1
|
Maresca V, Postiglione A, Siciliano A, Dentato M, Cianciullo P, Forte IM, Iannuzzi CA, Fedeli R, Loppi S, Sorbo S, Giordano A, Basile A. Biomonitoring of potentially toxic elements at two differentially anthropized areas of the "Land of Fires" (S Italy). THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 977:179399. [PMID: 40245818 DOI: 10.1016/j.scitotenv.2025.179399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 04/08/2025] [Accepted: 04/08/2025] [Indexed: 04/19/2025]
Abstract
In this study, contamination by potentially toxic elements (PTEs) was investigated in two areas of southern Italy with different levels of human impact, both near the "Land of Fires," known for illegal waste burning. The moss Scorpiurum circinatum was used for biomonitoring by placing moss bags at six sites: an un-urbanized estate in the forest of Palazzo Reale Carditello (CF) and an industrially polluted area on the outskirts of Giugliano in Campania (GC). Mount Faito (MF) served as a control site, free from pollution sources. Moss bags were exposed for 21, 42, and 63 days, and samples were analyzed for PTEs (As, Cd, Cr, Cu, Hg, Pb, Sb), ultrastructural damage, oxidative stress, and antioxidant response. At the control site, bioaccumulation and oxidative stress were negligible, and moss ultrastructure remained unchanged. However, moss exposed near the "Land of Fires" accumulated significant PTEs. After just 21 days, As, Cu, and Hg levels reached 2.2 mg/kg, 17 mg/kg, and 0.06 mg/kg respectively, triggering oxidative stress, an antioxidant response, and noticeable ultrastructural damage. Interestingly, Scorpiurum circinatum exhibited similar negative biological effects at both contaminated sites, despite their differing environmental conditions. This suggests that toxic fumes from illegal waste incineration are spreading beyond anthropized areas. The findings confirm the moss's effectiveness as a bioindicator and highlight the severe health risks posed by PTEs exposure, emphasizing the urgent need for intervention to mitigate this environmental and public health crisis.
Collapse
Affiliation(s)
- Viviana Maresca
- Department of Life Science, Health, and Health Professions, Link Campus University, Rome, Italy.
| | | | | | - Martina Dentato
- Department of Biology, University of Naples "Federico II", Naples, Italy,.
| | | | - Iris Maria Forte
- Department of Breast and Thoracic Oncology, Istituto Nazionale Tumori, IRCCS, Fondazione G. Pascale, Naples, Italy
| | - Carmelina Antonella Iannuzzi
- Department of Breast and Thoracic Oncology, Istituto Nazionale Tumori, IRCCS, Fondazione G. Pascale, Naples, Italy.
| | | | - Stefano Loppi
- Department of Life Sciences, University of Siena, Italy.
| | - Sergio Sorbo
- CeSMA, section of Microscopy, University of Naples Federico II, Naples, Italy.
| | - Antonio Giordano
- Department of Biology, Sbarro Institute for Cancer Research and Molecular Medicine and Center for Biotechnology, Temple University, Philadelphia, Pennsylvania, PA 19122 USA; Department of Medical Biotechnologies, University of Siena, Siena, Italy.
| | - Adriana Basile
- Department of Biology, University of Naples "Federico II", Naples, Italy,.
| |
Collapse
|
2
|
Zhu Y, Lin D, Li Q, An M, Lv J. Metabolomic Analysis of the Responses of Bryophyte Tortella tortuosa (Hedw.) Limpr. to Cadmium (Cd) Stress. Int J Mol Sci 2025; 26:2856. [PMID: 40243446 PMCID: PMC11989171 DOI: 10.3390/ijms26072856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 03/14/2025] [Accepted: 03/18/2025] [Indexed: 04/18/2025] Open
Abstract
In recent years, there have been many studies on the response of plants to heavy metal stress, but the metabolic changes in bryophytes, pioneer plants quickly responding to environmental changes, under exogenous cadmium (Cd) stress have yet to be explored. In this indoor experiment, the responses in the metabolome of bryophyte Tortella tortuosa (Hedw.) Limpr. to different Cd exposure levels (0 (CK), 5 (T1), and 10 (T2) mg·L-1) were analyzed. The results showed that the number of differentially accumulated metabolites (DAMs) secreted by T. tortuosa increased with the increase in the Cd concentration, and the biosynthesis of cofactors, D-Amino acid metabolism, Arginine biosynthesis, ATP-binding cassette transporters (ABC transporters), and biosynthesis of alkaloids derived from shikimate pathway were the main pathways enriched by DAMs. The relative abundances of malic acid, N-Formylkynurenine, L-Glutamine, L-Histidine, LL-2,6-Diaminopimelic acid, and fusaric acid in the T2 treatment increased by 16.06%, 62.51%, 14.51%, 11.92%, 21.37%, and 35.79%, respectively (p < 0.05), compared with those of the CK, and the correlation analysis results showed that the above DAMs were closely related to the changes in plant antioxidant enzyme activity and Cd concentration. These results indicate that the secretion of amino acid (N-Formylkynurenine, L-Histidine) and organic acids (isocitric acid, LL-2,6-Diaminopimelic acid, malic acid) through the metabolic pathways, including biosynthesis of amino acids, biosynthesis of cofactors, glyoxylate and dicarboxylate metabolism, and ABC transporters, is the metabolic mechanism of T. tortuosa to resist exogenous Cd stress. This study will provide a reference for the monitoring and remediation of heavy metal pollution.
Collapse
Affiliation(s)
| | | | | | - Mengjie An
- Key Laboratory of Biological Resources and Genetic Engineering of Xinjiang, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China; (Y.Z.)
| | - Jie Lv
- Key Laboratory of Biological Resources and Genetic Engineering of Xinjiang, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China; (Y.Z.)
| |
Collapse
|
3
|
Zhang R, Huang F, Ju Z, Mu B, Chen P. Evaluation of the buffer-blocking capacity of acrocarpous moss Campylopus schmidii as candidate for copper and cadmium migration. ENVIRONMENTAL RESEARCH 2025; 267:120643. [PMID: 39701349 DOI: 10.1016/j.envres.2024.120643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 12/12/2024] [Accepted: 12/13/2024] [Indexed: 12/21/2024]
Abstract
This study evaluates the ability of Campylopus schmidii to inhibit the horizontal migration of copper and cadmium under simulated acid rain conditions. Experiments at varying pH levels (3.6, 4.7, and 5.6) revealed significant reductions in copper and cadmium migration rates, especially at pH 3.6, where concentrations dropped to 3.68% and 30.98% of those in exposed soil after 90 days. No leachate residue was collected from moss-covered groups, indicating effective soil and water loss control. Transcriptome analysis identified numerous differentially expressed genes under cadmium stress, highlighting enriched pathways related to cell structure, signaling, and metabolism, demonstrating Campylopus schmidii 's complex molecular mechanisms for heavy metal stress adaptation. These findings underscore the potential of Campylopus schmidii for environmental restoration and pollution control in mining areas.
Collapse
Affiliation(s)
- Rong Zhang
- Graduate Affairs Department of North Sichuan Medical College, Nanchong, Sichuan, 637000, China
| | - Feiyun Huang
- Key Laboratory of Bio-Resources and Eco-Environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, China
| | - Zhuang Ju
- Joint Key Lab of Sichuan & Chongqing, Bioresource Res & Utilizat, Chongqing, 401147, China
| | - Bo Mu
- School of Basic Medicine and Forensic Medicine, North Sichuan Medical College, Nanchong, Sichuan, 637000, China
| | - Peng Chen
- MOE Key Laboratory of Deep Earth Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu, Sichuan, 610065, China.
| |
Collapse
|
4
|
Wang X, Huang JH, Meng B, Mao K, Zheng M, Tan A, Yang G, Feng X. LmGSTF3 Overexpression Enhances Cadmium Tolerance in Lemna minor. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:2711-2721. [PMID: 39723912 DOI: 10.1021/acs.est.4c08749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
Glutathione S-transferase (GST) has been established to play an important role in regulating the responses of plants to stress, although its function and mechanisms of action in the cadmium (Cd)-tolerant Lemna minor remain unclear. In this study, we sought to identify a Cd-responsive GST gene from Lemna minor for functional analysis and mechanistic characterization. We accordingly identified a member of the GST gene family, LmGSTF3, which plays a positive role in adaptation of Lemna minor to Cd. Having successfully obtained overexpressing (OE) strains via genetic transformation, we established that these strains were characterized by elevated Cd tolerance compared with the wild-type strain, as evidenced by significant increases in growth rate, chlorophyll content, antioxidant enzyme activities, and Cd removal rate. At the transcriptome level, the OE strains were found to have a stronger regulatory ability in response to Cd, particularly with respect to photoprotection, antioxidant defense, and glycolytic metabolism, which may be key factors contributing to the Cd tolerance of Lemna minor. Our findings provide a basis for further elucidating the biochemical and molecular mechanisms underlying the Cd tolerance conferred by GST genes in Lemna minor and will potentially contribute to the utilization of Lemna minor in remediating aquatic pollution.
Collapse
Affiliation(s)
- Xin Wang
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang 550025, Guizhou, China
| | - Jen-How Huang
- Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, Guizhou, China
| | - Bo Meng
- Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, Guizhou, China
| | - Kang Mao
- Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, Guizhou, China
| | - Mengmeng Zheng
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang 550025, Guizhou, China
| | - Aijuan Tan
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang 550025, Guizhou, China
| | - Guili Yang
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang 550025, Guizhou, China
- Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, Guizhou, China
| | - Xinbin Feng
- Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, Guizhou, China
| |
Collapse
|
5
|
Chmur M, Bajguz A. Comparative Efficacy of Melatonin and Brassinolide in Mitigating the Adverse Effects of Cadmium on Wolffia arrhiza. Int J Mol Sci 2025; 26:692. [PMID: 39859406 PMCID: PMC11765764 DOI: 10.3390/ijms26020692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 12/30/2024] [Accepted: 01/14/2025] [Indexed: 01/27/2025] Open
Abstract
Melatonin (MT) and brassinolide (BL) are phytohormones that regulate various physiological processes in plants. This study investigates their effects on Wolffia arrhiza when exposed to cadmium (Cd). Plant hormones were quantified using liquid chromatography-mass spectrometry, while photosynthetic pigments and phytochelatins (PCs) were analyzed through high-performance liquid chromatography. Protein, monosaccharide levels, and antioxidant activities were also spectrophotometrically measured. The findings reveal that MT and BL treatment decreased Cd accumulation in W. arrhiza compared to plants only exposed to Cd. MT was particularly effective in reversing Cd-induced growth inhibition and reducing stress markers more significantly than BL. It also enhanced antioxidant activity and maintained higher levels of photosynthetic pigments, proteins, and sugars. Although BL was less effective in these aspects, it promoted greater synthesis of glutathione and PCs in Cd-exposed duckweed. Overall, both MT and BL alleviate the negative impact of Cd on W. arrhiza, confirming their crucial role in supporting plant health under metal stress conditions.
