1
|
Cho S, Kim NY, Yang Y, Jung JH, Seo D, Jin S, Hwang SH, Kim Y. Protumor effect of CXCL10/CXCR3 axis in canine mammary gland tumor. J Vet Sci 2025; 26:e18. [PMID: 40183905 PMCID: PMC11972938 DOI: 10.4142/jvs.24278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 01/11/2025] [Accepted: 01/21/2025] [Indexed: 04/05/2025] Open
Abstract
IMPORTANCE Chemokines and their receptors play integral roles in carcinogenesis. CXC motif chemokine receptor 3 (CXCR3) in T cells mediates anti-tumor effects, whereas CXCR3 in malignant cells promotes proliferation and metastasis. Although the role of CXCR3 has been well-documented in human cancers, including breast cancer, its function in canine tumors remains largely unexplored. OBJECTIVE This study aimed to investigate the effects of CXCR3 and its ligand interaction in canine mammary gland tumor (cMGT) cells. METHODS CXCR3 expression in two cMGT cell lines, CIPp and CIPm, was evaluated using real-time quantitative polymerase chain reaction, western blotting, and flow cytometry. CXC motif chemokine ligand 10 (CXCL10)-induced changes in CXCR3 protein expression in cMGT cells were assessed using membrane fractionation assays. Cell proliferation and migration in response to CXCL10 treatment were analyzed using Cell Counting Kit-8 and wound-healing assays, respectively. Additionally, the downstream molecular mechanisms of the CXCL10/CXCR3 axis were examined. RESULTS CXCR3 expression was significantly higher in CIPm than in CIPp cells. In both the cMGT cell lines, CXCL10 treatment reduced CXCR3 expression on the cell membrane in a dose- and time-dependent manner. The CXCR10/CXCR3 axis promoted cell proliferation and migration in cMGT cells. CXCL10/CXCR3 interaction upregulated the phosphorylation of AKT1 and ERK. CONCLUSIONS AND RELEVANCE This study demonstrates that the CXCL10/CXCR3 axis may contribute to the pathogenesis of cMGTs by promoting tumor cell proliferation and migration. CXCR3 signaling represents a potential therapeutic target for cMGTs.
Collapse
Affiliation(s)
- Soyeon Cho
- Laboratory of Clinical Pathology, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea
- BK 21 FOUR Program for Future Veterinary Medicine Leading Education and Research Center, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea
| | - Na-Yon Kim
- Laboratory of Clinical Pathology, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea
| | - Yeseul Yang
- Laboratory of Clinical Pathology, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea
- BK 21 FOUR Program for Future Veterinary Medicine Leading Education and Research Center, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea
| | - Jae-Ha Jung
- Laboratory of Clinical Pathology, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea
- BK 21 FOUR Program for Future Veterinary Medicine Leading Education and Research Center, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea
| | - Dansong Seo
- Laboratory of Clinical Pathology, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea
| | - Soyun Jin
- Laboratory of Clinical Pathology, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea
| | - Sung-Hyun Hwang
- Biomedical Research Institute, Seoul National University Bundang Hospital, Seongnam 13620, Korea
| | - Yongbaek Kim
- Laboratory of Clinical Pathology, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea
- Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea.
