Espelt
- Departamento de Química Biológica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina; Instituto de Química y Fisicoquímica Biológicas (IQUIFIB) Prof Alejandro C. Paladini, CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Gabriel A Rabinovich
- Laboratorio de Glicomedicina, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina; Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.
| |
Collapse
|
21
|
Fazzari M, Lunghi G, Di Biase E, Maggioni M, Carsana EV, Cioccarelli L, Vigani L, Loberto N, Aureli M, Mauri L, Ciampa MG, Valsecchi M, Takato K, Imamura A, Ishida H, Ben Mariem O, Saporiti S, Palazzolo L, Chiricozzi E, Eberini I, Sonnino S. GM1 structural requirements to mediate neuronal functions. Glycoconj J 2023; 40:655-668. [PMID: 38100017 DOI: 10.1007/s10719-023-10141-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/02/2023] [Accepted: 12/01/2023] [Indexed: 01/16/2024]
Abstract
Since the 1980s, it has been known that the administration of ganglioside GM1 to cultured cells induced or enhanced neuronal differentiation. GM1 mechanism of action relies on its direct interaction and subsequent activation of the membrane tyrosine kinase receptor, TrkA, which naturally serves as NGF receptor. This process is mediated by the sole oligosaccharide portion of GM1, the pentasaccharide β-Gal-(1-3)-β-GalNAc-(1-4)-[α-Neu5Ac-(2-3)]-β-Gal-(1-4)-β-Glc. Here we detailed the minimum structural requirements of the oligosaccharide portion of GM1 for mediating the TrkA dependent neuritogenic processing. By in vitro and in silico biochemical approaches, we demonstrated that the minimal portion of GM1 required for the TrkA activation is the inner core of the ganglioside's oligosaccharide β-Gal-(1-3)-β-GalNAc-(1-4)-[α-Neu5Ac-(2-3)]-β-Gal. The addition of a sialic acid residue at position 3 of the outer galactose of the GM1 oligosaccharide, which forms the oligosaccharide of GD1a, prevented the interaction with TrkA and the resulting neuritogenesis. On the contrary, the addition of a fucose residue at position 2 of the outer galactose, forming the Fucosyl-GM1 oligosaccharide, did not prevent the TrkA-mediated neuritogenesis.
Collapse
Affiliation(s)
- Maria Fazzari
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Segrate, Milano, Italy
| | - Giulia Lunghi
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Segrate, Milano, Italy
| | - Erika Di Biase
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Segrate, Milano, Italy
| | - Margherita Maggioni
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Segrate, Milano, Italy
| | - Emma Veronica Carsana
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Segrate, Milano, Italy
| | - Laura Cioccarelli
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Segrate, Milano, Italy
| | - Laura Vigani
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Segrate, Milano, Italy
| | - Nicoletta Loberto
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Segrate, Milano, Italy
| | - Massimo Aureli
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Segrate, Milano, Italy
| | - Laura Mauri
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Segrate, Milano, Italy
| | - Maria Grazia Ciampa
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Segrate, Milano, Italy
| | - Manuela Valsecchi
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Segrate, Milano, Italy
| | - Koichi Takato
- Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Akihiro Imamura
- Department of Applied Bioorganic Chemistry, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
- Institute for Glyco-core Research (iGCORE), Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Hideharu Ishida
- Department of Applied Bioorganic Chemistry, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
- Institute for Glyco-core Research (iGCORE), Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Omar Ben Mariem
- Dipartimento di Scienze Farmacologiche e Biomolecolari "Rodolfo Paoletti", Università degli Studi di Milano, Milano, Italy
| | - Simona Saporiti
- Analytical Excellence & Program Management, Merck Serono S.p.A, Rome, Italy
| | - Luca Palazzolo
- Dipartimento di Scienze Farmacologiche e Biomolecolari "Rodolfo Paoletti", Università degli Studi di Milano, Milano, Italy
| | - Elena Chiricozzi
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Segrate, Milano, Italy.
| | - Ivano Eberini
- Dipartimento di Scienze Farmacologiche e Biomolecolari "Rodolfo Paoletti", Università degli Studi di Milano, Milano, Italy
- Data Science Research Center, Università degli Studi di Milano, Milano, Italy
| | - Sandro Sonnino
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Segrate, Milano, Italy.
| |
Collapse
|
22
|
Risner ML, Ribeiro M, McGrady NR, Kagitapalli BS, Chamling X, Zack DJ, Calkins DJ. Neutral sphingomyelinase inhibition promotes local and network degeneration in vitro and in vivo. Cell Commun Signal 2023; 21:305. [PMID: 37904133 PMCID: PMC10614343 DOI: 10.1186/s12964-023-01291-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 08/22/2023] [Indexed: 11/01/2023] Open
Abstract
BACKGROUND Cell-to-cell communication is vital for tissues to respond, adapt, and thrive in the prevailing milieu. Several mechanisms mediate intercellular signaling, including tunneling nanotubes, gap junctions, and extracellular vesicles (EV). Depending on local and systemic conditions, EVs may contain cargoes that promote survival, neuroprotection, or pathology. Our understanding of pathologic intercellular signaling has been bolstered by disease models using neurons derived from human pluripotent stems cells (hPSC). METHODS Here, we used hPSC-derived retinal ganglion cells (hRGC) and the mouse visual system to investigate the influence of modulating EV generation on intercellular trafficking and cell survival. We probed the impact of EV modulation on cell survival by decreasing the catabolism of sphingomyelin into ceramide through inhibition of neutral sphingomyelinase (nSMase), using GW4869. We assayed for cell survival in vitro by probing for annexin A5, phosphatidylserine, viable mitochondria, and mitochondrial reactive oxygen species. In vivo, we performed intraocular injections of GW4869 and measured RGC and superior colliculus neuron density and RGC anterograde axon transport. RESULTS Following twenty-four hours of dosing hRGCs with GW4869, we found that inhibition of nSMase decreased ceramide and enhanced GM1 ganglioside accumulation. This inhibition also reduced the density of small EVs, increased the density of large EVs, and enriched the pro-apoptotic protein, annexin A5. Reducing nSMase activity increased hRGC apoptosis initiation due to enhanced density and uptake of apoptotic particles, as identified by the annexin A5 binding phospholipid, phosphatidylserine. We assayed intercellular trafficking of mitochondria by developing a coculture system of GW4869-treated and naïve hRGCs. In treated cells, inhibition of nSMase reduced the number of viable mitochondria, while driving mitochondrial reactive oxygen species not only in treated, but also in naive hRGCs added in coculture. In mice, 20 days following a single intravitreal injection of GW4869, we found a significant loss of RGCs and their axonal recipient neurons in the superior colliculus. This followed a more dramatic reduction in anterograde RGC axon transport to the colliculus. CONCLUSION Overall, our data suggest that perturbing the physiologic catabolism of sphingomyelin by inhibiting nSMase reorganizes plasma membrane associated sphingolipids, alters the profile of neuron-generated EVs, and promotes neurodegeneration in vitro and in vivo by shifting the balance of pro-survival versus -degenerative EVs. Video Abstract.
Collapse
Affiliation(s)
- Michael L Risner
- Department of Ophthalmology and Visual Sciences, Vanderbilt Eye Institute, Vanderbilt University Medical Center, AA7103 MCN/VUIIS, 1161 21st Ave S., Nashville, TN, 37232, USA.
