1
|
Mokaram Doust Delkhah A. Integrated transcriptomics of multiple sclerosis peripheral blood mononuclear cells explored potential biomarkers for the disease. Biochem Biophys Rep 2025; 42:102022. [PMID: 40290807 PMCID: PMC12033924 DOI: 10.1016/j.bbrep.2025.102022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2025] [Revised: 04/08/2025] [Accepted: 04/16/2025] [Indexed: 04/30/2025] Open
Abstract
Background Despite their importance, blood RNAs have not been comprehensively studied as potential diagnostic markers for multiple sclerosis (MS). Herein, by the integration of GSE21942 and GSE203241 microarray profiles of peripheral blood mononuclear cells, this study explored potential biomarkers for the disease. Methods After identification of differentially expressed genes (DEGs), functional enrichment analyses were performed, and PPI and miRNA-mRNA regulatory networks were constructed. After implementing weighted gene co-expression network analysis (WGCNA) and discovering MS-specific modules, the converging results of differential expression analysis and WGCNA were subjected to machine learning methods. Lastly, the diagnostic performance of the prominent genes was evaluated by receiver operating characteristic (ROC) analysis. Results COPG1, RPN1, and KDM3B were initially highlighted as potential biomarkers based on their acceptable diagnostic efficacy in the integrated data, as well as in both GSE141804 and GSE146383 datasets as external validation sets. However, given that they were downregulated in the integrated data while they were upregulated in the validation sets, they could not be considered as potential biomarkers for the disease. In addition to this inconsistency, evaluating their diagnostic performance in other external datasets (GSE247181, GSE59085, and GSE17393) did not reveal their diagnostic efficacy. Conclusions This study could not unveil promising blood biomarkers for MS, possibly due to a small sample size and unaccounted confounding factors. Considering PBMCs and blood specimens as valuable sources for the identification of biomarkers, further transcriptomic analyses are needed to discover potential biomarkers for the disease.
Collapse
|
2
|
Lou Y, Wang Y, Lu J, Chen X. MicroRNA-targeted nanoparticle delivery systems for cancer therapy: current status and future prospects. Nanomedicine (Lond) 2025; 20:1181-1194. [PMID: 40231694 PMCID: PMC12068351 DOI: 10.1080/17435889.2025.2492542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 04/09/2025] [Indexed: 04/16/2025] Open
Abstract
Recently, the regulatory effects of microRNAs (miRNAs) on gene expression have been exploited for applications in the diagnosis and treatment of cancer, neurological diseases, and cardiovascular diseases. However, the susceptibility of miRNAs to degradation during somatic circulation and the challenges associated with their delivery to target tissues and cells have limited the clinical application of miRNAs. For application in tumor therapy, it is essential for miRNAs to specifically target cancer cells. Therefore, various novel miRNA delivery systems that protect miRNA against the activity of serum nuclease and deliver miRNA to target cells have been developed and optimized. This review introduces the passive and active targeting strategies of nanoparticles, summarizes the recent progress of miRNA nanocarriers with tumor-targeting ability, and discusses various nanoparticle delivery systems and their antitumor applications. Additionally, this review focuses on the translational challenges and potential strategies for advancing miRNA-based therapies into the clinic.
Collapse
Affiliation(s)
- Yang Lou
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Yutian Wang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Juan Lu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Xi Chen
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| |
Collapse
|
3
|
Liu Y, Glessner J, Qu H, Chang X, Qiu H, Wang T, Mentch FD, Hakonarson H. Copy number variations contribute to malignant tumor development in children with serious birth defects. Mol Oncol 2025; 19:899-912. [PMID: 39140252 PMCID: PMC11887664 DOI: 10.1002/1878-0261.13718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 07/01/2024] [Accepted: 07/30/2024] [Indexed: 08/15/2024] Open
Abstract
There are two key signatures of pediatric cancers: (a) higher prevalence of germline alterations and (b) heterogeneity in alteration types. Recent population-based assessments have demonstrated that children with birth defects (BDs) are more likely to develop cancer even without chromosomal anomalies; therefore, explorations of genetic alterations in children with BDs and cancers could provide new insights into the underlying mechanisms for pediatric tumor development. We performed whole-genome sequencing (WGS) on blood-derived DNA for 1556 individuals without chromosomal anomalies, including 454 BD probands with at least one type of malignant tumor, 757 cancer-free children with BDs, and 345 healthy individuals, focusing on copy number variation (CNV) analysis. Roughly half of the children with BD-cancer have CNVs that are not identified in BD-only/healthy individuals, and CNVs are not evenly distributed among these patients. Strong heterogeneity was observed, with a limited number of cancer predisposition genes containing CNVs in more than three patients. Moreover, functional enrichments of genes with CNVs showed that dozens of patients have variations related to the same biological pathways, such as deletions of genes with neurological functions and duplications of immune response genes. Phenotype clustering uncovered recurrences of patients with sarcoma: A notable enrichment was observed involving non-coding RNA regulators, showing strong signals related to growth and cancer regulations in functional analysis. In conclusion, we conducted one of the first genomic studies exploring the impact of CNVs on cancer development in children with BDs, unveiling new insights into the underlying biological processes.
Collapse
Affiliation(s)
- Yichuan Liu
- Center for Applied Genomics (CAG)Children's Hospital of PhiladelphiaPAUSA
| | - Joseph Glessner
- Center for Applied Genomics (CAG)Children's Hospital of PhiladelphiaPAUSA
- Department of Pediatrics, The Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Hui‐Qi Qu
- Center for Applied Genomics (CAG)Children's Hospital of PhiladelphiaPAUSA
| | - Xiao Chang
- Center for Applied Genomics (CAG)Children's Hospital of PhiladelphiaPAUSA
| | - Haijun Qiu
- Center for Applied Genomics (CAG)Children's Hospital of PhiladelphiaPAUSA
| | - Tiancheng Wang
- Center for Applied Genomics (CAG)Children's Hospital of PhiladelphiaPAUSA
| | - Frank D. Mentch
- Center for Applied Genomics (CAG)Children's Hospital of PhiladelphiaPAUSA
| | - Hakon Hakonarson
- Center for Applied Genomics (CAG)Children's Hospital of PhiladelphiaPAUSA
- Department of Pediatrics, The Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
- Division of Human GeneticsChildren's Hospital of PhiladelphiaPAUSA
- Division of Pulmonary MedicineChildren's Hospital of PhiladelphiaPAUSA
- Faculty of MedicineUniversity of IcelandReykjavíkIceland
| |
Collapse
|
4
|
de Almeida BC, dos Anjos LG, Kagohara LT, Al-Hendy A, Yang Q, Baracat EC, Coutinho-Camillo CM, Carvalho KC. Could let-7f, miR-10b, miR-34a, miR-181b, and miR-181d Be Useful Tools as a Target Therapy for Uterine Leiomyosarcoma? Biomedicines 2025; 13:560. [PMID: 40149537 PMCID: PMC11940384 DOI: 10.3390/biomedicines13030560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 02/17/2025] [Accepted: 02/20/2025] [Indexed: 03/29/2025] Open
Abstract
Background/Objectives: We have previously identified let-7f-5p, miR-10b-5p, miR-34a-5p, miR-181b-5p, and miR-181d-5p as differentially expressed between uterine leiomyoma (LM) and leiomyosarcoma (LMS) tissue samples. The present study aimed to characterize these miRNA expression profiles and to assess the functional role of miR-34a and miR-181b in uterine LM and LMS cells. Methods: All the selected miRNAs showed downregulation in LMS cells compared to LM cells, but only miR-34a and miR-181b expression patterns matched those of patient samples. Therefore, these two miRs were selected for further analyses. Results: Loss of function analysis demonstrated that miR-34a and miR-181b silencing inhibited LM cell proliferation and migration. MiR-34a silencing induced CCND1 and MDM4 expression and inhibited KMT2D, BCL2, and NOTCH2 in LM. Silencing of miR-181b promotes TIMP3 and FGFR1 expression in LM and diminishes BCL2, NOTCH2, ATM, IRS1, and PRLR. Gain of function analysis revealed that the introduction of miR-34a and miR-181b mimics suppressed proliferation and migration in malignant LMS cells. Additionally, transfection with a miR-34a mimic downregulated NOTCH2 and BCL2 expression and enhanced the expression of CCND1, KMT2D, and TP53 in LMS cells. Moreover, miR-181b overexpression decreased TIMP3, NOTCH2, ATM, and IRS1 expression and increased the expression of FGFR1 in this cell. Importantly, the single introduction of either a miR-34a or miR-181b mimic was able to decrease the invasion capacity of LMS cells. Conclusions: Our studies demonstrated that miR-34a or miR-181b may play an anti-oncogenic role in uterine tumors; further studies are needed to better understand the role and regulatory mechanism of these miRNAs in LMS cancer development, which will help provide prognostic and therapeutic options for patients with LMS.
Collapse
Affiliation(s)
- Bruna Cristine de Almeida
- Laboratório de Ginecologia Estrutural e Molecular (LIM 58), Disciplina de Ginecologia, Departamento de Obstetricia e Ginecologia, Hospital das Clinicas da Faculdade de Medicina da Universidade de Sao Paulo (HCFMUSP), Cerqueira Cesar, São Paulo 05403-010, Brazil; (B.C.d.A.); (L.G.d.A.); (E.C.B.)
| | - Laura Gonzalez dos Anjos
- Laboratório de Ginecologia Estrutural e Molecular (LIM 58), Disciplina de Ginecologia, Departamento de Obstetricia e Ginecologia, Hospital das Clinicas da Faculdade de Medicina da Universidade de Sao Paulo (HCFMUSP), Cerqueira Cesar, São Paulo 05403-010, Brazil; (B.C.d.A.); (L.G.d.A.); (E.C.B.)
| | | | - Ayman Al-Hendy
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL 60637, USA; (A.A.-H.); (Q.Y.)
| | - Qiwei Yang
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL 60637, USA; (A.A.-H.); (Q.Y.)
| | - Edmund Chada Baracat
- Laboratório de Ginecologia Estrutural e Molecular (LIM 58), Disciplina de Ginecologia, Departamento de Obstetricia e Ginecologia, Hospital das Clinicas da Faculdade de Medicina da Universidade de Sao Paulo (HCFMUSP), Cerqueira Cesar, São Paulo 05403-010, Brazil; (B.C.d.A.); (L.G.d.A.); (E.C.B.)
| | | | - Katia Candido Carvalho
- Laboratório de Ginecologia Estrutural e Molecular (LIM 58), Disciplina de Ginecologia, Departamento de Obstetricia e Ginecologia, Hospital das Clinicas da Faculdade de Medicina da Universidade de Sao Paulo (HCFMUSP), Cerqueira Cesar, São Paulo 05403-010, Brazil; (B.C.d.A.); (L.G.d.A.); (E.C.B.)
| |
Collapse
|
5
|
Yang C, Wang R, Hardy P. The Multifaceted Roles of MicroRNA-181 in Stem Cell Differentiation and Cancer Stem Cell Plasticity. Cells 2025; 14:132. [PMID: 39851559 PMCID: PMC11763446 DOI: 10.3390/cells14020132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/14/2025] [Accepted: 01/15/2025] [Indexed: 01/26/2025] Open
Abstract
Stem cells are undifferentiated or partially differentiated cells with an extraordinary ability to self-renew and differentiate into various cell types during growth and development. The epithelial-mesenchymal transition (EMT), a critical developmental process, enhances stem cell-like properties in cells, and is associated with both normal stem cell function and the formation of cancer stem cells. Cell stemness and the EMT often coexist and are interconnected in various contexts. Cancer stem cells are a critical tumor cell population that drives tumorigenesis, cancer progression, drug resistance, and metastasis. Stem cell differentiation and the generation of cancer stem cells are regulated by numerous molecules, including microRNAs (miRNAs). These miRNAs, particularly through the modulation of EMT-associated factors, play major roles in controlling the stemness of cancer stem cells. This review presents an up-to-date summary of the regulatory roles of miR-181 in human stem cell differentiation and cancer cell stemness. We outline studies from the current literature and summarize the miR-181-controlled signaling pathways responsible for driving human stem cell differentiation or the emergence of cancer stem cells. Given its critical role in regulating cell stemness, miR-181 is a promising target for influencing human cell fate. Modulation of miR-181 expression has been found to be altered in cancer stem cells' biological behaviors and to significantly improve cancer treatment outcomes. Additionally, we discuss challenges in miRNA-based therapies and targeted delivery with nanotechnology-based systems.
Collapse
Affiliation(s)
- Chun Yang
- CHU Sainte-Justine Research Center, Université de Montréal, Montreal, QC H3T 1C5, Canada;
| | - Rui Wang
- Departments of Pharmacology and Physiology, Université de Montréal, Montreal, QC H3T 1C5, Canada;
| | - Pierre Hardy
- CHU Sainte-Justine Research Center, Université de Montréal, Montreal, QC H3T 1C5, Canada;
- Departments of Pharmacology and Physiology, Université de Montréal, Montreal, QC H3T 1C5, Canada;
- Departments of Pediatrics, Faculty of Medicine, Université de Montréal, Montreal, QC H3T 1C5, Canada
| |
Collapse
|
6
|
Braicu C, Mureșanu FD, Isachesku E, Bornstein N, Filipović SR, Strilciuc S, Pana A. Role of miR-181 Family Members in Stroke: Insights into Mechanisms and Therapeutic Potential. Int J Mol Sci 2025; 26:440. [PMID: 39859155 PMCID: PMC11765211 DOI: 10.3390/ijms26020440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 12/30/2024] [Accepted: 01/01/2025] [Indexed: 01/27/2025] Open
Abstract
Stroke is a major cause of mortality and long-term disability worldwide, making early diagnosis and effective treatment crucial for reducing its impact. In response to the limited efficacy of current treatments, alternative therapeutic strategies, such as novel biomarkers and therapies, are emerging to address this critical unmet medical need. MicroRNAs (miRNAs) are small, non-coding RNAs that regulate gene expression at the post-transcriptional level. Due to their dysregulation, they have been implicated in the onset and progression of various diseases. Recent research highlighted the important role of miR-181 family members in the context of stroke. Polymorphisms such as rs322931 in miR-181b are associated with increased stroke risk. miR-181 family members are aberrantly expressed and related to various aspects of stroke pathology, affecting inflammatory responses or neuronal survival. We provide a comprehensive overview of how alterations in miR-181 expression influence stroke mechanisms and their potential as therapeutic targets.
Collapse
Affiliation(s)
- Cornelia Braicu
- Department of Genomics, MEDFUTURE Institute for Biomedical Research, Iuliu Hațieganu University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania; (C.B.); (E.I.)
| | - Fior Dafin Mureșanu
- RoNeuro Institute for Neurological Research and Diagnostics, 37 Mircea Eliade St., 400364 Cluj-Napoca, Romania;
- Department of Neuroscience, Iuliu Haţieganu University of Medicine and Pharmacy, 8 Victor Babes St., 400347 Cluj-Napoca, Romania
| | - Ekaterina Isachesku
- Department of Genomics, MEDFUTURE Institute for Biomedical Research, Iuliu Hațieganu University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania; (C.B.); (E.I.)
| | - Natan Bornstein
- Department of Neurology, Shaare Zedek Medical Center and Faculty of Medicine, Hebrew University of Jerusalem, Shmuel Bait 12, Jerusalem 9103102, Israel;
| | - Saša R. Filipović
- Institute of Psychology, Department of Psychology, Faculty of Philosophy, University of Belgrade, 11000 Belgrade, Serbia;
| | - Stefan Strilciuc
- Department of Genomics, MEDFUTURE Institute for Biomedical Research, Iuliu Hațieganu University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania; (C.B.); (E.I.)
| | - Adrian Pana
- Center for Health Outcomes & Evaluation, Splaiul Unirii 45, 030126 Bucharest, Romania;
| |
Collapse
|
7
|
Rouhi S, Ghasemi H, Alizadeh M, Movahedpour A, Vahedi F, Fattahi M, Aiiashi S, Khatami SH. miRNA-based electrochemical biosensors for ovarian cancer. Clin Chim Acta 2025; 564:119946. [PMID: 39214394 DOI: 10.1016/j.cca.2024.119946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 08/22/2024] [Accepted: 08/25/2024] [Indexed: 09/04/2024]
Abstract
Ovarian cancer, a prevalent and deadly cancer among women, presents a significant challenge for early detection due to its heterogeneous nature. MicroRNAs, short non-coding regulatory RNA fragments, play a role in various cellular processes. Aberrant expression of these microRNAs has been observed in the carcinogenesis-related processes of many cancer types. Numerous studies highlight the critical role of microRNAs in the initiation and progression of ovarian cancer. Given their clinical importance and predictive value, there has been considerable interest in developing simple, prompt, and sensitive miRNA biosensor strategies. Among these, electrochemical sensors have demonstrated advantageous characteristics such as simplicity, sensitivity, low cost, and scalability. These microRNA-based electrochemical biosensors are valuable tools for early detection and point-of-care applications. This article discusses the potential role of microRNAs in ovarian cancer and recent advances in the development of electrochemical biosensors for miRNA detection in ovarian cancer samples.
Collapse
Affiliation(s)
- Saber Rouhi
- Resident of Large Animal Internal Medicine, Department of Clinical Sciences, School of Veterinary Medicine, Shiraz University, Iran
| | | | - Mehdi Alizadeh
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ahmad Movahedpour
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Farzaneh Vahedi
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Mehdi Fattahi
- Institute of Research and Development, Duy Tan University, Da Nang, Viet Nam; School of Engineering & Technology, Duy Tan University, Da Nang, Viet Nam
| | - Saleh Aiiashi
- Abadan University of Medical Sciences, Abadan, Iran.
| | - Seyyed Hossein Khatami
- Student Research Committee, Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
8
|
Sessa F, Pomara C, Schembari F, Esposito M, Capasso E, Pesaresi M, Osuna E, Ulas E, Zammit C, Salerno M. MiRNA Dysregulation in Brain Injury: An In Silico Study to Clarify the Role of a MiRNA Set. Curr Neuropharmacol 2025; 23:209-231. [PMID: 39129166 PMCID: PMC11793054 DOI: 10.2174/1570159x22666240808124427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/14/2024] [Accepted: 05/19/2024] [Indexed: 08/13/2024] Open
Abstract
BACKGROUND The identification of specific circulating miRNAs has been proposed as a valuable tool for elucidating the pathophysiology of brain damage or injury and predicting patient outcomes. OBJECTIVE This study aims to apply several bioinformatic tools in order to clarify miRNA interactions with potential genes involved in brain injury, emphasizing the need of using a computational approach to determine the most likely correlations between miRNAs and target genes. Specifically, this study centers on elucidating the roles of miR-34b, miR-34c, miR-135a, miR-200c, and miR-451a. METHODS After a careful evaluation of different software available (analyzing the strengths and limitations), we applied three tools, one to perform an analysis of the validated targets (miRTarBase), and two to evaluate functional annotations (miRBase and TAM 2.0). RESULTS Research findings indicate elevated levels of miR-135a and miR-34b in patients with traumatic brain injury (TBI) within the first day post-injury, while miR-200c and miR-34c were found to be upregulated after 7 days. Moreover, miR-451a and miR-135a were found overexpressed in the serum, while miRNAs 34b, 34c, and 200c, had lower serum levels at baseline post brain injury. CONCLUSION This study emphasizes the use of computational methods in determining the most likely relationships between miRNAs and target genes by investigating several bioinformatic techniques to elucidate miRNA interactions with potential genes. Specifically, this study focuses on the functions of miR-34b, miR-34c, miR-135a, miR-200c, and miR-451a, providing an up-to-date overview and suggesting future research directions for identifying theranomiRNAs related to brain injury, both at the tissue and serum levels.