| |
Collapse
|
2
|
Nururrozi A, Miyanishi K, Igase M, Sakurai M, Sakai Y, Tanabe M, Mizuno T. The Density of CD8 + Tumor-infiltrating Lymphocytes Correlated With Akt Activation and Ki-67 Index in Canine Soft Tissue Sarcoma. In Vivo 2024; 38:1698-1711. [PMID: 38936907 PMCID: PMC11215572 DOI: 10.21873/invivo.13620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/08/2024] [Accepted: 04/09/2024] [Indexed: 06/29/2024]
Abstract
BACKGROUND/AIM The activation of phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathway has been implicated in canine soft tissue sarcoma (STS) and may serve as a prognostic marker. This study investigated the correlation between PI3K/Akt activation in tumor cells and tumor-infiltrating lymphocytes (TILs). MATERIALS AND METHODS A total of 59 STS samples were labeled via immunohistochemistry to calculate the density of TILs, including CD3+ T cells, CD8+ T cells, CD20+ B cells, and FOXP3+ regulatory T cells. RESULTS Forty-eight samples (81.3%) had intra-tumoral TILs with a high density of CD3+ T cells (mean: 283.3 cells/mm2) and CD8+ T cells (mean: 134.8 cells/mm2). Conversely, CD20+ B cells (mean: 73.6 cells/mm2) and FOXP3+ regulatory T cells (mean: 9.2 cells/mm2) were scarce. The abundance of CD3+/CD8+, CD3+/CD20+, and CD8+/CD20+ TILs were highly correlated in multivariate analyses (r=0.895, 0.946, and 0.856, respectively). Nonetheless, TIL density was unrelated to clinicopathological parameters (sex, age, tumor location, breed) and tumor grade. The abundance of CD8+ T cells was positively correlated with the activation of PI3K/Akt, indicating that samples with high levels of phospho-Akt and phospho-S6 tend to have a higher CD8+ T cell density (p=0.0032 and 0.0218, respectively). Furthermore, TIL density was correlated with the Ki-67 index, a tumor proliferation and growth marker. Samples with a high Ki-67 index had a significantly higher abundance of CD3+ T cells, CD8+ T cells, and CD20+ B cells (p=0.0392, 0.0254, 0.0380, respectively). CONCLUSION PI3K/Akt pathway activation may influence the infiltration of CD8+ T cells within the tumor microenvironment in canine STS. Prospective studies involving a higher number of cases are warranted to confirm these findings.
Collapse
Affiliation(s)
- Alfarisa Nururrozi
- Laboratory of Molecular Diagnostics and Therapeutics, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
- Department of Internal Medicine, Faculty of Veterinary Medicine, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Kyohei Miyanishi
- Laboratory of Molecular Diagnostics and Therapeutics, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Masaya Igase
- Laboratory of Molecular Diagnostics and Therapeutics, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Masashi Sakurai
- Laboratory of Veterinary Pathology, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Yusuke Sakai
- Laboratory of Veterinary Pathology, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Mika Tanabe
- Veterinary Pathology Diagnostic Center, Fukuoka, Japan
| | - Takuya Mizuno
- Laboratory of Molecular Diagnostics and Therapeutics, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan;
| |
Collapse
|
3
|
Rodríguez-Bejarano OH, Roa L, Vargas-Hernández G, Botero-Espinosa L, Parra-López C, Patarroyo MA. Strategies for studying immune and non-immune human and canine mammary gland cancer tumour infiltrate. Biochim Biophys Acta Rev Cancer 2024; 1879:189064. [PMID: 38158026 DOI: 10.1016/j.bbcan.2023.189064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 12/11/2023] [Accepted: 12/20/2023] [Indexed: 01/03/2024]
Abstract
The tumour microenvironment (TME) is usually defined as a cell environment associated with tumours or cancerous stem cells where conditions are established affecting tumour development and progression through malignant cell interaction with non-malignant cells. The TME is made up of endothelial, immune and non-immune cells, extracellular matrix (ECM) components and signalling molecules acting specifically on tumour and non-tumour cells. Breast cancer (BC) is the commonest malignant neoplasm worldwide and the main cause of mortality in women globally; advances regarding BC study and understanding it are relevant for acquiring novel, personalised therapeutic tools. Studying canine mammary gland tumours (CMGT) is one of the most relevant options for understanding BC using animal models as they share common epidemiological, clinical, pathological, biological, environmental, genetic and molecular characteristics with human BC. In-depth, detailed investigation regarding knowledge of human BC-related TME and in its canine model is considered extremely relevant for understanding changes in TME composition during tumour development. This review addresses important aspects concerned with different methods used for studying BC- and CMGT-related TME that are important for developing new and more effective therapeutic strategies for attacking a tumour during specific evolutionary stages.