- Department of Foundational Medical Studies, Eye Research Center, Oakland University William Beaumont School of Medicine, 369 Dodge Hall, 118 Library Dr., Rochester, MI, 48309, USA.
| | - Marcio Ribeiro
- Department of Ophthalmology and Visual Sciences, Vanderbilt Eye Institute, Vanderbilt University Medical Center, AA7103 MCN/VUIIS, 1161 21st Ave S., Nashville, TN, 37232, USA
| | - Nolan R McGrady
- Department of Ophthalmology and Visual Sciences, Vanderbilt Eye Institute, Vanderbilt University Medical Center, AA7103 MCN/VUIIS, 1161 21st Ave S., Nashville, TN, 37232, USA
| | - Bhanu S Kagitapalli
- Department of Ophthalmology and Visual Sciences, Vanderbilt Eye Institute, Vanderbilt University Medical Center, AA7103 MCN/VUIIS, 1161 21st Ave S., Nashville, TN, 37232, USA
| | - Xitiz Chamling
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Donald J Zack
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - David J Calkins
- Department of Ophthalmology and Visual Sciences, Vanderbilt Eye Institute, Vanderbilt University Medical Center, AA7103 MCN/VUIIS, 1161 21st Ave S., Nashville, TN, 37232, USA.
| |
Collapse
|
23
|
Castillo Bautista CM, Eismann K, Gentzel M, Pelucchi S, Mertens J, Walters HE, Yun MH, Sterneckert J. Obatoclax Rescues FUS-ALS Phenotypes in iPSC-Derived Neurons by Inducing Autophagy. Cells 2023; 12:2247. [PMID: 37759469 PMCID: PMC10527391 DOI: 10.3390/cells12182247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/08/2023] [Accepted: 09/09/2023] [Indexed: 09/29/2023] Open
Abstract
Aging is associated with the disruption of protein homeostasis and causally contributes to multiple diseases, including amyotrophic lateral sclerosis (ALS). One strategy for restoring protein homeostasis and protecting neurons against age-dependent diseases such as ALS is to de-repress autophagy. BECN1 is a master regulator of autophagy; however, is repressed by BCL2 via a BH3 domain-mediated interaction. We used an induced pluripotent stem cell model of ALS caused by mutant FUS to identify a small molecule BH3 mimetic that disrupts the BECN1-BCL2 interaction. We identified obatoclax as a brain-penetrant drug candidate that rescued neurons at nanomolar concentrations by reducing cytoplasmic FUS levels, restoring protein homeostasis, and reducing degeneration. Proteomics data suggest that obatoclax protects neurons via multiple mechanisms. Thus, obatoclax is a candidate for repurposing as a possible ALS therapeutic and, potentially, for other age-associated disorders linked to defects in protein homeostasis.
Collapse
Affiliation(s)
| | - Kristin Eismann
- Core Facility Mass Spectrometry & Proteomics, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, 01307 Dresden, Germany (M.G.)
| | - Marc Gentzel
- Core Facility Mass Spectrometry & Proteomics, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, 01307 Dresden, Germany (M.G.)
| | - Silvia Pelucchi
- Department of Neurosciences, University of California San Diego, La Jolla, CA 92161, USA (J.M.)
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133 Milan, Italy
| | - Jerome Mertens
- Department of Neurosciences, University of California San Diego, La Jolla, CA 92161, USA (J.M.)
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
- Institute for Molecular Biology, University of Innsbruck, A-6020 Innsbruck, Austria
| | - Hannah E. Walters
- Center for Regenerative Therapies TU Dresden (CRTD), Technische Universität Dresden, 01307 Dresden, Germany; (C.M.C.B.); (H.E.W.)
| | - Maximina H. Yun
- Center for Regenerative Therapies TU Dresden (CRTD), Technische Universität Dresden, 01307 Dresden, Germany; (C.M.C.B.); (H.E.W.)
- Max Planck Institute for Molecular Cell Biology and Genetics, 01307 Dresden, Germany
- Cluster of Excellence Physics of Life, Technische Universität Dresden, 01307 Dresden, Germany
| | - Jared Sterneckert
- Center for Regenerative Therapies TU Dresden (CRTD), Technische Universität Dresden, 01307 Dresden, Germany; (C.M.C.B.); (H.E.W.)
- Medical Faculty Carl Gustav Carus of TU Dresden, 01307 Dresden, Germany
| |
Collapse
|
24
|
Fazzari M, Di Biase E, Zaccagnini L, Henriques A, Callizot N, Ciampa MG, Mauri L, Carsana EV, Loberto N, Aureli M, Mari L, Civera M, Vasile F, Sonnino S, Bartels T, Chiricozzi E, Lunghi G. GM1 oligosaccharide efficacy against α-synuclein aggregation and toxicity in vitro. Biochim Biophys Acta Mol Cell Biol Lipids 2023; 1868:159350. [PMID: 37330108 PMCID: PMC10579883 DOI: 10.1016/j.bbalip.2023.159350] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/11/2023] [Accepted: 06/01/2023] [Indexed: 06/19/2023]
Abstract
Fibrillary aggregated α-synuclein represents the neurologic hallmark of Parkinson's disease and is considered to play a causative role in the disease. Although the causes leading to α-synuclein aggregation are not clear, the GM1 ganglioside interaction is recognized to prevent this process. How GM1 exerts these functions is not completely clear, although a primary role of its soluble oligosaccharide (GM1-OS) is emerging. Indeed, we recently identified GM1-OS as the bioactive moiety responsible for GM1 neurotrophic and neuroprotective properties, specifically reverting the parkinsonian phenotype both in in vitro and in vivo models. Here, we report on GM1-OS efficacy against the α-synuclein aggregation and toxicity in vitro. By amyloid seeding aggregation assay and NMR spectroscopy, we demonstrated that GM1-OS was able to prevent both the spontaneous and the prion-like α-synuclein aggregation. Additionally, circular dichroism spectroscopy of recombinant monomeric α-synuclein showed that GM1-OS did not induce any change in α-synuclein secondary structure. Importantly, GM1-OS significantly increased neuronal survival and preserved neurite networks of dopaminergic neurons affected by α-synuclein oligomers, together with a reduction of microglia activation. These data further demonstrate that the ganglioside GM1 acts through its oligosaccharide also in preventing the α-synuclein pathogenic aggregation in Parkinson's disease, opening a perspective window for GM1-OS as drug candidate.
Collapse
Affiliation(s)
- Maria Fazzari
- Department of Medical Biotechnology and Translational Medicine, University of Milano, 20054 Segrate, Milano, Italy
| | - Erika Di Biase
- Department of Medical Biotechnology and Translational Medicine, University of Milano, 20054 Segrate, Milano, Italy
| | | | | | - Noëlle Callizot
- Neuro-Sys, 410 Chemin Départemental 60, 13120 Gardanne, France
| | - Maria Grazia Ciampa
- Department of Medical Biotechnology and Translational Medicine, University of Milano, 20054 Segrate, Milano, Italy
| | - Laura Mauri
- Department of Medical Biotechnology and Translational Medicine, University of Milano, 20054 Segrate, Milano, Italy
| | - Emma Veronica Carsana
- Department of Medical Biotechnology and Translational Medicine, University of Milano, 20054 Segrate, Milano, Italy
| | - Nicoletta Loberto
- Department of Medical Biotechnology and Translational Medicine, University of Milano, 20054 Segrate, Milano, Italy
| | - Massimo Aureli
- Department of Medical Biotechnology and Translational Medicine, University of Milano, 20054 Segrate, Milano, Italy
| | - Luigi Mari
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Monica Civera
- Department of Chemistry, University of Milano, Milan, Italy
| | | | - Sandro Sonnino
- Department of Medical Biotechnology and Translational Medicine, University of Milano, 20054 Segrate, Milano, Italy.
| | - Tim Bartels
- UK Dementia Research Institute at UCL, London, UK
| | - Elena Chiricozzi
- Department of Medical Biotechnology and Translational Medicine, University of Milano, 20054 Segrate, Milano, Italy.
| | - Giulia Lunghi
- Department of Medical Biotechnology and Translational Medicine, University of Milano, 20054 Segrate, Milano, Italy
| |
Collapse
|
25
|
Sonnino S. The relationship between depletion of brain GM1 ganglioside and Parkinson's disease. FEBS Open Bio 2023; 13:1548-1557. [PMID: 36638010 PMCID: PMC10476573 DOI: 10.1002/2211-5463.13554] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/04/2023] [Accepted: 01/11/2023] [Indexed: 01/14/2023] Open
Abstract
GM1 is one of the main gangliosides of the nervous system, and it exerts neurotrophic and neuroprotective properties in neurons. It is involved in many processes necessary for the correct physiology of neuronal cells. In particular, it is necessary for the activity of neuronal receptors that control processes such as differentiation, survival, and mitochondrial activity. A shortage of GM1 in the substantia nigra is potentially responsible for the neurodegeneration present in Parkinson's disease patients. In this review, I report on the role played by GM1 in neurons and how its genetic shortage may be responsible for the onset of Parkinson's disease.