Collapse
Affiliation(s)
- Francesco Sessa
- Department of Medical, Surgical and Advanced Technologies “G.F. Ingrassia”, University of Catania, Catania, Italy
| | - Cristoforo Pomara
- Department of Medical, Surgical and Advanced Technologies “G.F. Ingrassia”, University of Catania, Catania, Italy
| | - Flavia Schembari
- Department of Medical, Surgical and Advanced Technologies “G.F. Ingrassia”, University of Catania, Catania, Italy
| | | | - Emanuele Capasso
- Department of Advanced Biomedical Science-Legal Medicine Section, University of Naples “Federico II”, 80131 Naples, Italy
| | - Mauro Pesaresi
- Section of Legal Medicine, Department of Biomedical Sciences and Public Health, Polytechnic University of Marche, Via Tronto, Ancona, 60126, Italy
| | - Eduardo Osuna
- Department of Forensic Medicine. University of Murcia. 30120 Murcia, Spain
| | - Efehan Ulas
- Faculty of Medicine, Department of Biostatistics and Medical Informatics, Kirklareli University, Kirklareli, Turkey
| | - Christian Zammit
- Department of Anatomy, Faculty of Medicine and Surgery, University of Malta, Msida 2080, Malta
| | - Monica Salerno
- Department of Medical, Surgical and Advanced Technologies “G.F. Ingrassia”, University of Catania, Catania, Italy
| |
Collapse
|
9
|
Wittmann J. Overview of the Different Classes of Small RNAs During B-Cell Development. Methods Mol Biol 2025; 2883:1-29. [PMID: 39702702 DOI: 10.1007/978-1-0716-4290-0_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
B lymphocytes (B cells) are a type of white blood cell that play an essential role in the adaptive immune response. They are derived from pluripotent hematopoietic stem cells and undergo several developmental stages in the bone marrow and secondary lymphoid organs to become effector cells. B cells can act as antigen-presenting cells, secrete cytokines, generate immunological memory as memory B cells, and produce and secrete high-affinity antibodies as plasma B cells.B-cell development occurs in discontinuous steps within specific organs and niche environments, progressing through checkpoints controlled by the relative levels of numerous transcription factors, cytokines, and surface receptors. These complex interactions of distinct developmental programs operate through balanced control mechanisms rather than simple "on/off" signals.Over the past two decades, much has been learned about short non-coding RNA (ncRNA) molecules that play a critical role in fine-tuning gene expression by targeting specific messenger RNAs (mRNAs) for degradation or translational repression. In the intricate orchestration of B-cell development, ncRNAs contribute to the delicate balance between proliferation, differentiation, and apoptosis by influencing key checkpoints in the maturation process.Therefore, in this chapter, I will review the role of different classes of small ncRNAs, including microRNAs, glycoRNAs, tRNA-derived fragments, and ribosomal RNA-derived fragments, in modulating gene expression at the post-transcriptional level and their contribution to the intricate regulatory network that controls B-cell maturation.
Collapse
Affiliation(s)
- Jürgen Wittmann
- Division of Molecular Immunology, Department of Internal Medicine III, Nikolaus-Fiebiger-Center of Molecular Medicine, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.
| |
Collapse
|
10
|
Li S, Xiao S, Situ Y. Apolipoprotein C1 and apoprotein E as potential therapeutic and prognostic targets for adrenocortical carcinoma. Cancer Biomark 2025; 42:18758592241308440. [PMID: 40109215 DOI: 10.1177/18758592241308440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
BackgroundApolipoprotein C1 (APOC1) and Apoprotein E (APOE) play important roles in lipid transport and metabolism. In recent years, APOC1 and APOE have been shown to play key roles in the occurrence and development of various cancers. However, the expression levels, gene regulatory networks, prognostic values, and target predictions of APOC1 and APOE in adrenocortical carcinoma (ACC) remain unclear.MethodsVarious bioinformatics analysis methods were used, including gene expression profiling interactive analysis, the University of Alabama at Birmingham cancer data analysis portal, biomarker exploration of solid tumors software, the BioPortal for Cancer Genomics, search tool for the retrieval of interacting genes/proteins, gene multiple association network integration algorithm, Metascape, transcriptional regulatory relationships unraveled by sentence-based text-mining, LinkedOmics, and genomics of drug sensitivity in cancer analysis.ResultsAPOC1 and APOE expression were strongly downregulated in patients with ACC. APOC1 and APOE expression levels were lower in male patients with ACC than those in female patients. Furthermore, APOC1 and APOE expression levels affected the prognosis of patients with ACC. The main functions of APOC1 and its altered neighboring genes (ANG) were organophosphate ester transport, rRNA processing, and positive regulation of cytokine production. Cytolysis, protein ubiquitination, and histone modification were the main functions of APOE and its ANGs. The transcription factor E2F1, tumor protein p53, miR-182, miR-493, Erb-B2 receptor tyrosine kinase 2, and cyclin dependent kinase 1 were key regulatory targets of APOC1, APOE, and the ANGs. APOC1 and APOE expression in patients with ACC were positively associated with immune cell infiltration. Furthermore, anti-programmed cell death protein 1 immunotherapy strongly downregulated the expression of APOC1 in patients with ACC. Both pilaralisib and elesclomol strongly inhibited SW13 cell growth.ConclusionsThis study preliminarily clarified that APOC1 and APOE might be potential therapeutic and prognostic targets for ACC, and identified new targets and treatment strategies for ACC.
Collapse
Affiliation(s)
- Shaojin Li
- Clinical laboratory, Shenzhen Longhua District Central Hospital, Shenzhen, China
| | - Shuixiu Xiao
- Department of Gynecology, Shenzhen Longhua District Central Hospital, Shenzhen, China
| | - Yongli Situ
- Department of Parasitology, Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
11
|
Gagliardi D, Rizzuti M, Masrori P, Saccomanno D, Del Bo R, Sali L, Meneri M, Scarcella S, Milone I, Hersmus N, Ratti A, Ticozzi N, Silani V, Poesen K, Van Damme P, Comi GP, Corti S, Verde F. Exploiting the role of CSF NfL, CHIT1, and miR-181b as potential diagnostic and prognostic biomarkers for ALS. J Neurol 2024; 271:7557-7571. [PMID: 39340541 PMCID: PMC11588799 DOI: 10.1007/s00415-024-12699-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 08/13/2024] [Accepted: 08/29/2024] [Indexed: 09/30/2024]
Abstract
Amyotrophic lateral sclerosis (ALS) is a rare neurodegenerative disorder characterized by relentless and progressive loss of motor neurons. A molecular diagnosis, supported by the identification of specific biomarkers, might promote the definition of multiple biological subtypes of ALS, improving patient stratification and providing prognostic information. Here, we investigated the levels of neurofilament light chain (NfL), chitotriosidase (CHIT1) and microRNA-181b (miR-181b) in the cerebrospinal fluid (CSF) of ALS subjects (N = 210) as well as neurologically healthy and neurological disease controls (N = 218, including N = 74 with other neurodegenerative diseases) from a large European multicentric cohort, evaluating their specific or combined utility as diagnostic and prognostic biomarkers. NfL, CHIT1 and miR-181b all showed significantly higher levels in ALS subjects compared to controls, with NfL showing the most effective diagnostic performance. Importantly, all three biomarkers were increased compared to neurodegenerative disease controls and, specifically, to patients with Alzheimer's disease (AD; N = 44), with NfL and CHIT1 being also higher in ALS than in alpha-synucleinopathies (N = 22). Notably, ALS patients displayed increased CHIT1 levels despite having, compared to controls, a higher prevalence of a polymorphism lowering CHIT1 expression. While no relationship was found between CSF miR-181b and clinical measures in ALS (disease duration, functional disability, and disease progression rate), CSF NfL was the best independent predictor of disease progression and survival. This study deepens our knowledge of ALS biomarkers, highlighting the relative specificity of CHIT1 for ALS among neurodegenerative diseases and appraising the potential diagnostic utility of CSF miR-181b.
Collapse
Affiliation(s)
- Delia Gagliardi
- Neurology Unit, Foundation IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Mafalda Rizzuti
- Neurology Unit, Foundation IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Pegah Masrori
- Department of Neurosciences, Laboratory of Neurobiology, University of Leuven (KU Leuven), Louvain, Belgium
- Neurology Department, University Hospitals Leuven, Louvain, Belgium
| | - Domenica Saccomanno
- Neurology Unit, Foundation IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Roberto Del Bo
- Department of Pathophysiology and Transplantation, Dino Ferrari Center, Università degli Studi di Milano, Milan, Italy
| | - Luca Sali
- Neurology Unit, Foundation IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Megi Meneri
- Neurology Unit, Foundation IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Simone Scarcella
- Department of Pathophysiology and Transplantation, Dino Ferrari Center, Università degli Studi di Milano, Milan, Italy
| | - Ilaria Milone
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Nicole Hersmus
- Neurology Department, University Hospitals Leuven, Louvain, Belgium
| | - Antonia Ratti
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan, Italy
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Milan, Italy
| | - Nicola Ticozzi
- Department of Pathophysiology and Transplantation, Dino Ferrari Center, Università degli Studi di Milano, Milan, Italy
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Vincenzo Silani
- Department of Pathophysiology and Transplantation, Dino Ferrari Center, Università degli Studi di Milano, Milan, Italy
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Koen Poesen
- Laboratory for Molecular Neurobiomarker Research, KU Leuven, Louvain, Belgium
- Department of Laboratory Medicine, KU Leuven University Hospitals Leuven Gasthuisberg Campus, Louvain, Belgium
| | - Philip Van Damme
- Department of Neurosciences, Laboratory of Neurobiology, University of Leuven (KU Leuven), Louvain, Belgium
- Neurology Department, University Hospitals Leuven, Louvain, Belgium
| | - Giacomo Pietro Comi
- Neurology Unit, Foundation IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation, Dino Ferrari Center, Università degli Studi di Milano, Milan, Italy
| | - Stefania Corti
- Department of Pathophysiology and Transplantation, Dino Ferrari Center, Università degli Studi di Milano, Milan, Italy
- Neuromuscular and Rare Diseases Unit, Department of Neuroscience, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Federico Verde
- Department of Pathophysiology and Transplantation, Dino Ferrari Center, Università degli Studi di Milano, Milan, Italy.
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan, Italy.
| |
Collapse
|
12
|
McIntyre G, Jackson Z, Colina J, Sekhar S, DiFeo A. miR-181a: regulatory roles, cancer-associated signaling pathway disruptions, and therapeutic potential. Expert Opin Ther Targets 2024; 28:1061-1091. [PMID: 39648331 PMCID: PMC12054384 DOI: 10.1080/14728222.2024.2433687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 11/20/2024] [Indexed: 12/10/2024]
Abstract
INTRODUCTION microRNA-181a (miR-181a) is a crucial post-transcriptional regulator of many mRNA transcripts and noncoding-RNAs, influencing cell proliferation, cancer cell stemness, apoptosis, and immune responses. Its abnormal expression is well-characterized in numerous cancers, establishing it as a significant genomic vulnerability and biomarker in cancer research. AREAS COVERED Here, we summarize miR-181a's correlation with poor patient outcomes across numerous cancers and the mechanisms governing miR-181a's activity and processing. We comprehensively describe miR-181a's involvement in multiple regulatory cancer signaling pathways, cellular processes, and the tumor microenvironment. We also discuss current therapeutic approaches to targeting miR-181a, highlighting their limitations and future potential. EXPERT OPINION miR-181a is a clinically relevant pan-cancer biomarker with potential as a therapeutic target. Its regulatory control of tumorigenic signaling pathways and immune responses positions it as a promising candidate for personalized treatments. The success of miR-181a as a target relies on the development of specific therapeutics platforms. Future research on miR-181a's role in the tumor microenvironment and the RNA binding proteins that regulate its stability will help uncover new techniques to targeting miR-181a. Further research into miR-181a serum levels in patients undergoing therapy will help to better stratify patients and enhance therapeutic success.
Collapse
Affiliation(s)
- Grace McIntyre
- Department of Pathology, Rackham Graduate School, University of Michigan, Ann Arbor, MI, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | - Zoe Jackson
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Jose Colina
- Department of Pathology, Rackham Graduate School, University of Michigan, Ann Arbor, MI, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | - Sreeja Sekhar
- Department of Pathology, Rackham Graduate School, University of Michigan, Ann Arbor, MI, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | - Analisa DiFeo
- Department of Pathology, Rackham Graduate School, University of Michigan, Ann Arbor, MI, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
13
|
Galeano D, Imrat, Haltom J, Andolino C, Yousey A, Zaksas V, Das S, Baylin SB, Wallace DC, Slack FJ, Enguita FJ, Wurtele ES, Teegarden D, Meller R, Cifuentes D, Beheshti A. sChemNET: a deep learning framework for predicting small molecules targeting microRNA function. Nat Commun 2024; 15:9149. [PMID: 39443444 PMCID: PMC11500171 DOI: 10.1038/s41467-024-49813-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 06/14/2024] [Indexed: 10/25/2024] Open
Abstract
MicroRNAs (miRNAs) have been implicated in human disorders, from cancers to infectious diseases. Targeting miRNAs or their target genes with small molecules offers opportunities to modulate dysregulated cellular processes linked to diseases. Yet, predicting small molecules associated with miRNAs remains challenging due to the small size of small molecule-miRNA datasets. Herein, we develop a generalized deep learning framework, sChemNET, for predicting small molecules affecting miRNA bioactivity based on chemical structure and sequence information. sChemNET overcomes the limitation of sparse chemical information by an objective function that allows the neural network to learn chemical space from a large body of chemical structures yet unknown to affect miRNAs. We experimentally validated small molecules predicted to act on miR-451 or its targets and tested their role in erythrocyte maturation during zebrafish embryogenesis. We also tested small molecules targeting the miR-181 network and other miRNAs using in-vitro and in-vivo experiments. We demonstrate that our machine-learning framework can predict bioactive small molecules targeting miRNAs or their targets in humans and other mammalian organisms.
Collapse
Affiliation(s)
- Diego Galeano
- Department of Electronics and Mechatronics Engineering, Facultad de Ingeniería, Universidad Nacional de Asunción - FIUNA, Luque, Paraguay.
- COVID-19 International Research Team, Medford, MA, USA.
| | - Imrat
- Department of Biochemistry and Cell Biology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Jeffrey Haltom
- COVID-19 International Research Team, Medford, MA, USA
- Center for Mitochondrial and Epigenomic Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Chaylen Andolino
- Department of Nutrition Science, Purdue University, Indiana, USA
- Purdue Institute for Cancer Research, Purdue University, Indiana, USA
| | - Aliza Yousey
- COVID-19 International Research Team, Medford, MA, USA
- Neuroscience Institute, Department of Neurobiology/ Department of Pharmacology and Toxicology, Morehouse School of Medicine, Atlanta, GA, USA
| | - Victoria Zaksas
- COVID-19 International Research Team, Medford, MA, USA
- Center for Translational Data Science, University of Chicago, Chicago, IL, USA
- Clever Research Lab, Springfield, IL, USA
| | - Saswati Das
- COVID-19 International Research Team, Medford, MA, USA
- Atal Bihari Vajpayee Institute of Medical Sciences and Dr Ram Manohar Lohia Hospital, New Delhi, India
| | - Stephen B Baylin
- COVID-19 International Research Team, Medford, MA, USA
- Sidney Kimmel Comprehensive Cancer Center and Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD, USA
- The Van Andel Institute, Grand Rapids, MI, USA
| | - Douglas C Wallace
- COVID-19 International Research Team, Medford, MA, USA
- Center for Mitochondrial and Epigenomic Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Frank J Slack
- Harvard Medical School Initiative for RNA Medicine, Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Francisco J Enguita
- COVID-19 International Research Team, Medford, MA, USA
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Eve Syrkin Wurtele
- Bioinformatics and Computational Biology Program, Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA, USA
| | - Dorothy Teegarden
- Department of Nutrition Science, Purdue University, Indiana, USA
- Purdue Institute for Cancer Research, Purdue University, Indiana, USA
| | - Robert Meller
- COVID-19 International Research Team, Medford, MA, USA
- Neuroscience Institute, Department of Neurobiology/ Department of Pharmacology and Toxicology, Morehouse School of Medicine, Atlanta, GA, USA
| | - Daniel Cifuentes
- Department of Biochemistry and Cell Biology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Department of Virology, Immunology & Microbiology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Afshin Beheshti
- COVID-19 International Research Team, Medford, MA, USA
- Blue Marble Space Institute of Science, NASA Ames Research Center, Moffett Field, CA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- McGowan Institute for Regenerative Medicine - Center for Space Biomedicine, Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
14
|
Zhou M, Yin X, Zhang L, Cui Z, Jiang X, Ji Q, Ma S, Chen C. RNA-Binding Protein Lin28B Promotes Chronic Myeloid Leukemia Blast Crisis by Transcriptionally Upregulating miR-181d. Mol Cancer Res 2024; 22:932-942. [PMID: 38847604 DOI: 10.1158/1541-7786.mcr-23-0928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 04/05/2024] [Accepted: 06/04/2024] [Indexed: 10/03/2024]
Abstract
The blast crisis (BC) of chronic myeloid leukemia (CML) has poor efficacy against existing treatments and extremely short survival. However, the molecular mechanism of CML-chronic phase (CP) transformation to CML-BC is not yet fully understood. Here, we show that Lin28B, an RNA-binding protein, acted as an activator enhancing the transformation to CML-BC by mediating excessive cell proliferation. The level of Lin28B expression was apparently elevated in patients with CML-BC compared with newly diagnosed patients with CML-CP. The overexpression of Lin28B promoted the proliferation of leukemia cells. Mechanistically, we identified Lin28B as a DNA-binding protein by binding to the promoter region of miR-181d and upregulating its expression, which inhibited the expression of programmed cell death 4 (PDCD4) by binding to the PDCD4 3'UTR region, thereby enhancing the proliferation of CML cells. Overall, the "Lin28B-miR-181d-PDCD4" regulatory axis promoted CML blast crisis. Implications: Our findings highlight the oncogenic role of Lin28B in CML blast crisis, acting as a DNA-binding protein that transcriptionally upregulates miR-181d expression.