Collapse
Affiliation(s)
- Oscar Hernán Rodríguez-Bejarano
- Health Sciences Faculty, Universidad de Ciencias Aplicadas y Ambientales (U.D.C.A), Calle 222#55-37, Bogotá 111166, Colombia; Molecular Biology and Immunology Department, Fundacion Instituto de Inmunología de Colombia (FIDIC), Carrera 50#26-20, Bogotá 111321, Colombia; PhD Programme in Biotechnology, Faculty of Sciences, Universidad Nacional de Colombia, Carrera 45#26-85, Bogotá 111321, Colombia
| | - Leonardo Roa
- Veterinary Clinic, Faculty of Agricultural Sciences, Universidad de La Salle, Carrera 7 #179-03, Bogotá 110141, Colombia
| | - Giovanni Vargas-Hernández
- Animal Health Department, Faculty of Veterinary Medicine and Zootechnics, Universidad Nacional de Colombia, Carrera 45#26-85, Bogotá 111321, Colombia
| | - Lucía Botero-Espinosa
- Animal Health Department, Faculty of Veterinary Medicine and Zootechnics, Universidad Nacional de Colombia, Carrera 45#26-85, Bogotá 111321, Colombia
| | - Carlos Parra-López
- Microbiology Department, Faculty of Medicine, Universidad Nacional de Colombia, Carrera 45#26-85, Bogotá 111321, Colombia.
| | - Manuel Alfonso Patarroyo
- Molecular Biology and Immunology Department, Fundacion Instituto de Inmunología de Colombia (FIDIC), Carrera 50#26-20, Bogotá 111321, Colombia; Microbiology Department, Faculty of Medicine, Universidad Nacional de Colombia, Carrera 45#26-85, Bogotá 111321, Colombia.
| |
Collapse
|
4
|
Abbate JM, Arfuso F, Riolo K, Giudice E, Brunetti B, Lanteri G. Upregulation of miR-21 and pro-inflammatory cytokine genes IL-6 and TNF-α in promoting a pro-tumorigenic microenvironment in canine mammary carcinomas. Res Vet Sci 2023; 164:105014. [PMID: 37741040 DOI: 10.1016/j.rvsc.2023.105014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/26/2023] [Accepted: 08/26/2023] [Indexed: 09/25/2023]
Abstract
This study evaluated the gene expression of the pro-inflammatory cytokines, interleukin-6 (IL-6) and tumor necrosis factor alpha (TNF-α) in canine mammary tumors (CMTs), and correlated them with gene expression of miRNAs expected to regulate the secretion of pro-inflammatory cytokines within the tumor microenvironment (TME). Furthermore, gene expression of cytokines and miRNAs involved in tumor cell proliferation and invasion (i.e. miR-21; miR-124; miR-145) were correlated with tumor proliferation index (Ki67 index) to determine the prognostic value in CMTs. Twenty-six canine mammary samples were used, including 22 CMTs and 4 control samples. MiR-21, IL-6 and TNF-α were upregulated in mammary carcinomas compared with controls (p < 0.05). MiR-146b was downregulated in CMTs compared with control cases (p < 0.05). IL-6 expression showed a significant positive correlation with miR-21 and a negative correlation with miR-146b; while, TNF-α gene expression was positively correlated with miR-21 and miR-145 in mammary carcinomas. In carcinomas, the Ki67 index correlated positively with gene expression of IL-6 and miR-21 and negatively correlated with miR-145 and miR-146b. Specifically, gene expression of IL-6 and miR-21 was positively correlated with ki67 index >33.3%, whereas, expression of miR-145 and miR-146b was negatively correlated with ki67 index <33.3%. Results reinforce the concept of interaction between tumor cells and inflammatory cells within the TME, with a central role of IL-6 and TNF-α. Since the upregulation of miR-21 reflects the gene overexpression of interleukins and the high proliferation index of tumor cells, this miRNA may be considered a biomarker with prognostic value in CMTs.