Collapse
Affiliation(s)
| | - Andrzej Bajguz
- Department of Biology and Plant Ecology, Faculty of Biology, University of Bialystok, Ciolkowskiego 1J, 15-245 Bialystok, Poland;
| |
Collapse
|
6
|
Zhang R, Chen P, Ju Z, Tang H. Phytotoxic responses of acrocarpous moss Campylopus schmidii as bioindicators in copper and cadmium contaminated environments: A comprehensive assessment. CHEMOSPHERE 2024; 364:143082. [PMID: 39142395 DOI: 10.1016/j.chemosphere.2024.143082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/30/2024] [Accepted: 08/11/2024] [Indexed: 08/16/2024]
Abstract
Mosses play a vital role in environmental research as reliable biomonitoring tools. This study aims to understand the accumulation and distribution patterns of Cu and Cd in the acrocarpous moss [Campylopus schmidii (Müll. Hal.) A. Jaeger] (C.schmidii). In controlled in vitro experiments, C.schmidii cultures were exposed to varying concentrations of copper (Cu) and cadmium (Cd) stress (0, 10, 25, 50 μmol/L) in aquatic media. The study systematically evaluated the moss's response, including observing appearance features, oxidative traits, and accumulation characteristics. Scanning electron microscopy with energy-dispersive X-ray spectroscopy analyses were employed. They aimed to characterize and determine the distribution of metal particles in different parts of the mosses under high concentration treatments (50 μmol/L Cd, 50 μmol/L Cu, 50 μmol/L Cu and Cd). Results indicated that C.schmidii exhibited greater tolerance to Cu compared to Cd, as evidenced by significantly higher soluble protein content and lipid peroxidation with increasing concentrations. However, Cd stress induced severe damage, including widespread chlorosis, reduced chlorophyll content, and surface fragmentation. Both Cu and Cd were found to stimulate antioxidant levels by increasing the activity of hydrogen peroxide and peroxidase, thus reducing the accumulation of free radicals in C.schmidii. Additionally, the results revealed differential metal distribution. Higher Cu (2.23%) and lower Cd (0.54%) accumulation were observed at the bottom of gametophores, with Cd content 180.46% higher than Cu at the top. This study provides valuable insights into the potential application of acrocarpous mosses for biomonitoring and phytoremediation. It suggests specific strategies for metal deposition and absorption, such as utilizing upper, younger parts for Cd absorption and lower parts for Cu remediation in soil.
Collapse
Affiliation(s)
- Rong Zhang
- Department of North Sichuan Medical College, Nanchong, Sichuan, 637000, PR China.
| | - Peng Chen
- MOE Key Laboratory of Deep Earth Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu, Sichuan, 610065, PR China.
| | - Zhuang Ju
- Key Laboratory for Research and Utilization of Characteristic Biological Resources, Co-built by Sichuan and Chongqing, Chongqing Jinfo Mountain Advanced Research Institute, Chongqing, 401147, PR China.
| | - Hao Tang
- Ecological Protection and Development Research Institute of Aba Tibetan and Qiang Autonomous Prefecture, Aba, Sichuan, 623000, PR China.
| |
Collapse
|
7
|
Taeprayoon P, Pongphontong K, Somtrakoon K, Phusantisampan T, Meeinkuirt W. Synergistic effects of zinc and cadmium on phytoremediation potential of Christmas moss (Vesicularia montagnei). Sci Rep 2024; 14:17754. [PMID: 39085365 PMCID: PMC11291674 DOI: 10.1038/s41598-024-68849-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 07/29/2024] [Indexed: 08/02/2024] Open
Abstract
The hyperaccumulation potential of zinc (Zn) and cadmium (Cd) and their synergistic effects were examined in relation to Christmas moss (Vesicularia montagnei (Bél) Broth., Hypnaceae), an aquatic and terrestrial moss, dosed with Cd (Cd1 and Cd2), Zn (Zn1 and Zn2) and combined Zn and Cd (Cd1Zn1 and Cd2Zn2). Zinc promoted plant growth and development, particularly in the highest Zn and combined Zn/Cd treatments (Zn2 and Cd2Zn2). The Zn treatment resulted in substantial moss chlorophyll content and highest percentage relative growth rate in biomass value (0.23 mg L-1 and 106.8%, respectively); however, the Cd2Zn2 treatment achieved maximal production of chlorophyll a and total chlorophyll (0.29 and 0.51 mg L-1, respectively) due to synergistic effects. These findings suggest that Christmas moss is a highly metal-tolerant and adaptable bryophyte species. Zinc was essential for reducing the detrimental effects of Cd while simultaneously promoting moss growth and biomass development. Furthermore, Christmas moss exhibited hyperaccumulation potential for Cd and Zn in the Cd2Zn2 and Zn alone treatments, as evidenced by highest Cd and Zn values in gametophores (1002 and 18,596 mg per colony volume, respectively). Using energy dispersive X-ray fluorescence (EDXRF) spectrometry, atomic percentages of element concentrations in moss gametophores in the Zn2, Cd2 and combined Zn/Cd treatments were generally in the order: K > Ca > P > Zn > Cd. When comparing the atomic percentages of Zn and Cd in gametophores, it is likely that the higher atomic percentage of Zn was because this element is essential for plant growth and development.
Collapse
Affiliation(s)
- Puntaree Taeprayoon
- Agricultural and Environmental Utilization Research Unit, Nakhonsawan Campus, Mahidol University, Nakhonsawan, 60130, Thailand
| | - Kanwara Pongphontong
- Department of Biology, Faculty of Science, Mahasarakham University, Kantharawichai, 44150, Maha Sarakham, Thailand
| | - Khanitta Somtrakoon
- Department of Biology, Faculty of Science, Mahasarakham University, Kantharawichai, 44150, Maha Sarakham, Thailand
| | - Theerawut Phusantisampan
- Department of Biotechnology, Faculty of Applied Science, King Mongkut's University of Technology North Bangkok, Bangkok, 10800, Thailand
| | - Weeradej Meeinkuirt
- Water and Soil Environmental Research Unit, Nakhonsawan Campus, Mahidol University, Nakhonsawan, 60130, Thailand.
| |
Collapse
|
8
|
Vitelli V, Giamborino A, Bertolini A, Saba A, Andreucci A. Cadmium Stress Signaling Pathways in Plants: Molecular Responses and Mechanisms. Curr Issues Mol Biol 2024; 46:6052-6068. [PMID: 38921032 PMCID: PMC11202648 DOI: 10.3390/cimb46060361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/06/2024] [Accepted: 06/10/2024] [Indexed: 06/27/2024] Open
Abstract
Heavy metal (HM) pollution, specifically cadmium (Cd) contamination, is a worldwide concern for its consequences for plant health and ecosystem stability. This review sheds light on the intricate mechanisms underlying Cd toxicity in plants and the various strategies employed by these organisms to mitigate its adverse effects. From molecular responses to physiological adaptations, plants have evolved sophisticated defense mechanisms to counteract Cd stress. We highlighted the role of phytochelatins (PCn) in plant detoxification, which chelate and sequester Cd ions to prevent their accumulation and minimize toxicity. Additionally, we explored the involvement of glutathione (GSH) in mitigating oxidative damage caused by Cd exposure and discussed the regulatory mechanisms governing GSH biosynthesis. We highlighted the role of transporter proteins, such as ATP-binding cassette transporters (ABCs) and heavy metal ATPases (HMAs), in mediating the uptake, sequestration, and detoxification of Cd in plants. Overall, this work offered valuable insights into the physiological, molecular, and biochemical mechanisms underlying plant responses to Cd stress, providing a basis for strategies to alleviate the unfavorable effects of HM pollution on plant health and ecosystem resilience.
Collapse
Affiliation(s)
- Valentina Vitelli
- Department of Biology, University of Pisa, 56126 Pisa, Italy;
- Department of Surgical, Medical and Molecular Pathology and Critical Care Area, University of Pisa, 56126 Pisa, Italy; (A.G.); (A.B.); (A.S.)
| | - Agnese Giamborino
- Department of Surgical, Medical and Molecular Pathology and Critical Care Area, University of Pisa, 56126 Pisa, Italy; (A.G.); (A.B.); (A.S.)
| | - Andrea Bertolini
- Department of Surgical, Medical and Molecular Pathology and Critical Care Area, University of Pisa, 56126 Pisa, Italy; (A.G.); (A.B.); (A.S.)
| | - Alessandro Saba
- Department of Surgical, Medical and Molecular Pathology and Critical Care Area, University of Pisa, 56126 Pisa, Italy; (A.G.); (A.B.); (A.S.)
| | | |
Collapse
|
9
|
Ceccanti C, Davini A, Lo Piccolo E, Lauria G, Rossi V, Ruffini Castiglione M, Spanò C, Bottega S, Guidi L, Landi M. Polyethylene microplastics alter root functionality and affect strawberry plant physiology and fruit quality traits. JOURNAL OF HAZARDOUS MATERIALS 2024; 470:134164. [PMID: 38583200 DOI: 10.1016/j.jhazmat.2024.134164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/24/2024] [Accepted: 03/27/2024] [Indexed: 04/09/2024]
Abstract
Strawberry, a globally popular crop whose fruit are known for their taste and health benefits, were used to evaluate the effects of polyethylene microplastics (PE-MPs) on plant physiology and fruit quality. Plants were grown in 2-L pots with natural soil mixed with PE-MPs at two concentrations (0.2% and 0.02%; w/w) and sizes (⌀ 35 and 125 µm). Plant physiological responses, root histochemical and anatomical analyses as well as fruit biometric and quality features were conducted. Plants subjected to ⌀ 35 µm/0.2% PE-MPs exhibited the most severe effects in terms of CO2 assimilation due to stomatal limitations, along with the highest level of oxidative stress in roots. Though no differences were observed in plant biomass, the impact on fruit quality traits was severe in ⌀ 35 µm/0.2% MPs treatment resulting in a drop in fruit weight (-42%), soluble solid (-10%) and anthocyanin contents (-25%). The smallest sized PE-MPs, adsorbed on the root surface, impaired plant water status by damaging the radical apparatus, which finally resulted in alteration of plant physiology and fruit quality. Further research is required to determine if these alterations also occur with other MPs and to understand more deeply the MPs influence on fruit physio-chemistry.
Collapse
Affiliation(s)
- C Ceccanti
- Department of Agriculture, Food and Environment, University of Pisa, via del Borghetto, 80, 56124 Pisa, Italy
| | - A Davini
- Department of Agriculture, Food and Environment, University of Pisa, via del Borghetto, 80, 56124 Pisa, Italy
| | - E Lo Piccolo
- Department of Agriculture, Food, Environment and Forestry, University of Florence, viale delle Idee 30, 50019 Sesto Fiorentino, Firenze, Italy.
| | - G Lauria
- Department of Agriculture, Food and Environment, University of Pisa, via del Borghetto, 80, 56124 Pisa, Italy
| | - V Rossi
- Department of Agriculture, Food and Environment, University of Pisa, via del Borghetto, 80, 56124 Pisa, Italy
| | - M Ruffini Castiglione
- Department of Biology, University of Pisa, via Luca Ghini, 13, 56126 Pisa, Italy; CIRSEC, Centre for Climate Change Impact, University of Pisa, Pisa, Italy
| | - C Spanò
- Department of Biology, University of Pisa, via Luca Ghini, 13, 56126 Pisa, Italy; CIRSEC, Centre for Climate Change Impact, University of Pisa, Pisa, Italy
| | - S Bottega
- Department of Biology, University of Pisa, via Luca Ghini, 13, 56126 Pisa, Italy
| | - L Guidi
- Department of Agriculture, Food and Environment, University of Pisa, via del Borghetto, 80, 56124 Pisa, Italy; CIRSEC, Centre for Climate Change Impact, University of Pisa, Pisa, Italy
| | - M Landi
- Department of Agriculture, Food and Environment, University of Pisa, via del Borghetto, 80, 56124 Pisa, Italy; CIRSEC, Centre for Climate Change Impact, University of Pisa, Pisa, Italy.