Collapse
MESH Headings
- Humans
- RNA-Binding Proteins/metabolism
- RNA-Binding Proteins/genetics
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Blast Crisis/genetics
- Blast Crisis/pathology
- Blast Crisis/metabolism
- Up-Regulation
- Cell Proliferation/genetics
- Mice
- Cell Line, Tumor
- Animals
- Apoptosis Regulatory Proteins/genetics
- Apoptosis Regulatory Proteins/metabolism
- Gene Expression Regulation, Leukemic
Collapse
Affiliation(s)
- Minran Zhou
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, P.R. China
| | - Xiaolin Yin
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, P.R. China
| | - Lu Zhang
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, P.R. China
| | - Zelong Cui
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, P.R. China
| | - Xinwen Jiang
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, P.R. China
| | - Qingli Ji
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, P.R. China
| | - Sai Ma
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, P.R. China
| | - Chunyan Chen
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, P.R. China
| |
Collapse
|
15
|
Brillante S, Volpe M, Indrieri A. Advances in MicroRNA Therapeutics: From Preclinical to Clinical Studies. Hum Gene Ther 2024; 35:628-648. [PMID: 39150011 DOI: 10.1089/hum.2024.113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2024] Open
Abstract
MicroRNAs (miRNAs) are crucial regulators of gene expression involved in various pathophysiological processes. Their ability to modulate multiple pathways simultaneously and their involvement in numerous diseases make miRNAs attractive tools and targets in therapeutic development. Significant efforts have been made to advance miRNA research in the preclinical stage, attracting considerable investment from biopharmaceutical companies. Consequently, an increasing number of miRNA-based therapies have entered clinical trials for both diagnostic and therapeutic applications across a wide range of diseases. While individual miRNAs can regulate a broad array of mRNA targets, this also complicates the management of adverse effects seen in clinical trials. Several candidates have been discontinued due to toxicity concerns, underscoring the need for comprehensive risk assessments of miRNA therapeutics. Despite no miRNA-based strategies have yet received approval from regulatory agencies, prominent progress in the miRNA modulation approaches and in the nano-delivery systems have been made in the last decade, leading to the development of novel safe and well-tolerated miRNA drug candidates. In this review, we present recent advances in the development of miRNA therapeutics currently in preclinical or clinical stages for treating both rare genetic disorders and multifactorial common conditions. We also address the challenges related to the safety and targeted delivery of miRNA therapies, as well as the identification of the most effective therapeutic candidates in preclinical and clinical trials.
Collapse
Affiliation(s)
- Simona Brillante
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
- Institute for Genetic and Biomedical Research (IRGB), National Research Council (CNR), Milan, Italy
| | - Mariagrazia Volpe
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
| | - Alessia Indrieri
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
- Institute for Genetic and Biomedical Research (IRGB), National Research Council (CNR), Milan, Italy
| |
Collapse
|
16
|
Mesaros O, Veres S, Onciul M, Matei E, Jimbu L, Neaga A, Zdrenghea M. Dysregulated MicroRNAs in Chronic Lymphocytic Leukemia. Cureus 2024; 16:e68770. [PMID: 39376808 PMCID: PMC11456419 DOI: 10.7759/cureus.68770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/06/2024] [Indexed: 10/09/2024] Open
Abstract
MiRNAs are a class of non-coding RNAs acting as gene expression regulators by modulating the lifespan of messenger RNA. Commonly referred to as the most frequent leukemia in the Western world, chronic lymphocytic leukemia (CLL) is a lymphoproliferative malignancy characterized by clonal expansion of CD19, CD23, and CD5-positive mature B-cells. While this pathology is regarded as less aggressive and has a variety of treatment options, the cause of its clinical heterogeneity is not yet understood. Moreover, the prognostic markers and treatment recommendations based on predictive markers are limited. This review aims to investigate some miRNAs that are dysregulated and possibly involved in CLL pathogenesis as a starting point for the proposal of new prognostic and predictive markers and, as more agents targeting miRNA expression become available, their potential role as therapeutic targets.
Collapse
Affiliation(s)
- Oana Mesaros
- Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, ROU
- Hematology, Ion Chiricuta Oncology Institute, Cluj-Napoca, ROU
| | - Stefana Veres
- Otolaryngology, Policlinica Grigorescu, Cluj-Napoca, ROU
| | - Madalina Onciul
- Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, ROU
| | - Emilia Matei
- Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, ROU
- Pathology, Ion Chiricuta Oncology Institute, Cluj-Napoca, ROU
| | - Laura Jimbu
- Hematology, Oncology Institute "Prof. Dr. Ion Chiricuta", Cluj-Napoca, ROU
- Hematology, Ion Chiricuta Oncology Institute, Cluj-Napoca, ROU
| | - Alexandra Neaga
- Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, ROU
| | - Mihnea Zdrenghea
- Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, ROU
| |
Collapse
|
17
|
Toropko M, Chuvpilo S, Karabelsky A. miRNA-Mediated Mechanisms in the Generation of Effective and Safe Oncolytic Viruses. Pharmaceutics 2024; 16:986. [PMID: 39204331 PMCID: PMC11360794 DOI: 10.3390/pharmaceutics16080986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 07/19/2024] [Accepted: 07/22/2024] [Indexed: 09/04/2024] Open
Abstract
MicroRNAs (miRNAs) are short non-coding RNAs that regulate gene expression by inhibiting the translation of target transcripts. The expression profiles of miRNAs vary in different tissues and change with the development of diseases, including cancer. This feature has begun to be used for the modification of oncolytic viruses (OVs) in order to increase their selectivity and efficacy. OVs represent a relatively new class of anticancer drugs; they are designed to replicate in cancer tumors and destroy them. These can be natural viruses that can replicate within cancer tumor cells, or recombinant viruses created in laboratories. There are some concerns regarding OVs' toxicity, due to their ability to partially replicate in healthy tissues. In addition, lytic and immunological responses upon OV therapy are not always sufficient, so various OV editing methods are used. This review discusses the latest results of preclinical and clinical studies of OVs, modifications of which are associated with the miRNA-mediated mechanism of gene silencing.
Collapse
Affiliation(s)
- Mariia Toropko
- Gene Therapy Department, Sirius University of Science and Technology, Olympic Avenue, 1, 354340 Sochi, Russia; (S.C.); (A.K.)
| | | | | |
Collapse
|
18
|
Koralewska N, Corradi E, Milewski MC, Masante L, Szczepanska A, Kierzek R, Figlerowicz M, Baudet ML, Kurzynska-Kokorniak A. Short 2'-O-methyl/LNA oligomers as highly-selective inhibitors of miRNA production in vitro and in vivo. Nucleic Acids Res 2024; 52:5804-5824. [PMID: 38676942 PMCID: PMC11162791 DOI: 10.1093/nar/gkae284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 03/27/2024] [Accepted: 04/04/2024] [Indexed: 04/29/2024] Open
Abstract
MicroRNAs (miRNAs) that share identical or near-identical sequences constitute miRNA families and are predicted to act redundantly. Yet recent evidence suggests that members of the same miRNA family with high sequence similarity might have different roles and that this functional divergence might be rooted in their precursors' sequence. Current knock-down strategies such as antisense oligonucleotides (ASOs) or miRNA sponges cannot distinguish between identical or near identical miRNAs originating from different precursors to allow exploring unique functions of these miRNAs. We here develop a novel strategy based on short 2'-OMe/LNA-modified oligonucleotides to selectively target specific precursor molecules and ablate the production of individual members of miRNA families in vitro and in vivo. Leveraging the highly conserved Xenopus miR-181a family as proof-of-concept, we demonstrate that 2'-OMe/LNA-ASOs targeting the apical region of pre-miRNAs achieve precursor-selective inhibition of mature miRNA-5p production. Furthermore, we extend the applicability of our approach to the human miR-16 family, illustrating its universality in targeting precursors generating identical miRNAs. Overall, our strategy enables efficient manipulation of miRNA expression, offering a powerful tool to dissect the functions of identical or highly similar miRNAs derived from different precursors within miRNA families.
Collapse
Affiliation(s)
- Natalia Koralewska
- Department of Molecular and Systems Biology, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan 61-704, Poland
| | - Eloina Corradi
- Department of Cellular, Computational and Integrative Biology – CIBIO, University of Trento, Trento 38123, Italy
| | - Marek C Milewski
- Department of Molecular and Systems Biology, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan 61-704, Poland
| | - Linda Masante
- Department of Cellular, Computational and Integrative Biology – CIBIO, University of Trento, Trento 38123, Italy
| | - Agnieszka Szczepanska
- Department of Ribonucleoprotein Biochemistry, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan 61-704, Poland
| | - Ryszard Kierzek
- Department of Structural Chemistry and Biology of Nucleic Acids, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan 61-704, Poland
| | - Marek Figlerowicz
- Department of Molecular and Systems Biology, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan 61-704, Poland
| | - Marie-Laure Baudet
- Department of Cellular, Computational and Integrative Biology – CIBIO, University of Trento, Trento 38123, Italy
| | - Anna Kurzynska-Kokorniak
- Department of Ribonucleoprotein Biochemistry, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan 61-704, Poland
| |
Collapse
|
19
|
André M, Dinvaut S, Castellani V, Falk J. 3D exploration of gene expression in chicken embryos through combined RNA fluorescence in situ hybridization, immunofluorescence, and clearing. BMC Biol 2024; 22:131. [PMID: 38831263 PMCID: PMC11149291 DOI: 10.1186/s12915-024-01922-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 05/16/2024] [Indexed: 06/05/2024] Open
Abstract
BACKGROUND Fine characterization of gene expression patterns is crucial to understand many aspects of embryonic development. The chicken embryo is a well-established and valuable animal model for developmental biology. The period spanning from the third to sixth embryonic days (E3 to E6) is critical for many organ developments. Hybridization chain reaction RNA fluorescent in situ hybridization (HCR RNA-FISH) enables multiplex RNA detection in thick samples including embryos of various animal models. However, its use is limited by tissue opacity. RESULTS We optimized HCR RNA-FISH protocol to efficiently label RNAs in whole mount chicken embryos from E3.5 to E5.5 and adapted it to ethyl cinnamate (ECi) tissue clearing. We show that light sheet imaging of HCR RNA-FISH after ECi clearing allows RNA expression analysis within embryonic tissues with good sensitivity and spatial resolution. Finally, whole mount immunofluorescence can be performed after HCR RNA-FISH enabling as exemplified to assay complex spatial relationships between axons and their environment or to monitor GFP electroporated neurons. CONCLUSIONS We could extend the use of HCR RNA-FISH to older chick embryos by optimizing HCR RNA-FISH and combining it with tissue clearing and 3D imaging. The integration of immunostaining makes possible to combine gene expression with classical cell markers, to correlate expressions with morphological differentiation and to depict gene expressions in gain or loss of function contexts. Altogether, this combined procedure further extends the potential of HCR RNA-FISH technique for chicken embryology.
Collapse
Affiliation(s)
- Maëlys André
- MeLiS, CNRS UMR 5284 - INSERM U1314, Université Claude Bernard Lyon 1, 8 avenue Rockefeller, 69008, Lyon, France.
| | - Sarah Dinvaut
- MeLiS, CNRS UMR 5284 - INSERM U1314, Université Claude Bernard Lyon 1, 8 avenue Rockefeller, 69008, Lyon, France
| | - Valérie Castellani
- MeLiS, CNRS UMR 5284 - INSERM U1314, Université Claude Bernard Lyon 1, 8 avenue Rockefeller, 69008, Lyon, France
| | - Julien Falk
- MeLiS, CNRS UMR 5284 - INSERM U1314, Université Claude Bernard Lyon 1, 8 avenue Rockefeller, 69008, Lyon, France.
| |
Collapse
|
20
|
Mangiapane G, Notarangelo M, Canarutto G, Fabbiano F, Dalla E, Degrassi M, Antoniali G, Gualandi N, De Sanctis V, Piazza S, D'Agostino VG, Tell G. The DNA-repair protein APE1 participates with hnRNPA2B1 to motif-enriched and prognostic miRNA secretion. Oncogene 2024; 43:1861-1876. [PMID: 38664500 DOI: 10.1038/s41388-024-03039-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 04/12/2024] [Accepted: 04/15/2024] [Indexed: 06/12/2024]
Abstract
The base excision repair (BER) Apurinic/apyrimidinic endonuclease 1 (APE1) enzyme is endowed with several non-repair activities including miRNAs processing. APE1 is overexpressed in many cancers but its causal role in the tumorigenic processes is largely unknown. We recently described that APE1 can be actively secreted by mammalian cells through exosomes. However, APE1 role in EVs or exosomes is still unknown, especially regarding a putative regulatory function on vesicular small non-coding RNAs. Through dedicated transcriptomic analysis on cellular and vesicular small RNAs of different APE1-depleted cancer cell lines, we found that miRNAs loading into EVs is a regulated process, dependent on APE1, distinctly conveying RNA subsets into vesicles. We identified APE1-dependent secreted miRNAs characterized by enriched sequence motifs and possible binding sites for APE1. In 33 out of 34 APE1-dependent-miRNA precursors, we surprisingly found EXO-motifs and proved that APE1 cooperates with hnRNPA2B1 for the EV-sorting of a subset of miRNAs, including miR-1246, through direct binding to GGAG stretches. Using TCGA-datasets, we showed that these miRNAs identify a signature with high prognostic significance in cancer. In summary, we provided evidence that the ubiquitous DNA-repair enzyme APE1 is part of the EV protein cargo with a novel post-transcriptional role for this ubiquitous DNA-repair enzyme that could explain its role in cancer progression. These findings could open new translational perspectives in cancer biology.
Collapse
Affiliation(s)
- Giovanna Mangiapane
- Laboratory of Molecular Biology and DNA repair, Department of Medicine (DMED), University of Udine, Udine, Italy
| | - Michela Notarangelo
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
- Yale University School of Medicine, New Haven, CT, USA
| | - Giulia Canarutto
- Computational Biology, International Centre for Genetic Engineering and Biotechnology, ICGEB, Trieste, Italy
- Department of Life Sciences, University of Trieste, 34127, Trieste, Italy
| | - Fabrizio Fabbiano
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Emiliano Dalla
- Laboratory of Molecular Biology and DNA repair, Department of Medicine (DMED), University of Udine, Udine, Italy
| | - Monica Degrassi
- Laboratory of Molecular Biology and DNA repair, Department of Medicine (DMED), University of Udine, Udine, Italy
| | - Giulia Antoniali
- Laboratory of Molecular Biology and DNA repair, Department of Medicine (DMED), University of Udine, Udine, Italy
| | - Nicolò Gualandi
- Laboratory of Molecular Biology and DNA repair, Department of Medicine (DMED), University of Udine, Udine, Italy
| | - Veronica De Sanctis
- Next Generation Sequencing Facility, Department CIBIO, University of Trento, Trento, Italy
| | - Silvano Piazza
- Computational Biology, International Centre for Genetic Engineering and Biotechnology, ICGEB, Trieste, Italy.
- Department of Life Sciences, University of Trieste, 34127, Trieste, Italy.
| | - Vito Giuseppe D'Agostino
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy.
| | - Gianluca Tell
- Laboratory of Molecular Biology and DNA repair, Department of Medicine (DMED), University of Udine, Udine, Italy.
| |
Collapse
|
21
|
Almohaimeed HM, Almars AI, Alsulaimani F, Basri AM, Althobaiti NA, Albalaw AE, Alsharif I, Al Abdulmonem W, Hershan AA, Soliman MH. Investigating the potential neuroprotective benefits of taurine and Dihydrotestosterone and Hydroxyprogesterone levels in SH-SY5Y cells. Front Aging Neurosci 2024; 16:1379431. [PMID: 38867846 PMCID: PMC11168113 DOI: 10.3389/fnagi.2024.1379431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 04/05/2024] [Indexed: 06/14/2024] Open
Abstract
Background Taurine, an amino acid abundantly found in the brain and other tissues, has potential neuroprotective properties. Alzheimer's disease (AD) is a commonly occurring type of dementia, which becomes more prevalent as people age. This experiment aimed to assess the neuroprotective effects of taurine on SH-SY5Y cells by examining its impact on Dihydrotestosterone (DHT), Dihydroprogesterone (DHP), as well as the expression of miRNA-21 and miRNA-181. Methods The effects of various taurine concentrations (0.25, and 0.75 mg/mL), and LPS (0.1, and 12 mg/mL) on the SH-SY5Y cell line were assessed using the MTT assay. The levels of DHT and DHP were quantified using an ELISA kit. Additionally, the expression levels of miRNA-181 and miRNA-21 genes were examined through Real-Time PCR analysis. Results The results of the MTT assay showed that treatment with taurine at concentrations of 0.25, and 0.75 mg/mL reduces the toxicity of LPS in SH-SY5Y cells. ELISA results indicated that taurine at a concentration of 0.25, and 0.75 mg/mL significantly elevated DHT and DHP hormones in the SH-SY5Y cell line compared to the untreated group (p < 0.01). The expression levels of IL-1β and IL-6 were decreased under the influence of LPS in SH-SY5Y cells after taurine treatment (p < 0.01). Gene expression analysis revealed that increasing taurine concentration resulted in heightened expression of miRNA-181 and miRNA-21, with the most significant increase observed at a concentration of 0.75 mg/mL (p < 0.001). Conclusion Our study findings revealed that the expression of miRNA-181 and miRNA-21 can be enhanced by taurine. Consequently, exploring the targeting of taurine, miRNA-181, and miRNA-21 or considering hormone therapy may offer potential therapeutic approaches for treating AD or alleviating severe symptoms. Nonetheless, in order to fully comprehend the precise mechanisms involved, additional research is required.
Collapse
Affiliation(s)
- Hailah M. Almohaimeed
- Department of Basic Science, College of Medicine, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Amany I. Almars
- Department of Medial Laboratory Sciences, Faculty of Applied Medical Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Fayez Alsulaimani
- Department of Medial Laboratory Sciences, Faculty of Applied Medical Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ahmed M. Basri
- Department of Medial Laboratory Sciences, Faculty of Applied Medical Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Norah A. Althobaiti
- Biology Department, College of Science and Humanities Al Quwaiiyah, Shaqra University, Al Quwaiiyah, Saudi Arabia
| | - Aishah E. Albalaw
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
| | - Ifat Alsharif
- Department of Biology, Jamoum University College, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Waleed Al Abdulmonem
- Department of Pathology, College of Medicine, Qassim University, Buraidah, Saudi Arabia
| | - Almonther Abdullah Hershan
- Department of Medical Microbiology and Parasitology, College of Medicine, The University of Jeddah, Jeddah, Saudi Arabia
| | - Mona H. Soliman
- Botany and Microbiology Department, Faculty of Science, Cairo University, Giza, Egypt
- Biology Department, Faculty of Science, Taibah University, Yanbu, Saudi Arabia
| |
Collapse
|
22
|
Niu M, Li M, Fan X, Chen F, Wang M, Liu Q, Liang B, Gan S, Mo Z, Gao J. miR-181a/b-5p negatively regulates keratinocytes proliferation by targeting MELK. Arch Dermatol Res 2024; 316:236. [PMID: 38795158 DOI: 10.1007/s00403-024-03081-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 11/10/2023] [Accepted: 04/26/2024] [Indexed: 05/27/2024]
Abstract
Accumulating evidence indicates that microRNAs (miRNAs) have a vital effect on the pathogenesis of psoriasis. This study is conducted to investigate the potential involvement of miR-181a-5p and miR-181b-5p in the proliferation of HaCaT keratinocytes. Cell viability and proliferation were evaluated respectively in this study using the CCK-8 and the 5-ethynyl-2'-deoxyuridine (EdU) assays. The expression of Maternal Embryonic Leucine Zipper Kinase (MELK) and Keratin 16 (KRT16) mRNA and protein in tissues and cells was assessed using quantitative real-time polymerase chain reaction (qRT-PCR) and Western blotting. The Luciferase reporter system analyzes the connection between miR-181a-5p/miR-181b-5p and MELK. The results showed that miR-181a/b-5p expression was downregulated in the psoriasis lesions and negatively regulated the proliferation of keratinocytes. MELK was directly targeted by miR-181a-5p/miR-181b-5p. In addition, HaCaT keratinocytes proliferation was inhibited by knockdown of MELK while promoted dramatically by MELK overexpression. Notably, miR-181a/b-5p mimics could attenuate the effects of MELK in keratinocytes. In conclusion, our research findings suggested miR-181a-5p and miR-181b-5p negatively regulate keratinocyte proliferation by targeting MELK, providing potential diagnostic biomarkers and therapeutic targets for psoriasis.