Collapse
Affiliation(s)
- Sandro Sonnino
- Department of Medical Biotechnology and Translational MedicineUniversity of MilanItaly
| |
Collapse
|
26
|
Chowdhury S, Kumar R, Zepeda E, DeFrees S, Ledeen R. Synthetic GM1 improves motor and memory dysfunctions in mice with monoallelic or biallelic disruption of GM3 synthase. FEBS Open Bio 2023; 13:1651-1657. [PMID: 37401916 PMCID: PMC10476560 DOI: 10.1002/2211-5463.13669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/23/2023] [Accepted: 06/30/2023] [Indexed: 07/05/2023] Open
Abstract
This study attempts to answer the question of whether mice with biallelic and monoallelic disruption of the St3gal5 (GM3 synthase) gene might benefit from GM1 replacement therapy. The GM3 produced by this sialyltransferase gives rise to downstream GD3 and the ganglio-series of gangliosides. The latter includes the a-series (GM1 + GD1a), which has proved most essential for neuron survival and function (especially GM1, for which GD1a provides a reserve pool). These biallelic mice serve as a model for children with this relatively rare autosomal recessive condition (ST3GAL5-/-) who suffer rapid neurological decline including motor loss, intellectual disability, visual and hearing loss, failure to thrive, and other severe conditions leading to an early death by 2-5 years of age without supportive care. Here, we studied both these mice, which serve as a model for the parents and close relatives of these children who are likely to suffer long-term disabilities due to partial deficiency of GM1, including Parkinson's disease (PD). We find that the movement and memory disorders manifested by both types of mice can be resolved with GM1 application. This suggests the potential therapeutic value of GM1 for disorders stemming from GM1 deficiency, including GM3 synthase deficiency and PD. It was noteworthy that the GM1 employed in these studies was synthetic rather than animal brain-derived, reaffirming the therapeutic efficacy of the former.
Collapse
Affiliation(s)
- Suman Chowdhury
- Department of Pharmacology, Physiology, and NeuroscienceRutgers, The State University of New JerseyNewarkNJUSA
| | - Ranjeet Kumar
- Department of Pharmacology, Physiology, and NeuroscienceRutgers, The State University of New JerseyNewarkNJUSA
| | - Evelyn Zepeda
- Department of Pharmacology, Physiology, and NeuroscienceRutgers, The State University of New JerseyNewarkNJUSA
| | | | - Robert Ledeen
- Department of Pharmacology, Physiology, and NeuroscienceRutgers, The State University of New JerseyNewarkNJUSA
| |
Collapse
|
27
|
Spanos F, Deleidi M. Glycolipids in Parkinson's disease: beyond neuronal function. FEBS Open Bio 2023; 13:1558-1579. [PMID: 37219461 PMCID: PMC10476577 DOI: 10.1002/2211-5463.13651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/10/2023] [Accepted: 05/22/2023] [Indexed: 05/24/2023] Open
Abstract
Glycolipid balance is key to normal body function, and its alteration can lead to a variety of diseases involving multiple organs and tissues. Glycolipid disturbances are also involved in Parkinson's disease (PD) pathogenesis and aging. Increasing evidence suggests that glycolipids affect cellular functions beyond the brain, including the peripheral immune system, intestinal barrier, and immunity. Hence, the interplay between aging, genetic predisposition, and environmental exposures could initiate systemic and local glycolipid changes that lead to inflammatory reactions and neuronal dysfunction. In this review, we discuss recent advances in the link between glycolipid metabolism and immune function and how these metabolic changes can exacerbate immunological contributions to neurodegenerative diseases, with a focus on PD. Further understanding of the cellular and molecular mechanisms that control glycolipid pathways and their impact on both peripheral tissues and the brain will help unravel how glycolipids shape immune and nervous system communication and the development of novel drugs to prevent PD and promote healthy aging.
Collapse
Affiliation(s)
- Fokion Spanos
- Institut Imagine, INSERM UMR1163Paris Cité UniversityFrance
- Aligning Science Across Parkinson's (ASAP) Collaborative Research NetworkChevy ChaseMDUSA
| | - Michela Deleidi
- Institut Imagine, INSERM UMR1163Paris Cité UniversityFrance
- Aligning Science Across Parkinson's (ASAP) Collaborative Research NetworkChevy ChaseMDUSA
- Department of Neurodegenerative Diseases, Center of Neurology, Hertie Institute for Clinical Brain ResearchUniversity of TübingenGermany
| |
Collapse
|
28
|
Díaz M, Pereda de Pablo D, Valdés‐Baizabal C, Santos G, Marin R. Molecular and biophysical features of hippocampal "lipid rafts aging" are modified by dietary n-3 long-chain polyunsaturated fatty acids. Aging Cell 2023; 22:e13867. [PMID: 37254617 PMCID: PMC10410061 DOI: 10.1111/acel.13867] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 04/25/2023] [Accepted: 04/29/2023] [Indexed: 06/01/2023] Open
Abstract
"Lipid raft aging" in nerve cells represents an early event in the development of aging-related neurodegenerative diseases, such as Alzheimer's disease. Lipid rafts are key elements in synaptic plasticity, and their modification with aging alters interactions and distribution of signaling molecules, such as glutamate receptors and ion channels involved in memory formation, eventually leading to cognitive decline. In the present study, we have analyzed, in vivo, the effects of dietary supplementation of n-3 LCPUFA on the lipid structure, membrane microviscosity, domain organization, and partitioning of ionotropic and metabotropic glutamate receptors in hippocampal lipid raffs in female mice. The results revealed several lipid signatures of "lipid rafts aging" in old mice fed control diets, consisting in depletion of n-3 LCPUFA, membrane unsaturation, along with increased levels of saturates, plasmalogens, and sterol esters, as well as altered lipid relevant indexes. These changes were paralleled by increased microviscosity and changes in the raft/non-raft (R/NR) distribution of AMPA-R and mGluR5. Administration of the n-3 LCPUFA diet caused the partial reversion of fatty acid alterations found in aged mice and returned membrane microviscosity to values found in young animals. Paralleling these findings, lipid rafts accumulated mGluR5, NMDA-R, and ASIC2, and increased their R/NR proportions, which collectively indicate changes in synaptic plasticity. Unexpectedly, this diet also modified the lipidome and dimension of lipid rafts, as well as the domain redistribution of glutamate receptors and acid-sensing ion channels involved in hippocampal synaptic plasticity, likely modulating functionality of lipid rafts in memory formation and reluctance to age-associated cognitive decline.
Collapse
Affiliation(s)
- Mario Díaz
- Department of Physics, Faculty of SciencesUniversity of La LagunaTenerifeSpain
- Instituto Universitario de Neurociencias (IUNE)TenerifeSpain
- Laboratory of Membrane Physiology and Biophysics, School of SciencesUniversity of La LagunaTenerifeSpain
| | - Daniel Pereda de Pablo
- Laboratory of Cellular NeurobiologyDepartment of Basic Medical Sciences, Faculty of Health SciencesUniversity of La LagunaTenerifeSpain
| | - Catalina Valdés‐Baizabal
- Laboratory of Cellular NeurobiologyDepartment of Basic Medical Sciences, Faculty of Health SciencesUniversity of La LagunaTenerifeSpain
| | - Guido Santos
- Department of Biochemistry, Microbiology, Cellular Biology and Genetics, School of SciencesUniversity of La LagunaTenerifeSpain
| | - Raquel Marin
- Laboratory of Cellular NeurobiologyDepartment of Basic Medical Sciences, Faculty of Health SciencesUniversity of La LagunaTenerifeSpain
- Associate Research Unit ULL‐CSIC “Membrane Physiology and Biophysics in Neurodegenerative and Cancer Diseases”TenerifeSpain
| |
Collapse
|
29
|
Weesner JA, Annunziata I, van de Vlekkert D, Robinson CG, Campos Y, Mishra A, Fremuth LE, Gomero E, Hu H, d'Azzo A. Altered GM1 catabolism affects NMDAR-mediated Ca 2+ signaling at ER-PM junctions and increases synaptic spine formation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.10.548446. [PMID: 37503265 PMCID: PMC10369868 DOI: 10.1101/2023.07.10.548446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Endoplasmic reticulum-plasma membrane (ER-PM) junctions mediate Ca 2+ flux across neuronal membranes. The properties of these membrane contact sites are defined by their lipid content, but little attention has been given to glycosphingolipids (GSLs). Here, we show that GM1-ganglioside, an abundant GSL in neuronal membranes, is integral to ER-PM junctions; it interacts with synaptic proteins/receptors and regulates Ca 2+ signaling. In a model of the neurodegenerative lysosomal storage disease, GM1-gangliosidosis, pathogenic accumulation of GM1 at ER-PM junctions due to β-galactosidase deficiency drastically alters neuronal Ca 2+ homeostasis. Mechanistically, we show that GM1 interacts with the phosphorylated NMDAR Ca 2+ channel, thereby increasing Ca 2+ flux, activating ERK signaling, and increasing the number of synaptic spines without increasing synaptic connectivity. Thus, GM1 clustering at ER-PM junctions alters synaptic plasticity and exacerbates the generalized neuronal cell death characteristic of GM1-gangliosidosis.