| |
Collapse
|
10
|
Wang J, Liu X, Chen Y, Zhu FL, Sheng J, Diao Y. Physiological and transcriptomic analyses reveal the cadmium tolerance mechanism of Miscanthus lutarioriparia. PLoS One 2024; 19:e0302940. [PMID: 38748679 PMCID: PMC11095687 DOI: 10.1371/journal.pone.0302940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 04/15/2024] [Indexed: 05/19/2024] Open
Abstract
Miscanthus lutarioriparia is a promising energy crop that is used for abandoned mine soil phytoremediation because of its high biomass yield and strong tolerance to heavy metals. However, the biological mechanism of heavy metal resistance is limited, especially for applications in the soil restoration of mining areas. Here, through the investigation of soil cadmium(Cd) in different mining areas and soil potted under Cd stress, the adsorption capacity of Miscanthus lutarioriparia was analyzed. The physiological and transcriptional effects of Cd stress on M. lutarioriparia leaves and roots under hydroponic conditions were analyzed. The results showed that M. lutarioriparia could reduce the Cd content in mining soil by 29.82%. Moreover, different Cd varieties have different Cd adsorption capacities in soils with higher Cd concentration. The highest cadmium concentrations in the aboveground and belowground parts of the plants were 185.65 mg/kg and 186.8 mg/kg, respectively. The total chlorophyll content, superoxide dismutase and catalase activities all showed a trend of increasing first and then decreasing. In total, 24,372 differentially expressed genes were obtained, including 7735 unique to leaves, 7725 unique to roots, and 8912 unique to leaves and roots, which showed differences in gene expression between leaves and roots. These genes were predominantly involved in plant hormone signal transduction, glutathione metabolism, flavonoid biosynthesis, ABC transporters, photosynthesis and the metal ion transport pathway. In addition, the number of upregulated genes was greater than the number of downregulated genes at different stress intervals, which indicated that M. lutarioriparia adapted to Cd stress mainly through positive regulation. These results lay a solid foundation for breeding excellent Cd resistant M. lutarioriparia and other plants. The results also have an important theoretical significance for further understanding the detoxification mechanism of Cd stress and the remediation of heavy metal pollution in mining soil.
Collapse
Affiliation(s)
- Jia Wang
- Joint National-Local Engineering Research Centre for Safe and Precise Coal Mining, Anhui University of Science and Technology, Huainan, 232001, P. R. China
- Key Laboratory of Industrial Dust Prevention and Control & Occupational Safety and Health of the Ministry of Education, Anhui University of Science and Technology, Huainan, 232001, P. R. China
- State Key Laboratory of Hybrid Rice, Hubei Lotus Engineering Center, College of Life Sciences, Wuhan University, Wuhan, 430023, P. R. China
| | - Xinyu Liu
- Key Laboratory of Industrial Dust Prevention and Control & Occupational Safety and Health of the Ministry of Education, Anhui University of Science and Technology, Huainan, 232001, P. R. China
| | - Yiran Chen
- Key Laboratory of Industrial Dust Prevention and Control & Occupational Safety and Health of the Ministry of Education, Anhui University of Science and Technology, Huainan, 232001, P. R. China
| | - Feng lin Zhu
- Joint National-Local Engineering Research Centre for Safe and Precise Coal Mining, Anhui University of Science and Technology, Huainan, 232001, P. R. China
- Key Laboratory of Industrial Dust Prevention and Control & Occupational Safety and Health of the Ministry of Education, Anhui University of Science and Technology, Huainan, 232001, P. R. China
| | - Jiajing Sheng
- State Key Laboratory of Hybrid Rice, Hubei Lotus Engineering Center, College of Life Sciences, Wuhan University, Wuhan, 430023, P. R. China
| | - Ying Diao
- School of life science and technology, Wuhan Polytechnic University, Wuhan, 430023, P. R. China
| |
Collapse
|
11
|
Dutta P, Prasad P, Indoilya Y, Gautam N, Kumar A, Sahu V, Kumari M, Singh S, Asthana AK, Bag SK, Chakrabarty D. Unveiling the molecular mechanisms of arsenic tolerance and resilience in the primitive bryophyte Marchantia polymorpha L. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 346:123506. [PMID: 38360385 DOI: 10.1016/j.envpol.2024.123506] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/19/2024] [Accepted: 02/03/2024] [Indexed: 02/17/2024]
Abstract
This study addresses the pressing issue of high arsenic (As) contaminations, which poses a severe threat to various life forms in our ecosystem. Despite this prevailing concern, all organisms have developed some techniques to mitigate the toxic effects of As. Certain plants, such as bryophytes, the earliest land plants, exhibit remarkable tolerance to wide range of harsh environmental conditions, due to their inherent competence. In this study, bryophytes collected from West Bengal, India, across varying contamination levels were investigated for their As tolerance capabilities. Assessment of As accumulation potential and antioxidant defense efficiency, including SOD, CAT, APX, GPX etc. revealed Marchantia polymorpha as the most tolerant species. It exhibited highest As accumulation, antioxidative proficiency, and minimal damage. Transcriptomic analysis of M. polymorpha exposed to 40 μM As(III) for 24 and 48 h identified several early responsive differentially expressing genes (DEGs) associated with As tolerance. These includes GSTs, GRXs, Hsp20s, SULTR1;2, ABCC2 etc., indicating a mechanism involving vacuolar sequestration. Interestingly, one As(III) efflux-transporter ACR3, an extrusion pump, known to combat As toxicity was found to be differentially expressed compared to control. The SEM-EDX analysis, further elucidated the operation of As extrusion mechanism, which contributes added As resilience in M. polymorpha. Yeast complementation assay using Δacr3 yeast cells, showed increased tolerance towards As(III), compared to the mutant cells, indicating As tolerant phenotype. Overall, these findings significantly enhance our understanding of As tolerance mechanisms in bryophytes. This can pave the way for the development of genetically engineered plants with heightened As tolerance and the creation of improved plant varieties.
Collapse
Affiliation(s)
- Prasanna Dutta
- Molecular Biology and Biotechnology Division, CSIR-National Botanical Research Institute, Lucknow 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Priti Prasad
- Molecular Biology and Biotechnology Division, CSIR-National Botanical Research Institute, Lucknow 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Yuvraj Indoilya
- Molecular Biology and Biotechnology Division, CSIR-National Botanical Research Institute, Lucknow 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Neelam Gautam
- Molecular Biology and Biotechnology Division, CSIR-National Botanical Research Institute, Lucknow 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Amit Kumar
- Molecular Biology and Biotechnology Division, CSIR-National Botanical Research Institute, Lucknow 226001, India
| | - Vinay Sahu
- Molecular Biology and Biotechnology Division, CSIR-National Botanical Research Institute, Lucknow 226001, India; Bryology Lab, PDSH Division, CSIR-National Botanical Research Institute, Lucknow 226001, India
| | - Monica Kumari
- Molecular Biology and Biotechnology Division, CSIR-National Botanical Research Institute, Lucknow 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Shivani Singh
- Molecular Biology and Biotechnology Division, CSIR-National Botanical Research Institute, Lucknow 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Ashish Kumar Asthana
- Bryology Lab, PDSH Division, CSIR-National Botanical Research Institute, Lucknow 226001, India
| | - Sumit Kumar Bag
- Molecular Biology and Biotechnology Division, CSIR-National Botanical Research Institute, Lucknow 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Debasis Chakrabarty
- Molecular Biology and Biotechnology Division, CSIR-National Botanical Research Institute, Lucknow 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
12
|
Yin F, Li J, Wang Y, Yang Z. Biodegradable chelating agents for enhancing phytoremediation: Mechanisms, market feasibility, and future studies. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 272:116113. [PMID: 38364761 DOI: 10.1016/j.ecoenv.2024.116113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 02/08/2024] [Accepted: 02/11/2024] [Indexed: 02/18/2024]
Abstract
Heavy metals in soil significantly threaten human health, and their remediation is essential. Among the various techniques used, phytoremediation is one of the safest, most innovative, and effective. In recent years, the use of biodegradable chelators to assist plants in improving their remediation efficiency has gained popularity. These biodegradable chelators aid in the transformation of metal ions or metalloids, thereby facilitating their mobilization and uptake by plants. Developed countries are increasingly adopting biodegradable chelators for phytoremediation, with a growing emphasis on green manufacturing and technological innovation in the chelating agent market. Therefore, it is crucial to gain a comprehensive understanding of the mechanisms and market prospects of biodegradable chelators for phytoremediation. This review focuses on elucidating the uptake, translocation, and detoxification mechanisms of chelators in plants. In this study, we focused on the effects of biodegradable chelators on the growth and environmental development of plants treated with phytoremediation agents. Finally, the potential risks associated with biodegradable chelator-assisted phytoremediation are presented in terms of their availability and application prospects in the market. This study provides a valuable reference for future research in this field.
Collapse
Affiliation(s)
- Fengwei Yin
- School of Life Sciences, Taizhou University, Taizhou 318000, People's Republic of China
| | - Jianbin Li
- Jiaojiang Branch of Taizhou Municipal Ecology and Environment Bureau, Taizhou 318000, People's Republic of China
| | - Yilu Wang
- School of Life Sciences, Taizhou University, Taizhou 318000, People's Republic of China; Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Zhongyi Yang
- School of Life Sciences, Taizhou University, Taizhou 318000, People's Republic of China.
| |
Collapse
|
13
|
Chau TP, Samdani MS, Fathima H A, Jhanani GK, Sathiyamoorthi E, Lee J. Metal accumulation and genetic adaptation of Oryza sativa to Cadmiun and Chromium heavy metal stress: A hydroponic and RAPD analyses. ENVIRONMENTAL RESEARCH 2024; 242:117793. [PMID: 38040176 DOI: 10.1016/j.envres.2023.117793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/20/2023] [Accepted: 11/24/2023] [Indexed: 12/03/2023]
Abstract
This research was performed to assess the influence of Cd and Cr metals on growth, pigments, antioxidant, and genomic stability of Oryza sativa indica and Oryza sativa japonica were investigated under hydroponic conditions. The results revealed that significant metal influence on test crop growth, pigment content, metal stress balancing antioxidant activity in a dose dependent manner. Since, while at elevated (500 ppm) concentration of Cd as well as Cr metals the pigment (total chlorophyll, chlorophyll a, b and carotenoids) level was reduced than control; however antioxidant activity (total antioxidant, H2O2, and NO) was considerably improved as protective mechanisms to combat the metal toxicity and support the plant growth. Furthermore, the test crops under typical hydroponic medium (loaded with Cd and Cr as 200, 300, 400, and 500 ppm) growth conditions, effectively absorb the metals from medium and accumulated in the root and least quantity was translocated to the shoot of this test crops. Furthermore, typical RAPD analysis with 10 universal primers demonstrated that the genomic DNA of the test crops was adaptable to develop metal resistance and ensure crop growth under increased concentrations (500 ppm) of tested heavy metals. These findings suggest that these edible crops have the ability to accumulate Cd along with Cr metals, and additionally that their genetic systems have the ability to adapt to metal-stressed environments.