Collapse
Affiliation(s)
- Mutian Niu
- School of Intelligent Medicine and Biotechnology, Guilin Medical University, Guilin, 541199, Guangxi, P. R. China
- Key Laboratory of Biochemistry and Molecular Biology, Education Department of Guangxi Zhuang Autonomous Region, Guilin Medical University, Guilin, 541199, Guangxi, P. R. China
| | - Mingzhao Li
- School of Intelligent Medicine and Biotechnology, Guilin Medical University, Guilin, 541199, Guangxi, P. R. China
- Key Laboratory of Biochemistry and Molecular Biology, Education Department of Guangxi Zhuang Autonomous Region, Guilin Medical University, Guilin, 541199, Guangxi, P. R. China
| | - Xiaomei Fan
- School of Intelligent Medicine and Biotechnology, Guilin Medical University, Guilin, 541199, Guangxi, P. R. China
- Key Laboratory of Biochemistry and Molecular Biology, Education Department of Guangxi Zhuang Autonomous Region, Guilin Medical University, Guilin, 541199, Guangxi, P. R. China
| | - Fangru Chen
- Department of Dermatology, Affiliated Hospital of Guilin Medical University, Guilin, 541001, Guangxi, P. R. China
| | - Mengjiao Wang
- Department of Dermatology, The Second Affiliated Hospital of Guilin Medical University, Guilin, 541199, Guangxi, P. R. China
| | - Qingbo Liu
- School of Intelligent Medicine and Biotechnology, Guilin Medical University, Guilin, 541199, Guangxi, P. R. China
| | - Bin Liang
- School of Intelligent Medicine and Biotechnology, Guilin Medical University, Guilin, 541199, Guangxi, P. R. China
| | - Shaoqin Gan
- School of Intelligent Medicine and Biotechnology, Guilin Medical University, Guilin, 541199, Guangxi, P. R. China
- Key Laboratory of Biochemistry and Molecular Biology, Education Department of Guangxi Zhuang Autonomous Region, Guilin Medical University, Guilin, 541199, Guangxi, P. R. China
| | - Zhijing Mo
- School of Intelligent Medicine and Biotechnology, Guilin Medical University, Guilin, 541199, Guangxi, P. R. China.
- Key Laboratory of Biochemistry and Molecular Biology, Education Department of Guangxi Zhuang Autonomous Region, Guilin Medical University, Guilin, 541199, Guangxi, P. R. China.
| | - Jintao Gao
- School of Intelligent Medicine and Biotechnology, Guilin Medical University, Guilin, 541199, Guangxi, P. R. China.
- Key Laboratory of Biochemistry and Molecular Biology, Education Department of Guangxi Zhuang Autonomous Region, Guilin Medical University, Guilin, 541199, Guangxi, P. R. China.
| |
Collapse
|
23
|
Costa BLD, Quinn PMJ, Wu WH, Liu S, Nolan ND, Demirkol A, Tsai YT, Caruso SM, Cabral T, Wang NK, Tsang SH. Targeting miR-181a/b in retinitis pigmentosa: implications for disease progression and therapy. Cell Biosci 2024; 14:64. [PMID: 38773556 PMCID: PMC11110387 DOI: 10.1186/s13578-024-01243-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 04/30/2024] [Indexed: 05/24/2024] Open
Abstract
BACKGROUND Retinitis pigmentosa (RP) is a genetically heterogeneous group of degenerative disorders causing progressive vision loss due to photoreceptor death. RP affects other retinal cells, including the retinal pigment epithelium (RPE). MicroRNAs (miRs) are implicated in RP pathogenesis, and downregulating miR-181a/b has shown therapeutic benefit in RP mouse models by improving mitochondrial function. This study investigates the expression profile of miR-181a/b in RPE cells and the neural retina during RP disease progression. We also evaluate how miR-181a/b downregulation, by knocking out miR-181a/b-1 cluster in RPE cells, confers therapeutic efficacy in an RP mouse model and explore the mechanisms underlying this process. RESULTS Our findings reveal distinct expression profiles, with downregulated miR-181a/b in RPE cells suggesting a protective response and upregulated miR-181a/b in the neural retina indicating a role in disease progression. We found that miR-181a/b-2, encoded in a separate genomic cluster, compensates for miR-181a/b-1 ablation in RPE cells at late time points. The transient downregulation of miR-181a/b in RPE cells at post-natal week 6 (PW6) led to improved RPE morphology, retarded photoreceptor degeneration and decreased RPE aerobic glycolysis. CONCLUSIONS Our study elucidates the underlying mechanisms associated with the therapeutic modulation of miR-181a/b, providing insights into the metabolic processes linked to its RPE-specific downregulation. Our data further highlights the impact of compensatory regulation between miR clusters with implications for the development of miR-based therapeutics.
Collapse
Affiliation(s)
- Bruna Lopes da Costa
- Jonas Children's Vision Care (JCVC) and Barbara & Donald Jonas Stem Cell Laboratory, New York-Presbyterian Hospital, New York, NY, USA
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Peter M J Quinn
- Department of Ophthalmology, Columbia University Irving Medical Center, New York, NY, USA
| | - Wen-Hsuan Wu
- Jonas Children's Vision Care (JCVC) and Barbara & Donald Jonas Stem Cell Laboratory, New York-Presbyterian Hospital, New York, NY, USA
- Department of Ophthalmology, Columbia University Irving Medical Center, New York, NY, USA
| | - Siyuan Liu
- Jonas Children's Vision Care (JCVC) and Barbara & Donald Jonas Stem Cell Laboratory, New York-Presbyterian Hospital, New York, NY, USA
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Nicholas D Nolan
- Jonas Children's Vision Care (JCVC) and Barbara & Donald Jonas Stem Cell Laboratory, New York-Presbyterian Hospital, New York, NY, USA
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Aykut Demirkol
- Jonas Children's Vision Care (JCVC) and Barbara & Donald Jonas Stem Cell Laboratory, New York-Presbyterian Hospital, New York, NY, USA
- Department of Ophthalmology, Columbia University Irving Medical Center, New York, NY, USA
| | - Yi-Ting Tsai
- Jonas Children's Vision Care (JCVC) and Barbara & Donald Jonas Stem Cell Laboratory, New York-Presbyterian Hospital, New York, NY, USA
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Salvatore Marco Caruso
- Jonas Children's Vision Care (JCVC) and Barbara & Donald Jonas Stem Cell Laboratory, New York-Presbyterian Hospital, New York, NY, USA
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Thiago Cabral
- Department of Specialized Medicine, CCS and Vision Center Unit, Ophthalmology EBSERH, HUCAM/CCS, UFES-Federal University of Espírito Santo (UFES), Vitória, Brazil
- Department of Ophthalmology, Federal University of Sao Paulo (UNIFESP), São Paulo, Brazil
| | - Nan-Kai Wang
- Jonas Children's Vision Care (JCVC) and Barbara & Donald Jonas Stem Cell Laboratory, New York-Presbyterian Hospital, New York, NY, USA
- Department of Ophthalmology, Columbia University Irving Medical Center, New York, NY, USA
| | - Stephen H Tsang
- Jonas Children's Vision Care (JCVC) and Barbara & Donald Jonas Stem Cell Laboratory, New York-Presbyterian Hospital, New York, NY, USA.
- Department of Biomedical Engineering, Columbia University, New York, NY, USA.
- Department of Ophthalmology, Columbia University Irving Medical Center, New York, NY, USA.
- Department of Pathology & Cell Biology, Columbia University Irving Medical Center, New York, NY, USA.
- Columbia Stem Cell Initiative, Institute of Human Nutrition ,Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA.
- Columbia University Irving Medical Center, Hammer Health Sciences Center 205b, 701 West 168th Street, New York, NY, 10032, USA.
| |
Collapse
|
24
|
Lv B, He S, Li P, Jiang S, Li D, Lin J, Feinberg MW. MicroRNA-181 in cardiovascular disease: Emerging biomarkers and therapeutic targets. FASEB J 2024; 38:e23635. [PMID: 38690685 PMCID: PMC11068116 DOI: 10.1096/fj.202400306r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/02/2024] [Accepted: 04/16/2024] [Indexed: 05/02/2024]
Abstract
Cardiovascular disease (CVD) is the leading cause of death worldwide. MicroRNAs (MiRNAs) have attracted considerable attention for their roles in several cardiovascular disease states, including both the physiological and pathological processes. In this review, we will briefly describe microRNA-181 (miR-181) transcription and regulation and summarize recent findings on the roles of miR-181 family members as biomarkers or therapeutic targets in different cardiovascular-related conditions, including atherosclerosis, myocardial infarction, hypertension, and heart failure. Lessons learned from these studies may provide new theoretical foundations for CVD.
Collapse
Affiliation(s)
- Bingjie Lv
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Shaolin He
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Peixin Li
- Second Clinical School, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shijiu Jiang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Department of Cardiology, The First Affiliated Hospital, Shihezi University, Shihezi, 832000, China
| | - Dazhu Li
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jibin Lin
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Mark W. Feinberg
- Department of Medicine, Cardiovascular Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
25
|
Khavari B, Barnett MM, Mahmoudi E, Geaghan MP, Graham A, Cairns MJ. microRNA and the Post-Transcriptional Response to Oxidative Stress during Neuronal Differentiation: Implications for Neurodevelopmental and Psychiatric Disorders. Life (Basel) 2024; 14:562. [PMID: 38792584 PMCID: PMC11121913 DOI: 10.3390/life14050562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/17/2024] [Accepted: 04/22/2024] [Indexed: 05/26/2024] Open
Abstract
Oxidative stress is one of the most important environmental exposures associated with psychiatric disorders, but the underlying molecular mechanisms remain to be elucidated. In a previous study, we observed a substantial alteration of the gene expression landscape in neuron-like cells that were differentiated from SH-SY5Y cells after or during exposure to oxidative stress, with a subset of dysregulated genes being enriched for neurodevelopmental processes. To further explore the regulatory mechanisms that might account for such profound perturbations, we have now applied small RNA-sequencing to investigate changes in the expression of miRNAs. These molecules are known to play crucial roles in brain development and response to stress through their capacity to suppress gene expression and influence complex biological networks. Through these analyses, we observed more than a hundred differentially expressed miRNAs, including 80 previously reported to be dysregulated in psychiatric disorders. The seven most influential miRNAs associated with pre-treatment exposure, including miR-138-5p, miR-96-5p, miR-34c-5p, miR-1287-5p, miR-497-5p, miR-195-5p, and miR-16-5p, supported by at least 10 negatively correlated mRNA connections, formed hubs in the interaction network with 134 genes enriched with neurobiological function, whereas in the co-treatment condition, miRNA-mRNA interaction pairs were enriched in cardiovascular and immunity-related disease ontologies. Interestingly, 12 differentially expressed miRNAs originated from the DLK1-DIO3 location, which encodes a schizophrenia-associated miRNA signature. Collectively, our findings suggest that early exposure to oxidative stress, before and during prenatal neuronal differentiation, might increase the risk of mental illnesses in adulthood by disturbing the expression of miRNAs that regulate neurodevelopmentally significant genes and networks.
Collapse
Affiliation(s)
- Behnaz Khavari
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW 2308, Australia; (B.K.); (M.M.B.)
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| | - Michelle M. Barnett
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW 2308, Australia; (B.K.); (M.M.B.)
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| | - Ebrahim Mahmoudi
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW 2308, Australia; (B.K.); (M.M.B.)
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| | - Michael P. Geaghan
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW 2308, Australia; (B.K.); (M.M.B.)
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| | - Adam Graham
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW 2308, Australia; (B.K.); (M.M.B.)
| | - Murray J. Cairns
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW 2308, Australia; (B.K.); (M.M.B.)
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| |
Collapse
|
26
|
Lee YJ, Kim WR, Park EG, Lee DH, Kim JM, Shin HJ, Jeong HS, Roh HY, Kim HS. Exploring the Key Signaling Pathways and ncRNAs in Colorectal Cancer. Int J Mol Sci 2024; 25:4548. [PMID: 38674135 PMCID: PMC11050203 DOI: 10.3390/ijms25084548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/19/2024] [Accepted: 04/19/2024] [Indexed: 04/28/2024] Open
Abstract
Colorectal cancer (CRC) is the third most prevalent cancer to be diagnosed, and it has a substantial mortality rate. Despite numerous studies being conducted on CRC, it remains a significant health concern. The disease-free survival rates notably decrease as CRC progresses, emphasizing the urgency for effective diagnostic and therapeutic approaches. CRC development is caused by environmental factors, which mostly lead to the disruption of signaling pathways. Among these pathways, the Wingless/Integrated (Wnt) signaling pathway, Phosphatidylinositol 3-kinase/protein kinase B/mammalian target of rapamycin (PI3K/AKT/mTOR) signaling pathway, Mitogen-Activated Protein Kinase (MAPK) signaling pathway, Transforming Growth Factor-β (TGF-β) signaling pathway, and p53 signaling pathway are considered to be important. These signaling pathways are also regulated by non-coding RNAs (ncRNAs), including microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs). They have emerged as crucial regulators of gene expression in CRC by changing their expression levels. The altered expression patterns of these ncRNAs have been implicated in CRC progression and development, suggesting their potential as diagnostic and therapeutic targets. This review provides an overview of the five key signaling pathways and regulation of ncRNAs involved in CRC pathogenesis that are studied to identify promising avenues for diagnosis and treatment strategies.
Collapse
Affiliation(s)
- Yun Ju Lee
- Department of Integrated Biological Sciences, Pusan National University, Busan 46241, Republic of Korea; (Y.J.L.); (W.R.K.); (E.G.P.); (D.H.L.); (J.-m.K.); (H.J.S.); (H.-s.J.)
- Institute of Systems Biology, Pusan National University, Busan 46241, Republic of Korea;
| | - Woo Ryung Kim
- Department of Integrated Biological Sciences, Pusan National University, Busan 46241, Republic of Korea; (Y.J.L.); (W.R.K.); (E.G.P.); (D.H.L.); (J.-m.K.); (H.J.S.); (H.-s.J.)
- Institute of Systems Biology, Pusan National University, Busan 46241, Republic of Korea;
| | - Eun Gyung Park
- Department of Integrated Biological Sciences, Pusan National University, Busan 46241, Republic of Korea; (Y.J.L.); (W.R.K.); (E.G.P.); (D.H.L.); (J.-m.K.); (H.J.S.); (H.-s.J.)
- Institute of Systems Biology, Pusan National University, Busan 46241, Republic of Korea;
| | - Du Hyeong Lee
- Department of Integrated Biological Sciences, Pusan National University, Busan 46241, Republic of Korea; (Y.J.L.); (W.R.K.); (E.G.P.); (D.H.L.); (J.-m.K.); (H.J.S.); (H.-s.J.)
- Institute of Systems Biology, Pusan National University, Busan 46241, Republic of Korea;
| | - Jung-min Kim
- Department of Integrated Biological Sciences, Pusan National University, Busan 46241, Republic of Korea; (Y.J.L.); (W.R.K.); (E.G.P.); (D.H.L.); (J.-m.K.); (H.J.S.); (H.-s.J.)
- Institute of Systems Biology, Pusan National University, Busan 46241, Republic of Korea;
| | - Hae Jin Shin
- Department of Integrated Biological Sciences, Pusan National University, Busan 46241, Republic of Korea; (Y.J.L.); (W.R.K.); (E.G.P.); (D.H.L.); (J.-m.K.); (H.J.S.); (H.-s.J.)
- Institute of Systems Biology, Pusan National University, Busan 46241, Republic of Korea;
| | - Hyeon-su Jeong
- Department of Integrated Biological Sciences, Pusan National University, Busan 46241, Republic of Korea; (Y.J.L.); (W.R.K.); (E.G.P.); (D.H.L.); (J.-m.K.); (H.J.S.); (H.-s.J.)
- Institute of Systems Biology, Pusan National University, Busan 46241, Republic of Korea;
| | - Hyun-Young Roh
- Institute of Systems Biology, Pusan National University, Busan 46241, Republic of Korea;
- Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan 46241, Republic of Korea
| | - Heui-Soo Kim
- Institute of Systems Biology, Pusan National University, Busan 46241, Republic of Korea;
- Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|
27
|
Qiu H, Fu Y, Guo Z, Zhang X, Wang X, Wu H. Dysregulated microRNAs and long non-coding RNAs associated with extracellular matrix stiffness. Exp Cell Res 2024; 437:114014. [PMID: 38547959 DOI: 10.1016/j.yexcr.2024.114014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/20/2024] [Accepted: 03/22/2024] [Indexed: 04/02/2024]
Abstract
Extracellular matrix (ECM) stiffness regulates development and homeostasis in vivo and affects both physiological and pathological processes. A variety of studies have demonstrated that mRNAs, such as Piezo1, integrin β1, and Yes-associated protein (YAP)/tafazzin (TAZ), can sense the mechanical signals induced by ECM stiffness and transmit them from the extracellular space into the cytoplasm. Non-coding RNAs (ncRNAs), such as microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), have been reported to play important roles in various cellular processes. Therefore, the interactions between ncRNAs and ECM stiffness, as well as the underlying molecular mechanisms, have become intriguing. In this review, we summarize recent findings on miRNAs and lncRNAs that interact with ECM stiffness. Several miRNAs and lncRNAs are involved in the progression of liver cancer, breast cancer, osteosarcoma, and cardiovascular diseases under the regulation of ECM stiffness. Through these ncRNAs, cellular behaviors including cell differentiation, proliferation, adhesion, migration, invasion, and epithelial-mesenchymal transition (EMT) are affected by ECM stiffness. We also integrate the ncRNA signaling pathways associated with ECM stiffness, in which typical signaling pathways like integrin β1/TGFβ1, phosphatidylinositol-3 kinase (PI3K)/AKT, and EMT are involved. Although our understanding of the relationships between ncRNAs and ECM stiffness is still limited, further investigations may provide new insights for disease treatment. ECM-associated ncRNAs may serve as disease biomarkers or be targeted by drugs.