Collapse
|
30
|
Márquez-López A, Fanarraga ML. AB Toxins as High-Affinity Ligands for Cell Targeting in Cancer Therapy. Int J Mol Sci 2023; 24:11227. [PMID: 37446406 DOI: 10.3390/ijms241311227] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/30/2023] [Accepted: 07/06/2023] [Indexed: 07/15/2023] Open
Abstract
Conventional targeted therapies for the treatment of cancer have limitations, including the development of acquired resistance. However, novel alternatives have emerged in the form of targeted therapies based on AB toxins. These biotoxins are a diverse group of highly poisonous molecules that show a nanomolar affinity for their target cell receptors, making them an invaluable source of ligands for biomedical applications. Bacterial AB toxins, in particular, are modular proteins that can be genetically engineered to develop high-affinity therapeutic compounds. These toxins consist of two distinct domains: a catalytically active domain and an innocuous domain that acts as a ligand, directing the catalytic domain to the target cells. Interestingly, many tumor cells show receptors on the surface that are recognized by AB toxins, making these high-affinity proteins promising tools for developing new methods for targeting anticancer therapies. Here we describe the structure and mechanisms of action of Diphtheria (Dtx), Anthrax (Atx), Shiga (Stx), and Cholera (Ctx) toxins, and review the potential uses of AB toxins in cancer therapy. We also discuss the main advances in this field, some successful results, and, finally, the possible development of innovative and precise applications in oncology based on engineered recombinant AB toxins.
Collapse
Affiliation(s)
- Ana Márquez-López
- The Nanomedicine Group, Institute Valdecilla-IDIVAL, 39011 Santander, Spain
| | - Mónica L Fanarraga
- The Nanomedicine Group, Institute Valdecilla-IDIVAL, 39011 Santander, Spain
- Molecular Biology Department, Faculty of Medicine, Universidad de Cantabria, 39011 Santander, Spain
| |
Collapse
|
31
|
Guo Z. Ganglioside GM1 and the Central Nervous System. Int J Mol Sci 2023; 24:ijms24119558. [PMID: 37298512 DOI: 10.3390/ijms24119558] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/18/2023] [Accepted: 05/04/2023] [Indexed: 06/12/2023] Open
Abstract
GM1 is one of the major glycosphingolipids (GSLs) on the cell surface in the central nervous system (CNS). Its expression level, distribution pattern, and lipid composition are dependent upon cell and tissue type, developmental stage, and disease state, which suggests a potentially broad spectrum of functions of GM1 in various neurological and neuropathological processes. The major focus of this review is the roles that GM1 plays in the development and activities of brains, such as cell differentiation, neuritogenesis, neuroregeneration, signal transducing, memory, and cognition, as well as the molecular basis and mechanisms for these functions. Overall, GM1 is protective for the CNS. Additionally, this review has also examined the relationships between GM1 and neurological disorders, such as Alzheimer's disease, Parkinson's disease, GM1 gangliosidosis, Huntington's disease, epilepsy and seizure, amyotrophic lateral sclerosis, depression, alcohol dependence, etc., and the functional roles and therapeutic applications of GM1 in these disorders. Finally, current obstacles that hinder more in-depth investigations and understanding of GM1 and the future directions in this field are discussed.
Collapse
Affiliation(s)
- Zhongwu Guo
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
32
|
Wang R, Tong S, Wang M, Zou J, Wang N, Sun F, Zhou X, Chen J, Wang H. CREB5 hypermethylation involved in the ganglioside GM1 therapy of Parkinson's disease. Front Aging Neurosci 2023; 15:1122647. [PMID: 37323142 PMCID: PMC10264581 DOI: 10.3389/fnagi.2023.1122647] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 05/05/2023] [Indexed: 06/17/2023] Open
Abstract
Introduction The treatment with monosialotetrahexosylganglioside (GM1) improves the symptoms of Parkinson's disease (PD). The alteration of DNA methylation in the blood was examined to investigate epigenetic modification by GM1 treatment. Methods After a 28-day continuous intravenous infusion of GM1 (100mg), the motor and non-motor symptoms were evaluated by UPDRS III, Mini-mental state examination (MMSE) scores, FS-14, SCOPA-AUT, and PDQ-8. Moreover, blood samples were collected and PBMC was isolated. Genome-wide DNA methylation was performed by an 850K BeadChip. RNA levels and apoptosis were examined by RT-PCR and flow cytometry in rotenone-based cell models. The CREB5 plasmid was transfected by electroporation into SH-SY5Y cells. We also identified 235 methylation variable positions achieving genome-wide significance in 717558 differentially methylated positions (DMPs) (P = 0.0003) in comparison of pre-treatment with post-treatment measurements (statistical analysis paired-samples t-test). Results By searching the Gene Expression Omnibus (GEO) dataset and GWAS, 23 methylation variable positions were screened. Moreover, there are 7 hypomethylated methylation variable positions correlated with the scores of motor symptoms (UPDRS III scale). According to KEGG pathways enrichment analysis, the methylated genes CACNA1B (hypomethylated), CREB5 (hypermethylated), GNB4 (hypomethylated), and PPP2R5A (hypomethylated) were enriched in the dopaminergic synapse pathway. Pretreated with GM1 (80 μM) for 1 h, cell apoptosis and impaired neurite outgrowth were inhibited in rotenone-induced PD cell models. The RNA expression of CREB5 was increased in rotenone-treated SH-SY5Y cells. GM1 treatment decreased rotenone-induced CREB5 gene expression. The enhancement of CREB5 gene expression suppressed the protective role of GM1 in rotenone-induced cell apoptosis. Discussion The application of GM1 improves the motor and non-motor symptoms of PD associated with the decreased CREB5 expression and the hypermethylation of CREB5. Clinical trial registration https://www.chictr.org.cn/showproj.html?proj=120582t, identifier ChiCTR2100042537.
Collapse
Affiliation(s)
- Rui Wang
- Department of Neurology, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Shanshan Tong
- Department of Neurology, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Mengdi Wang
- Department of Neurology, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Junjie Zou
- Department of Neurology, Penglai People’s Hospital, Yantai, China
| | - Nan Wang
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Fengjiao Sun
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Xiaosheng Zhou
- Department of Neurology, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Jinbo Chen
- Department of Neurology, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Hongcai Wang
- Department of Neurology, Binzhou Medical University Hospital, Binzhou, Shandong, China
| |
Collapse
|
33
|
Yu H, Zhang L, Yang X, Bai Y, Chen X. Process Engineering and Glycosyltransferase Improvement for Short Route Chemoenzymatic Total Synthesis of GM1 Gangliosides. Chemistry 2023; 29:e202300005. [PMID: 36596720 PMCID: PMC10159885 DOI: 10.1002/chem.202300005] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 01/02/2023] [Accepted: 01/03/2023] [Indexed: 01/05/2023]
Abstract
Large-scale synthesis of GM1, an important ganglioside in mammalian cells especially those in the nervous system, is needed to explore its therapeutic potential. Biocatalytic production is a promising platform for such a purpose. We report herein the development of process engineering and glycosyltransferase improvement strategies to advance chemoenzymatic total synthesis of GM1. Firstly, a new short route was developed for chemical synthesis of lactosylsphingosine from the commercially available Garner's aldehyde. Secondly, two glycosyltransferases including Campylobacter jejuni β1-4GalNAcT (CjCgtA) and β1-3-galactosyltransferase (CjCgtB) were improved on their soluble expression in E. coli and enzyme stability by fusing with an N-terminal maltose binding protein (MBP). Thirdly, the process for enzymatic synthesis of GM1 sphingosines from lactosylsphingosine was engineered by developing a multistep one-pot multienzyme (MSOPME) strategy without isolating intermediate glycosphingosines and by adding a detergent, sodium cholate, to the later enzymatic glycosylation steps. Installation of a desired fatty acyl chain to GM1 glycosphingosines led to the formation of target GM1 gangliosides. The combination of glycosyltransferase improvement with chemical and enzymatic process engineering represents a significant advance in obtaining GM1 gangliosides containing different sialic acid forms by total chemoenzymatic synthesis in a short route and with high efficiency.