Collapse
Affiliation(s)
- Jessica Maria Abbate
- Department of Veterinary Sciences, University of Messina, Viale Giovanni Palatucci Snc, 98168 Messina, Italy
| | - Francesca Arfuso
- Department of Veterinary Sciences, University of Messina, Viale Giovanni Palatucci Snc, 98168 Messina, Italy
| | - Kristian Riolo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, Polo Universitario Papardo, 98166 Messina, Italy
| | - Elisabetta Giudice
- Department of Veterinary Sciences, University of Messina, Viale Giovanni Palatucci Snc, 98168 Messina, Italy
| | - Barbara Brunetti
- Department of Medical Veterinary Sciences, University of Bologna, via Tolara di Sopra, Ozzano dell'Emilia, 40126 Bologna, Italy.
| | - Giovanni Lanteri
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, Polo Universitario Papardo, 98166 Messina, Italy
| |
Collapse
|
5
|
Shen HY, Zhang J, Xu D, Xu Z, Liang MX, Chen WQ, Tang JH, Xia WJ. Construction of an m6A-related lncRNA model for predicting prognosis and immunotherapy in patients with lung adenocarcinoma. Medicine (Baltimore) 2023; 102:e33530. [PMID: 37058053 PMCID: PMC10101303 DOI: 10.1097/md.0000000000033530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 03/24/2023] [Indexed: 04/15/2023] Open
Abstract
N6-methyladenosine (m6A)-related lncRNAs could be involved in the development of multiple tumors with an unknown role in lung adenocarcinoma (LUAD). Hence, gene expression data and clinical data of LUAD patients were acquired from The Cancer Genome Atlas Database. The prognostic m6A-related lncRNAs were identified through differential lncRNA expression analysis and Spearman's correlation analysis. The least absolute shrinkage and selection operator regression was used to establish the prognostic risk model, so as to evaluate and validate the predictive performance with survival analysis and receiver operating characteristic curve analysis. The expression of immune checkpoints, immune cell infiltration and drug sensitivity of patients in different risk groups were analyzed separately. A total of 19 prognostic m6A-related lncRNAs were identified to set up the prognostic risk model. The patients were divided into high- and low-risk groups based on the median value of the risk scores. Compared with the patients in the low-risk group, the prognosis of the patients in the high-risk group was relatively worse. The receiver operating characteristic curves indicated that this model had excellent sensitivity and specificity. Multivariate Cox regression analysis demonstrated that the risk score could be supposed as an independent prognostic risk factor. We highlighted that the risk scores were correlated with immune cell infiltration and drug sensitivity for constructing a prognostic risk model in LUAD patients based on m6A-related lncRNAs.
Collapse
Affiliation(s)
- Hong-Yu Shen
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Gusu School, Nanjing Medical University, Nanjing, China
| | - Jin Zhang
- Department of General Practice, Geriatric Hospital of Nanjing Medical University, Jiangsu Province Geriatric Hospital, Nanjing, China
| | - Di Xu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zheng Xu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ming-Xing Liang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Wen-Quan Chen
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jin-Hai Tang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Gusu School, Nanjing Medical University, Nanjing, China
| | - Wen-Jia Xia
- Department of Thoracic Surgery, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
6
|
Pinard CJ, Lagree A, Lu FI, Klein J, Oblak ML, Salgado R, Cardenas JCP, Brunetti B, Muscatello LV, Sarli G, Foschini MP, Hardas A, Castillo SP, AbdulJabbar K, Yuan Y, Moore DA, Tran WT. Comparative Evaluation of Tumor-Infiltrating Lymphocytes in Companion Animals: Immuno-Oncology as a Relevant Translational Model for Cancer Therapy. Cancers (Basel) 2022; 14:5008. [PMID: 36291791 PMCID: PMC9599753 DOI: 10.3390/cancers14205008] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 10/04/2022] [Accepted: 10/08/2022] [Indexed: 11/16/2022] Open
Abstract
Despite the important role of preclinical experiments to characterize tumor biology and molecular pathways, there are ongoing challenges to model the tumor microenvironment, specifically the dynamic interactions between tumor cells and immune infiltrates. Comprehensive models of host-tumor immune interactions will enhance the development of emerging treatment strategies, such as immunotherapies. Although in vitro and murine models are important for the early modelling of cancer and treatment-response mechanisms, comparative research studies involving veterinary oncology may bridge the translational pathway to human studies. The natural progression of several malignancies in animals exhibits similar pathogenesis to human cancers, and previous studies have shown a relevant and evaluable immune system. Veterinary oncologists working alongside oncologists and cancer researchers have the potential to advance discovery. Understanding the host-tumor-immune interactions can accelerate drug and biomarker discovery in a clinically relevant setting. This review presents discoveries in comparative immuno-oncology and implications to cancer therapy.