Collapse
Affiliation(s)
- Huimin Qiu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Yangpu, 200093, Shanghai, China; Collaborative Innovation Center for Biomedicine, Shanghai University of Medicine & Health Sciences, Pudong, 201318, Shanghai, China.
| | - Yi Fu
- Collaborative Innovation Center for Biomedicine, Shanghai University of Medicine & Health Sciences, Pudong, 201318, Shanghai, China.
| | - Zhinan Guo
- Collaborative Innovation Center for Biomedicine, Shanghai University of Medicine & Health Sciences, Pudong, 201318, Shanghai, China; School of Sports and Health, Shanghai University of Sport, Yangpu, 200438, Shanghai, China.
| | - Xinjia Zhang
- School of Medical Instruments, Shanghai University of Medicine & Health Sciences, Pudong, 201318, Shanghai, China.
| | - Xinyue Wang
- School of Medical Instruments, Shanghai University of Medicine & Health Sciences, Pudong, 201318, Shanghai, China.
| | - Hailong Wu
- Collaborative Innovation Center for Biomedicine, Shanghai University of Medicine & Health Sciences, Pudong, 201318, Shanghai, China.
| |
Collapse
|
28
|
Barbato A, Piscopo F, Salati M, Pollastro C, Evangelista L, Ferrante L, Limongello D, Brillante S, Iuliano A, Reggiani-Bonetti L, Salatiello M, Iaccarino A, Pisapia P, Malapelle U, Troncone G, Indrieri A, Dominici M, Franco B, Carotenuto P. A MiR181/Sirtuin1 regulatory circuit modulates drug response in biliary cancers. Clin Exp Med 2024; 24:74. [PMID: 38598008 PMCID: PMC11006774 DOI: 10.1007/s10238-024-01332-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 03/14/2024] [Indexed: 04/11/2024]
Abstract
Despite recent advances, biliary tract cancer (BTC) remains one of the most lethal tumor worldwide due to late diagnosis, limited therapeutic strategies and resistance to conventional therapies. In recent years, high-throughput technologies have enabled extensive genome, and transcriptome sequencing unveiling, among others, the regulatory potential of microRNAs (miRNAs). Compelling evidence shown that miRNA are attractive therapeutic targets and promising candidates as biomarkers for various therapy-resistant tumors. The analysis of miRNA profile successfully identified miR-181c and -181d as significantly downregulated in BTC patients. Low miR-181c and -181d expression levels were correlated with worse prognosis and poor treatment efficacy. In fact, progression-free survival analysis indicated poor survival rates in miR-181c and -181d low expressing patients. The expression profile of miR-181c and -181d in BTC cell lines revealed that both miRNAs were dysregulated. Functional in vitro experiments in BTC cell lines showed that overexpression of miR-181c and -181d affected cell viability and increased sensitivity to chemotherapy compared to controls. In addition, by using bioinformatic tools we showed that the miR-181c/d functional role is determined by binding to their target SIRT1 (Sirtuin 1). Moreover, BTC patients expressing high levels of miR-181 and low SIRT1 shown an improved survival and treatment response. An integrative network analysis demonstrated that, miR-181/SIRT1 circuit had a regulatory effect on several important metabolic tumor-related processes. Our study demonstrated that miR-181c and -181d act as tumor suppressor miRNA in BTC, suggesting the potential use as therapeutic strategy in resistant cancers and as predictive biomarker in the precision medicine of BTC.
Collapse
Affiliation(s)
- Anna Barbato
- TIGEM, Telethon Institute of Genetics and Medicine, Via Campi Flegrei 34, 80078, Pozzuoli, Naples, Italy
- Department of Translational Medical Science, Medical Genetics, University of Naples "Federico II", 80131, Naples, Italy
| | - Fabiola Piscopo
- TIGEM, Telethon Institute of Genetics and Medicine, Via Campi Flegrei 34, 80078, Pozzuoli, Naples, Italy
- Department of Translational Medical Science, Medical Genetics, University of Naples "Federico II", 80131, Naples, Italy
| | - Massimiliano Salati
- Division of Oncology, Department of Oncology and Hematology, University Hospital of Modena, 41125, Modena, Italy
| | - Carla Pollastro
- TIGEM, Telethon Institute of Genetics and Medicine, Via Campi Flegrei 34, 80078, Pozzuoli, Naples, Italy
- Department of Translational Medical Science, Medical Genetics, University of Naples "Federico II", 80131, Naples, Italy
| | - Lorenzo Evangelista
- TIGEM, Telethon Institute of Genetics and Medicine, Via Campi Flegrei 34, 80078, Pozzuoli, Naples, Italy
| | - Luigi Ferrante
- TIGEM, Telethon Institute of Genetics and Medicine, Via Campi Flegrei 34, 80078, Pozzuoli, Naples, Italy
| | - Davide Limongello
- TIGEM, Telethon Institute of Genetics and Medicine, Via Campi Flegrei 34, 80078, Pozzuoli, Naples, Italy
| | - Simona Brillante
- TIGEM, Telethon Institute of Genetics and Medicine, Via Campi Flegrei 34, 80078, Pozzuoli, Naples, Italy
- IRGB, Institute for Genetic and Biomedical Research, National Research Council (CNR), Milan, Italy
| | - Antonella Iuliano
- Department of Mathematics, Computer Science and Economics (DIMIE), University of Basilicata, 85100, Potenza, Italy
| | - Luca Reggiani-Bonetti
- Department of Medical and Surgical Sciences for Children and Adults, University Hospital of Modena, 41125, Modena, Italy
| | - Maria Salatiello
- Department of Public Health, Universita' degli Studi di Napoli-AOU Federico II, 80131, Naples, Italy
| | - Antonino Iaccarino
- Department of Public Health, Universita' degli Studi di Napoli-AOU Federico II, 80131, Naples, Italy
| | - Pasquale Pisapia
- Department of Public Health, Universita' degli Studi di Napoli-AOU Federico II, 80131, Naples, Italy
| | - Umberto Malapelle
- Department of Public Health, Universita' degli Studi di Napoli-AOU Federico II, 80131, Naples, Italy
| | - Giancarlo Troncone
- Department of Public Health, Universita' degli Studi di Napoli-AOU Federico II, 80131, Naples, Italy
| | - Alessia Indrieri
- TIGEM, Telethon Institute of Genetics and Medicine, Via Campi Flegrei 34, 80078, Pozzuoli, Naples, Italy
- IRGB, Institute for Genetic and Biomedical Research, National Research Council (CNR), Milan, Italy
| | - Massimo Dominici
- Division of Oncology, Department of Oncology and Hematology, University Hospital of Modena, 41125, Modena, Italy
| | - Brunella Franco
- TIGEM, Telethon Institute of Genetics and Medicine, Via Campi Flegrei 34, 80078, Pozzuoli, Naples, Italy
- Department of Translational Medical Science, Medical Genetics, University of Naples "Federico II", 80131, Naples, Italy
- Scuola Superiore Meridionale (SSM, School of Advanced Studies), Genomics and Experimental Medicine Program, 80078, Naples, Italy
| | - Pietro Carotenuto
- TIGEM, Telethon Institute of Genetics and Medicine, Via Campi Flegrei 34, 80078, Pozzuoli, Naples, Italy.
- Department of Translational Medical Science, Medical Genetics, University of Naples "Federico II", 80131, Naples, Italy.
| |
Collapse
|
29
|
Oda T, Tsutsumi K, Obata T, Ueta E, Kikuchi T, Ako S, Fujii Y, Yamazaki T, Uchida D, Matsumoto K, Horiguchi S, Kato H, Okada H, Chijimatsu R, Otsuka M. MicroRNA-34a-5p: A pivotal therapeutic target in gallbladder cancer. MOLECULAR THERAPY. ONCOLOGY 2024; 32:200765. [PMID: 38596294 PMCID: PMC10963938 DOI: 10.1016/j.omton.2024.200765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 11/04/2023] [Accepted: 01/18/2024] [Indexed: 04/11/2024]
Abstract
Gallbladder cancer incidence has been increasing globally, and it remains challenging to expect long prognosis with the current systemic chemotherapy. We identified a novel nucleic acid-mediated therapeutic target against gallbladder cancer by using innovative organoid-based gallbladder cancer models generated from KrasLSL-G12D/+; Trp53f/f mice. Using comprehensive microRNA expression analyses and a bioinformatics approach, we identified significant microRNA-34a-5p downregulation in both murine gallbladder cancer organoids and resected human gallbladder cancer specimens. In three different human gallbladder cancer cell lines, forced microRNA-34a-5p expression inhibited cell proliferation and induced cell-cycle arrest at the G1 phase by suppressing direct target (CDK6) expression. Furthermore, comprehensive RNA sequencing revealed the significant enrichment of gene sets related to the cell-cycle regulators after microRNA-34a-5p expression in gallbladder cancer cells. In a murine xenograft model, locally injected microRNA-34a-5p mimics significantly inhibited gallbladder cancer progression and downregulated CDK6 expression. These results provide a rationale for promising therapeutics against gallbladder cancer by microRNA-34a-5p injection, as well as a strategy to explore therapeutic targets against cancers using organoid-based models, especially for those lacking useful genetically engineered murine models, such as gallbladder cancer.
Collapse
Affiliation(s)
- Takashi Oda
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Science, Okayama, Japan
| | - Koichiro Tsutsumi
- Department of Gastroenterology, Okayama University Hospital, Okayama, Japan
| | - Taisuke Obata
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Science, Okayama, Japan
| | - Eijiro Ueta
- Department of Gastroenterology, Okayama University Hospital, Okayama, Japan
| | - Tatsuya Kikuchi
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Science, Okayama, Japan
| | - Soichiro Ako
- Department of Gastroenterology, Okayama University Hospital, Okayama, Japan
| | - Yuki Fujii
- Department of Gastroenterology, Okayama University Hospital, Okayama, Japan
| | - Tatsuhiro Yamazaki
- Department of Gastroenterology, Okayama University Hospital, Okayama, Japan
| | - Daisuke Uchida
- Department of Gastroenterology, Okayama University Hospital, Okayama, Japan
| | - Kazuyuki Matsumoto
- Department of Gastroenterology, Okayama University Hospital, Okayama, Japan
| | - Shigeru Horiguchi
- Department of Gastroenterology, Okayama University Hospital, Okayama, Japan
| | - Hironari Kato
- Department of Gastroenterology, Okayama University Hospital, Okayama, Japan
| | - Hiroyuki Okada
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Science, Okayama, Japan
- Department of Gastroenterology, Okayama University Hospital, Okayama, Japan
| | - Ryota Chijimatsu
- Center for Comprehensive Genomic Medicine, Okayama University Hospital, Okayama, Japan
| | - Motoyuki Otsuka
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Science, Okayama, Japan
- Department of Gastroenterology, Okayama University Hospital, Okayama, Japan
| |
Collapse
|
30
|
Chengcheng L, Raza SHA, Zhimei Y, Sihu W, Shengchen Y, Aloufi BH, Bingzhi L, Zan L. Bta-miR-181d and Bta-miR-196a mediated proliferation, differentiation, and apoptosis in Bovine Myogenic Cells. J Anim Sci 2024; 102:skae142. [PMID: 38766769 PMCID: PMC11161902 DOI: 10.1093/jas/skae142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 05/17/2024] [Indexed: 05/22/2024] Open
Abstract
Skeletal muscle is an important component of livestock and poultry organisms. The proliferation and differentiation of myoblasts are highly coordinated processes, which rely on the regulation of miRNA. MiRNAs are widely present in organisms and play roles in various biological processes, including cell proliferation, differentiation, and apoptosis. MiR-181d and miR-196a, identified as tumor suppressors, have been found to be involved in cell proliferation, apoptosis, directed differentiation, and cancer cell invasion. However, their role in beef cattle skeletal muscle metabolism remains unclear. In this study, we discovered that overexpression of bta-miR-181d and bta-miR-196a in Qinchuan cattle myoblasts inhibited proliferation and apoptosis while promoting myogenic differentiation through EDU staining, flow cytometry analysis, immunofluorescence staining, and Western blotting. RNA-seq analysis of differential gene expression revealed that after overexpression of bta-miR-181d and bta-miR-196a, the differentially expressed genes were mainly enriched in the PI3K-Akt and MAPK signaling pathways. Furthermore, the phosphorylation levels of key proteins p-AKT in the PI3K signaling pathway and p-MAPK in the MAPK signaling pathway were significantly decreased after overexpression of bta-miR-181d and bta-miR-196a. Overall, this study provides preliminary evidence that bta-miR-181d and bta-miR-196a may regulate proliferation, apoptosis, and differentiation processes in Qinchuan cattle myoblasts by affecting the phosphorylation status of key proteins in PI3K-Akt and MAPK-ERK signaling pathways.
Collapse
Affiliation(s)
- Liang Chengcheng
- College of Animal Science and Technology, Xinyang Agriculture and Forestry University, Xinyang, Henan 464000, P.R. China
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, P.R. China
| | - Sayed Haidar Abbas Raza
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, P.R. China
- Guangdong Provincial Key Laboratory of Food Quality and Safety/Nation-Local Joint Engineering Research Center for Machining and Safety of Livestock and Poultry Products, South China Agricultural University, Guangzhou 510642, P.R. China
| | - Yang Zhimei
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, P.R. China
| | - Wang Sihu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, P.R. China
| | - Yu Shengchen
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, P.R. China
| | - Bandar Hamad Aloufi
- Biology Department, Faculty of Science, University of Ha'il, Ha'il, Saudi Arabia
| | - Li Bingzhi
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, P.R. China
| | - Linsen Zan
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, P.R. China
- National Beef Cattle Improvement Center, Northwest A&F University, Yangling, 712100, China
| |
Collapse
|
31
|
Luo C, He J, Wang N, Zhu N, Zhang L, Wang Y, Qin M, Hui T. Enhanced reparatory effect of EI1 on dental pulp via extracellular matrix remodeling by miR-181b-2-3p inhibitor. J Dent Sci 2024; 19:177-185. [PMID: 38303812 PMCID: PMC10829547 DOI: 10.1016/j.jds.2023.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/02/2023] [Indexed: 02/03/2024] Open
Abstract
Background/purpose Extracellular matrix (ECM) is crucial for dental pulp repair. The aim of this paper is to investigate the ECM remodeling effect of miR-181b-2-3p (a microRNA) and to verify the reparatory effect of EI1 (an epigenetic drug) and miR-181b-2-3p inhibitor on dental pulp. Materials and methods Levels of ECM-related factors in EI1-treated human dental pulp cells (hDPCs) were measured by qRT-PCR and Western blot. The anti-inflammation effect of EI1 was examined in Lipopolysaccharide-stimulated hDPCs. miR-181b-2-3p mimics or inhibitors were transfected into hDPCs and then the cells' functions were detected. A dual luciferase reporter assay was used to identify the targets of miR-181b-2-3p. Pulpotomy using miR-181b-2-3p antagomirs and EI1 as pulp capping materials was performed in male six-week-old Sprague-Dawley rats. Results EI1 upregulated ECM-related genes expression in hDPCs, but failed to upregulate the collagen1A1 (COL1A1) protein level. Pro-inflammatory factors were downregulated by EI1 in Lipopolysaccharide-stimulated hDPCs. Overexpression of miR-181b-2-3p downregulated the expression of transforming growth factor-β2 (TGF-β2) and fibronectin type III domain-containing protein 5 precursor (FNDC5), while the inhibition had the opposite effect. Dual luciferase reporter assays demonstrated that miR-181b-2-3p targets TGF-β2, FNDC5 and integrin alpha 4 protein (ITGA4). Compared to EI1 was used alone, EI1 combined with the inhibitor upregulated the protein levels of COL1A1, fibronectin (FN1) and TGF-β2 in hDPCs, promoted hDPCs migration, and exhibited reparatory effects on inflamed rat pulp tissue. Conclusion miR-181b-2-3p inhibitor could enhance the reparatory effect of EI1 via ECM remodeling in dental pulp both in vitro and in vivo.
Collapse
Affiliation(s)
- Chiyi Luo
- Department of Pediatric Dentistry, Peking University School and Hospital of Stomatology & National Center for Stomatology, Beijing, China
| | - Jie He
- Department of Pediatric Dentistry, Peking University School and Hospital of Stomatology & National Center for Stomatology, Beijing, China
- Shenzhen Children's Hospital, Shenzhen, China
| | - Nan Wang
- Department of Pediatric Dentistry, Peking University School and Hospital of Stomatology & National Center for Stomatology, Beijing, China
| | - Ningxin Zhu
- Department of Pediatric Dentistry, Peking University School and Hospital of Stomatology & National Center for Stomatology, Beijing, China
| | - Lixin Zhang
- Department of Pediatric Dentistry, Peking University School and Hospital of Stomatology & National Center for Stomatology, Beijing, China
| | - Yuanyuan Wang
- Department of Pediatric Dentistry, Peking University School and Hospital of Stomatology & National Center for Stomatology, Beijing, China
| | - Man Qin
- Department of Pediatric Dentistry, Peking University School and Hospital of Stomatology & National Center for Stomatology, Beijing, China
| | - Tianqian Hui
- Department of Pediatric Dentistry, Peking University School and Hospital of Stomatology & National Center for Stomatology, Beijing, China
| |
Collapse
|
32
|
Miraboutalebi S, Dehghani Ashkezari M, Seifati S. INVESTIGATION THE EXPRESSION LEVELS OF MIR-181 AND HOXA11 GENE IN EUTOPIC AND ECTOPIC ENDOMETRIAL TISSUE. ACTA ENDOCRINOLOGICA (BUCHAREST, ROMANIA : 2005) 2024; 20:33-38. [PMID: 39372291 PMCID: PMC11449244 DOI: 10.4183/aeb.2024.33] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Objectives The exact pathogenesis of the endometriosis is not apparent. MicroRNAs (miRNAs/miRs) are non-coding RNAs that regulate gene expression at the post-transcriptional level. MicroRNAs can be used a diagnostic and therapeutic tools in different disorders such as endometriosis. MiR-181 has a function in embryo implantation. The main aim of this study is to evaluate the expression of miR-181 and its relationship with HOXA11 gene expression in ectopic and eutopic endometrium tissues in women with endometriosis. Study design Thirty-four women participated in this study. Ectopic tissue samples (N=17) were collected via laparoscopic surgery, and eutopic tissue samples (N=17) were obtained from an endometrial biopsy. Endometrial tissue samples without endometriosis were considered the control group. Tissue samples were placed in RNase-free microtube with RNAlater™ Stabilization Solution (Thermo Fisher Scientific) and were kept at -80 °C. Quantitative real time-PCR for MiR-181 and HOXA11 genes were performed. Results MiR-181 expression level increased in eutopic tissue samples compared to the control group. This expression showed a significantly decrease in an ectopic group compared to the eutopic group. It was observed that HOXA11expression decreased remarkably in eutopic group compared to the control group and increased in ectopic group compared to the eutopic group. Conclusion MiR-181 and HOXA11 are promising strategies in endometriosis disease. Understanding this relation and regulation roles contribute to realizing the etiology of endometriosis.