Collapse
Affiliation(s)
- Hai Yu
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California, 95616, USA
| | - Libo Zhang
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California, 95616, USA
| | - Xiaohong Yang
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California, 95616, USA
| | - Yuanyuan Bai
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California, 95616, USA
| | - Xi Chen
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California, 95616, USA
| |
Collapse
|
34
|
Fazzari M, Lunghi G, Henriques A, Callizot N, Ciampa MG, Mauri L, Prioni S, Carsana EV, Loberto N, Aureli M, Mari L, Sonnino S, Chiricozzi E, Di Biase E. GM1 Oligosaccharide Efficacy in Parkinson's Disease: Protection against MPTP. Biomedicines 2023; 11:biomedicines11051305. [PMID: 37238977 DOI: 10.3390/biomedicines11051305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 04/24/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
Past evidence has shown that the exogenous administration of GM1 ganglioside slowed neuronal death in preclinical models of Parkinson's disease, a neurodegenerative disorder characterized by the progressive loss of dopamine-producing neurons: however, the physical and chemical properties of GM1 (i.e., amphiphilicity) limited its clinical application, as the crossing of the blood-brain barrier is denied. Recently, we demonstrated that the GM1 oligosaccharide head group (GM1-OS) is the GM1 bioactive portion that, interacting with the TrkA-NGF complex at the membrane surface, promotes the activation of a multivariate network of intracellular events regulating neuronal differentiation, protection, and reparation. Here, we evaluated the GM1-OS neuroprotective potential against the Parkinson's disease-linked neurotoxin MPTP, which destroys dopaminergic neurons by affecting mitochondrial bioenergetics and causing ROS overproduction. In dopaminergic and glutamatergic primary cultures, GM1-OS administration significantly increased neuronal survival, preserved neurite network, and reduced mitochondrial ROS production enhancing the mTOR/Akt/GSK3β pathway. These data highlight the neuroprotective efficacy of GM1-OS in parkinsonian models through the implementation of mitochondrial function and reduction in oxidative stress.
Collapse
Affiliation(s)
- Maria Fazzari
- Department of Medical Biotechnology and Translational Medicine, University of Milano, 20054 Segrate, MI, Italy
| | - Giulia Lunghi
- Department of Medical Biotechnology and Translational Medicine, University of Milano, 20054 Segrate, MI, Italy
| | | | - Noëlle Callizot
- Neuro-Sys, 410 Chemin Départemental 60, 13120 Gardanne, France
| | - Maria Grazia Ciampa
- Department of Medical Biotechnology and Translational Medicine, University of Milano, 20054 Segrate, MI, Italy
| | - Laura Mauri
- Department of Medical Biotechnology and Translational Medicine, University of Milano, 20054 Segrate, MI, Italy
| | - Simona Prioni
- Department of Medical Biotechnology and Translational Medicine, University of Milano, 20054 Segrate, MI, Italy
| | - Emma Veronica Carsana
- Department of Medical Biotechnology and Translational Medicine, University of Milano, 20054 Segrate, MI, Italy
| | - Nicoletta Loberto
- Department of Medical Biotechnology and Translational Medicine, University of Milano, 20054 Segrate, MI, Italy
| | - Massimo Aureli
- Department of Medical Biotechnology and Translational Medicine, University of Milano, 20054 Segrate, MI, Italy
| | - Luigi Mari
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Sandro Sonnino
- Department of Medical Biotechnology and Translational Medicine, University of Milano, 20054 Segrate, MI, Italy
| | - Elena Chiricozzi
- Department of Medical Biotechnology and Translational Medicine, University of Milano, 20054 Segrate, MI, Italy
| | - Erika Di Biase
- Department of Medical Biotechnology and Translational Medicine, University of Milano, 20054 Segrate, MI, Italy
| |
Collapse
|
35
|
Phung NV, Rong F, Xia WY, Fan Y, Li XY, Wang SA, Li FL. Nervonic acid and its sphingolipids: Biological functions and potential food applications. Crit Rev Food Sci Nutr 2023; 64:8766-8785. [PMID: 37114919 DOI: 10.1080/10408398.2023.2203753] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
Nervonic acid, a 24-carbon fatty acid with only one double bond at the 9th carbon (C24:1n-9), is abundant in the human brain, liver, and kidney. It not only functions in free form but also serves as a critical component of sphingolipids which participate in many biological processes such as cell membrane formation, apoptosis, and neurotransmission. Recent studies show that nervonic acid supplementation is not only beneficial to human health but also can improve the many medical conditions such as neurological diseases, cancers, diabetes, obesity, and their complications. Nervonic acid and its sphingomyelins serve as a special material for myelination in infants and remyelination patients with multiple sclerosis. Besides, the administration of nervonic acid is reported to reduce motor disorder in mice with Parkinson's disease and limit weight gain. Perturbations of nervonic acid and its sphingolipids might lead to the pathogenesis of many diseases and understanding these mechanisms is critical for investigating potential therapeutic approaches for such diseases. However, available studies about this aspect are limited. In this review, relevant findings about functional mechanisms of nervonic acid have been comprehensively and systematically described, focusing on four interconnected functions: cellular structure, signaling, anti-inflammation, lipid mobilization, and their related diseases.
Collapse
Affiliation(s)
- Nghi Van Phung
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao C1 Refinery Engineering Research Center, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - Fei Rong
- Department of Anesthesiology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, China
| | - Wan Yue Xia
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao C1 Refinery Engineering Research Center, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - Yong Fan
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao C1 Refinery Engineering Research Center, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
- Qingdao New Energy Shandong Laboratory, Qingdao, China
| | - Xian Yu Li
- China Academy of Chinese Medical Sciences, Beijing, China
| | - Shi An Wang
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao C1 Refinery Engineering Research Center, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
- Shandong Energy Institute, Qingdao, China
| | - Fu Li Li
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao C1 Refinery Engineering Research Center, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
- Qingdao New Energy Shandong Laboratory, Qingdao, China
- Shandong Energy Institute, Qingdao, China
| |
Collapse
|
36
|
Ashaat EA, Sabry S, Zaki ME, Mohamed R, Abdelsattar HA, Bawady SA, Ashaat NA, Elnaggar W, Ganem MMF, El-Hariri HM, El-Bassyouni HT, Saleh DA. Sialic acid and anti-ganglioside M1 antibodies are invaluable biomarkers correlated with the severity of autism spectrum disorder. Brain Dev 2023; 45:212-219. [PMID: 36522215 DOI: 10.1016/j.braindev.2022.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/23/2022] [Accepted: 11/28/2022] [Indexed: 12/15/2022]
Abstract
BACKGROUND Autism spectrum disorders (ASD) are devastating neurodevelopmental disorders that showed global increased prevalence. They are characterized by impairment of social communication and stereotyped patterns. OBJECTIVE This study aimed at measuring the levels of total sialic acid (SA) and anti-ganglioside M1 (anti- GM1) IgG antibodies as essential biomarkers in a cohort of children with ASD to identify their diagnostic yield as well as their correlation with the severity of autistic behaviors. METHODS The demographic characteristics, anthropometric measurements, and clinical data were recorded. The levels of total plasma SA and serum anti-GM1 IgG antibodies levels were measured in 100 children with ASD and 100 healthy controls. The severity of ASD-related symptoms was assessed by using the Childhood Autism Rating Scale (CARS). RESULTS Children with ASD had significantly higher levels of both SA and anti-GM1 antibodies than healthy controls (p < 0.001). SA showed a statistically significant moderate diagnostic performance while anti-GM1 antibody showed a statistically significant high diagnostic in differentiating severe from mild to moderate autism. Moreover, both SA and anti-GM1 antibodies levels were significantly correlated to the severity of ASD symptoms (p < 0.001). CONCLUSION The significantly increased levels of SA and anti-GM1 antibodies in children with ASD and their correlation with autism-related symptoms suggest their possible etiopathogenic role in autism as one of the pediatric autoimmune neuropsychiatric disorders. However, further large-scale studies are still needed to explore their possible bidirectional relationship as biomarkers for autism.