Collapse
Affiliation(s)
- Tan Phat Chau
- Faculty of Applied Technology, School of Technology, Van Lang University, Ho Chi Minh City, Vietnam.
| | | | - Aafreen Fathima H
- Center for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, India
| | - G K Jhanani
- University Centre for Research & Development, Chandigarh University, Mohali, 140103, India.
| | - Ezhaveni Sathiyamoorthi
- School of Chemical Engineering, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, Republic of Korea.
| | - Jintae Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, Republic of Korea
| |
Collapse
|
14
|
He CT, Wang XS, Hu XX, Yuan J, Zhang QH, Tan XT, Wang YF, Tan X, Yang ZY. Phytochelatin-Mediated Cultivar-Dependent Cd Accumulations of Lactuca sativa and Implication for Cd Pollution-Safe Cultivars Screening. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:715-725. [PMID: 38123485 DOI: 10.1021/acs.jafc.3c05476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Cd pollution-safe cultivar (Cd-PSC) is a feasible strategy to minimize Cd contamination in leafy vegetables. The shoot Cd concentrations of 23 Lactuca sativa cultivars under Cd stress ranged from 0.124 to 2.155 mg·kg-1 with a maximum cultivar difference of 8 folds. Typical Cd-PSC C16 (L) and high-Cd-accumulating cultivar C13 (H) were screened to investigate the mechanisms of Cd accumulations in L. sativa through determining Cd concentrations, Cd subcellular distributions, phytochelatin profiles, and phytochelatin biosynthesis-related genes' expressions. Higher Cd distribution in a heat stable fraction in C13 (H) indicated that the high Cd accumulation trait of C13 (H) mainly depended on the Cd-phytochelatin complexes. Root phytochelatin concentrations were significantly elevated in C13 (H) (5.83 folds) than in C16 (L) (2.69 folds) (p < 0.05) under Cd stress. Significantly downregulated expressions of glutathione S-transferase rather than the regulation of phytochelatin synthesis genes in the root of C13 (H) might be responsible for sufficient glutathione supply for phytochelatins synthesis. These findings suggested that phytochelatin elevation in C13 (H) would favor the Cd root to shoot transportation, which provides new insights into the phytochelatin-related cultivar-dependent Cd accumulating characteristic in L. sativa.
Collapse
Affiliation(s)
- Chun-Tao He
- School of Agriculture, State Key Laboratory for Biocontrol, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China
- School of Life Science, Sun Yat-sen University, Xingang Xi Road 135, Guangzhou 510275, China
| | - Xue-Song Wang
- Chinese Academy of Inspection and Quarantine, Greater Bay Area, Zhongshan 528437, China
| | - Xia-Xin Hu
- School of Agriculture, State Key Laboratory for Biocontrol, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China
| | - Ju Yuan
- School of Agriculture, State Key Laboratory for Biocontrol, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China
| | - Qian-Hui Zhang
- School of Agriculture, State Key Laboratory for Biocontrol, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China
| | - Xuan-Tong Tan
- School of Agriculture, State Key Laboratory for Biocontrol, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China
| | - Yun-Fan Wang
- Chinese Academy of Inspection and Quarantine, Greater Bay Area, Zhongshan 528437, China
| | - Xiao Tan
- School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, China
| | - Zhong-Yi Yang
- School of Life Science, Sun Yat-sen University, Xingang Xi Road 135, Guangzhou 510275, China
| |
Collapse
|
15
|
Bačkor M, Goga M, Singh P, Tuptová V. Mechanisms of Copper Toxicity and Tolerance in the Aquatic Moss Taxiphyllum barbieri. PLANTS (BASEL, SWITZERLAND) 2023; 12:3607. [PMID: 37896070 PMCID: PMC10609954 DOI: 10.3390/plants12203607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/25/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023]
Abstract
Aquatic habitats are very frequently polluted with different kinds of xenobiotics, including heavy metals. For biomonitoring studies of aquatic pollution, algae are frequently used, as they do not contain protective cuticle on the surface of their thalli and can accumulate pollutants over the whole surface of thalli. However, this is a feature of most cryptogams. For this reason, we assessed the sensitivity of the aquatic moss Taxiphyllum barbieri (Java moss) to copper excess in a short-term study. Moss T. barbieri belongs to the common aquatic plants originating from Southeast Asia. To test the sensitivity (or tolerance) of the moss to excess Cu, selected concentrations (50, 250 and 500 µM) were employed in our 24 h studies. Total and intracellular Cu accumulation positively correlated with Cu availability in the water. This total and intracellular Cu accumulation was negatively correlated with decreased intracellular K content. Excess Cu negatively affected the composition of assimilation pigments and soluble proteins. Cu caused increased peroxidation of membrane lipids assessed using TBARS assay. Excess Cu decreased GSH to GSSG ratio and ascorbic acid content. We did not observe phytochelatin synthesis in this moss. The roles of selected amino acids, their intermediates and derivatives, as well as S-containing nucleosides and phenolic acids in Cu homeostasis and toxicity or tolerance were evaluated. We assume that this moss has potential for future employment in water quality evaluation.
Collapse
Affiliation(s)
- Martin Bačkor
- Department of Biochemistry and Biotechnology, Institute of Biotechnology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia
- Department of Botany, Institute of Biology and Ecology, Faculty of Science, Šafárik University, Mánesova 23, 041 67 Košice, Slovakia; (M.G.); (P.S.); (V.T.)
| | - Michal Goga
- Department of Botany, Institute of Biology and Ecology, Faculty of Science, Šafárik University, Mánesova 23, 041 67 Košice, Slovakia; (M.G.); (P.S.); (V.T.)
| | - Pragya Singh
- Department of Botany, Institute of Biology and Ecology, Faculty of Science, Šafárik University, Mánesova 23, 041 67 Košice, Slovakia; (M.G.); (P.S.); (V.T.)
| | - Viktória Tuptová
- Department of Botany, Institute of Biology and Ecology, Faculty of Science, Šafárik University, Mánesova 23, 041 67 Košice, Slovakia; (M.G.); (P.S.); (V.T.)
| |
Collapse
|
16
|
Wang H, Liu J, Huang J, Xiao Q, Hayward A, Li F, Gong Y, Liu Q, Ma M, Fu D, Xiao M. Mapping and Identifying Candidate Genes Enabling Cadmium Accumulation in Brassica napus Revealed by Combined BSA-Seq and RNA-Seq Analysis. Int J Mol Sci 2023; 24:10163. [PMID: 37373312 DOI: 10.3390/ijms241210163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/09/2023] [Accepted: 06/10/2023] [Indexed: 06/29/2023] Open
Abstract
Rapeseed has the ability to absorb cadmium in the roots and transfer it to aboveground organs, making it a potential species for remediating soil cadmium (Cd) pollution. However, the genetic and molecular mechanisms underlying this phenomenon in rapeseed are still unclear. In this study, a 'cadmium-enriched' parent, 'P1', with high cadmium transport and accumulation in the shoot (cadmium root: shoot transfer ratio of 153.75%), and a low-cadmium-accumulation parent, 'P2', (with a cadmium transfer ratio of 48.72%) were assessed for Cd concentration using inductively coupled plasma mass spectrometry (ICP-MS). An F2 genetic population was constructed by crossing 'P1' with 'P2' to map QTL intervals and underlying genes associated with cadmium enrichment. Fifty extremely cadmium-enriched F2 individuals and fifty extremely low-accumulation F2 individuals were selected based on cadmium content and cadmium transfer ratio and used for bulk segregant analysis (BSA) in combination with whole genome resequencing. This generated a total of 3,660,999 SNPs and 787,034 InDels between these two segregated phenotypic groups. Based on the delta SNP index (the difference in SNP frequency between the two bulked pools), nine candidate Quantitative trait loci (QTLs) from five chromosomes were identified, and four intervals were validated. RNA sequencing of 'P1' and 'P2' in response to cadmium was also performed and identified 3502 differentially expressed genes (DEGs) between 'P1' and 'P2' under Cd treatment. Finally, 32 candidate DEGs were identified within 9 significant mapping intervals, including genes encoding a glutathione S-transferase (GST), a molecular chaperone (DnaJ), and a phosphoglycerate kinase (PGK), among others. These genes are strong candidates for playing an active role in helping rapeseed cope with cadmium stress. Therefore, this study not only sheds new light on the molecular mechanisms of Cd accumulation in rapeseed but could also be useful for rapeseed breeding programs targeting this trait.
Collapse
Affiliation(s)
- Huadong Wang
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Agronomy College, Jiangxi Agricultural University, Nanchang 330045, China
| | - Jiajia Liu
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Agronomy College, Jiangxi Agricultural University, Nanchang 330045, China
| | - Juan Huang
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Agronomy College, Jiangxi Agricultural University, Nanchang 330045, China
| | - Qing Xiao
- Graduate School of Jiangxi Normal University, Jiangxi Normal University, Nanchang 330045, China
| | - Alice Hayward
- Centre for Horticultural Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane 4072, Australia
| | - Fuyan Li
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Agronomy College, Jiangxi Agricultural University, Nanchang 330045, China
| | - Yingying Gong
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Agronomy College, Jiangxi Agricultural University, Nanchang 330045, China
| | - Qian Liu
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Agronomy College, Jiangxi Agricultural University, Nanchang 330045, China
| | - Miao Ma
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Agronomy College, Jiangxi Agricultural University, Nanchang 330045, China
| | - Donghui Fu
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Agronomy College, Jiangxi Agricultural University, Nanchang 330045, China
| | - Meili Xiao
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Agronomy College, Jiangxi Agricultural University, Nanchang 330045, China
| |
Collapse
|
17
|
Wang W, Yang Y, Ma X, He Y, Ren Q, Huang Y, Wang J, Xue Y, Yang R, Guo Y, Sun J, Yang L, Sun Z. New Insight into the Function of Dopamine (DA) during Cd Stress in Duckweed ( Lemna turionifera 5511). PLANTS (BASEL, SWITZERLAND) 2023; 12:1996. [PMID: 37653913 PMCID: PMC10221877 DOI: 10.3390/plants12101996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 04/09/2023] [Accepted: 05/10/2023] [Indexed: 09/02/2023]
Abstract
Dopamine (DA), a kind of neurotransmitter in animals, has been proven to cause a positive influence on plants during abiotic stress. In the present study, the function of DA on plants under cadmium (Cd) stress was revealed. The yellowing of duckweed leaves under Cd stress could be alleviated by an exogenous DA (10/20/50/100/200 μM) supplement, and 50 μM was the optimal concentration to resist Cd stress by reducing root breakage, restoring photosynthesis and chlorophyll content. In addition, 24 h DA treatment increased Cd content by 1.3 times in duckweed under Cd stress through promoting the influx of Cd2+. Furthermore, the gene expression changes study showed that photosynthesis-related genes were up-regulated by DA addition under Cd stress. Additionally, the mechanisms of DA-induced Cd detoxification and accumulation were also investigated; some critical genes, such as vacuolar iron transporter 1 (VIT1), multidrug resistance-associated protein (MRP) and Rubisco, were significantly up-regulated with DA addition under Cd stress. An increase in intracellular Ca2+ content and a decrease in Ca2+ efflux induced by DA under Cd stress were observed, as well as synchrony with changes in the expression of cyclic nucleotide-gated ion channel 2 (CNGC2), predicting that, in plants, CNGC2 may be an upstream target for DA action and trigger the change of intracellular Ca2+ signal. Our results demonstrate that DA supplementation can improve Cd resistance by enhancing duckweed photosynthesis, changing intracellular Ca2+ signaling, and enhancing Cd detoxification and accumulation. Interestingly, we found that exposure to Cd reduced endogenous DA content, which is the result of a blocked shikimate acid pathway and decreased expression of the tyrosine aminotransferase (TAT) gene. The function of DA in Cd stress offers a new insight into the application and study of DA to Cd phytoremediation in aquatic systems.