Collapse
Affiliation(s)
- S.A. Miraboutalebi
- Islamic Azad University, Ashkezar Branch, Medical Biotechnology Research Center, Department of Biology, Ashkezar, Yazd, Iran
| | - M. Dehghani Ashkezari
- Islamic Azad University, Ashkezar Branch, Medical Biotechnology Research Center, Department of Biology, Ashkezar, Yazd, Iran
| | - S.M. Seifati
- Islamic Azad University, Ashkezar Branch, Medical Biotechnology Research Center, Department of Biology, Ashkezar, Yazd, Iran
| |
Collapse
|
33
|
Takasawa S, Makino M, Yamauchi A, Sakuramoto‐Tsuchida S, Hirota R, Fujii R, Asai K, Takeda Y, Uchiyama T, Shobatake R, Ota H. Intermittent hypoxia increased the expression of ESM1 and ICAM-1 in vascular endothelial cells via the downregulation of microRNA-181a1. J Cell Mol Med 2024; 28:e18039. [PMID: 37968862 PMCID: PMC10805502 DOI: 10.1111/jcmm.18039] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 09/25/2023] [Accepted: 10/19/2023] [Indexed: 11/17/2023] Open
Abstract
Sleep apnea syndrome (SAS) exposes cells throughout the body to intermittent hypoxia (IH). Intermittent hypoxia is a risk factor not only for hypertension and insulin resistance but also for vascular dysfunction. We have reported correlations between IH, insulin resistance and hypertension. However, the details of why IH leads to vascular dysfunction remain unclear. In this study, we investigated inflammation-related transcripts in vascular endothelial cells (human HUEhT-1 and mouse UV2) exposed to IH by real-time RT-PCR and found that intercellular adhesion molecule-1 (ICAM-1) and endothelial cell-specific molecule-1 (ESM1) mRNAs were significantly increased. ELISA confirmed that, in the UV2 cell medium, ICAM-1 and ESM1 were significantly increased by IH. However, the promoter activities of ICAM-1 and ESM1 were not upregulated. On the other hand, IH treatment significantly decreased microRNA (miR)-181a1 in IH-treated cells. The introduction of miR-181a1 mimic but not miR-181a1 mimic NC abolished the IH-induced upregulation of Ican-1 and ESM1. These results indicated that ICAM-1 and ESM1 were upregulated by IH via the IH-induced downregulation of miR-181a1 in vascular endothelial cells and suggested that SAS patients developed atherosclerosis via the IH-induced upregulation of ICAM-1 and ESM1.
Collapse
Grants
- 08102003 Ministry of Education, Culture, Sports, Science and Technology
- 5K19425 Ministry of Education, Culture, Sports, Science and Technology
- 21K16344 Ministry of Education, Culture, Sports, Science and Technology
- 21K15375 Ministry of Education, Culture, Sports, Science and Technology
- Ministry of Education, Culture, Sports, Science and Technology
Collapse
Affiliation(s)
- Shin Takasawa
- Department of BiochemistryNara Medical UniversityNaraJapan
| | - Mai Makino
- Department of BiochemistryNara Medical UniversityNaraJapan
| | - Akiyo Yamauchi
- Department of BiochemistryNara Medical UniversityNaraJapan
| | | | - Rina Hirota
- Department of BiochemistryNara Medical UniversityNaraJapan
| | - Ryusei Fujii
- Department of BiochemistryNara Medical UniversityNaraJapan
| | - Keito Asai
- Department of BiochemistryNara Medical UniversityNaraJapan
| | - Yoshinori Takeda
- Department of BiochemistryNara Medical UniversityNaraJapan
- Department of Obstetrics and GynecologyNara Medical UniversityNaraJapan
| | - Tomoko Uchiyama
- Department of BiochemistryNara Medical UniversityNaraJapan
- Department of Diagnostic PathologyNara Medical UniversityNaraJapan
| | - Ryogo Shobatake
- Department of BiochemistryNara Medical UniversityNaraJapan
- Department of NeurologyNara Medical UniversityNaraJapan
| | - Hiroyo Ota
- Department of BiochemistryNara Medical UniversityNaraJapan
- Department of Respiratory MedicineNara Medical UniversityNaraJapan
| |
Collapse
|
34
|
Riberas-Sánchez A, Puig-Parnau I, Vila-Solés L, Garcia-Brito S, Aldavert-Vera L, Segura-Torres P, Huguet G, Kádár E. Intracranial self-stimulation reverses impaired spatial learning and regulates serum microRNA levels in a streptozotocin-induced rat model of Alzheimer disease. J Psychiatry Neurosci 2024; 49:E96-E108. [PMID: 38490646 PMCID: PMC10950362 DOI: 10.1503/jpn.230066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/28/2023] [Accepted: 10/19/2023] [Indexed: 03/17/2024] Open
Abstract
BACKGROUND The assessment of deep brain stimulation (DBS) as a therapeutic alternative for treating Alzheimer disease (AD) is ongoing. We aimed to determine the effects of intracranial self-stimulation at the medial forebrain bundle (MFB-ICSS) on spatial memory, neurodegeneration, and serum expression of microRNAs (miRNAs) in a rat model of sporadic AD created by injection of streptozotocin. We hypothesized that MFB-ICSS would reverse the behavioural effects of streptozotocin and modulate hippocampal neuronal density and serum levels of the miRNAs. METHODS We performed Morris water maze and light-dark transition tests. Levels of various proteins, specifically amyloid-β precurser protein (APP), phosphorylated tau protein (pTAU), and sirtuin 1 (SIRT1), and neurodegeneration were analyzed by Western blot and Nissl staining, respectively. Serum miRNA expression was measured by reverse transcription polymerase chain reaction. RESULTS Male rats that received streptozotocin had increased hippocampal levels of pTAU S202/T205, APP, and SIRT1 proteins; increased neurodegeneration in the CA1, dentate gyrus (DG), and dorsal tenia tecta; and worse performance in the Morris water maze task. No differences were observed in miRNAs, except for miR-181c and miR-let-7b. After MFB-ICSS, neuronal density in the CA1 and DG regions and levels of miR-181c in streptozotocin-treated and control rats were similar. Rats that received streptozotocin and underwent MFB-ICSS also showed lower levels of miR-let-7b and better spatial learning than rats that received streptozotocin without MFB-ICSS. LIMITATIONS The reversal by MFB-ICSS of deficits induced by streptozotocin was fairly modest. CONCLUSION Spatial memory performance, hippocampal neurodegeneration, and serum levels of miR-let-7b and miR-181c were affected by MFB-ICSS under AD-like conditions. Our results validate the MFB as a potential target for DBS and lend support to the use of specific miRNAs as promising biomarkers of the effectiveness of DBS in combatting AD-associated cognitive deficits.
Collapse
Affiliation(s)
- Andrea Riberas-Sánchez
- From the Department of Biology, Faculty of Science, Universitat de Girona, Girona, Spain (Riberas-Sánchez, Puig-Parnau, Huguet, Kádár); and the Psychobiology Unit, Institute of Neurosciences, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain (Vila-Solés, García-Brito, Aldavert-Vera, Segura-Torres)
| | - Irene Puig-Parnau
- From the Department of Biology, Faculty of Science, Universitat de Girona, Girona, Spain (Riberas-Sánchez, Puig-Parnau, Huguet, Kádár); and the Psychobiology Unit, Institute of Neurosciences, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain (Vila-Solés, García-Brito, Aldavert-Vera, Segura-Torres)
| | - Laia Vila-Solés
- From the Department of Biology, Faculty of Science, Universitat de Girona, Girona, Spain (Riberas-Sánchez, Puig-Parnau, Huguet, Kádár); and the Psychobiology Unit, Institute of Neurosciences, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain (Vila-Solés, García-Brito, Aldavert-Vera, Segura-Torres)
| | - Soleil Garcia-Brito
- From the Department of Biology, Faculty of Science, Universitat de Girona, Girona, Spain (Riberas-Sánchez, Puig-Parnau, Huguet, Kádár); and the Psychobiology Unit, Institute of Neurosciences, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain (Vila-Solés, García-Brito, Aldavert-Vera, Segura-Torres)
| | - Laura Aldavert-Vera
- From the Department of Biology, Faculty of Science, Universitat de Girona, Girona, Spain (Riberas-Sánchez, Puig-Parnau, Huguet, Kádár); and the Psychobiology Unit, Institute of Neurosciences, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain (Vila-Solés, García-Brito, Aldavert-Vera, Segura-Torres)
| | - Pilar Segura-Torres
- From the Department of Biology, Faculty of Science, Universitat de Girona, Girona, Spain (Riberas-Sánchez, Puig-Parnau, Huguet, Kádár); and the Psychobiology Unit, Institute of Neurosciences, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain (Vila-Solés, García-Brito, Aldavert-Vera, Segura-Torres)
| | - Gemma Huguet
- From the Department of Biology, Faculty of Science, Universitat de Girona, Girona, Spain (Riberas-Sánchez, Puig-Parnau, Huguet, Kádár); and the Psychobiology Unit, Institute of Neurosciences, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain (Vila-Solés, García-Brito, Aldavert-Vera, Segura-Torres)
| | - Elisabet Kádár
- From the Department of Biology, Faculty of Science, Universitat de Girona, Girona, Spain (Riberas-Sánchez, Puig-Parnau, Huguet, Kádár); and the Psychobiology Unit, Institute of Neurosciences, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain (Vila-Solés, García-Brito, Aldavert-Vera, Segura-Torres)
| |
Collapse
|
35
|
董 明, 王 喜, 焦 富, 张 维. [Research advances in genetic polymorphisms in Kawasaki disease]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2023; 25:1234-1238. [PMID: 38112140 PMCID: PMC10731961 DOI: 10.7499/j.issn.1008-8830.2308073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 10/31/2023] [Indexed: 12/20/2023]
Abstract
Kawasaki disease (KD) is a systemic inflammatory vascular disorder that predominantly affects children and is the leading cause of acquired heart disease in children. Although the etiology of this disease remains unclear, genome-wide association and genome-wide linkage studies have shown that some susceptible genes and chromosomal regions are associated with the development and progression of KD. With the advancement of high-throughput DNA sequencing techniques, more and more genomic information related to KD is being discovered. Understanding the genes involved in the pathogenesis of KD may provide novel insights into the diagnosis and treatment of KD. By analyzing related articles and summarizing related research advances, this article mainly discusses the T cell activation-enhancing genes that have been confirmed to be closely associated with the development and progression of KD and reveals their association with the pathogenesis of KD and coronary artery lesions.
Collapse
Affiliation(s)
| | | | - 富勇 焦
- 陕西省川崎病诊疗中心/陕西省人民医院 儿童病院,陕西西安710068
| | | |
Collapse
|
36
|
Emami Nejad A, Mostafavi Zadeh SM, Nickho H, Sadoogh Abbasian A, Forouzan A, Ahmadlou M, Nedaeinia R, Shaverdi S, Manian M. The role of microRNAs involved in the disorder of blood-brain barrier in the pathogenesis of multiple sclerosis. Front Immunol 2023; 14:1281567. [PMID: 38193092 PMCID: PMC10773759 DOI: 10.3389/fimmu.2023.1281567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 10/30/2023] [Indexed: 01/10/2024] Open
Abstract
miRNAs are involved in various vital processes, including cell growth, development, apoptosis, cellular differentiation, and pathological cellular activities. Circulating miRNAs can be detected in various body fluids including serum, plasma, saliva, and urine. It is worth mentioning that miRNAs remain stable in the circulation in biological fluids and are released from membrane-bound vesicles called exosomes, which protect them from RNase activity. It has been shown that miRNAs regulate blood-brain barrier integrity by targeting both tight junction and adherens junction molecules and can also influence the expression of inflammatory cytokines. Some recent studies have examined the impact of certain commonly used drugs in Multiple Sclerosis on miRNA levels. In this review, we will focus on the recent findings on the role of miRNAs in multiple sclerosis, including their role in the cause of MS and molecular mechanisms of the disease, utilizing miRNAs as diagnostic and clinical biomarkers, using miRNAs as a therapeutic modality or target for Multiple Sclerosis and drug responses in patients, elucidating their importance as prognosticators of disease progression, and highlighting their potential as a future treatment for MS.
Collapse
Affiliation(s)
| | - Seyed Mostafa Mostafavi Zadeh
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Hamid Nickho
- Department of Immunology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Sadoogh Abbasian
- Department of Internal Medicine, School of Medicine, Amiralmomenin Hospital, Arak University of Medical Sciences, Arak, Iran
| | - Azim Forouzan
- Department of Internal Medicine, School of Medicine, Amiralmomenin Hospital, Arak University of Medical Sciences, Arak, Iran
| | - Mojtaba Ahmadlou
- Department of Biostatistics, School of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Reza Nedaeinia
- Pediatric Inherited Diseases Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Saham Shaverdi
- Department of Biology, Payame Noor University (PNU), Tehran, Iran
| | - Mostafa Manian
- Department of Medical Laboratory Science, Faculty of Medicine, Islamic Azad University, Kermanshah, Iran
- Neurosciences Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
37
|
Lv Y, Xie X, Zou G, Kong M, Yang J, Chen J, Xiang B. miR-181b-5p/SOCS2/JAK2/STAT5 axis facilitates the metastasis of hepatoblastoma. PRECISION CLINICAL MEDICINE 2023; 6:pbad027. [PMID: 37955014 PMCID: PMC10639105 DOI: 10.1093/pcmedi/pbad027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 10/18/2023] [Indexed: 11/14/2023] Open
Abstract
Introduction Hepatoblastoma (HB) is a malignant liver tumor predominantly found in children and tumor metastasis is one of the main causes of poor prognosis in affected patients. The precise molecular mechanisms responsible for HB metastasis remain incompletely understood. However, there is evidence suggesting a connection between the dysregulation of microRNAs (miRNAs) and the progression of tumor metastasis in HB. Methods The study utilized weighted gene co-expression network analysis (WGCNA) to analyze a miRNA microarray dataset of HB. The expression of miR-181b-5p in HB tissues and cells was detected using quantitative real-time PCR. The impact of miR-181b-5p on the metastatic capacity of HB was evaluated through scratch and Transwell assays. The effects of exogenously expressing miR-181b on the metastatic phenotypes of HB cells were evaluated in vivo. Furthermore, a luciferase reporter assay was performed to validate a potential target of miR-181b-5p in HB. Results We found that miR-181b-5p was highly expressed in HB tissues and HB cell lines. Overexpression of miR-181b enhanced scratch healing, cell migration, and invasion abilities in vitro, as well as enhancing HB lung metastasis potential in vivo. Dual-luciferase reporter assays showed that Suppressor Of Cytokine Signaling 2 (SOCS2) was a direct target of miR-181b. The overexpression of miR-181b resulted in the suppression of SOCS2 expression, subsequently activating the epithelial-mesenchymal transition and JAK2/STAT5 signaling pathways. The rescue experiment showed that SOCS2 overexpression attenuated the effects of miR-181b on HB cells. Conclusion Our study showed that miR-181b promotes HB metastasis by targeting SOCS2 and may be a potential therapeutic target for HB.
Collapse
Affiliation(s)
- Yong Lv
- Department of Pediatric Surgery and Laboratory of Pediatric Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xiaolong Xie
- Department of Pediatric Surgery and Laboratory of Pediatric Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Guoyou Zou
- Department of General Surgery, People's Hospital of Tibet Autonomous Region, Tibet 850000, China
| | - Meng Kong
- Department of Pediatric Surgery, Children's Hospital Affiliated to Shandong University, Jinan 250022, China
| | - Jiayin Yang
- Liver Transplantation Center, Department of General Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jing Chen
- Department of Pediatric Surgery and Laboratory of Pediatric Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Bo Xiang
- Department of Pediatric Surgery and Laboratory of Pediatric Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
38
|
Mirzaei S, Paskeh MDA, Moghadam FA, Entezari M, Koohpar ZK, Hejazi ES, Rezaei S, Kakavand A, Aboutalebi M, Zandieh MA, Rajabi R, Salimimoghadam S, Taheriazam A, Hashemi M, Samarghandian S. miRNAs as short non-coding RNAs in regulating doxorubicin resistance. J Cell Commun Signal 2023:10.1007/s12079-023-00789-0. [PMID: 38019354 DOI: 10.1007/s12079-023-00789-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 10/27/2023] [Indexed: 11/30/2023] Open
Abstract
The treatment of cancer patients has been prohibited by chemoresistance. Doxorubicin (DOX) is an anti-tumor compound disrupting proliferation and triggering cell cycle arrest via inhibiting activity of topoisomerase I and II. miRNAs are endogenous RNAs localized in cytoplasm to reduce gene level. Abnormal expression of miRNAs changes DOX cytotoxicity. Overexpression of tumor-promoting miRNAs induces DOX resistance, while tumor-suppressor miRNAs inhibit DOX resistance. The miRNA-mediated regulation of cell death and hallmarks of cancer can affect response to DOX chemotherapy in tumor cells. The transporters such as P-glycoprotein are regulated by miRNAs in DOX chemotherapy. Upstream mediators including lncRNAs and circRNAs target miRNAs in affecting capacity of DOX. The response to DOX chemotherapy can be facilitated after administration of agents that are mostly phytochemicals including curcumol, honokiol and ursolic acid. These agents can regulate miRNA expression increasing DOX's cytotoxicity. Since delivery of DOX alone or in combination with other drugs and genes can cause synergistic impact, the nanoparticles have been introduced for drug sensitivity. The non-coding RNAs determine the response of tumor cells to doxorubicin chemotherapy. microRNAs play a key role in this case and they can be sponged by lncRNAs and circRNAs, showing interaction among non-coding RNAs in the regulation of doxorubicin sensitivity.
Collapse
Affiliation(s)
- Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mahshid Deldar Abad Paskeh
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Farhad Adhami Moghadam
- Department of Ophthalmology, Fauclty of Medicine, Tehran Medical Sciences Islamic Azad University, Tehran, Iran
| | - Maliheh Entezari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Zeinab Khazaei Koohpar
- Department of Cell and Molecular Biology, Faculty of Biological Sciences, Islamic Azad University, Tonekabon Branch, Tonekabon, Iran
| | - Elahe Sadat Hejazi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Shamin Rezaei
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Amirabbas Kakavand
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Maryam Aboutalebi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mohammad Arad Zandieh
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Romina Rajabi
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
- Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Saeed Samarghandian
- Healthy Ageing Research Centre, Neyshabur University of Medical Sciences, Neyshabur, Iran.
| |
Collapse
|
39
|
Bustos MA, Yokoe T, Shoji Y, Kobayashi Y, Mizuno S, Murakami T, Zhang X, Sekhar SC, Kim S, Ryu S, Knarr M, Vasilev SA, DiFeo A, Drapkin R, Hoon DSB. MiR-181a targets STING to drive PARP inhibitor resistance in BRCA- mutated triple-negative breast cancer and ovarian cancer. Cell Biosci 2023; 13:200. [PMID: 37932806 PMCID: PMC10626784 DOI: 10.1186/s13578-023-01151-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 10/24/2023] [Indexed: 11/08/2023] Open
Abstract
BACKGROUND Poly (ADP-ribose) polymerase inhibitors (PARPi) are approved for the treatment of BRCA-mutated breast cancer (BC), including triple-negative BC (TNBC) and ovarian cancer (OvCa). A key challenge is to identify the factors associated with PARPi resistance; although, previous studies suggest that platinum-based agents and PARPi share similar resistance mechanisms. METHODS Olaparib-resistant (OlaR) cell lines were analyzed using HTG EdgeSeq miRNA Whole Transcriptomic Analysis (WTA). Functional assays were performed in three BRCA-mutated TNBC cell lines. In-silico analysis were performed using multiple databases including The Cancer Genome Atlas, the Genotype-Tissue Expression, The Cancer Cell Line Encyclopedia, Genomics of Drug Sensitivity in Cancer, and Gene Omnibus Expression. RESULTS High miR-181a levels were identified in OlaR TNBC cell lines (p = 0.001) as well as in tumor tissues from TNBC patients (p = 0.001). We hypothesized that miR-181a downregulates the stimulator of interferon genes (STING) and the downstream proinflammatory cytokines to mediate PARPi resistance. BRCA1 mutated TNBC cell lines with miR-181a-overexpression were more resistant to olaparib and showed downregulation in STING and the downstream genes controlled by STING. Extracellular vesicles derived from PARPi-resistant TNBC cell lines horizontally transferred miR-181a to parental cells which conferred PARPi-resistance and targeted STING. In clinical settings, STING levels were positively correlated with interferon gamma (IFNG) response scores (p = 0.01). In addition, low IFNG response scores were associated with worse response to neoadjuvant treatment including PARPi for high-risk HER2 negative BC patients (p = 0.001). OlaR TNBC cell lines showed resistance to platinum-based drugs. OvCa cell lines resistant to platinum showed resistance to olaparib. Knockout of miR-181a significantly improved olaparib sensitivity in OvCa cell lines (p = 0.001). CONCLUSION miR-181a is a key factor controlling the STING pathway and driving PARPi and platinum-based drug resistance in TNBC and OvCa. The miR-181a-STING axis can be used as a potential marker for predicting PARPi responses in TNBC and OvCa tumors.