Collapse
Affiliation(s)
- Engy A Ashaat
- Clinical Genetics Department, Human Genetics and Genome Research Institute, National Research Centre, Cairo, Egypt.
| | - Sahar Sabry
- Biochemical Genetics Department, Human Genetics and Genome Research Institute, National Research Centre, Cairo, Egypt
| | - Moushira E Zaki
- Biological Anthropology Department, National Research Centre, Cairo, Egypt
| | - Ramy Mohamed
- Biological Anthropology Department, National Research Centre, Cairo, Egypt
| | | | - Somia A Bawady
- Clinical Pathology Departments, Ain Shams University, Cairo, Egypt
| | - Neveen A Ashaat
- Professor of Human Genetics, Ain Shams University, Cairo, Egypt
| | - Walaa Elnaggar
- Pediatric Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Mona M F Ganem
- Internal Medicine Research Department, National Research Centre, Cairo, Egypt
| | - Hazem M El-Hariri
- Community Medicine Department, National Research Centre, Cairo, Egypt
| | - Hala T El-Bassyouni
- Clinical Genetics Department, Human Genetics and Genome Research Institute, National Research Centre, Cairo, Egypt
| | - Dina Amin Saleh
- Pediatric Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| |
Collapse
|
37
|
McQuaid C, Solorzano A, Dickerson I, Deane R. Uptake of severe acute respiratory syndrome coronavirus 2 spike protein mediated by angiotensin converting enzyme 2 and ganglioside in human cerebrovascular cells. Front Neurosci 2023; 17:1117845. [PMID: 36875642 PMCID: PMC9980911 DOI: 10.3389/fnins.2023.1117845] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 01/30/2023] [Indexed: 02/18/2023] Open
Abstract
Introduction There is clinical evidence of neurological manifestations in coronavirus disease-19 (COVID-19). However, it is unclear whether differences in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)/spike protein (SP) uptake by cells of the cerebrovasculature contribute to significant viral uptake to cause these symptoms. Methods Since the initial step in viral invasion is binding/uptake, we used fluorescently labeled wild type and mutant SARS-CoV-2/SP to study this process. Three cerebrovascular cell types were used (endothelial cells, pericytes, and vascular smooth muscle cells), in vitro. Results There was differential SARS-CoV-2/SP uptake by these cell types. Endothelial cells had the least uptake, which may limit SARS-CoV-2 uptake into brain from blood. Uptake was time and concentration dependent, and mediated by angiotensin converting enzyme 2 receptor (ACE2), and ganglioside (mono-sialotetrahexasylganglioside, GM1) that is predominantly expressed in the central nervous system and the cerebrovasculature. SARS-CoV-2/SPs with mutation sites, N501Y, E484K, and D614G, as seen in variants of interest, were also differentially taken up by these cell types. There was greater uptake compared to that of the wild type SARS-CoV-2/SP, but neutralization with anti-ACE2 or anti-GM1 antibodies was less effective. Conclusion The data suggested that in addition to ACE2, gangliosides are also an important entry point of SARS-CoV-2/SP into these cells. Since SARS-CoV-2/SP binding/uptake is the initial step in the viral penetration into cells, a longer exposure and higher titer are required for significant uptake into the normal brain. Gangliosides, including GM1, could be an additional potential SARS-CoV-2 and therapeutic target at the cerebrovasculature.
Collapse
Affiliation(s)
| | | | | | - Rashid Deane
- Department of Neuroscience, Del Monte Institute Neuroscience, University of Rochester, University of Rochester Medical Center (URMC), Rochester, NY, United States
| |
Collapse
|
38
|
Zhou C, Zhao X, Ma X, Ma H, Li R, Hu G, Wang H, Peng Z, Cai M. Effects of (S)-ketamine on depression-like behaviors in a chronic variable stress model: a role of brain lipidome. Front Cell Neurosci 2023; 17:1114914. [PMID: 36874216 PMCID: PMC9975603 DOI: 10.3389/fncel.2023.1114914] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 01/23/2023] [Indexed: 02/17/2023] Open
Abstract
Introduction: Compelling evidence indicates that a single sub-anesthetic dose of (S)-ketamine elicits rapid and robust antidepressant effects. However, the underlying mechanisms behind the antidepressant effects of (S)-ketamine remain unclear. Methods: Here, using a chronic variable stress (CVS) model in mice, we analyzed changes inthe lipid compositions of the hippocampus and prefrontal cortex (PFC) with a mass spectrometry-based lipidomic approach. Results: Similar to previous research outcomes, the current study also showed that (S)-ketamine reversed depressive-like behaviors in mice produced by CVS procedures. Moreover, CVS induced changes inthe lipid compositions of the hippocampus and PFC, notably in the contents of sphingolipids, glycerolipids, and fatty acyls. With the administration of (S)-ketamine, CVS-induced lipid disturbances were partially normalized, particularly in the hippocampus. Conclusion: Altogether, our results indicated that (S)-ketamine could rescue CVS-induced depressive-like behaviors in mice through region-specific modulation of the brain lipidome, contributing to the understanding of (S)-ketamine's antidepressant effects.
Collapse
Affiliation(s)
- Cuihong Zhou
- Department of Psychiatry, Xijing Hospital, The Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Xinxin Zhao
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, The Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Xinxu Ma
- Department of Psychiatry, Xijing Hospital, The Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Hongzhe Ma
- Department of Psychiatry, Xijing Hospital, The Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Rui Li
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, The Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Guangtao Hu
- Department of Psychological Medicine, 958th Hospital, Chongqing, China
| | - Huaning Wang
- Department of Psychiatry, Xijing Hospital, The Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Zhengwu Peng
- Department of Psychiatry, Xijing Hospital, The Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Min Cai
- Department of Psychiatry, Xijing Hospital, The Fourth Military Medical University, Xi’an, Shaanxi, China
| |
Collapse
|
39
|
Nezvedová M, Jha D, Váňová T, Gadara D, Klímová H, Raška J, Opálka L, Bohačiaková D, Spáčil Z. Single Cerebral Organoid Mass Spectrometry of Cell-Specific Protein and Glycosphingolipid Traits. Anal Chem 2023; 95:3160-3167. [PMID: 36724094 PMCID: PMC10016744 DOI: 10.1021/acs.analchem.2c00981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Cerebral organoids are a prolific research topic and an emerging model system for neurological diseases in human neurobiology. However, the batch-to-batch reproducibility of current cultivation protocols is challenging and thus requires a high-throughput methodology to comprehensively characterize cerebral organoid cytoarchitecture and neural development. We report a mass spectrometry-based protocol to quantify neural tissue cell markers, cell surface lipids, and housekeeping proteins in a single organoid. Profiled traits probe the development of neural stem cells, radial glial cells, neurons, and astrocytes. We assessed the cell population heterogeneity in individually profiled organoids in the early and late neurogenesis stages. Here, we present a unifying view of cell-type specificity of profiled protein and lipid traits in neural tissue. Our workflow characterizes the cytoarchitecture, differentiation stage, and batch cultivation variation on an individual cerebral organoid level.
Collapse
Affiliation(s)
- Markéta Nezvedová
- RECETOX, Faculty of Science, Masaryk University, Brno 625 00, Czech Republic
| | - Durga Jha
- RECETOX, Faculty of Science, Masaryk University, Brno 625 00, Czech Republic
| | - Tereza Váňová
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno 625 00, Czech Republic.,International Clinical Research Center (ICRC), St. Anne's University Hospital, Brno 656 91, Czech Republic
| | - Darshak Gadara
- RECETOX, Faculty of Science, Masaryk University, Brno 625 00, Czech Republic
| | - Hana Klímová
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno 625 00, Czech Republic
| | - Jan Raška
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno 625 00, Czech Republic
| | - Lukáš Opálka
- Department of Chemistry, Faculty of Pharmacy, Charles University, Hradec Králové 500 05, Czech Republic
| | - Dáša Bohačiaková
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno 625 00, Czech Republic.,International Clinical Research Center (ICRC), St. Anne's University Hospital, Brno 656 91, Czech Republic
| | - Zdeněk Spáčil
- RECETOX, Faculty of Science, Masaryk University, Brno 625 00, Czech Republic
| |
Collapse
|
40
|
Erythrocyte Plasma Membrane Lipid Composition Mirrors That of Neurons and Glial Cells in Murine Experimental In Vitro and In Vivo Inflammation. Cells 2023; 12:cells12040561. [PMID: 36831228 PMCID: PMC9953778 DOI: 10.3390/cells12040561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 01/30/2023] [Accepted: 02/06/2023] [Indexed: 02/12/2023] Open
Abstract
Lipid membrane turnover and myelin repair play a central role in diseases and lesions of the central nervous system (CNS). The aim of the present study was to analyze lipid composition changes due to inflammatory conditions. We measured the fatty acid (FA) composition in erythrocytes (RBCs) and spinal cord tissue (gas chromatography) derived from mice affected by experimental allergic encephalomyelitis (EAE) in acute and remission phases; cholesterol membrane content (Filipin) and GM1 membrane assembly (CT-B) in EAE mouse RBCs, and in cultured neurons, oligodendroglial cells and macrophages exposed to inflammatory challenges. During the EAE acute phase, the RBC membrane showed a reduction in polyunsaturated FAs (PUFAs) and an increase in saturated FAs (SFAs) and the omega-6/omega-3 ratios, followed by a restoration to control levels in the remission phase in parallel with an increase in monounsaturated fatty acid residues. A decrease in PUFAs was also shown in the spinal cord. CT-B staining decreased and Filipin staining increased in RBCs during acute EAE, as well as in cultured macrophages, neurons and oligodendrocyte precursor cells exposed to inflammatory challenges. This regulation in lipid content suggests an increased cell membrane rigidity during the inflammatory phase of EAE and supports the investigation of peripheral cell membrane lipids as possible biomarkers for CNS lipid membrane concentration and assembly.