Collapse
Affiliation(s)
- Wenqiao Wang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China; (W.W.); (Y.Y.); (X.M.); (Y.H.); (Q.R.); (Y.H.); (J.W.); (Y.X.); (R.Y.); (J.S.)
| | - Yunwen Yang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China; (W.W.); (Y.Y.); (X.M.); (Y.H.); (Q.R.); (Y.H.); (J.W.); (Y.X.); (R.Y.); (J.S.)
| | - Xu Ma
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China; (W.W.); (Y.Y.); (X.M.); (Y.H.); (Q.R.); (Y.H.); (J.W.); (Y.X.); (R.Y.); (J.S.)
| | - Yuman He
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China; (W.W.); (Y.Y.); (X.M.); (Y.H.); (Q.R.); (Y.H.); (J.W.); (Y.X.); (R.Y.); (J.S.)
| | - Qiuting Ren
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China; (W.W.); (Y.Y.); (X.M.); (Y.H.); (Q.R.); (Y.H.); (J.W.); (Y.X.); (R.Y.); (J.S.)
| | - Yandi Huang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China; (W.W.); (Y.Y.); (X.M.); (Y.H.); (Q.R.); (Y.H.); (J.W.); (Y.X.); (R.Y.); (J.S.)
| | - Jing Wang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China; (W.W.); (Y.Y.); (X.M.); (Y.H.); (Q.R.); (Y.H.); (J.W.); (Y.X.); (R.Y.); (J.S.)
| | - Ying Xue
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China; (W.W.); (Y.Y.); (X.M.); (Y.H.); (Q.R.); (Y.H.); (J.W.); (Y.X.); (R.Y.); (J.S.)
| | - Rui Yang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China; (W.W.); (Y.Y.); (X.M.); (Y.H.); (Q.R.); (Y.H.); (J.W.); (Y.X.); (R.Y.); (J.S.)
| | - Yuhan Guo
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai 2002141, China;
| | - Jinge Sun
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China; (W.W.); (Y.Y.); (X.M.); (Y.H.); (Q.R.); (Y.H.); (J.W.); (Y.X.); (R.Y.); (J.S.)
| | - Lin Yang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China; (W.W.); (Y.Y.); (X.M.); (Y.H.); (Q.R.); (Y.H.); (J.W.); (Y.X.); (R.Y.); (J.S.)
| | - Zhanpeng Sun
- Faculty of Education, Tianjin Normal University, Tianjin 300387, China
| |
Collapse
|
18
|
Cuypers A, Vanbuel I, Iven V, Kunnen K, Vandionant S, Huybrechts M, Hendrix S. Cadmium-induced oxidative stress responses and acclimation in plants require fine-tuning of redox biology at subcellular level. Free Radic Biol Med 2023; 199:81-96. [PMID: 36775109 DOI: 10.1016/j.freeradbiomed.2023.02.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 01/31/2023] [Accepted: 02/08/2023] [Indexed: 02/12/2023]
Abstract
Cadmium (Cd) is one of the most toxic compounds released into our environment and is harmful to human health, urging the need to remediate Cd-polluted soils. To this end, it is important to increase our insight into the molecular mechanisms underlying Cd stress responses in plants, ultimately leading to acclimation, and to develop novel strategies for economic validation of these soils. Albeit its non-redox-active nature, Cd causes a cellular oxidative challenge, which is a crucial determinant in the onset of diverse signalling cascades required for long-term acclimation and survival of Cd-exposed plants. Although it is well known that Cd affects reactive oxygen species (ROS) production and scavenging, the contribution of individual organelles to Cd-induced oxidative stress responses is less well studied. Here, we provide an overview of the current information on Cd-induced organellar responses with special attention to redox biology. We propose that an integration of organellar ROS signals with other signalling pathways is essential to finetune plant acclimation to Cd stress.
Collapse
Affiliation(s)
- Ann Cuypers
- Environmental Biology, Centre for Environmental Sciences, Hasselt University, B-3590, Diepenbeek, Belgium.
| | - Isabeau Vanbuel
- Environmental Biology, Centre for Environmental Sciences, Hasselt University, B-3590, Diepenbeek, Belgium
| | - Verena Iven
- Environmental Biology, Centre for Environmental Sciences, Hasselt University, B-3590, Diepenbeek, Belgium
| | - Kris Kunnen
- Environmental Biology, Centre for Environmental Sciences, Hasselt University, B-3590, Diepenbeek, Belgium
| | - Stéphanie Vandionant
- Environmental Biology, Centre for Environmental Sciences, Hasselt University, B-3590, Diepenbeek, Belgium
| | - Michiel Huybrechts
- Environmental Biology, Centre for Environmental Sciences, Hasselt University, B-3590, Diepenbeek, Belgium
| | - Sophie Hendrix
- Environmental Biology, Centre for Environmental Sciences, Hasselt University, B-3590, Diepenbeek, Belgium
| |
Collapse
|
19
|
Salbitani G, Maresca V, Cianciullo P, Bossa R, Carfagna S, Basile A. Non-Protein Thiol Compounds and Antioxidant Responses Involved in Bryophyte Heavy-Metal Tolerance. Int J Mol Sci 2023; 24:5302. [PMID: 36982378 PMCID: PMC10049163 DOI: 10.3390/ijms24065302] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/23/2023] [Accepted: 03/04/2023] [Indexed: 03/12/2023] Open
Abstract
Heavy-metal pollution represents a problem which has been widely discussed in recent years. The biological effects of heavy metals have been studied in both animals and plants, ranging from oxidative stress to genotoxicity. Plants, above all metal-tolerant species, have evolved a wide spectrum of strategies to counteract exposure to toxic metal concentrations. Among these strategies, the chelation and vacuolar sequestration of heavy metals are, after cell-wall immobilization, the first line of defence that prevent heavy metals from interacting with cell components. Furthermore, bryophytes activate a series of antioxidant non-enzymatic and enzymatic responses to counteract the effects of heavy metal in the cellular compartments. In this review, the role of non-protein thiol compounds and antioxidant molecules in bryophytes will be discussed.
Collapse
Affiliation(s)
| | | | | | | | | | - Adriana Basile
- Department of Biology, University of Naples Federico II, 80138 Naples, Italy
| |
Collapse
|
20
|
Chaudhuri S, Roy M. Global ambient air quality monitoring: Can mosses help? A systematic meta-analysis of literature about passive moss biomonitoring. ENVIRONMENT, DEVELOPMENT AND SUSTAINABILITY 2023:1-39. [PMID: 37363020 PMCID: PMC9970857 DOI: 10.1007/s10668-023-03043-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 02/14/2023] [Indexed: 06/28/2023]
Abstract
Surging incidents of air quality-related public health hazards, and environmental degradation, have prompted the global authorities to seek newer avenues of air quality monitoring, especially in developing economies, where the situation appears most alarming besides difficulties around 'adequate' deployment of air quality sensors. In the present narrative, we adopt a systematic review methodology (PRISMA, Preferred Reporting Items for Systematic reviews and Meta-Analyses) around recent global literature (2002-2022), around moss-based passive biomonitoring approaches which might offer the regulatory authorities a complementary means to fill 'gaps' in existing air quality records. Following the 4-phased search procedure under PRISMA, total of 123 documents were selected for review. A wealth of research demonstrates how passive biomonitoring, with strategic use of mosses, could become an invaluable regulatory (and research) tool to monitor atmospheric deposition patterns and help identifying the main drivers of air quality changes (e.g., anthropogenic and/or natural). Besides individual studies, we briefly reflect on the European Moss Survey, underway since 1990, which aptly showcases mosses as 'naturally occurring' sensors of ambient air quality for a slew of metals (heavy and trace) and persistent organic pollutants, and help assessing spatio-temporal changes therein. To that end, we urge the global research community to conduct targeted research around various pollutant uptake mechanisms by mosses (e.g., species-specific interactions, environmental conditions, land management practices). Of late, mosses have found various environmental applications as well, such as in epidemiological investigations, identification of pollutant sources and transport mechanisms, assessment of air quality in diverse and complex urban ecosystems, and even detecting short-term changes in ambient air quality (e.g., COVID-19 Lockdown), each being critical for the authorities to develop informed and strategic regulatory measures. To that end, we review current literature and highlight to the regulatory authorities how to extend moss-based observations, by integrating them with a wide range of ecological indicators to assess regional environmental vulnerability/risk due to degrading air quality. Overall, an underlying motive behind this narrative was to broaden the current regulatory outlook and purview, to bolster and diversify existing air quality monitoring initiatives, by coupling the moss-based outputs with the traditional, sensor-based datasets, and attain improved spatial representation. However, we also make a strong case of conducting more targeted research to fill in the 'gaps' in our current understanding of moss-based passive biomonitoring details, with increased case studies. Supplementary Information The online version contains supplementary material available at 10.1007/s10668-023-03043-0.
Collapse
Affiliation(s)
- Sriroop Chaudhuri
- Jindal School of Liberal Arts and Humanities; Center for Environment, Sustainability and Human Development (CESH), O.P. Jindal Global University, Sonipat, Haryana 131001 India
| | - Mimi Roy
- Jindal School of Liberal Arts and Humanities; Center for Environment, Sustainability and Human Development (CESH), O.P. Jindal Global University, Sonipat, Haryana 131001 India
| |
Collapse
|
21
|
Seregin IV, Kozhevnikova AD. Phytochelatins: Sulfur-Containing Metal(loid)-Chelating Ligands in Plants. Int J Mol Sci 2023; 24:2430. [PMID: 36768751 PMCID: PMC9917255 DOI: 10.3390/ijms24032430] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/20/2023] [Accepted: 01/23/2023] [Indexed: 01/28/2023] Open
Abstract
Phytochelatins (PCs) are small cysteine-rich peptides capable of binding metal(loid)s via SH-groups. Although the biosynthesis of PCs can be induced in vivo by various metal(loid)s, PCs are mainly involved in the detoxification of cadmium and arsenic (III), as well as mercury, zinc, lead, and copper ions, which have high affinities for S-containing ligands. The present review provides a comprehensive account of the recent data on PC biosynthesis, structure, and role in metal(loid) transport and sequestration in the vacuoles of plant cells. A comparative analysis of PC accumulation in hyperaccumulator plants, which accumulate metal(loid)s in their shoots, and in the excluders, which accumulate metal(loid)s in their roots, investigates the question of whether the endogenous PC concentration determines a plant's tolerance to metal(loid)s. Summarizing the available data, it can be concluded that PCs are not involved in metal(loid) hyperaccumulation machinery, though they play a key role in metal(loid) homeostasis. Unraveling the physiological role of metal(loid)-binding ligands is a fundamental problem of modern molecular biology, plant physiology, ionomics, and toxicology, and is important for the development of technologies used in phytoremediation, biofortification, and phytomining.
Collapse
Affiliation(s)
- Ilya V. Seregin
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya St., 35, 127276 Moscow, Russia
| | | |
Collapse
|
22
|
Chmur M, Bajguz A. Melatonin Involved in Protective Effects against Cadmium Stress in Wolffia arrhiza. Int J Mol Sci 2023; 24:ijms24021178. [PMID: 36674694 PMCID: PMC9867261 DOI: 10.3390/ijms24021178] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/02/2023] [Accepted: 01/05/2023] [Indexed: 01/11/2023] Open
Abstract
Melatonin (MT) is a new plant hormone that protects against adverse environmental conditions. In the present study, the responses of Wolffia arrhiza exposed to cadmium (Cd) and MT were analyzed. Quantitative analysis of MT and precursors of its biosynthesis was performed using LC-MS-MS. The photosynthetic pigments and phytochelatins (PCs) contents were determined using HPLC, while protein and monosaccharides, stress markers, and antioxidant levels were determined using spectrophotometric methods. Interestingly, the endogenous level of MT and its substrates in W. arrhiza exposed to 1-100 µM Cd was significantly higher compared to the control. Additionally, the application of 25 µM MT and Cd intensified the biosynthesis of these compounds. The most stimulatory effect on the growth and content of pigments, protein, and sugars was observed in plants treated with 25 µM MT. In contrast, Cd treatment caused a decrease in plant weight and level of these compounds, while the application of 25 µM MT mitigated the inhibitory effect of Cd. Additionally, Cd enhanced the level of stress markers; simultaneously, MT reduced their content in duckweed exposed to Cd. In plants treated with Cd, PC levels were increased by Cd treatment and by 25 µM MT. These results confirmed that MT mitigated the adverse effect of Cd. Furthermore, MT presence was reported for the first time in W. arrhiza. In summary, MT is an essential phytohormone for plant growth and development, especially during heavy metal stress.