Collapse
Affiliation(s)
- Christopher J. Pinard
- Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
- Odette Cancer Program, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada
- Radiogenomics Laboratory, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada
| | - Andrew Lagree
- Odette Cancer Program, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada
- Radiogenomics Laboratory, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada
| | - Fang-I Lu
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Jonathan Klein
- Department of Radiation Oncology, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY 10461, USA
| | - Michelle L. Oblak
- Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Roberto Salgado
- Division of Research, Peter MacCallum Cancer Centre, Melbourne 3000, Australia
- Department of Pathology, GZA-ZNA Hospitals, 2610 Antwerp, Belgium
| | | | - Barbara Brunetti
- Department of Veterinary Medical Sciences, University of Bologna, 40064 Ozzano dell’Emilia, Italy
| | - Luisa Vera Muscatello
- Department of Veterinary Medical Sciences, University of Bologna, 40064 Ozzano dell’Emilia, Italy
| | - Giuseppe Sarli
- Department of Veterinary Medical Sciences, University of Bologna, 40064 Ozzano dell’Emilia, Italy
| | - Maria Pia Foschini
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40127 Bologna, Italy
| | - Alexandros Hardas
- Department of Pathobiology & Population Sciences, The Royal Veterinary College, Hertfordshire AL9 7TA, UK
| | - Simon P. Castillo
- Centre for Evolution and Cancer, The Institute of Cancer Research, London SM2 5NG, UK
- Division of Molecular Pathology, The Institute of Cancer Research, London SM2 5NG, UK
| | - Khalid AbdulJabbar
- Centre for Evolution and Cancer, The Institute of Cancer Research, London SM2 5NG, UK
- Division of Molecular Pathology, The Institute of Cancer Research, London SM2 5NG, UK
| | - Yinyin Yuan
- Centre for Evolution and Cancer, The Institute of Cancer Research, London SM2 5NG, UK
- Division of Molecular Pathology, The Institute of Cancer Research, London SM2 5NG, UK
| | - David A. Moore
- Department of Pathology, UCL Cancer Institute, London WC1E 6DD, UK
- University College Hospitals NHS Trust, London NW1 2PG, UK
| | - William T. Tran
- Odette Cancer Program, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada
- Radiogenomics Laboratory, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, ON M5T 1P5, Canada
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada
- Temerty Centre for AI Research and Education in Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| |
Collapse
|
7
|
Kaszak I, Witkowska-Piłaszewicz O, Domrazek K, Jurka P. The Novel Diagnostic Techniques and Biomarkers of Canine Mammary Tumors. Vet Sci 2022; 9:526. [PMID: 36288138 PMCID: PMC9610006 DOI: 10.3390/vetsci9100526] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/12/2022] [Accepted: 09/22/2022] [Indexed: 07/25/2023] Open
Abstract
Canine mammary tumors (CMTs) are considered a serious clinical problem in older bitches. Due to the high malignancy rate and poor prognosis, an early diagnosis is essential. This article is a summary of novel diagnostic techniques as well as the main biomarkers of CMTs. So far, CMTs are detected only when changes in mammary glands are clinically visible and surgical removal of the mass is the only recommended treatment. Proper diagnostics of CMT is especially important as they represent a very diverse group of tumors and therefore different treatment approaches may be required. Recently, new diagnostic options appeared, like a new cytological grading system of CMTs or B-mode ultrasound, the Doppler technique, contrast-enhanced ultrasound, and real-time elastography, which may be useful in pre-surgical evaluation. However, in order to detect malignancies before macroscopic changes are visible, evaluation of serum and tissue biomarkers should be considered. Among them, we distinguish markers of the cell cycle, proliferation, apoptosis, metastatic potential and prognosis, hormone receptors, inflammatory and more recent: metabolomic, gene expression, miRNA, and transcriptome sequencing markers. The use of a couple of the above-mentioned markers together seems to be the most useful for the early diagnosis of neoplastic diseases as well as to evaluate response to treatment, presence of tumor progression, or further prognosis. Molecular aspects of tumors seem to be crucial for proper understanding of tumorigenesis and the application of individual treatment options.