Collapse
|
41
|
Chowdhury S, Wu G, Lu ZH, Kumar R, Ledeen R. Age-Related Decline in Gangliosides GM1 and GD1a in Non-CNS Tissues of Normal Mice: Implications for Peripheral Symptoms of Parkinson's Disease. Biomedicines 2023; 11:biomedicines11010209. [PMID: 36672717 PMCID: PMC9855670 DOI: 10.3390/biomedicines11010209] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/06/2023] [Accepted: 01/09/2023] [Indexed: 01/17/2023] Open
Abstract
The purpose of this study was to determine whether the age-related decline in a-series gangliosides (especially GM1), shown to be a factor in the brain-related etiology of Parkinson's disease (PD), also pertains to the peripheral nervous system (PNS) and aspects of PD unrelated to the central nervous system (CNS). Following Svennerholm's demonstration of the age-dependent decline in a-series gangliosides (both GM1 and GD1a) in the human brain, we previously demonstrated a similar decline in the normal mouse brain. The present study seeks to determine whether a similar a-series decline occurs in the periphery of normal mice as a possible prelude to the non-CNS symptoms of PD. We used mice of increasing age to measure a-series gangliosides in three peripheral tissues closely associated with PD pathology. Employing high-performance thin-layer chromatography (HPTLC), we found a substantial decrease in both GM1 and GD1a in all three tissues from 191 days of age. Motor and cognitive dysfunction were also shown to worsen, as expected, in synchrony with the decrease in GM1. Based on the previously demonstrated parallel between mice and humans concerning age-related a-series ganglioside decline in the brain, we propose the present findings to suggest a similar a-series decline in human peripheral tissues as the primary contributor to non-CNS pathologies of PD. An onset of sporadic PD would thus be seen as occurring simultaneously throughout the brain and body, albeit at varying rates, in association with the decline in a-series gangliosides. This would obviate the need to postulate the transfer of aggregated α-synuclein between brain and body or to debate brain vs. body as the origin of PD.
Collapse
|
42
|
Aureli M, Mauri L, Carsana EV, Dobi D, Breviario S, Lunghi G, Sonnino S. Gangliosides and Cell Surface Ganglioside Metabolic Enzymes in the Nervous System. ADVANCES IN NEUROBIOLOGY 2023; 29:305-332. [DOI: 10.1007/978-3-031-12390-0_11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
43
|
Gangliosides in Neurodegenerative Diseases. ADVANCES IN NEUROBIOLOGY 2023; 29:391-418. [DOI: 10.1007/978-3-031-12390-0_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
44
|
Vasques J, de Jesus Gonçalves R, da Silva-Junior A, Martins R, Gubert F, Mendez-Otero R. Gangliosides in nervous system development, regeneration, and pathologies. Neural Regen Res 2023. [PMID: 35799513 PMCID: PMC9241395 DOI: 10.4103/1673-5374.343890] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
45
|
Han Q, Bai Y, Zhou C, Dong B, Li Y, Luo N, Chen H, Yu Y. Effect of molecular hydrogen treatment on Sepsis-Associated encephalopathy in mice based on gut microbiota. CNS Neurosci Ther 2022; 29:633-645. [PMID: 36468415 PMCID: PMC9873526 DOI: 10.1111/cns.14043] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 11/14/2022] [Accepted: 11/16/2022] [Indexed: 12/09/2022] Open
Abstract
INTRODUCTION In our experiments, male wild-type mice were randomly divided into four groups: the sham, SAE, SAE + 2% hydrogen gas inhalation (H2 ), and SAE + hydrogen-rich water (HW) groups. The feces of the mice were collected for 16 S rDNA analysis 24 h after the models were established, and the serum and brain tissue of the mice were collected for nontargeted metabolomics analysis. AIM Destruction of the intestinal microbiota is a risk factor for sepsis and subsequent organ dysfunction, and up to 70% of severely ill patients with sepsis exhibit varying degrees of sepsis-associated encephalopathy (SAE). The pathogenesis of SAE remains unclear. We aimed to explore the changes in gut microbiota in SAE and the regulatory mechanism of molecular hydrogen. RESULTS Molecular hydrogen treatment significantly improved the functional outcome of SAE and downregulated inflammatory reactions in both the brain and the gut. In addition, molecular hydrogen treatment improved gut microbiota dysbiosis and partially amended metabolic disorder after SAE. CONCLUSIONS Molecular hydrogen treatment promotes functional outcomes after SAE in mice, which may be attributable to increasing beneficial bacteria, repressing harmful bacteria, and metabolic disorder, and reducing inflammation.
Collapse
Affiliation(s)
- Qingqing Han
- Department of AnaesthesiologyTianjin Medical University General Hospital, Tianjin Research Institute of AnaesthesiologyTianjinChina
| | - Yuanyuan Bai
- Department of AnesthesiologyTianjin Baodi Hospital, Baodi Clinical College of Tianjin Medical UniversityTianjinChina
| | - Chunjing Zhou
- Department of AnaesthesiologyTianjin 4 center hospitalTianjinChina
| | - Beibei Dong
- Department of AnaesthesiologyTianjin Medical University General Hospital, Tianjin Research Institute of AnaesthesiologyTianjinChina
| | - Yingning Li
- Department of AnaesthesiologyTianjin Medical University General Hospital, Tianjin Research Institute of AnaesthesiologyTianjinChina
| | - Ning Luo
- Department of AnaesthesiologyTianjin Medical University General Hospital, Tianjin Research Institute of AnaesthesiologyTianjinChina
| | - Hongguang Chen
- Department of AnaesthesiologyTianjin Medical University General Hospital, Tianjin Research Institute of AnaesthesiologyTianjinChina
| | - Yonghao Yu
- Department of AnaesthesiologyTianjin Medical University General Hospital, Tianjin Research Institute of AnaesthesiologyTianjinChina
| |
Collapse
|
46
|
Lunghi G, Fazzari M, Ciampa MG, Mauri L, Di Biase E, Chiricozzi E, Sonnino S. Regulation of signal transduction by gangliosides in lipid rafts: focus on GM3-IR and GM1-TrkA interactions. FEBS Lett 2022; 596:3124-3132. [PMID: 36331354 DOI: 10.1002/1873-3468.14532] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 09/16/2022] [Accepted: 10/04/2022] [Indexed: 11/06/2022]
Abstract
The interactions between gangliosides and proteins belonging to the same or different lipid domains and their influence on physiological and pathological states have been analysed in detail. A well-known factor impacting on lipid-protein interactions and their biological outcomes is the dynamic composition of plasma membrane. This review focuses on GM1 and GM3 gangliosides because they are an integral part of protein-receptor complexes and dysregulation of their concentration shows a direct correlation with the onset of pathological conditions. We first discuss the interaction between GM3 and insulin receptor in relation to insulin responses, with an increase in GM3 correlating with the onset of metabolic dysfunction. Next, we describe the case of the GM1-TrkA interaction, relevant to nerve-cell differentiation and homeostasis as deficiency in plasma-membrane GM1 is known to promote neurodegeneration. These two examples highlight the fact that interactions between gangliosides and receptor proteins within the plasma membrane are crucial in controlling cell signalling and pathophysiological cellular states.