Collapse
|
23
|
Maresca V, Badalamenti N, Ilardi V, Bruno M, Bontempo P, Basile A. Chemical Composition of Thymus leucotrichus var. creticus Essential Oil and Its Protective Effects on Both Damage and Oxidative Stress in Leptodictyum riparium Hedw. Induced by Cadmium. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11243529. [PMID: 36559642 PMCID: PMC9785703 DOI: 10.3390/plants11243529] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/07/2022] [Accepted: 12/13/2022] [Indexed: 05/13/2023]
Abstract
The chemical profile of the essential oil (EO) of the aerial parts of Thymus leucotrichus var. creticus (Lamiaceae), a taxon not previously studied, was investigated by GC-MS analysis, using a DB-Wax polar column. Oxygenated monoterpenes and monoterpene hydrocarbons dominate the EO, with thymol (46.97%) and p-cymene (28.64%) as the main constituent of these two classes, respectively. The ability of the EO of T. leucotrichus to reduce Cd toxicity was studied in aquatic moss Leptodictyum riparium. To study EO-induced tolerance to Cd toxicity, apex growth, number of dead cells, DNA damage and antioxidant response in gametophytes were examined. The exogenous application of the EO yields a resumption of growth rate and a reduction in the number of dead cells; it also reduces the oxidative stress induced by Cd, as demonstrated by the reduction of the ROS content (with a decrease of 1.52% and 5%) and by the increased activity of antioxidant enzymes such as superoxide dismutase (SOD) (with an increase of 1.44% and 2.29%), CAT catalase (1.46% and 2.91%) and glutathione-S-transferase GST (1.57% and 1.90%). Furthermore, the application of the EO yields a reduction of DNA damage. These results clearly indicate the protective capacity of the EO of T. leucotrichus in modulating the redox state through the antioxidant pathway by reducing the oxidative stress induced by Cd.
Collapse
Affiliation(s)
- Viviana Maresca
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
| | - Natale Badalamenti
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), Università degli Studi di Palermo, Viale delle Scienze, Ed. 17, 90128 Palermo, Italy
| | - Vincenzo Ilardi
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), Università degli Studi di Palermo, Viale delle Scienze, Ed. 17, 90128 Palermo, Italy
| | - Maurizio Bruno
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), Università degli Studi di Palermo, Viale delle Scienze, Ed. 17, 90128 Palermo, Italy
- Correspondence: (M.B.); (A.B.); Tel.: +39-091-23897531 (M.B.)
| | - Paola Bontempo
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Via L. De Crecchio 7, 80138 Naples, Italy
| | - Adriana Basile
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
- Correspondence: (M.B.); (A.B.); Tel.: +39-091-23897531 (M.B.)
| |
Collapse
|
24
|
Sheng X, Zhaohui Z, Zhihui W. Potentially toxic elements have adverse effects on moss communities in the manganese mines of Southern China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 305:119255. [PMID: 35395347 DOI: 10.1016/j.envpol.2022.119255] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/27/2022] [Accepted: 04/01/2022] [Indexed: 06/14/2023]
Abstract
This study investigated the distribution of moss species, physiological parameters (superoxide dismutase, peroxide, catalase, and total chlorophyll), and concentrations of potentially toxic elements (Mn, Cr, Zn, Cu, Pb, and Cd) in moss communities and topsoil at the Huayuan manganese mine, Xiangjiang manganese mine, and Nancha manganese mine (Southern China). Partial least squares path modeling (PLS-PM) was then performed to determine the relationship between the indicators. Cd, Mn, and Zn were the main topsoil pollutants, followed by Pb, Cr, and Cu. A total of 73 moss species, comprising 31 genera from 17 families, and 8 community functional groups were identified. The most dominant families were Pottiaceae (30.14%) and Bryaceae (21.92%). PLS-PM revealed that increasing topsoil Mn, Cr, Zn, Cu, Pb, and Cd significantly reduced species diversity and functional diversity. These potentially toxic elements in the topsoil impeded vegetation growth by deteriorating soil conditions and subsequently altering the microenvironment of the moss communities. The community-weighted means demonstrated that functional traits of turfs and warty leaves were the adaptation of the moss communities to an increasingly dry and exposed microenvironment. Moss species with curly and narrow leaves were used to reduce contact with particulate pollutants. PLS-PM also indicated that Mn, Cr, Pb, and Cd may have a detrimental effect on superoxide dismutase, peroxide, catalase, and total chlorophyll, although further validation studies are needed.
Collapse
Affiliation(s)
- Xu Sheng
- Key Laboratory for Information System of Mountainous Area and Protection of Ecological Environment of Guizhou Province, Guizhou Normal University, Guiyang 550001, China
| | - Zhang Zhaohui
- Key Laboratory for Information System of Mountainous Area and Protection of Ecological Environment of Guizhou Province, Guizhou Normal University, Guiyang 550001, China.
| | - Wang Zhihui
- School of Life Sciences, Guizhou Normal University, Guiyang 550001, China
| |
Collapse
|
25
|
Syntrichia caninervis adapt to mercury stress by altering submicrostructure and physiological properties in the Gurbantünggüt Desert. Sci Rep 2022; 12:11717. [PMID: 35810254 PMCID: PMC9271083 DOI: 10.1038/s41598-022-15822-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 06/29/2022] [Indexed: 11/30/2022] Open
Abstract
Sewage and industrial waste discharges have been found to have a deleterious effect on plant growth and environmental safety through the accumulation of trace metal mercury (Hg) in soils. Although the effects of Hg on vascular plants have been reported in terms of enzyme activity, oxidative damage and physiology, few studies have been done on non-vascular plants. A simulation experiment including 7 Hg concentrations (0, 10, 20, 30, 40, 50, 75 µM) was conducted to investigate the influence of Hg stress on ultrastructure and physiological properties of biocrust moss Syntrichia. caninervis across 7 consecutive days. The results showed that the lowest lethal concentration of S. caninervis was 30 µM Hg. The mortality rate of the plants increased significantly with Hg concentrations. The ultrastructure did not change significantly at Hg concentration ≤ 20 µM, while exceeding which, cell walls began to separate, nuclei began to blur, and chloroplasts began to expand. The soluble sugars (SS), peroxidase (POD), and superoxide dismutase (SOD) activities increased initially and then decreased with the increase of concentration in the time gradient, with the largest values at 20 µM. The contents of malondialdehyde (MDA) and proline (Pro) increased with the increase of Hg concentration, both reached peak value at 50 µM. However, chlorophyll (Chl) contents continued to decrease along both the concentration and time gradients. Pearson correlation and principal component analysis showed that two principal components (PC1 and PC2) explained 73.9% of the variance in plant adaptation to Hg stress. SOD, POD, Chl, SS, and Pro all responded well to Hg in S. caninervis. Our study showed that Hg stress caused changes in ultrastructure and physiological metabolism of S. caninervis. 20 µM was the maximum concentration of Hg that biocrust moss S. caninervis can tolerate. S. caninervis mainly adopted two adaptation strategies related to exclusion and accumulation to reduce Hg stress.
Collapse
|
26
|
Świsłowski P, Nowak A, Rajfur M. Comparison of Exposure Techniques and Vitality Assessment of Mosses in Active Biomonitoring for Their Suitability in Assessing Heavy Metal Pollution in Atmospheric Aerosol. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2022; 41:1429-1438. [PMID: 35213067 DOI: 10.1002/etc.5321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/22/2021] [Accepted: 02/23/2022] [Indexed: 06/14/2023]
Abstract
The most widespread and used technique is the moss-bag method in active biomonitoring of air pollution using mosses. In the literature, we can find various studies on the standardization of this method, including attempts to standardize treatments and preparation procedures for their universal application. Few works comprehensively focus on other methods or compare other techniques used in active biomonitoring with mosses, especially including measurements of their vital parameters. Our experiment aimed to assess air pollution by selected heavy metals (Cu, Zn, Cd, Pb, Mn, Fe, and Hg) using three moss species (Pleurozium schreberi, Sphagnum fallax, and Dicranum polysetum) during a 12-week exposure in an urban area. Mosses were exposed simultaneously using four techniques: moss bag in three variants (exposed to air for total deposition of heavy metals, exposed to air for only dry deposition, and sheltered from the wind) and transplants in boxes. Increases in heavy metal concentrations in mosses were determined using the relative accumulation factor (RAF). The actual quantum yield of photosystem II photochemical was also analyzed as the main vitality parameter. The results indicate that all moss species during the changing environmental conditions survived and retained their vitality, although it decreased by >50% during the exposure. The best biomonitor was the moss P. schreberi, whose RAF increments were the highest throughout the study period for the majority of elements. The moss-bag technique had a statistically significant effect (almost 40%) on the concentration value of a given metal for a certain species, and thus it is the most recommended technique that can be applied in air quality monitoring in urban areas. Environ Toxicol Chem 2022;41:1429-1438. © 2022 SETAC.
Collapse
Affiliation(s)
| | - Arkadiusz Nowak
- Institute of Biology, University of Opole, Opole, Poland
- Botanical Garden-Centre for Biodiversity Conservation, Polish Academy of Sciences, Warsaw, Poland
| | - Małgorzata Rajfur
- Institute of Environmental Engineering and Biotechnology, University of Opole, Opole, Poland
| |
Collapse
|
27
|
Xue W, Zhang C, Huang Y, Wang C, Zhang X, Liu Z. Rice organs concentrate cadmium by chelation of amino acids containing dicarboxyl groups and enhance risks to human and environmental health in Cd-contaminated areas. JOURNAL OF HAZARDOUS MATERIALS 2022; 426:128130. [PMID: 34959214 DOI: 10.1016/j.jhazmat.2021.128130] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 12/14/2021] [Accepted: 12/19/2021] [Indexed: 06/14/2023]
Abstract
When rice plants grown in paddy fields with Cd content of 0.3-1.5 mg kg-1, Cd quantities in roots and straws were 2-7 times higher than that in topsoil. Return of these vegetative organs to topsoil aggravated the ecological risk of Cd pollution. Cd content in rice grains was 0.1-1.3 mg kg-1, and hazard quotients for local consumers by intake of these rice were 0.7-8.8. Planting low-Cd-accumulating (LCA) cultivar reduced hazard quotients for consumers by intake of rice, but had similar ecological risks as high-accumulating (HCA) cultivars. LCA cultivar had lower Cd content in grains as well as higher efficiency of altering Cd into insoluble forms in flag leaves and upmost nodes than HCA cultivars. Insoluble Cd content in nodes was linearly increased with soil Cd content, companied by significant decline of 4 amino acids with dicarboxyl groups. Glu or Asp can form a cyclic complex with Cd by two O atoms from α-COO- and side chain-COO-. These results indicate that roots and straws have high potential to concentrate Cd by forming complexes between amino acids and Cd ions, and Cd-enriched straw return to topsoil may aggravate the ecological risk of Cd contamination.