Collapse
Affiliation(s)
- Matias A Bustos
- Department of Translational Molecular Medicine, Saint John's Cancer Institute (SJCI) at Providence Saint John's Health Center (SJHC), 2200 Santa Monica Blvd, Santa Monica, CA, 90404, USA
| | - Takamichi Yokoe
- Department of Translational Molecular Medicine, Saint John's Cancer Institute (SJCI) at Providence Saint John's Health Center (SJHC), 2200 Santa Monica Blvd, Santa Monica, CA, 90404, USA
| | - Yoshiaki Shoji
- Department of Translational Molecular Medicine, Saint John's Cancer Institute (SJCI) at Providence Saint John's Health Center (SJHC), 2200 Santa Monica Blvd, Santa Monica, CA, 90404, USA
| | - Yuta Kobayashi
- Department of Translational Molecular Medicine, Saint John's Cancer Institute (SJCI) at Providence Saint John's Health Center (SJHC), 2200 Santa Monica Blvd, Santa Monica, CA, 90404, USA
| | - Shodai Mizuno
- Department of Translational Molecular Medicine, Saint John's Cancer Institute (SJCI) at Providence Saint John's Health Center (SJHC), 2200 Santa Monica Blvd, Santa Monica, CA, 90404, USA
| | - Tomohiro Murakami
- Department of Translational Molecular Medicine, Saint John's Cancer Institute (SJCI) at Providence Saint John's Health Center (SJHC), 2200 Santa Monica Blvd, Santa Monica, CA, 90404, USA
| | - Xiaoqing Zhang
- Department of Translational Molecular Medicine, Saint John's Cancer Institute (SJCI) at Providence Saint John's Health Center (SJHC), 2200 Santa Monica Blvd, Santa Monica, CA, 90404, USA
| | - Sreeja C Sekhar
- Department of Obstetrics & Gynecology, University Michigan, Ann Arbor, MI, 48109, USA
- Department of Pathology, Rogel Cancer Center, University Michigan, Ann Arbor, MI, 48109, USA
| | - SooMin Kim
- Department of Genome Sequencing, SJCI at Providence SJHC, Santa Monica, CA, 90404, USA
| | - Suyeon Ryu
- Department of Genome Sequencing, SJCI at Providence SJHC, Santa Monica, CA, 90404, USA
| | - Matthew Knarr
- Department of Obstetrics and Gynecology, Perelman School of Medicine, Penn Ovarian Cancer Research Center, University of Pennsylvania, Pennsylvania, PA, 19104, USA
| | - Steven A Vasilev
- Department of Gynecologic Oncology Research, SJCI at SJHC, Santa Monica, CA, 90404, USA
| | - Analisa DiFeo
- Department of Obstetrics & Gynecology, University Michigan, Ann Arbor, MI, 48109, USA
- Department of Pathology, Rogel Cancer Center, University Michigan, Ann Arbor, MI, 48109, USA
| | - Ronny Drapkin
- Department of Obstetrics and Gynecology, Perelman School of Medicine, Penn Ovarian Cancer Research Center, University of Pennsylvania, Pennsylvania, PA, 19104, USA
| | - Dave S B Hoon
- Department of Translational Molecular Medicine, Saint John's Cancer Institute (SJCI) at Providence Saint John's Health Center (SJHC), 2200 Santa Monica Blvd, Santa Monica, CA, 90404, USA.
- Department of Genome Sequencing, SJCI at Providence SJHC, Santa Monica, CA, 90404, USA.
| |
Collapse
|
40
|
Yasir M, Park J, Chun W. EWS/FLI1 Characterization, Activation, Repression, Target Genes and Therapeutic Opportunities in Ewing Sarcoma. Int J Mol Sci 2023; 24:15173. [PMID: 37894854 PMCID: PMC10607184 DOI: 10.3390/ijms242015173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/11/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
Despite their clonal origins, tumors eventually develop into complex communities made up of phenotypically different cell subpopulations, according to mounting evidence. Tumor cell-intrinsic programming and signals from geographically and temporally changing microenvironments both contribute to this variability. Furthermore, the mutational load is typically lacking in childhood malignancies of adult cancers, and they still exhibit high cellular heterogeneity levels largely mediated by epigenetic mechanisms. Ewing sarcomas represent highly aggressive malignancies affecting both bone and soft tissue, primarily afflicting adolescents. Unfortunately, the outlook for patients facing relapsed or metastatic disease is grim. These tumors are primarily fueled by a distinctive fusion event involving an FET protein and an ETS family transcription factor, with the most prevalent fusion being EWS/FLI1. Despite originating from a common driver mutation, Ewing sarcoma cells display significant variations in transcriptional activity, both within and among tumors. Recent research has pinpointed distinct fusion protein activities as a principal source of this heterogeneity, resulting in markedly diverse cellular phenotypes. In this review, we aim to characterize the role of the EWS/FLI fusion protein in Ewing sarcoma by exploring its general mechanism of activation and elucidating its implications for tumor heterogeneity. Additionally, we delve into potential therapeutic opportunities to target this aberrant fusion protein in the context of Ewing sarcoma treatment.
Collapse
Affiliation(s)
| | | | - Wanjoo Chun
- Department of Pharmacology, Kangwon National University School of Medicine, Chuncheon 24341, Republic of Korea; (M.Y.); (J.P.)
| |
Collapse
|
41
|
Mafi A, Mannani R, Khalilollah S, Hedayati N, Salami R, Rezaee M, Dehmordi RM, Ghorbanhosseini SS, Alimohammadi M, Akhavan-Sigari R. The Significant Role of microRNAs in Gliomas Angiogenesis: A Particular Focus on Molecular Mechanisms and Opportunities for Clinical Application. Cell Mol Neurobiol 2023; 43:3277-3299. [PMID: 37414973 PMCID: PMC11409989 DOI: 10.1007/s10571-023-01385-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 06/25/2023] [Indexed: 07/08/2023]
Abstract
MicroRNAs (miRNAs) are non-coding RNAs with only 20-22 nucleic acids that inhibit gene transcription and translation by binding to mRNA. MiRNAs have a diverse set of target genes and can alter most physiological processes, including cell cycle checkpoints, cell survival, and cell death mechanisms, affecting the growth, development, and invasion of various cancers, including gliomas. So optimum management of miRNA expression is essential for preserving a normal biological environment. Due to their small size, stability, and capability of specifically targeting oncogenes, miRNAs have emerged as a promising marker and new biopharmaceutical targeted therapy for glioma patients. This review focuses on the most common miRNAs associated with gliomagenesis and development by controlling glioma-determining markers such as angiogenesis. We also summarized the recent research about miRNA effects on signaling pathways, their mechanistic role and cellular targets in the development of gliomas angiogenesis. Strategies for miRNA-based therapeutic targets, as well as limitations in clinical applications, are also discussed.
Collapse
Affiliation(s)
- Alireza Mafi
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
- Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Reza Mannani
- Department of Surgery, Faculty of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Shayan Khalilollah
- Department of Neurosurgery, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Neda Hedayati
- School of Medicine, Iran University of Medical Science, Tehran, Iran
| | - Raziyeh Salami
- Department of Clinical Biochemistry, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Malihe Rezaee
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Tehran Heart Center, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Rohollah Mousavi Dehmordi
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
- Department of Clinical Biochemistry, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Seyedeh Sara Ghorbanhosseini
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mina Alimohammadi
- Student Research Committee, Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Reza Akhavan-Sigari
- Department of Neurosurgery, University Medical Center Tuebingen, Tübingen, Germany
- Department of Health Care Management and Clinical Research, Collegium Humanum Warsaw Management University Warsaw, Warsaw, Poland
| |
Collapse
|
42
|
Dypås LB, Duale N, Olsen AK, Bustamante M, Maitre L, Escaramis G, Julvez J, Aguilar-Lacasaña S, Andrusaityte S, Casas M, Vafeiadi M, Grazuleviciene R, Heude B, Lepeule J, Urquiza J, Wright J, Yang TC, Vrijheid M, Gützkow KB. Blood miRNA levels associated with ADHD traits in children across six European birth cohorts. BMC Psychiatry 2023; 23:696. [PMID: 37749515 PMCID: PMC10521440 DOI: 10.1186/s12888-023-05199-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 09/17/2023] [Indexed: 09/27/2023] Open
Abstract
BACKGROUND Attention-deficit/hyperactivity disorder (ADHD) is a prevalent and highly heritable neurodevelopmental disorder of major societal concern. Diagnosis can be challenging and there are large knowledge gaps regarding its etiology, though studies suggest an interplay of genetic and environmental factors involving epigenetic mechanisms. MicroRNAs (miRNAs) show promise as biomarkers of human pathology and novel therapies, and here we aimed to identify blood miRNAs associated with traits of ADHD as possible biomarker candidates and further explore their biological relevance. METHODS Our study population consisted of 1126 children (aged 5-12 years, 46% female) from the Human Early Life Exposome study, a study spanning six ongoing population-based European birth cohorts. Expression profiles of miRNAs in whole blood samples were quantified by microarray and tested for association with ADHD-related measures of behavior and neuropsychological functions from questionnaires (Conner's Rating Scale and Child Behavior Checklist) and computer-based tests (the N-back task and Attention Network Test). RESULTS We identified 29 miRNAs significantly associated (false discovery rate < .05) with the Conner's questionnaire-rated trait hyperactivity, 15 of which have been linked to ADHD in previous studies. Investigation into their biological relevance revealed involvement in several pathways related to neurodevelopment and function, as well as being linked with other neurodevelopmental or psychiatric disorders known to overlap with ADHD both in symptomology, genetic risk, and co-occurrence, such as autism spectrum disorder or schizophrenia. An additional three miRNAs were significantly associated with Conner's-rated inattention. No associations were found with questionnaire-rated total ADHD index or with computer-based tests. CONCLUSIONS The large overlap of our hyperactivity-associated miRNAs with previous studies on ADHD is intriguing and warrant further investigation. Though this study should be considered explorative and preliminary, these findings contribute towards identifying a set of miRNAs for use as blood-based biomarkers to aid in earlier and easier ADHD diagnosis.
Collapse
Affiliation(s)
- Lene B Dypås
- Division of Climate and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway.
| | - Nur Duale
- Division of Climate and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Ann-Karin Olsen
- Division of Climate and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Mariona Bustamante
- Institute for Global Health (ISGlobal), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Lea Maitre
- Institute for Global Health (ISGlobal), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Geòrgia Escaramis
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- Department of Biomedical Sciences, Institute of Neuroscience, University of Barcelona, Barcelona, Spain
| | - Jordi Julvez
- Institute for Global Health (ISGlobal), Barcelona, Spain
- Clinical and Epidemiological Neuroscience (NeuroÈpia), Institut d'investigació Sanitària Pere Virgili (IISPV), Reus, Catalonia, Spain
| | - Sofia Aguilar-Lacasaña
- Institute for Global Health (ISGlobal), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Sandra Andrusaityte
- Department of Environmental Science, Vytautas Magnus University, Kaunas, Lithuania
| | - Maribel Casas
- Institute for Global Health (ISGlobal), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Marina Vafeiadi
- Department of Social Medicine, School of Medicine, University of Crete, Heraklion, Greece
| | | | - Barbara Heude
- Centre of Research in Epidemiology and Statistics (CRESS), Inserm, Université de Paris, Paris, France
| | - Johanna Lepeule
- Université Grenoble Alpes, INSERM, CNRS, Institute for Advanced Biosciences (IAB), Team of Environmental Epidemiology Applied to Development and Respiratory Health, La Tronche, France
| | - Jose Urquiza
- Institute for Global Health (ISGlobal), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - John Wright
- Bradford Teaching Hospitals NHS Foundation Trust, Bradford, UK
| | - Tiffany C Yang
- Bradford Teaching Hospitals NHS Foundation Trust, Bradford, UK
| | - Martine Vrijheid
- Institute for Global Health (ISGlobal), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Kristine B Gützkow
- Division of Climate and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| |
Collapse
|
43
|
Schoen C, Bloemen M, Carels CEL, Verhaegh GW, Van Rheden R, Roa LA, Glennon JC, Von den Hoff JW. A potential osteogenic role for microRNA-181a-5p during palatogenesis. Eur J Orthod 2023; 45:575-583. [PMID: 37454242 PMCID: PMC10756689 DOI: 10.1093/ejo/cjad037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
BACKGROUND In a previous study, we found that the highly conserved hsa-miR-181a-5p is downregulated in palatal fibroblasts of non-syndromic cleft palate-only infants. OBJECTIVES To analyze the spatiotemporal expression pattern of mmu-miR-181a-5p during palatogenesis and identify possible mRNA targets and their involved molecular pathways. MATERIAL AND METHODS The expression of mmu-miR-181a-5p was analyzed in the developing palates of mouse embryos from E11 to E18 using qPCR and ISH. Mouse embryonic palatal mesenchyme cells from E13 were used to analyze mmu-miR-181a-5p expression during osteogenic differentiation. Differential mRNA expression and target identification were analyzed using whole transcriptome RNA sequencing after transfection with a mmu-miR-181a-5p mimic. Differentially expressed genes were linked with underlying pathways using gene set enrichment analysis. RESULTS The expression of mmm-miR-181a-5p in the palatal shelves increased from E15 and overlapped with palatal osteogenesis. During early osteogenic differentiation, mmu-miR-181a-5p was upregulated. Transient overexpression resulted in 49 upregulated mRNAs and 108 downregulated mRNAs (adjusted P-value < 0.05 and fold change > ± 1.2). Ossification (Stc1, Mmp13) and cell-cycle-related GO terms were significantly enriched for upregulated mRNAs. Analysis of possible mRNA targets indicated significant enrichment of Hippo signaling (Ywhag, Amot, Frmd6 and Serpine1) and GO terms related to cell migration and angiogenesis. LIMITATIONS Transient overexpression of mmu-miR-181a-5p in mouse embryonic palatal mesenchyme cells limited its analysis to early osteogenesis. CONCLUSION Mmu-miR-181-5p expression is increased in the developing palatal shelves in areas of bone formation and targets regulators of the Hippo signaling pathway.
Collapse
Affiliation(s)
- Christian Schoen
- Department of Orthodontics and Craniofacial Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Marjon Bloemen
- Department of Orthodontics and Craniofacial Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Carine E L Carels
- Department of Human Genetics and Department of Oral Health Sciences, KU Leuven and orthodontic clinic, University Hospitals KU Leuven, Belgium
| | - Gerald W Verhaegh
- Department of Urology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Rene Van Rheden
- Department of Orthodontics and Craniofacial Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Laury A Roa
- Department of Orthodontics and Craniofacial Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
- MERLN Institute for Technology—Inspired Regenerative Medicine, Maastricht University, the Netherlands
| | - Jeffrey C Glennon
- Conway Institute of Biomolecular and Biomedical Research, School of Medicine, University College Dublin, Ireland
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Johannes W Von den Hoff
- Department of Orthodontics and Craniofacial Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| |
Collapse
|
44
|
Gupta J, Suliman M, Ali R, Margiana R, Hjazi A, Alsaab HO, Qasim MT, Hussien BM, Ahmed M. Double-edged sword role of miRNA-633 and miRNA-181 in human cancers. Pathol Res Pract 2023; 248:154701. [PMID: 37542859 DOI: 10.1016/j.prp.2023.154701] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/16/2023] [Accepted: 07/18/2023] [Indexed: 08/07/2023]
Abstract
Understanding the function and mode of operation of microRNAs (miRNAs) in cancer is of growing interest. The short non-coding RNAs known as miRNAs, which target mRNA in multicellular organisms, are described as controlling essential cellular processes. The miR-181 family and miR-633 are well-known miRNAs that play a key role in the development and metastasis of tumor cells. They may facilitate either tumor-suppressive or oncogenic function in malignant cells, according to mounting evidence. Metastatic cells that are closely linked to cancer cell migration, invasion, and angiogenesis can be identified by abnormal levels of miR-181 and miR-633. Numerous studies have demonstrated their capacity to control drug resistance, cell growth, apoptosis, and the epithelial-mesenchymal transition (EMT) and metastasis process. Interestingly, the levels of miR-181 and miR-633 and their potential target genes in the basic cellular process can vary depending on the type of cancer cells and their gene expression profile. Such miRNAs' interactions with other non-coding RNAs such as long non-coding RNAs and circular RNAs can influence tumor behaviors. Herein, we concentrated on the multifaceted roles of miR-181 and miR-633 and potential targets in human tumorigenesis, ranging from cell growth and metastasis to drug resistance.
Collapse
Affiliation(s)
- Jitendra Gupta
- Institute of Pharmaceutical Research, GLA University, Mathura 281406, U. P., India.
| | - Muath Suliman
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Rida Ali
- Rawalpindi Medical University, Rawalpindi, Pakistan
| | - Ria Margiana
- Department of Anatomy, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia; Master's Programme Biomedical Sciences, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia; Andrology Program, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia; Dr. Soetomo General Academic Hospital, Surabaya, Indonesia.
| | - Ahmed Hjazi
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Hashem O Alsaab
- Department of Pharmaceutics and Pharmaceutical Technology, Taif University, Taif, Saudi Arabia
| | - Maytham T Qasim
- Department of Anesthesia, College of Health and Medical Technololgy, Al-Ayen University, Thi-Qar, Iraq
| | - Beneen M Hussien
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | - Muhja Ahmed
- Medical Technical College, Al-Farahidi University, Baghdad, Iraq
| |
Collapse
|
45
|
Chira S, Ciocan C, Bica C, Calin GA, Berindan-Neagoe I. Artificial miRNAs derived from miR-181 family members have potential in cancer therapy due to an altered spectrum of target mRNAs. FEBS Lett 2023; 597:1989-2005. [PMID: 37283340 DOI: 10.1002/1873-3468.14673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/08/2023] [Accepted: 05/22/2023] [Indexed: 06/08/2023]
Abstract
miRNAs are a class of noncoding RNAs with gene regulation properties, and they function as key factors in cell homeostasis. The interaction of miRNAs with their target mRNAs is largely considered to rely on sequence complementarity; however, some evidence indicates that mature miRNAs can adopt diverse conformations with implications for their function. Using the oncogenic miR-181 family as a study model, we suggest that a potential relationship between the primary sequence and secondary structure of miRNAs may have an impact on the number and spectrum of targeted cellular transcripts. We further emphasize that specific alterations in miR-181 primary sequences might impose certain constraints on target gene selection compared with the wild-type sequences, leading to the targeting of new transcripts with upregulated function in cancer.