Collapse
Affiliation(s)
- Giulia Lunghi
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Italy
| | - Maria Fazzari
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Italy
| | - Maria Grazia Ciampa
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Italy
| | - Laura Mauri
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Italy
| | - Erika Di Biase
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Italy
| | - Elena Chiricozzi
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Italy
| | - Sandro Sonnino
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Italy
| |
Collapse
|
47
|
Schneider JS, Singh G. Altered expression of glycobiology-related genes in Parkinson's disease brain. Front Mol Neurosci 2022; 15:1078854. [PMID: 36504680 PMCID: PMC9729268 DOI: 10.3389/fnmol.2022.1078854] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 11/11/2022] [Indexed: 11/25/2022] Open
Abstract
The precise mechanisms initiating and perpetuating the cellular degeneration in Parkinson's disease (PD) remain unclear. There is decreased expression of the main brain gangliosides, and GM1 ganglioside in particular, in the PD brain along with decreased expression of the genes coding for the glycosyltranferase and the sialyltransferase responsible for the synthesis of these brain gangliosides. However, potentially important pathogenic mechanisms contributing to the neurodegeneration in PD may also include altered levels of expression of genes involved in glycosylation, sialylation and sphingolipid synthesis and metabolism. Although various studies have described pathological lipid and glycolipid changes in PD brain, there have been limited studies of expression of glycobiology-related genes in PD brain. The current study was performed as an initial attempt to gain new information regarding potential changes in glycoprotein and glycolipid-related genes in PD by investigating the gene expression status for select glycosyltransferases, sialyltransferases, sialidases, sphingosine kinases, and lysosomal enzymes in the substantia nigra and putamen from patients with PD and neurologically normal controls. Results showed altered expression of glycosyltransferase genes (B3GALT2 and B4GALT1) potentially involved in microglial activation and neuroinflammation, sphingosine-1-phosphate (S1P) modulators (SPHK1, SPHK2, and SGPL1) involved in sphingolipid synthesis and metabolism, polysialyltransferase genes (ST8SIA2 and ST8SIA4) that encode enzymes responsible for polysialic acid (polySia) biosynthesis, and the sialidase NEU4, expression of which has been linked to the clearance of storage materials from lysosomes. The data presented here underscore the complexity of the glycolipid/sphingolipid dysregulation in the PD brain and continued and expanded study of these processes may not only provide a greater understanding of the complex roles of aberrant glycosylation sialylation, and sphingolipid synthesis/metabolism in the pathophysiology of PD but may identify potential druggable targets for PD therapeutics.
Collapse
|
48
|
Stein RA. Campylobacter jejuni and Postinfectious Autoimmune Diseases: A Proof of Concept in Glycobiology. ACS Infect Dis 2022; 8:1981-1991. [PMID: 36137262 DOI: 10.1021/acsinfecdis.2c00397] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Glycans, one of the most diverse groups of macromolecules, are ubiquitous constituents of all cells and have many critical functions, including the interaction between microbes and their hosts. One of the best model organisms to study the host-pathogen interaction, the gastrointestinal pathogen Campylobacter jejuni dedicates extensive resources to glycosylation and exhibits a diverse array of surface sugar-coated displays. The first bacterium where N-linked glycosylation was described, C. jejuni can additionally modify proteins by O-linked glycosylation, has extracellular capsular polysaccharides that are important for virulence and represent the major determinant of the Penner serotyping scheme, and has outer membrane lipooligosaccharides that participate in processes such as colonization, survival, inflammation, and immune evasion. In addition to causing gastrointestinal disease and extraintestinal infections, C. jejuni was also linked to postinfectious autoimmune neuropathies, of which Guillain-Barré syndrome (GBS) and Miller Fisher syndrome (MFS) are the most extensively characterized ones. These postinfectious autoimmune neuropathies occur when specific bacterial surface lipooligosaccharides mimic gangliosides in the host nervous system. C. jejuni provided the first proof of concept for the involvement of molecular mimicry in the pathogenesis of an autoimmune disease and, also, for the ability of a bacterial polymorphism to shape the clinical presentation of the postinfectious autoimmune neuropathy. The scientific journey that culminated with elucidating the mechanistic details of the C. jejuni-GBS link was the result of contributions from several fields, including microbiology, structural biology, glycobiology, genetics, and immunology and provides an inspiring and important example to interrogate other instances of molecular mimicry and their involvement in autoimmune disease.
Collapse
Affiliation(s)
- Richard A Stein
- Industry Associate Professor NYU Tandon School of Engineering, Department of Chemical and Biomolecular Engineering, 6 MetroTech Center, Brooklyn, New York 11201, United States
| |
Collapse
|
49
|
Aleksanyan M, Lira RB, Steinkühler J, Dimova R. GM1 asymmetry in the membrane stabilizes pores. Biophys J 2022; 121:3295-3302. [PMID: 35668647 PMCID: PMC9463649 DOI: 10.1016/j.bpj.2022.06.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 05/20/2022] [Accepted: 06/03/2022] [Indexed: 11/29/2022] Open
Abstract
Cell membranes are highly asymmetric and their stability against poration is crucial for survival. We investigated the influence of membrane asymmetry on electroporation of giant unilamellar vesicles with membranes doped with GM1, a ganglioside asymmetrically enriched in the outer leaflet of neuronal cell membranes. Compared with symmetric membranes, the lifetimes of micronsized pores are about an order of magnitude longer suggesting that pores are stabilized by GM1. Internal membrane nanotubes caused by the GM1 asymmetry, obstruct and additionally slow down pore closure, effectively reducing pore edge tension and leading to leaky membranes. Our results point to the drastic effects this ganglioside can have on pore resealing in biotechnology applications based on poration as well as on membrane repair processes.
Collapse
Affiliation(s)
- Mina Aleksanyan
- Max Planck Institute of Colloids and Interfaces, Science Park Golm, 14476 Potsdam, Germany; Institute for Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Rafael B Lira
- Max Planck Institute of Colloids and Interfaces, Science Park Golm, 14476 Potsdam, Germany
| | - Jan Steinkühler
- Max Planck Institute of Colloids and Interfaces, Science Park Golm, 14476 Potsdam, Germany
| | - Rumiana Dimova
- Max Planck Institute of Colloids and Interfaces, Science Park Golm, 14476 Potsdam, Germany.
| |
Collapse
|
50
|
Blumenreich S, Nehushtan T, Barav OB, Saville JT, Dingjan T, Hardy J, Fuller M, Futerman AH. Elevation of gangliosides in four brain regions from Parkinson's disease patients with a GBA mutation. NPJ Parkinsons Dis 2022; 8:99. [PMID: 35933559 PMCID: PMC9357011 DOI: 10.1038/s41531-022-00363-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 07/11/2022] [Indexed: 11/25/2022] Open
Abstract
A number of genetic risk factors have been identified over the past decade for Parkinson's Disease (PD), with variants in GBA prominent among them. GBA encodes the lysosomal enzyme that degrades the glycosphingolipid, glucosylceramide (GlcCer), with the activity of this enzyme defective in Gaucher disease. Based on the ill-defined relationship between glycosphingolipid metabolism and PD, we now analyze levels of various lipids by liquid chromatography/electrospray ionization-tandem mass spectrometry in four brain regions from age- and sex-matched patient samples, including idiopathic PD, PD patients with a GBA mutation and compare both to control brains (n = 21 for each group) obtained from individuals who died from a cause unrelated to PD. Of all the glycerolipids, sterols, and (glyco)sphingolipids (251 lipids in total), the only lipid class which showed significant differences were the gangliosides (sialic acid-containing complex glycosphingolipids), which were elevated in 3 of the 4 PD-GBA brain regions. There was no clear correlation between levels of individual gangliosides and the genetic variant in Gaucher disease [9 samples of severe (neuronopathic), 4 samples of mild (non-neuronopathic) GBA variants, and 8 samples with low pathogenicity variants which have a higher risk for development of PD]. Most brain regions, i.e. occipital cortex, cingulate gyrus, and striatum, did not show a statistically significant elevation of GlcCer in PD-GBA. Only one region, the middle temporal gyrus, showed a small, but significant elevation in GlcCer concentration in PD-GBA. We conclude that changes in ganglioside, but not in GlcCer levels, may contribute to the association between PD and GBA mutations.
Collapse
Affiliation(s)
- Shani Blumenreich
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Tamar Nehushtan
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Or B Barav
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Jennifer T Saville
- Genetics and Molecular Pathology, SA Pathology at Women's and Children's Hospital and Adelaide Medical School, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Tamir Dingjan
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - John Hardy
- Department of Neurodegenerative Disease, UCL Dementia Research Institute, University College London, London, WC1N 3BG, UK
| | - Maria Fuller
- Genetics and Molecular Pathology, SA Pathology at Women's and Children's Hospital and Adelaide Medical School, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Anthony H Futerman
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, 7610001, Israel.
- The Joseph Meyerhof Professor of Biochemistry at the Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|