Collapse
Affiliation(s)
- Weijie Xue
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Changbo Zhang
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Yongchun Huang
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Changrong Wang
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Xin Zhang
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Zhongqi Liu
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China.
| |
Collapse
|
28
|
Tools for In Vitro Propagation/Synchronization of the Liverwort Marchantia polymorpha and Application of a Validated HPLC-ESI-MS-MS Method for Glutathione and Phytochelatin Analysis. STRESSES 2022. [DOI: 10.3390/stresses2010010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Bryophytes, due to their poikilohydric nature and peculiar traits, are useful and versatile organisms for studies on metal accumulation and detoxification in plants. Among bryophytes, the liverwort Marchantia polymorpha is an excellent candidate as a model organism, having a key role in plant evolutionary history. In particular, M. polymorpha axenic cultivation of gametophytes offers several advantages, such as fast growth, easy propagation and high efficiency of crossing. Thus, the main purpose of this work was to promote and validate experimental procedures useful in the establishment of a standardized set-up of M. polymorpha gametophytes, as well as to study cadmium detoxification processes in terms of thiol-peptide production, detection and characterisation by HPLC-mass spectrometry. The results show how variations in the composition of the Murashige and Skoog medium impact the growth rate or development of this liverwort, and what levels of glutathione and phytochelatins are produced by gametophytes to counteract cadmium stress.
Collapse
|
29
|
Fasani E, Li M, Varotto C, Furini A, DalCorso G. Metal Detoxification in Land Plants: From Bryophytes to Vascular Plants. STATE of the Art and Opportunities. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11030237. [PMID: 35161218 PMCID: PMC8837986 DOI: 10.3390/plants11030237] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/14/2022] [Accepted: 01/15/2022] [Indexed: 05/05/2023]
Abstract
Potentially toxic elements are a widespread concern due to their increasing diffusion into the environment. To counteract this problem, the relationship between plants and metal(loid)s has been investigated in the last 30 years. In this field, research has mainly dealt with angiosperms, whereas plant clades that are lower in the evolutive scale have been somewhat overlooked. However, recent studies have revealed the potential of bryophytes, pteridophytes and gymnosperms in environmental sciences, either as suitable indicators of habitat health and elemental pollution or as efficient tools for the reclamation of degraded soils and waters. In this review, we summarize recent research on the interaction between plants and potentially toxic elements, considering all land plant clades. The focus is on plant applicability in the identification and restoration of polluted environments, as well as on the characterization of molecular mechanisms with a potential outlet in the engineering of element tolerance and accumulation.
Collapse
Affiliation(s)
- Elisa Fasani
- Department Biotechnology, University of Verona, Str. Le Grazie 15, 37131 Verona, Italy;
| | - Mingai Li
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38010 San Michele all’ Adige, Italy; (M.L.); (C.V.)
| | - Claudio Varotto
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38010 San Michele all’ Adige, Italy; (M.L.); (C.V.)
| | - Antonella Furini
- Department Biotechnology, University of Verona, Str. Le Grazie 15, 37131 Verona, Italy;
- Correspondence: (A.F.), (G.D.)
| | - Giovanni DalCorso
- Department Biotechnology, University of Verona, Str. Le Grazie 15, 37131 Verona, Italy;
- Correspondence: (A.F.), (G.D.)
| |
Collapse
|
30
|
Maresca V, Bellini E, Landi S, Capasso G, Cianciullo P, Carraturo F, Pirintsos S, Sorbo S, Sanità di Toppi L, Esposito S, Basile A. Biological responses to heavy metal stress in the moss Leptodictyum riparium (Hedw.) Warnst. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 229:113078. [PMID: 34929502 DOI: 10.1016/j.ecoenv.2021.113078] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 12/06/2021] [Accepted: 12/09/2021] [Indexed: 06/14/2023]
Abstract
Leptodictyum riparium, a widely distributed aquatic moss, can both tolerate and accumulate very high concentrations of toxic heavy metals, with only slight apparent damage. Here we report the effects on photosynthetic yield, glutathione (GSH), phytochelatin (PCn) synthesis, nitrogen metabolism and cellular localization of molecules rich in SH groups in L. riparium exposed in vitro to heavy metals. We simulated the concentrations of Cu, Zn, Cd, Pb detected in Regi Lagni, Italy, one of the most contaminated freshwater sites in Southern Europe, in the laboratory to test how the moss responds to heavy metal contamination. There was a steady decrease of photosynthetic efficiency correlated with the heavy metal concentrations and ultrastructural organization. All PCn levels increased significantly as the concentration of heavy metals increased, while the GSH levels did not appear to be particularly affected. A significant increase of GDH and NADH-GOGAT activities increased with increasing heavy metal concentration. Immunoblotting analysis revealed an increase of the chl-GS2 while no significant increase was detected in the cyt-GS1. These results give insight into the molecular events underlying the metal-tolerance of the aquatic moss L. riparium exposed to environmental heavy metal concentrations.
Collapse
Affiliation(s)
- Viviana Maresca
- Department of Biology, University of Naples "Federico II", 80126 Naples, Italy
| | - Erika Bellini
- Department of Biology, University of Pisa, 56126 Pisa, Italy
| | - Simone Landi
- Department of Biology, University of Naples "Federico II", 80126 Naples, Italy
| | - Giorgia Capasso
- Department of Biology, University of Naples "Federico II", 80126 Naples, Italy
| | | | - Federica Carraturo
- Department of Biology, University of Naples "Federico II", 80126 Naples, Italy
| | - Stergios Pirintsos
- Department of Biology, University of Crete, 71409 Heraklion, Greece; Botanical Garden, University of Crete, 741 00 Rethymnon, Greece
| | - Sergio Sorbo
- CeSMA, Microscopy Section, University of Naples "Federico II", 80126 Naples, Italy
| | | | - Sergio Esposito
- Department of Biology, University of Naples "Federico II", 80126 Naples, Italy.
| | - Adriana Basile
- Department of Biology, University of Naples "Federico II", 80126 Naples, Italy.
| |
Collapse
|
31
|
Wu D, Saleem M, He T, He G. The Mechanism of Metal Homeostasis in Plants: A New View on the Synergistic Regulation Pathway of Membrane Proteins, Lipids and Metal Ions. MEMBRANES 2021; 11:membranes11120984. [PMID: 34940485 PMCID: PMC8706360 DOI: 10.3390/membranes11120984] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/04/2021] [Accepted: 12/11/2021] [Indexed: 12/15/2022]
Abstract
Heavy metal stress (HMS) is one of the most destructive abiotic stresses which seriously affects the growth and development of plants. Recent studies have shown significant progress in understanding the molecular mechanisms underlying plant tolerance to HMS. In general, three core signals are involved in plants' responses to HMS; these are mitogen-activated protein kinase (MAPK), calcium, and hormonal (abscisic acid) signals. In addition to these signal components, other regulatory factors, such as microRNAs and membrane proteins, also play an important role in regulating HMS responses in plants. Membrane proteins interact with the highly complex and heterogeneous lipids in the plant cell environment. The function of membrane proteins is affected by the interactions between lipids and lipid-membrane proteins. Our review findings also indicate the possibility of membrane protein-lipid-metal ion interactions in regulating metal homeostasis in plant cells. In this review, we investigated the role of membrane proteins with specific substrate recognition in regulating cell metal homeostasis. The understanding of the possible interaction networks and upstream and downstream pathways is developed. In addition, possible interactions between membrane proteins, metal ions, and lipids are discussed to provide new ideas for studying metal homeostasis in plant cells.
Collapse
Affiliation(s)
- Danxia Wu
- College of Agricultural, Guizhou University, Guiyang 550025, China;
| | - Muhammad Saleem
- Department of Biological Sciences, Alabama State University, Montgomery, AL 36104, USA;
| | - Tengbing He
- College of Agricultural, Guizhou University, Guiyang 550025, China;
- Institute of New Rural Development, West Campus, Guizhou University, Guiyang 550025, China
- Correspondence: (T.H.); (G.H.)
| | - Guandi He
- College of Agricultural, Guizhou University, Guiyang 550025, China;
- Correspondence: (T.H.); (G.H.)
| |
Collapse
|
32
|
Ghosh TK, Tompa NH, Rahman MM, Mohi-Ud-Din M, Al-Meraj SMZ, Biswas MS, Mostofa MG. Acclimation of liverwort Marchantia polymorpha to physiological drought reveals important roles of antioxidant enzymes, proline and abscisic acid in land plant adaptation to osmotic stress. PeerJ 2021; 9:e12419. [PMID: 34824915 PMCID: PMC8590393 DOI: 10.7717/peerj.12419] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 10/10/2021] [Indexed: 01/24/2023] Open
Abstract
Liverwort Marchantia polymorpha is considered as the key species for addressing a myriad of questions in plant biology. Exploration of drought tolerance mechanism(s) in this group of land plants offers a platform to identify the early adaptive mechanisms involved in drought tolerance. The current study aimed at elucidating the drought acclimation mechanisms in liverwort’s model M. polymorpha. The gemmae, asexual reproductive units of M. polymorpha, were exposed to sucrose (0.2 M), mannitol (0.5 M) and polyethylene glycol (PEG, 10%) for inducing physiological drought to investigate their effects at morphological, physiological and biochemical levels. Our results showed that drought exposure led to extreme growth inhibition, disruption of membrane stability and reduction in photosynthetic pigment contents in M. polymorpha. The increased accumulation of hydrogen peroxide and malondialdehyde, and the rate of electrolyte leakage in the gemmalings of M. polymorpha indicated an evidence of drought-caused oxidative stress. The gemmalings showed significant induction of the activities of key antioxidant enzymes, including superoxide dismutase, catalase, ascorbate peroxidase, dehydroascorbate reductase and glutathione S-transferase, and total antioxidant activity in response to increased oxidative stress under drought. Importantly, to counteract the drought effects, the gemmalings also accumulated a significant amount of proline, which coincided with the evolutionary presence of proline biosynthesis gene Δ1-pyrroline-5-carboxylate synthase 1 (P5CS1) in land plants. Furthermore, the application of exogenous abscisic acid (ABA) reduced drought-induced tissue damage and improved the activities of antioxidant enzymes and accumulation of proline, implying an archetypal role of this phytohormone in M. polymorpha for drought tolerance. We conclude that physiological drought tolerance mechanisms governed by the cellular antioxidants, proline and ABA were adopted in liverwort M. polymorpha, and that these findings have important implications in aiding our understanding of osmotic stress acclimation processes in land plants.