Collapse
Affiliation(s)
- Sergiu Chira
- Research Center for Functional Genomics, Biomedicine, and Translational Medicine, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Cristina Ciocan
- Research Center for Functional Genomics, Biomedicine, and Translational Medicine, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Cecilia Bica
- Research Center for Functional Genomics, Biomedicine, and Translational Medicine, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - George A Calin
- Translational Molecular Pathology, MD Anderson Cancer Center, Texas State University, Houston, TX, USA
- The RNA Interference and Non-codingRNA Center, MD Anderson Cancer Center, Texas State University, Houston, TX, USA
| | - Ioana Berindan-Neagoe
- Research Center for Functional Genomics, Biomedicine, and Translational Medicine, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| |
Collapse
|
46
|
Shao B, Zhou D, Wang J, Yang D, Gao J. A novel LncRNA SPIRE1/miR-181a-5p/PRLR axis in mandibular bone marrow-derived mesenchymal stem cells regulates the Th17/Treg immune balance through the JAK/STAT3 pathway in periodontitis. Aging (Albany NY) 2023; 15:7124-7145. [PMID: 37490712 PMCID: PMC10415575 DOI: 10.18632/aging.204895] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 07/06/2023] [Indexed: 07/27/2023]
Abstract
Periodontitis is a microbial-related chronic inflammatory disease associated with imbalanced differentiation of Th17 cells and Treg cells. Bone marrow-derived mesenchymal stem cells (BM-MSCs) possess wide immunoregulatory properties. Long noncoding RNAs (lncRNAs) and microRNAs (miRNAs) contribute to the immunomodulation in the pathological mechanisms of inflammatory diseases. However, critical lncRNAs/miRNAs involved in immunomodulation of mandibular BM-MSCs largely remain to be identified. Here, we explored the molecular mechanisms behind the defective immunomodulatory ability of mandibular BM-MSCs under the periodontitis settings. We found that mandibular BM-MSCs from P. gingivalis-induced periodontitis mice had significantly reduced expression of LncRNA SPIRE1 than that from normal control mice. LncRNA SPIRE1 knockdown in normal BM-MSCs caused Th17/Treg cell differentiation imbalance during the coculturing of BM-MSCs and CD4 T cells. In addition, LncRNA SPIRE1 was identified as a competitive endogenous RNA that sponges miR-181a-5p in BM-MSCs. Moreover, miR-181a-5p inhibition attenuated the impact of LncRNA SPIRE1 knockdown on the ability of BM-MSCs in modulating Th17/Treg balance. Prolactin receptor (PRLR) was validated as a downstream target of miR-181a-5p. Notably, targeted knockdown of LncRNA SPIRE1 or PRLR or transfection of miR-181a-5p mimics activated the JAK/STAT3 signaling in normal BM-MSCs, while treatment with STAT3 inhibitor C188-9 restored the immunomodulatory properties of periodontitis-associated BM-MSCs. Furthermore, BM-MSCs with miR-181a-5p inhibition or PRLR-overexpression showed enhanced in vivo immunosuppressive properties in the periodontitis mouse model. Our results indicate that the JAK/STAT3 pathway is involved in the immunoregulation of BM-MSCs, and provide critical insights into the development of novel targeted therapies against periodontitis.
Collapse
Affiliation(s)
- Bingyi Shao
- Northern Department of Endodontics, Stomatological Hospital of Chongqing Medical University, Chongqing 401147, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing 401147, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China
| | - Duo Zhou
- Northern Department of Endodontics, Stomatological Hospital of Chongqing Medical University, Chongqing 401147, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing 401147, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China
| | - Jie Wang
- Northern Department of Endodontics, Stomatological Hospital of Chongqing Medical University, Chongqing 401147, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing 401147, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China
| | - Deqin Yang
- Northern Department of Endodontics, Stomatological Hospital of Chongqing Medical University, Chongqing 401147, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing 401147, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China
| | - Jing Gao
- Northern Department of Endodontics, Stomatological Hospital of Chongqing Medical University, Chongqing 401147, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing 401147, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China
| |
Collapse
|
47
|
Patel BY, Bhome R, Liu DSK, Giovannetti E, Merali N, Primrose JN, Mirnezami AH, Rockall TA, Annels N, Frampton AE. Cancer cell-derived extracellular vesicles activate hepatic stellate cells in colorectal cancer. Expert Rev Mol Diagn 2023; 23:843-849. [PMID: 37599564 DOI: 10.1080/14737159.2023.2246893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 08/08/2023] [Indexed: 08/22/2023]
Abstract
Colorectal cancer (CRC) is the 2nd leading cause of cancer-related deaths worldwide, primarily due to the development of metastatic disease. The liver is the most frequently affected site. The metastatic cascade relies on a complex interaction between the immune system, tumor, and distant organs. Communication between the tumor and the metastatic site can be mediated by tumor-derived extracellular vesicles (EVs) and their cargo. The mechanisms underlying this process are starting to be understood through research that has rapidly expanded over the past 15 years. One crucial aspect is the remodeling of the microenvironment at the site of metastasis, which is essential for the formation of a premetastatic niche and the subsequent establishment of metastatic deposits. In the evaluated study, the authors use cellular experiments and a mouse model to investigate how tumour derived extracellular vesicles and their microRNA contents interact with hepatic stellate cells (HSCs). They demonstrate how this may lead to remodelling of the microenvironment and the formation of colorectal liver metastasis using their experimental model. In this mini review, we examine the current evidence surrounding tumour derived EVs and their effect on the tumour microenvironment to highlight potential areas for future research in CRC and other malignancies.
Collapse
Affiliation(s)
- Bhavik Y Patel
- Section of Oncology, Dept. of Clinical & Experimental Medicine, University of Surrey, Guildford, Surrey, UK
- Minimal Access Therapy Training Unit (MATTU), Leggett Building, University of Surrey, Guildford, UK
- Department of Hepato-Pancreato-Biliary (HPB) Surgery, Royal Surrey County Hospital, Guildford, UK
| | - Rahul Bhome
- Cancer Sciences, University of Southampton, Southampton, UK
| | - Daniel S K Liu
- Division of Cancer, Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, London, UK
| | - Elisa Giovannetti
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit, Amsterdam, The Netherlands
- Cancer Pharmacology Lab, Fondazione Pisana per La Scienza, San Giuliano, Italy
| | - Nabeel Merali
- Section of Oncology, Dept. of Clinical & Experimental Medicine, University of Surrey, Guildford, Surrey, UK
- Minimal Access Therapy Training Unit (MATTU), Leggett Building, University of Surrey, Guildford, UK
- Department of Hepato-Pancreato-Biliary (HPB) Surgery, Royal Surrey County Hospital, Guildford, UK
| | - John N Primrose
- Department of Surgery, University of Southampton, Southampton, UK
| | - Alex H Mirnezami
- Department of Surgery, University of Southampton, Southampton, UK
| | - Timothy A Rockall
- Minimal Access Therapy Training Unit (MATTU), Leggett Building, University of Surrey, Guildford, UK
| | - Nicola Annels
- Section of Oncology, Dept. of Clinical & Experimental Medicine, University of Surrey, Guildford, Surrey, UK
| | - Adam E Frampton
- Section of Oncology, Dept. of Clinical & Experimental Medicine, University of Surrey, Guildford, Surrey, UK
- Minimal Access Therapy Training Unit (MATTU), Leggett Building, University of Surrey, Guildford, UK
- Department of Hepato-Pancreato-Biliary (HPB) Surgery, Royal Surrey County Hospital, Guildford, UK
| |
Collapse
|
48
|
Wang X, Lin J, Wang Z, Li Z, Wang M. Possible therapeutic targets for NLRP3 inflammasome-induced breast cancer. Discov Oncol 2023; 14:93. [PMID: 37300757 DOI: 10.1007/s12672-023-00701-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023] Open
Abstract
Inflammation plays a major role in the development and progression of breast cancer(BC). Proliferation, invasion, angiogenesis, and metastasis are all linked to inflammation and tumorigenesis. Furthermore, tumor microenvironment (TME) inflammation-mediated cytokine releases play a critical role in these processes. By recruiting caspase-1 through an adaptor apoptosis-related spot protein, inflammatory caspases are activated by the triggering of pattern recognition receptors on the surface of immune cells. Toll-like receptors, NOD-like receptors, and melanoma-like receptors are not triggered. It activates the proinflammatory cytokines interleukin (IL)-1β and IL-18 and is involved in different biological processes that exert their effects. The Nod-Like Receptor Protein 3 (NLRP3) inflammasome regulates inflammation by mediating the secretion of proinflammatory cytokines and interacting with other cellular compartments through the inflammasome's central role in innate immunity. NLRP3 inflammasome activation mechanisms have received much attention in recent years. Inflammatory diseases including enteritis, tumors, gout, neurodegenerative diseases, diabetes, and obesity are associated with abnormal activation of the NLRP3 inflammasome. Different cancer diseases have been linked to NLRP3 and its role in tumorigenesis may be the opposite. Tumors can be suppressed by it, as has been seen primarily in the context of colorectal cancer associated with colitis. However, cancers such as gastric and skin can also be promoted by it. The inflammasome NLRP3 is associated with breast cancer, but there are few specific reviews. This review focuses on the structure, biological characteristics and mechanism of inflammasome, the relationship between NLRP3 in breast cancer Non-Coding RNAs, MicroRNAs and breast cancer microenvironment, especially the role of NLRP3 in triple-negative breast cancer (TNBC). And the potential strategies of using NLRP3 inflammasome to target breast cancer, such as NLRP3-based nanoparticle technology and gene target therapy, are reviewed.
Collapse
Affiliation(s)
- Xixi Wang
- Department of General Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, China
| | - Junyi Lin
- Sinopharm Dongfeng General Hospital, Hubei University of Medicine, Shiyan, 442000, China
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, China
| | - Zhe Wang
- Department of General Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, China
| | - Zhi Li
- Department of General Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, China.
- Interventional Cancer Institute of Chinese Integrative Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200333, China.
- Hubei Clinical Research Center for Precise Diagnosis and Treatment of Liver Cancer, Taihe Hospital, Hubei University of Medicine, Shiyan, China.
| | - Minghua Wang
- Department of General Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, China.
| |
Collapse
|
49
|
Natalicchio A, Montagnani M, Gallo M, Marrano N, Faggiano A, Zatelli MC, Mazzilli R, Argentiero A, Danesi R, D'Oronzo S, Fogli S, Giuffrida D, Gori S, Ragni A, Renzelli V, Russo A, Franchina T, Tuveri E, Sciacca L, Monami M, Cirino G, Di Cianni G, Colao A, Avogaro A, Cinieri S, Silvestris N, Giorgino F. MiRNA dysregulation underlying common pathways in type 2 diabetes and cancer development: an Italian Association of Medical Oncology (AIOM)/Italian Association of Medical Diabetologists (AMD)/Italian Society of Diabetology (SID)/Italian Society of Endocrinology (SIE)/Italian Society of Pharmacology (SIF) multidisciplinary critical view. ESMO Open 2023; 8:101573. [PMID: 37263082 PMCID: PMC10245125 DOI: 10.1016/j.esmoop.2023.101573] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/27/2023] [Accepted: 04/26/2023] [Indexed: 06/03/2023] Open
Abstract
Increasing evidence suggests that patients with diabetes, particularly type 2 diabetes (T2D), are characterized by an increased risk of developing different types of cancer, so cancer could be proposed as a new T2D-related complication. On the other hand, cancer may also increase the risk of developing new-onset diabetes, mainly caused by anticancer therapies. Hyperinsulinemia, hyperglycemia, and chronic inflammation typical of T2D could represent possible mechanisms involved in cancer development in diabetic patients. MicroRNAs (miRNAs) are a subset of non-coding RNAs, ⁓22 nucleotides in length, which control the post-transcriptional regulation of gene expression through both translational repression and messenger RNA degradation. Of note, miRNAs have multiple target genes and alteration of their expression has been reported in multiple diseases, including T2D and cancer. Accordingly, specific miRNA-regulated pathways are involved in the pathogenesis of both conditions. In this review, a panel of experts from the Italian Association of Medical Oncology (AIOM), Italian Association of Medical Diabetologists (AMD), Italian Society of Diabetology (SID), Italian Society of Endocrinology (SIE), and Italian Society of Pharmacology (SIF) provide a critical view of the evidence about the involvement of miRNAs in the pathophysiology of both T2D and cancer, trying to identify the shared miRNA signature and pathways able to explain the strong correlation between the two conditions, as well as to envision new common pharmacological approaches.
Collapse
Affiliation(s)
- A Natalicchio
- Department of Precision and Regenerative Medicine and Ionian Area, Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, University of Bari Aldo Moro, Bari, Italy
| | - M Montagnani
- Department of Precision and Regenerative Medicine and Ionian Area, Section of Pharmacology, Medical School, University of Bari Aldo Moro, Bari, Italy
| | - M Gallo
- Endocrinology and Metabolic Diseases Unit, AO SS Antonio e Biagio e Cesare Arrigo of Alessandria, Alessandria, Italy
| | - N Marrano
- Department of Precision and Regenerative Medicine and Ionian Area, Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, University of Bari Aldo Moro, Bari, Italy
| | - A Faggiano
- Endocrinology Unit, Department of Clinical and Molecular Medicine, Sant'Andrea Hospital, ENETS Center of Excellence, Sapienza University of Rome, Rome, Italy
| | - M C Zatelli
- Section of Endocrinology, Geriatrics, and Internal Medicine, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - R Mazzilli
- Endocrinology Unit, Department of Clinical and Molecular Medicine, Sant'Andrea Hospital, ENETS Center of Excellence, Sapienza University of Rome, Rome, Italy
| | - A Argentiero
- Medical Oncology Unit, IRCCS Istituto Tumori "Giovanni Paolo II", Bari, Italy
| | - R Danesi
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - S D'Oronzo
- Interdisciplinary Department of Medicine, University of Bari Aldo Moro, Bari, Italy
| | - S Fogli
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - D Giuffrida
- Department of Oncology, Istituto Oncologico del Mediterraneo, Viagrande, Catania, Italy
| | - S Gori
- Oncologia Medica, IRCCS Ospedale Don Calabria-Sacro Cuore di Negrar, Verona, Italy
| | - A Ragni
- Endocrinology and Metabolic Diseases Unit, AO SS Antonio e Biagio e Cesare Arrigo of Alessandria, Alessandria, Italy
| | - V Renzelli
- Diabetologist and Endocrinologist, Italian Association of Clinical Diabetologists, Rome, Italy
| | - A Russo
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, Palermo, Italy
| | - T Franchina
- Medical Oncology Unit, Department of Human Pathology "G. Barresi", University of Messina, Messina, Italy
| | - E Tuveri
- Diabetology, Endocrinology and Metabolic Diseases Service, ASL-Sulcis, Carbonia, Sardinia, Italy
| | - L Sciacca
- Department of Clinical and Experimental Medicine, Endocrinology Section, University of Catania, Catania, Italy
| | - M Monami
- Diabetology, Careggi Hospital and University of Florence, Firenze, Italy
| | - G Cirino
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - G Di Cianni
- Diabetes Unit, Livorno Hospital, Livorno, Italy
| | - A Colao
- Endocrinology, Diabetology and Andrology Unit, Department of Clinical Medicine and Surgery, Federico II University of Naples, Naples, Italy; UNESCO Chair, Education for Health and Sustainable Development, Federico II University, Naples, Italy
| | - A Avogaro
- Department of Medicine, University of Padova, Padua, Italy
| | - S Cinieri
- Medical Oncology Division and Breast Unit, Senatore Antonio Perrino Hospital, ASL Brindisi, Brindisi, Italy
| | - N Silvestris
- Medical Oncology Unit, Department of Human Pathology "G. Barresi", University of Messina, Messina, Italy
| | - F Giorgino
- Department of Precision and Regenerative Medicine and Ionian Area, Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, University of Bari Aldo Moro, Bari, Italy.
| |
Collapse
|
50
|
Sagnak Yilmaz Z, Sarioglu S. Molecular Pathology of Micropapillary Carcinomas: Is Characteristic Morphology Related to Molecular Mechanisms? Appl Immunohistochem Mol Morphol 2023; 31:267-277. [PMID: 37036419 DOI: 10.1097/pai.0000000000001123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 03/13/2023] [Indexed: 04/11/2023]
Abstract
Micropapillary carcinoma is an entity defined histologically in many organs. It is associated with lymph node metastasis and poor prognosis. The main mechanism for its histopathologic appearance is reverse polarization. Although the studies on this subject are limited, carcinomas with micropapillary morphology observed in different organs are examined by immunohistochemical and molecular methods. Differences are shown in these tumors compared with conventional carcinomas regarding the rate of somatic mutations, mRNA and miRNA expressions, and protein expression levels. TP53 , PIK3CA , TERT , KRAS , EGFR , MYC , FGFR1 , BRAF , AKT1 , HER2/ERBB2 , CCND1 , and APC mutations, which genes frequently detected in solid tumors, have also been detected in invasive micropapillary carcinoma (IMPC) in various organs. 6q chromosome loss, DNAH9 , FOXO3 , SEC. 63 , and FMN2 gene mutations associated with cell polarity or cell structure and skeleton have also been detected in IMPCs. Among the proteins that affect cell polarity, RAC1, placoglobin, as well as CLDNs, LIN7A, ZEB1, CLDN1, DLG1, CDH1 (E-cadherin), OCLN, AFDN/AF6, ZEB1, SNAI2, ITGA1 (integrin alpha 1), ITGB1 (integrin beta 1), RHOA, Jagged-1 (JAG1) mRNAs differentially express between IMPC and conventional carcinomas. Prediction of prognosis and targeted therapy may benefit from the understanding of molecular mechanisms of micropapillary morphology. This review describes the molecular pathologic mechanisms underlying the micropapillary changes of cancers in various organs in a cell polarity-related dimension.
Collapse
Affiliation(s)
- Zeynep Sagnak Yilmaz
- Department of Molecular Pathology, Dokuz Eylül University Graduate School of Health Sciences
- Pathology Department, Karadeniz Technical University Faculty of Medicine, Trabzon, Turkey
| | - Sulen Sarioglu
- Department of Molecular Pathology, Dokuz Eylül University Graduate School of Health Sciences
- Pathology Department, Dokuz Eylül University Faculty of Medicine, Izmir
| |
Collapse
|