Collapse
Affiliation(s)
- Ilona Kaszak
- Laboratory of Small Animal Reproduction, Department of Small Animal Diseases and Clinic, Institute of Veterinary Medicine, Warsaw University of Life Sciences, 02-787 Warsaw, Poland
| | - Olga Witkowska-Piłaszewicz
- Department of Pathology and Veterinary Diagnostics, Institute of Veterinary Medicine, Warsaw University of Life Sciences, 02-787 Warsaw, Poland
| | - Kinga Domrazek
- Laboratory of Small Animal Reproduction, Department of Small Animal Diseases and Clinic, Institute of Veterinary Medicine, Warsaw University of Life Sciences, 02-787 Warsaw, Poland
| | - Piotr Jurka
- Laboratory of Small Animal Reproduction, Department of Small Animal Diseases and Clinic, Institute of Veterinary Medicine, Warsaw University of Life Sciences, 02-787 Warsaw, Poland
| |
Collapse
|
8
|
Vafaei R, Samadi M, Hosseinzadeh A, Barzaman K, Esmailinejad M, Khaki Z, Farahmand L. Comparison of mucin-1 in human breast cancer and canine mammary gland tumor: a review study. Cancer Cell Int 2022; 22:14. [PMID: 35000604 PMCID: PMC8744232 DOI: 10.1186/s12935-021-02398-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 12/08/2021] [Indexed: 11/10/2022] Open
Abstract
Mucin-1 (MUC-1) is a transmembrane glycoprotein, which bears many similarities between dogs and humans. Since the existence of animal models is essential to understand the significant factors involved in breast cancer mechanisms, canine mammary tumors (CMTs) could be used as a spontaneously occurring tumor model for human studies. Accordingly, this review assessed the comparison of canine and human MUC-1 based on their diagnostic and therapeutic aspects and showed how comparative oncology approaches could provide insights into translating pre-clinical trials from human to veterinary oncology and vice versa which could benefit both humans and dogs.
Collapse
Affiliation(s)
- Rana Vafaei
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, No.146, South Gandi Ave, Vanak Sq, Tehran, Iran
| | - Mitra Samadi
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, No.146, South Gandi Ave, Vanak Sq, Tehran, Iran
| | - Aysooda Hosseinzadeh
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, No.146, South Gandi Ave, Vanak Sq, Tehran, Iran
| | - Khadijeh Barzaman
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, No.146, South Gandi Ave, Vanak Sq, Tehran, Iran
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - MohammadReza Esmailinejad
- Department of Surgery and Radiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Zohreh Khaki
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, No.146, South Gandi Ave, Vanak Sq, Tehran, Iran.
- Department of Clinical Pathology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| | - Leila Farahmand
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, No.146, South Gandi Ave, Vanak Sq, Tehran, Iran.