Collapse
Affiliation(s)
- Totan Kumar Ghosh
- Department of Crop Botany, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| | - Naznin Haque Tompa
- Department of Crop Botany, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| | - Md Mezanur Rahman
- Institute of Genomics for Crop Abiotic Stress Tolerance, Department of Plant and Soil Science, Texas Tech University, Lubbock, Texas, United States
| | - Mohammed Mohi-Ud-Din
- Department of Crop Botany, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| | - S M Zubair Al-Meraj
- Department of Crop Botany, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| | - Md Sanaullah Biswas
- Department of Horticulture, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| | - Mohammad Golam Mostofa
- Institute of Genomics for Crop Abiotic Stress Tolerance, Department of Plant and Soil Science, Texas Tech University, Lubbock, Texas, United States.,Department of Biochemistry and Molecular Biology, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| |
Collapse
|
33
|
De Matteis V, Rojas M, Cascione M, Mazzotta S, Di Sansebastiano GP, Rinaldi R. Physico-Chemical Properties of Inorganic NPs Influence the Absorption Rate of Aquatic Mosses Reducing Cytotoxicity on Intestinal Epithelial Barrier Model. Molecules 2021; 26:molecules26102885. [PMID: 34068079 PMCID: PMC8152762 DOI: 10.3390/molecules26102885] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/05/2021] [Accepted: 05/12/2021] [Indexed: 04/11/2023] Open
Abstract
Noble metals nanoparticles (NPs) and metal oxide NPs are widely used in different fields of application and commercial products, exposing living organisms to their potential adverse effects. Recent evidences suggest their presence in the aquifers water and consequently in drinking water. In this work, we have carefully synthesized four types of NPs, namely, silver and gold NPs (Ag NPs and Au NPs) and silica and titanium dioxide NPs (SiO2 NPs and TiO2 NPs) having a similar size and negatively charged surfaces. The synthesis of Ag NPs and Au NPs was carried out by colloidal route using silver nitrate (AgNO3) and tetrachloroauric (III) acid (HAuCl4) while SiO2 NPs and TiO2 NPs were achieved by ternary microemulsion and sol-gel routes, respectively. Once the characterization of NPs was carried out in order to assess their physico-chemical properties, their impact on living cells was studied. We used the human colorectal adenocarcinoma cells (Caco-2), known as the best representative intestinal epithelial barrier model to understand the effects triggered by NPs through ingestion. Then, we moved to explore how water contamination caused by NPs can be lowered by the ability of three species of aquatic moss, namely, Leptodictyum riparium, Vesicularia ferriei, and Taxiphyllum barbieri, to absorb them. The experiments were conducted using two concentrations of NPs (100 μM and 500 Μm as metal content) and two time points (24 h and 48 h), showing a capture rate dependent on the moss species and NPs type. Then, the selected moss species, able to actively capture NPs, appear as a powerful tool capable to purify water from nanostructured materials, and then, to reduce the toxicity associated to the ingestion of contaminated drinking water.
Collapse
Affiliation(s)
- Valeria De Matteis
- Department of Mathematics and Physics “Ennio De Giorgi”, University of Salento, Via Arnesano, 73100 Lecce (LE), Italy; (M.C.); (R.R.)
- Correspondence: ; Tel.: +39-0832298108
| | - Makarena Rojas
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, 73100 Lecce (LE), Italy; (M.R.); (G.P.D.S.)
| | - Mariafrancesca Cascione
- Department of Mathematics and Physics “Ennio De Giorgi”, University of Salento, Via Arnesano, 73100 Lecce (LE), Italy; (M.C.); (R.R.)
| | - Stefano Mazzotta
- Studio Effemme-Chimica Applicata, Via Paolo VI, 73018 Squinzano (LE), Italy;
| | - Gian Pietro Di Sansebastiano
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, 73100 Lecce (LE), Italy; (M.R.); (G.P.D.S.)
| | - Rosaria Rinaldi
- Department of Mathematics and Physics “Ennio De Giorgi”, University of Salento, Via Arnesano, 73100 Lecce (LE), Italy; (M.C.); (R.R.)
| |
Collapse
|
34
|
Bellini E, Betti C, Sanità di Toppi L. Responses to Cadmium in Early-Diverging Streptophytes (Charophytes and Bryophytes): Current Views and Potential Applications. PLANTS (BASEL, SWITZERLAND) 2021; 10:770. [PMID: 33919852 PMCID: PMC8070800 DOI: 10.3390/plants10040770] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/08/2021] [Accepted: 04/09/2021] [Indexed: 11/16/2022]
Abstract
Several transition metals are essential for plant growth and development, as they are involved in various fundamental metabolic functions. By contrast, cadmium (Cd) is a metal that can prove extremely toxic for plants and other organisms in a dose-dependent manner. Charophytes and bryophytes are early-diverging streptophytes widely employed for biomonitoring purposes, as they are able to cope with high concentrations of toxic metal(loid)s without showing any apparent heavy damage. In this review, we will deal with different mechanisms that charophytes and bryophytes have evolved to respond to Cd at a cellular level. Particular attention will be addressed to strategies involving Cd vacuolar sequestration and cell wall immobilization, focusing on specific mechanisms that help achieve detoxification. Understanding the effects of metal(loid) pollution and accumulation on the morpho-physiological traits of charophytes and bryophytes can be in fact fundamental for optimizing their use as phytomonitors and/or phytoremediators.
Collapse
Affiliation(s)
- Erika Bellini
- Department of Biology, University of Pisa, 56126 Pisa, Italy; (E.B.); (L.S.d.T.)
| | - Camilla Betti
- Department of Medicine, University of Perugia, 06132 Perugia, Italy
| | | |
Collapse
|
35
|
Amjadi Z, Namdjoyan S, Abolhasani Soorki A. Exogenous melatonin and salicylic acid alleviates cadmium toxicity in safflower (Carthamus tinctorius L.) seedlings. ECOTOXICOLOGY (LONDON, ENGLAND) 2021; 30:387-401. [PMID: 33624206 DOI: 10.1007/s10646-021-02364-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/02/2021] [Indexed: 06/12/2023]
Abstract
The co-application of exogenous 100 µM melatonin (MT) and 100 µM salicylic acid (SA) on 21-day-old safflower seedlings grown in the presence of cadmium (Cd, 100 µM) toxicity was investigated. The application of MT, SA, or MT + SA efficiently improved toxicity symptoms and declined Cd toxicity as shown by a considerable rise in plant biomass production and chlorophyll content accompanied by decreased level of oxidative stress markers. In Cd stressed plants, the simultaneous application of MT and SA led to sharp decreases in MDA and H2O2 amounts (61.04 and 49.11%, respectively), related to plants treated with Cd alone. With respect to the control, a 41 and 48% increment in reduced glutathione (GSH) and ascorbate (ASC) content was recorded in Cd-treated seedlings. Though, with the addition of MT, SA, or MT + SA, the content of GSH and ASC increased more. The application of MT, SA, or MT + SA caused a sharp induction in phytochelatin content of the leaves of Cd-treated seedlings, while in roots, the highest PC content was recorded only in the presence of MT, which was about 1.8-fold greater than in plant treated with Cd alone. The activity of enzymes responsible for the ascorbate-glutathione cycle and glyoxalase system considerably improved by using MT, SA, or the combination of MT and SA. Our findings suggest a possible synergic interaction between MT and SA in tolerating Cd toxicity by reducing Cd uptake, improving chlorophyll biosynthesis and accelerating ascorbate-glutathione cycle as well as the modulation of glyoxalase system.
Collapse
Affiliation(s)
- Zahra Amjadi
- Department of Biology and Biochemistry, Science Faculty, Shahr-e-Qods Branch, Islamic Azad University, Tehran, Iran
| | - Shahram Namdjoyan
- Department of Biology and Biochemistry, Science Faculty, Shahr-e-Qods Branch, Islamic Azad University, Tehran, Iran.
| | - Ali Abolhasani Soorki
- ACECR-Research Institute of Applied Sciences, Shahid Beheshti University, Tehran, Iran
| |
Collapse
|
36
|
Li M, Barbaro E, Bellini E, Saba A, Sanità di Toppi L, Varotto C. Ancestral function of the phytochelatin synthase C-terminal domain in inhibition of heavy metal-mediated enzyme overactivation. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:6655-6669. [PMID: 32936292 PMCID: PMC7586750 DOI: 10.1093/jxb/eraa386] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 08/17/2020] [Indexed: 05/03/2023]
Abstract
Phytochelatin synthases (PCSs) play essential roles in detoxification of a broad range of heavy metals in plants and other organisms. Until now, however, no PCS gene from liverworts, the earliest branch of land plants and possibly the first one to acquire a PCS with a C-terminal domain, has been characterized. In this study, we isolated and functionally characterized the first PCS gene from a liverwort, Marchantia polymorpha (MpPCS). MpPCS is constitutively expressed in all organs examined, with stronger expression in thallus midrib. The gene expression is repressed by Cd2+ and Zn2+. The ability of MpPCS to increase heavy metal resistance in yeast and to complement cad1-3 (the null mutant of the Arabidopsis ortholog AtPCS1) proves its function as the only PCS from M. polymorpha. Site-directed mutagenesis of the most conserved cysteines of the C-terminus of the enzyme further uncovered that two twin-cysteine motifs repress, to different extents, enzyme activation by heavy metal exposure. These results highlight an ancestral function of the PCS elusive C-terminus as a regulatory domain inhibiting enzyme overactivation by essential and non-essential heavy metals. The latter finding may be relevant for obtaining crops with decreased root to shoot mobility of cadmium, thus preventing its accumulation in the food chain.
Collapse
Affiliation(s)
- Mingai Li
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, Trento, Italy
| | - Enrico Barbaro
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, Trento, Italy
| | - Erika Bellini
- Dipartimento di Biologia, Università di Pisa, Pisa, Italy
| | - Alessandro Saba
- Dipartimento di Patologia Chirurgica, Medica, Molecolare e dell’Area Critica, Università di Pisa, Pisa, Italy
| | | | - Claudio Varotto
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, Trento, Italy
- Correspondence: ,
| |
Collapse
|
37
|
Maresca V, Lettieri G, Sorbo S, Piscopo M, Basile A. Biological Responses to Cadmium Stress in Liverwort Conocephalum conicum (Marchantiales). Int J Mol Sci 2020; 21:ijms21186485. [PMID: 32899890 PMCID: PMC7555243 DOI: 10.3390/ijms21186485] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/31/2020] [Accepted: 09/03/2020] [Indexed: 01/27/2023] Open
Abstract
Oxidative damage (production and localization of reactive oxygen species) and related response mechanisms (activity of antioxidant enzymes), and induction of Heat Shock Protein 70 expression, have been studied in the toxi-tolerant liverwort Conocephalum conicum (Marchantiales) in response to cadmium stress using two concentrations (36 and 360 µM CdCl2). Cadmium dose-dependent production of reactive oxygen species (ROS) and related activity of antioxidant enzymes was observed. The expression level of heat shock protein (Hsp)70, instead, was higher at 36 µM CdCl2 in comparison with the value obtained after exposure to 360 µM CdCl2, suggesting a possible inhibition of the expression of this stress gene at higher cadmium exposure doses. Biological responses were related to cadmium bioaccumulation. Since C. conicum was able to respond to cadmium stress by modifying biological parameters, we discuss the data considering the possibility of using these biological changes as biomarkers of cadmium pollution.
Collapse
Affiliation(s)
- Viviana Maresca
- Department of Biology, University of Naples “Federico II”, 80138 Naples, Italy; (V.M.); (G.L.)
| | - Gennaro Lettieri
- Department of Biology, University of Naples “Federico II”, 80138 Naples, Italy; (V.M.); (G.L.)
| | - Sergio Sorbo
- Centro di Servizi Metrologici Avanzati (CeSMA), Microscopy Section, University of Naples “Federico II”, 80126 Naples, Italy;
| | - Marina Piscopo
- Department of Biology, University of Naples “Federico II”, 80138 Naples, Italy; (V.M.); (G.L.)
- Correspondence: (M.P.); (A.B.); Tel.: +39-081-679-081 (M.P.); +39-081-253-8508 (A.B.)
| | - Adriana Basile
- Department of Biology, University of Naples “Federico II”, 80138 Naples, Italy; (V.M.); (G.L.)
- Correspondence: (M.P.); (A.B.); Tel.: +39-081-679-081 (M.P.); +39-081-253-8508 (A.B.)
| |
Collapse
|