| |
Collapse
|
9
|
Knebel A, Kämpe A, Carlson R, Rohn K, Tipold A. Measurement of canine Th17 cells by flow cytometry. Vet Immunol Immunopathol 2021; 243:110366. [PMID: 34896773 DOI: 10.1016/j.vetimm.2021.110366] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 12/01/2021] [Accepted: 12/05/2021] [Indexed: 12/19/2022]
Abstract
Th17 cells are T helper cells which play an important role during inflammation and autoimmune disease. To investigate the role of these cells in diseases in dogs in a clinical setting, methods for fast identification had to be established. Th17 cells are a rare cell population, for their measurement stimulation is recommended. To examine more samples simultaneously and to receive a relatively high purity of cell population of CD3 + CD4+ cells, different methods on various levels of preselection of cells as well as the possibility of storing blood overnight for measuring Th17 cells by flow cytometry were investigated. Firstly, to receive a high number of mononuclear cells, two different density gradients were compared and analysed. Furthermore, the enrichment of CD3 + CD4+ cells via depletion of CD8alpha+, CD11b + and CD21+ cells by cell sorting (autoMACS Pro Separator) was tested. It was also investigated whether stimulation processes led to better interpretation of results and whether there was a significant difference in measurement of directly processed blood samples and samples that had been stored overnight. In conclusion, the use of the density gradient (Lymph24+ Spin Medium) resulted in a purer cell population through a significant decrease in polymorphonuclear cells (*p = 0.01). After cell sorting, a significant difference in cell population purity was detected. Within the target fraction (containing mainly CD3 + CD4+ cells), CD8alpha+, CD21+, CD11b + cell percentages were significantly lower (***p < 0.001, *p < 0.02, ***p < .0001, respectively), and CD3 + CD4+ cell percentage was significantly higher (***p < .0001). There was a significant difference in Th17 cell percentage between unstimulated and stimulated cell populations (***p < .0001), but no significant difference in the percentage of unstimulated Th17 cells (p = 0.29) or stimulated Th17 cells (p = 0.71) in stored blood in comparison to directly processed EDTA blood samples. Finally, a modified protocol that offers an efficient way to investigate samples that were stored overnight by means of flow cytometry was evolved to research the role of Th17 cells in dogs with different diseases or in healthy populations.
Collapse
Affiliation(s)
- A Knebel
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine, Hannover, Germany.
| | - A Kämpe
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine, Hannover, Germany
| | - R Carlson
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine, Hannover, Germany
| | - K Rohn
- Department of Biometry, Epidemiology and Information Processing, University of Veterinary Medicine Hannover, Hannover, Germany
| | - A Tipold
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine, Hannover, Germany
| |
Collapse
|
10
|
Von Rueden SK, Fan TM. Cancer-Immunity Cycle and Therapeutic Interventions- Opportunities for Including Pet Dogs With Cancer. Front Oncol 2021; 11:773420. [PMID: 34869014 PMCID: PMC8639699 DOI: 10.3389/fonc.2021.773420] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 11/01/2021] [Indexed: 12/22/2022] Open
Abstract
The tumor-immune interplay represents a dynamic series of events executed by cellular and soluble participants that either promote or inhibit successful tumor formation and growth. Throughout a tumor’s development and progression, the host organism’s immune system reacts by generating anti-cancer defenses through various incremental and combinatorial mechanisms, and this reactive orchestration is termed the cancer-immunity cycle. Success or failure of the cancer-immunity cycle dictates the fate of both host and tumor as winner or loser. Insights into how the tumor and host immune system continuously adapt to each other throughout the lifecycle of the tumor is necessary to rationally develop new effective immunotherapies. Additionally, the evolving nature of the cancer-immunity cycle necessitates therapeutic agility, requiring real-time serial assessment of immunobiologic markers that permits tailoring of therapies to the everchanging tumor immune microenvironment. In order to accelerate advances in the field of immuno-oncology, this review summarizes the steps comprising the cancer-immunity cycle, and underscores key breakpoints in the cycle that either favor cancer regression or progression, as well as shaping of the tumor microenvironment and associated immune phenotypes. Furthermore, specific large animal models of spontaneous cancers that are deemed immunogenic will be reviewed and proposed as unique resources for validating investigational immunotherapeutic protocols that are informed by the cancer-immunity cycle. Collectively, this review will provide a progressive look into the dynamic interplay between tumor and host immune responses and raise awareness for how large animal models can be included for developing combinatorial and sequenced immunotherapies to maximizing favorable treatment outcomes.
Collapse
Affiliation(s)
- Samantha K Von Rueden
- Department of Veterinary Clinical Medicine, University of Illinois at Urbana-Champaign, Champaign, IL, United States
| | - Timothy M Fan
- Department of Veterinary Clinical Medicine, University of Illinois at Urbana-Champaign, Champaign, IL, United States.,Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| |
Collapse
|